Structure of a piezoelectric ink-jet printer head

Information

  • Patent Grant
  • 6362844
  • Patent Number
    6,362,844
  • Date Filed
    Thursday, October 23, 1997
    26 years ago
  • Date Issued
    Tuesday, March 26, 2002
    22 years ago
Abstract
A structure of an ink-jet printer head of a piezoelectric type comprising a deformable polymer membrane, an actuator and an ink tank is provided. The deformable polymer membrane covers the top opening of the ink tank to enclose the ink tank. The actuator, which is a double-layer piezoelectric ceramic plate, is mounted on the deformable polymer membrane with one end thereof being fixedly connected to the polymer membrane and the other end thereof being free to vibrate. As a double-layer piezoelectric ceramic plate is employed as the actuator, it includes a top and a bottom piezoelectric layers. A predetermined voltage signal is applied selectively across the upper-surface electrode and the lower-surface electrode of the top and bottom piezoelectric layer respectively such that the top piezoelectric layer extends and the bottom layer shortens selectively. The different directions of the deformation of the top and bottom piezoelectric layers, therefore, cause the desired vibration of the free end of the actuator. The vibration action of the deformable membrane causes a perturbation action to the ink inside the tank such that the ink is jetted, through the outlet, towards the outside of the printer head.
Description




FIELD OF THE INVENTION




The present invention relates to an ink-jet printer head of the piezoelectric type.




BACKGROUND OF THE INVENTION




An ink-jet printer head of the thermal-bubble type is conventionally used to jet the ink onto a medium to form an image thereon. The printer head of the type typically generates a large driving force. i.e. about 40 atmosphere pressures, onto the ink droplet being jetted. At the moment the ink droplet leaves the printer head, a droplet trailing phenomenon is observed. Therefore, ink-jet printer of the type wastes ink, and has difficulty in controlling the desired shape and size of the ink droplet. In addition, lower resolution printing quality is also the drawback with the thermal-bubble type ink-jet printer.




The piezoelectric type is another category of the ink-jet printer head which utilizes a piezoelectric ceramic plate as an actuator for driving the ink. The driving force of such type is about 4 atmosphere pressures, which is much smaller than one generated by the thermal-bubble type. Due to the characteristic of driving mechanism, the size of the ink droplet is smaller and the droplet trailing phenomenon is substantially reduced. In addition, the piezoelectric type printer head saves ink and has a higher resolution compared with the thermal-bubble ink-jet type.




The characteristics of the piezoelectric ceramic plate is introduced in the following by referencing FIG.


1


. As well known in the arts, the piezoelectric ceramic plate is made with one predetermined polarization direction. For piezoelectric material whose polarization direction is d


31


, the deformation of the piezoelectric material will be in X direction, when an electric field is applied in Z direction. On the other hand, for piezoelectric material whose polarization direction is d


33


, the deformation of the piezoelectric material will be in Z direction, when the applied electric field is in Z direction. Two well known conventional approaches are used to operate the piezoelectric type printer head. The first one involves utilizing a multi-layer piezoelectric ceramic plate as an actuator to jet the ink as shown in FIG.


2


. Referring to

FIG. 2

, the multi-layer, i.e. 8 layers, piezoelectric ceramic plate


20


is disposed in a housing with the bottom end fixed and the upper end free to move. The polarization direction of each layer of the piezoelectric ceramic plate


20


is d


33


. The positive electrodes for each layer within the multi-layer ceramic plate


20


together form a comb configuration denoted as


100


. The negative electrodes for each layer within the multi-layer ceramic plate


20


together form a comb configuration denoted as


200


.




Initially when a first voltage is applied across the positive and negative electrodes, the electric field generated will make each layer deform and cause the multi-layer piezoelectric plate


20


to move downwards. The rubber pad


21


moves downwards accordingly. The space of the ink tank


23


becomes larger and the ink flows from the ink container


24


into the ink tank


23


via the passage


25


. Afterwards when a second voltage is applied across the positive and negative electrodes, the direction of the electric field generated will be opposite, and each layer deforms in the opposite direction and causes the multi-layer piezoelectric plate


20


to move upwards. The rubber pad


21


moves upwards accordingly. The ink tank


23


will become smaller, and the pressure inside the ink tank


23


will force the ink to be jetted from the ink tank


23


via the outlet


22


.




In the structure of

FIG. 2

, the multi-layer piezoelectric ceramic plate


20


is positioned under the outlet


22


with the upper end moves in a vertical direction. The amount of the displacement ΔX of the upper end of the multi-layer piezoelectric ceramic plate


20


is calculated by the following equation: ΔX=d


33


*V*n, wherein d


33


is the piezoelectric parameter, V is the voltage applied across two electrodes, and n is the number of the layers within the multi-layer piezoelectric ceramic plate


20


. Due to its multi-layer structure, the multi-layer piezoelectric ceramic plate in

FIG. 2

has a larger displacement when applied with a voltage, and results in a larger driving force to the ink. However, the manufacturing of multi-layer piezoelectric ceramic plate


20


and the electrodes is difficult and costly.




The second approach performs the function through another way. The walls of the ink tank are formed by piezoelectric ceramic segments. When the walls of the ink tank are applied with a voltage, the shape of the ink tank will be changed and thus the ink will be jetted out of the ink tank.

FIG. 3



a


shows a cross-sectional view of the structure in which the side walls of the ink tank


302


deforms in response to the voltage applied across the corresponding electrodes. The shown cross section is perpendicular to the longitudinal dimension (into the paper) of the ink tanks


301


,


302


,


303


. The structure includes a plurality of single-layer piezoelectric ceramic segments


321


,


322


,


323


,


324


which are formed by a diamond cutting process on a single sheet of piezoelectric ceramic plate. After the cutting procedure, corresponding side walls of two successive piezoelectric ceramic segments, i.e.


322


,


323


, constitute one ink tank


302


therebetween. The electrodes


39


on the inner surface of each ink tank are respectively formed by an electrodeless nickel plating process. A sheet of glass or ceramic plate


34


is covered and connected onto the upper surface of the piezoelectric ceramic segments to totally enclose the tank space. Two voltages A, B shown in FIG.


3


(


b


) are applied across the respective electrodes to create corresponding deformation as desired. As a result, the right side wall of the tank


302


deforms rightwards and the left side wall of the tank


302


deforms leftwards. Therefore, the size of the ink tank


302


increases due to the deformation. The space of the ink tanks


302


increases, and the ink will be drawn from an ink container (not shown) into the ink tank


302


. Afterwards, the voltage A drops sharply to a negative value and the voltage B elevates sharply to a positive value. Due to this opposite action, the dimension of the tank


302


decreases due to the deformation of the piezoelectric ceramic segments


322


,


323


in a reverse direction. As the space of the ink tank


302


decreases, the ink is jetted from the ink tank


302


via an outlet


31


. The plastic substrate


38


is made of soft and resilient material which also helps the ink tank


302


generate the driving force. Since the electrodeless plating process is used to manufacture the electrodes


39


, its endurance against the ink erosion is enhanced. However, this second approach of the piezoelectric type printer head is complex in structure and in manufacturing. More details regarding the second approach disclosed in FIG.


3


(


a


) can be found in U.S. Pat. No. 5,327,627.




SUMMARY OF THE PRESENT INVENTION




The main object of the present invention is to provide a ink-jet printer head of the piezoelectric ceramic type which has a simple structure and is easy to manufacture.




In the present invention, the printer head includes a deformable polymer membrane, an ink tank and a dual-layer piezoelectric ceramic plate. The dual-layer piezoelectric ceramic plate is mounted on the deformable polymer membrane which functions to apply a perturbation force to the ink within the ink tank. The dual-layer of the piezoelectric ceramic plate includes an top layer and a bottom layer, both of which have same polarization direction. One end of the piezoelectric ceramic plate is fixed to the membrane and the other end is free to vibrate. When a voltage is applied across two electrodes at the fixed end of the dual-layer piezoelectric ceramic plate, the free end of the dual-layer piezoelectric ceramic plate vibrates. Through the deformable membrane, a perturbation force is created and drives the ink to be jetted outside the ink tank via an outlet.











BRIEF DESCRIPTION OF THE DRAWINGS




The various features and advantages of the present invention will be readily understood with reference to the following detailed descriptions taken in conjunction with the accompanying drawings, in which:





FIG. 1

shows the relationship between the polarization direction of a piezoelectric ceramic plate and the direction of the corresponding deformation;





FIG. 2

shows a conventional printer head which utilizes a multi-layer ceramic piezoelectric plate as an actuator;




FIG.


3


(


a


) show another conventional printer head which utilizes a single-layer ceramic piezoelectric plate as an actuator;




FIG.


3


(


b


) shows the voltage applied across the electrodes when operating the actuator shown in FIG.


3


(


a


);




FIG.


4


(


a


) shows a side view of a piezoelectric ceramic printer head, in a neutral state, according to the present invention;




FIG.


4


(


b


) shows a side view of a piezoelectric ceramic printer head, in a operating state, according to the present invention.











DETAILED DESCRIPTION OF THE PRESENT INVENTION




FIG.


4


(


a


) shows a structure of a piezoelectric ceramic printer head according to the embodiment of the present invention. The printer head includes a double-layer piezoelectric ceramic plate


41


, a deformable polymer membrane


42


and an ink tank


43


. The ceramic plate


41


has a piezoelectric parameter (d


31


) about −215*10


−12


m/V. The deformable polymer membrane


42


is made of, for example, the polyester or polyimide. The ink tank


43


which is made of ceramic materials, such as zirconium oxide or aluminum oxide. The ink tank


43


is formed by a bottom plane


47


, side walls


46


, an ink inlet


44


and an ink outlet


45


. The deformable polymer membrane


42


functions as the top cover of the ink tank


43


and connects to the top surfaces of the side walls


46


. The deformable polymer membrane


42


, side walls


46


, bottom plane


47


together form the enclosure which stores the ink. The double-layer piezoelectric ceramic plate


41


consists of two stacked piezoelectric layers of same polarization directions. The piezoelectric ceramic plate


41


is mounted on the deformable polymer membrane


42


and functions as an actuator for actuating the membrane


42


. The piezoelectric ceramic plate


41


is mounted on the membrane


42


with one end


411


fixedly connected to the membrane


42


and the other end


412


is free to vibrate. As shown, the length of the double-layer piezoelectric ceramic plate


41


is shorter than that of the membrane


42


.




In a preferred embodiment, the ink outlet


45


is disposed at a horizontal location which substantially corresponds with the location of the free end


412


of the piezoelectric ceramic plate


41


.




According to the embodiment, the dual-layer piezoelectric ceramic plate


41


consists of a top layer


49


and a bottom layer


48


, both of which have a same polarization direction. The top layer


49


and the bottom layer


48


are equipped with electrodes respectively as shown in FIG.


4


(


a


), and wherein the upper electrode of the top layer


49


and the bottom electrode of the bottom layer


48


are connected to the positive terminal of the voltage supply, the lower electrode of the top layer


49


and the top electrode of the bottom layer


48


are connected to the negative terminal of the voltage supply. When the electrodes of top and bottom layers


49


and


48


are free of voltage supply, they assume their initial states shown in FIG.


4


(


a


). When the voltage Vin is applied across the electrodes, the top layer


49


stretches and the bottom layer


48


shortens. These two different actions cause the dual-layer piezoelectric plate


41


to bend downwards. The deflection of the dual-layer piezoelectric ceramic plate


41


depends on its thickness and the distance from the fixed end


411


to the free end


412


. This amount of deflection z is calculated by z=9*10


−10


(L


2


/h


2


) meter/Volt, h is the thickness of the piezoelectric ceramic plate, L is the distance from the fixed end


411


to the free end


412


.




Referring to FIG.


4


(


b


), as the piezoelectric ceramic plate


41


bends downwards, the deformable polymer membrane


42


is forced to move downwards accordingly. As the applied voltage is removed and as the piezoelectric ceramic plate


41


returns to its initial undeformed state, the deformable polymer membrane


42


also returns to its initial state shown in FIG.


4


(


a


). As the voltage is applied and removed in very high frequency, the deformable polymer membrane


42


vibrates accordingly in a corresponding frequency. This high frequency vibration action of the deformable polymer membrane


42


generates a perturbation action to the ink within the ink tank. The perturbation action therefore jet the ink out of the ink tank


43


via the ink outlet


45


. The manufacturing process of such piezoelectric ceramic jet printer head may be summarized as the following steps.




1) Manufacturing the ink tank


43


formed of a bottom plane and side walls with ink inlet and ink outlet.




2) A deformable membrane


42


is covered over the top opening of the ink tank


43


to form an enclosure for storing the ink.




3) Manufacturing a dual-layer piezoelectric ceramic plate


41


which includes an top layer and a bottom layer. The top and bottom layers have same polarization direction. Two electrodes are respectively provided on the upper and lower surfaces of the top layer and the bottom layer.




4) Mounting the dual-layer piezoelectric ceramic plate


41


onto the deformable membrane


42


with one end fixed to the membrane


42


and the other end free to vibrate.



Claims
  • 1. An ink-jet printer head of a piezoelectric ceramic type, comprising:an ink tank for storing an ink therein, the ink tank having a plurality of side walls, a bottom plane, an opening and an ink outlet, the plurality of side walls defining a top edge, the opening has a first dimension in a first direction; a deformable layer for covering the opening of the ink tank, said deformable layer having an edge attaching the top edge of the plurality of side walls; and an actuator causing the deformable layer to vibrate, the actuator being made of piezoelectric material, the actuator having a first end and a second end, a distance between the first end and the second end of the actuator being substantially shorter than the first dimension, the first end of the actuator being fixed mounted on a portion of said edge of said deformable layer, and the second end of the actuator being free to vibrate; wherein a portion of said deformable layer between the second end of the actuator and the top edge is free of contact with both the actuator and the top edge; wherein the vibration action of the deformable layer causes a perturbation action to the ink inside the tank such that the ink is jetted, through the outlet, towards the outside of the printer head.
  • 2. The printer head as claimed in claim 1, wherein the deformable membrane is a polymer membrane.
  • 3. The printer head as claimed in claim 1, wherein the actuator is a double-layer piezoelectric ceramic plate.
  • 4. The printer head as claimed in claim 3, wherein the double-layer piezoelectric ceramic plate comprises a top and a bottom piezoelectric layer both of which have a same polarization direction, wherein the top piezoelectric layer and the bottom piezoelectric layer respectively includes an upper-surface electrode and a lower-surface electrode, a predetermined voltage signal is applied selectively across the upper-surface electrode and the lower-surface electrode of the top and bottom piezoelectric layer respectively such that the top piezoelectric layer extends and the bottom layer shortens selectively.
  • 5. The printer head as claimed in claim 1, wherein the ink outlet is formed on the bottom plane of said ink tank at a location substantially corresponding to the second end of the actuator.
  • 6. An ink-jet printer head of a piezoelectric ceramic type, comprising:an ink tank for storing an ink therein, the ink tank having a plurality of side walls, a bottom plane, an opening and an ink outlet, the plurality of side walls defining a top edge, the opening has a first dimension in a first direction; a deformable layer for covering the opening of the ink tank, said deformable layer having an edge attaching the top edge of the plurality of side walls; and an actuator having a top layer and a bottom layer for causing the deformable layer to vibrate, the actuator being made of piezoelectric material, the actuator having a first end and a second end, a distance between the first end and the second end of the actuator being substantially shorter than the first dimension, the first end of the actuator being fixed mounted on a portion of said edge of said deformable layer, and the second end of the actuator being free to vibrate; wherein when a voltage is applied on the actuator, the top layer stretches and the bottom layer shortens to cause a deflection of the actuator, the deflection of the actuator depending on a thickness of the actuator and the distance between the first end and the second end of the actuator; wherein the vibration action of the deformable layer causes a perturbation action to the ink inside the tank such that the ink is jetted, through the outlet, towards the outside of the printer head.
  • 7. An ink-jet printer head of a piezoelectric ceramic type, comprising:an ink tank for storing an ink therein, the ink tank having a plurality of side walls, a bottom plane, an opening and an ink outlet, the plurality of side walls defining a top edge, the opening has a first dimension in a first direction; a deformable layer for covering the opening of the ink tank, said deformable layer having an edge attaching the top edge of the plurality of side walls; and an actuator causing the deformable layer to vibrate, the actuator being made of piezoelectric material, the actuator having a first end and a second end, a distance between the first end and the second end of the actuator being substantially shorter than the first dimension, the first end of the actuator being fixed mounted on a portion of said edge of said deformable layer, and the second end of the actuator being free to vibrate; wherein the ink outlet is disposed at a location in the first direction which corresponds with the location of the first end of the actuator; wherein the vibration action of the deformable layer causes a perturbation action to the ink inside the tank such that the ink is jetted, through the outlet, towards the outside of the printer head.
  • 8. An ink-jet printer head of a piezoelectric ceramic type, comprising:an ink tank for storing an ink therein, the ink tank having a plurality of side walls, a bottom plane, an opening and an ink outlet, the plurality of side walls defining a top edge, the opening has a first dimension in a first direction; a deformable layer for covering the opening of the ink tank, said deformable layer having an edge attaching the top edge of the plurality of side walls; and an actuator causing the deformable layer to vibrate, the actuator being made of piezoelectric material, the actuator having a first end and a second end, a distance between the first end and the second end of the actuator being substantially shorter than the first dimension, the first end of the actuator being fixed mounted on a portion of said edge of said deformable layer, and the second end of the actuator being free to vibrate; wherein a length of the actuator is shorter than a length of the deformable layer; wherein the vibration action of the deformable layer causes a perturbation action to the ink inside the tank such that the ink is jetted, through the outlet, towards the outside of the printer head.
US Referenced Citations (4)
Number Name Date Kind
4520374 Koto May 1985 A
5184155 Yonekubo et al. Feb 1993 A
5406318 Moore et al. Apr 1995 A
5465108 Fujimoto Nov 1995 A