Structure of floor slab bridge

Information

  • Patent Grant
  • 6792638
  • Patent Number
    6,792,638
  • Date Filed
    Tuesday, March 25, 2003
    21 years ago
  • Date Issued
    Tuesday, September 21, 2004
    19 years ago
Abstract
A construction of a floor slab bridge includes a plurality of columnar H-shaped steels each disposed between adjacent bridge legs and arranged in side-by-side relation with an end face of a lower flange abutted with a corresponding end face of the adjacent columnar H-shaped steel. A lower concrete layer is formed by placing concrete in a space defined between the upper and lower flanges and between adjacent web plates through a concrete inlet port formed between the adjacent upper flange, and an upper concrete layer is formed by placing concrete on the upper flange. An iron reinforcement is horizontally disposed on the upper flanges, and an iron reinforcement is suspended in the space from the horizontal iron reinforcement through the concrete inlet port.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates to a structure of a floor slab bridge in a bridge built up in a river or on land, and more particularly to a structure of a floor slab bridge in which a columnar H-shaped steel is used as a main girder material.




2. Related Art




A floor slab bridge is disclosed by Japanese Patent Application Laid-Open Publication No. H09-221717 as typically illustrated in its

FIGS. 1 and 2

, in which steel sheet piles


11


are used as a bottom plate, T-shaped steels or H-shaped steels (main girder member


13


) are welded to the steel sheet piles


11


such that the T-shaped steels or H-shaped steels are spacedly arranged thereon. Adjacent steel sheet piles


11


are joined by pawls


12


disposed at left and right side end faces of each steel sheet pile


11


. Concrete is placed in a space between an upper flange of each T-shaped steel or H-shaped steel and the steel sheet pile


11


through a concrete inlet port which is formed between the upper flanges of each T-shaped steel or H-shaped steel so that a lower concrete layer is formed, and concrete is placed on the upper flange so that an upper concrete layer is formed, wherein the upper concrete layer is to be joined with the lower concrete layer through the concrete inlet port.




Similarly,

FIG. 5

of the above publication shows a floor slab bridge in which a plurality of T-shaped steels or H-shaped steels are arranged in side-by-side relation on a bottom plate


3


composed of a single steel plate and concrete is placed thereon.




In those floor slab bridges, a side plate


16


is applied to the outer side surface of the side concrete layer placed on the outer side surface of the leftmost or rightmost T-shaped steel or H-shaped steel, and in the floor slab bridge shown in

FIGS. 1 and 2

, a PC steel material


18


is pierced through a web plate formed of T-shaped steel or H-shaped steel, which are arranged in a side-by-side relation, a lower concrete layer and a block which is called a cross girder


19


, from the outer side surface of the side plate


16


. Both ends of the PC steel material


18


are fastened at the outer side surfaces of the side plates


16


, and play at the joint part of the pawl


12


is set to a maximum, thereby applying a pre-stress to the concrete layer. Necessarily, the PC steel material


18


used as this pre-stress means is left in its exposed state at the fastening parts on both ends at the outer side surfaces of the side plates


16


.




In the above-mentioned conventional structure(s), the bottom plate is formed by the steel sheet piles


11


, and the T-shaped steels or H-shaped steels are spacedly arranged in side-by-side relation on the bottom plate as in the manner mentioned above. Play at the joint part of the pawl


12


of the steel sheet pile


11


is set to a maximum. After the concrete is cured, the PC steel material


18


is fastened at the outer side surfaces of the side plates


16


, thereby applying a pre-stress to the concrete layer. The PC steel material


18


pierces through the cross girder


19


, with play, thus enabling a fastening which can apply the pre-stress. Accordingly, the PC steel material


18


is not joined with the concrete at all. This means that the PC steel material


18


does not function as a concrete reinforcement.




Therefore, if a vertical load (live load) attributable to a passage of vehicles, etc. is applied to the floor slab bridge, a shearing force would act on the concrete layer which would induce cracking of the concrete layer.




Moreover, since the PC steel material


18


is fastened at the outer side surfaces of the two side plates


16


, the load is totally applied to the fastening parts of the side plates


16


, thus resulting in a collapsing and/or twisting of the side plates


16


.




In addition, since the fastening parts are exposed from the side plates


16


, i.e., from the concrete layer, the fastening parts become rotten due to wind, rain or the like so as to degrade their original function and to spoil the outer appearance of the floor slab bridge.




Moreover, it is very troublesome to fillet weld each and every T-shaped steel or H-shaped steel over its entire length to the bottom plate


3


and the steel sheet piles


11


at constant intervals. Thus, the labor time is increased and the cost is increased, too.




The present invention has been accomplished in view of the above problems.




SUMMARY OF THE INVENTION




It is, therefore, an object of the present invention to provide a structure of a floor slab bridge which can be properly formed by forming a main girder structure using commercially available columnar H-shaped steels and applying concrete thereto.




In order to achieve the above object, according to one aspect of the present invention, there is provided a structure of a floor slab bridge comprising a plurality of columnar H-shaped steels each of which includes a web plate having at an upper end thereof an upper flange and at a lower end thereof a lower flange, the columnar H-shaped steels being arranged in side-by-side relation with an end face thereof abutted with a corresponding end face of an adjacent columnar H-shaped steel, the upper flanges being smaller in width than the lower flanges so that a concrete inlet port is formed between adjacent upper flanges; a lower concrete layer formed by placing concrete in a space defined between the upper and lower flanges and between the adjacent web plates through the concrete inlet port; an upper concrete layer formed by placing concrete on the upper flange and connected to the lower concrete layer through the concrete inlet port; a horizontal iron reinforcement horizontally laid on each of the upper flanges; a suspending iron reinforcement suspended in the space through the concrete inlet port; and the horizontal iron reinforcement being embedded in the upper concrete layer and the suspending iron reinforcement being embedded in the lower concrete layer.




By the horizontal iron reinforcement and the suspending iron reinforcement suspended therefrom, the joining strength between the upper concrete layer and the lower concrete layer, particularly the lower concrete layer demarcated by the web plate is properly reinforced, thereby providing sufficient strength to the entire floor slab bridge.




Thus, the shearing resisting force of the concrete against the live load is increased to effectively prevent cracking.




The columnar H-shaped steels generally of JIS specifications each having an upper flange which is cut in such a manner so as to have a predetermined width are arranged in a side-by-side relation between adjacent bridge legs with the adjacent lower flanges abutted with each other, and concrete is placed thereon. Merely by doing so, a floor slab bridge can be constructed at a low cost and with a reduced amount of labor time.




According to another aspect of the present invention, there is provided a structure of a floor slab bridge comprising a plurality of columnar H-shaped steels each of which includes a web plate having at an upper end thereof an upper flange and at a lower end thereof a lower flange, a joining plate made of a steel material being interposed between every adjacent pair of lower flanges, left and right end faces of each of the joining plates being in abutment relation with corresponding end faces of lower flanges of the adjacent left and right columnar H-shaped steels, a concrete inlet port being formed between every adjacent pair of upper flanges with the help of the joining plate; a lower concrete layer formed by placing concrete in a space formed between the upper and lower flanges and between the adjacent web plates through the concrete inlet port; and an upper concrete layer formed by placing concrete on the upper flange and connected to the lower concrete layer through the concrete inlet port.




By employment of the joining plate, the time and labor for dimensioning the upper flange smaller in width than the lower flange can be eliminated. The columnar H-shaped steels of JIS specifications can be used as they are. Accordingly, a floor slab bridge can be constructed at a low cost and with a reduced amount of labor time. Moreover, by properly selecting the width of the joining plate, the width dimension of the bridge can be set easily.




According to a further aspect of the present invention, there is provided a structure of a floor slab bridge comprising a plurality of columnar H-shaped steels each of which includes a web plate having at an upper end thereof an upper flange and at a lower end thereof a lower flange, the columnar H-shaped steels being arranged in a side-by-side relation with an end face thereof abutted with a corresponding end face of the adjacent columnar H-shaped steel, the web plate being pierced therethrough by a web through-bar, a plurality of the web through-bars being arranged in the longitudinal direction of the bridge at small intervals, a stopper such as a nut, which is to be abutted with an outer side surface of each of the leftmost and rightmost columnar H-shaped steels, the upper flanges being smaller in width than the lower flanges so that a concrete inlet port is formed between adjacent upper flanges; a lower concrete layer formed by placing concrete in a space defined between the upper and lower flanges and between the adjacent web plates through the concrete inlet port; an upper concrete layer formed by placing concrete on the upper flange and connected to the lower concrete layer through the concrete inlet port; and the web through bar being embedded in the lower concrete layer so as to serve as a concrete reinforcement, opposite ends of the web through-bar and the stopper being embedded in side concrete layers which are placed on outer side surfaces of the leftmost and rightmost columnar H-shaped steels.




The web through-bar is preferably of the type having a head (stopper) at one end thereof. A nut (stopper) is threadingly engaged with the other end of the web through-bar so as to fasten to the outer side surfaces of the web plate of the leftmost and rightmost columnar H-shaped steels. It is also accepted that a nut is threadingly engaged with each end of the web through-bar to fasten to the outer side surfaces of the leftmost and rightmost columnar H-shaped steels.




This fastening force is preferably not so large so as to give an abutting force to the abutting parts of the adjacent lower flanges of the columnar H-shaped steels. That is, it is preferred that the adjacent lower flanges of the columnar H-shaped steels are merely loosely contacted (a small space may be formed between the adjacent lower flanges) with each other.




The web through-bar is embedded in the lower concrete layer so as to serve as a concrete reinforcement. Moreover, the shearing resisting force against the live load to be imposed on the concrete layer is increased. This effectively prevents concrete cracking. In addition, by embedding the stoppers and opposite end parts of the web through-bar in the side concrete layers, they can be prevented from becoming rotten due to wind, rain or the like and the outer appearance is not spoiled.




Preferably, the joining plate is provided with a reinforcement plate which is erected from an upper surface of the joining plate and embedded in the lower concrete layer. Due to this arrangement, the main girder component members of a bridge can be increased in strength, and the joining plate and the lower concrete layer can be firmly joined together.




The horizontal iron reinforcement and the suspending iron reinforcement may be used in combination with the joining plate and the web through-bar, where appropriate. By doing so, those elements can function synergistically.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a lateral sectional view showing a structure of a floor slab bridge formed of a columnar H-shaped steel and by concrete placement.





FIG. 2

is a plan view showing a state of columnar H-shaped steels set up in side-by-side relation for construction of a bridge before a concrete placement is made.





FIG. 3

is a side view of the structure shown in FIG.


2


.





FIG. 4

is a lateral sectional view showing an example in which a concrete inlet port is formed in the columnar H-shaped steel.





FIG. 5

is a lateral sectional view showing another example in which a concrete inlet port is formed in the columnar H-shaped steel.





FIG. 6

is a lateral sectional view showing an example of the floor slab bridge in which joining plates are used.





FIG. 7

is a cross sectional view exemplifying a relation among the joining plate, the columnar H-shaped steels and web through-bars.





FIG. 8

is a cross sectional view of a floor slab bridge showing an example in which a light-weight material is applied to the bridge.





FIG. 9

is a side view of the structure shown in FIG.


8


.











DETAILED DESCRIPTION OF THE EMBODIMENT




Embodiments of the present invention will now be described hereinafter with reference to

FIGS. 1 through 9

.




As shown in

FIGS. 1

,


2


,


6


and


8


, a plurality of columnar H-shaped steels


1


each having a lower flange


2


and an upper flange


4


joined together through a web plate


3


, that is, a plurality of commercially available H-shaped steels of JIS specifications, are used. As shown in

FIGS. 2

,


3


and


9


, the columnar H-shaped steels


1


are arranged in side-by-side relation between adjacent bridge legs


5


such that end faces


2




a


of the adjacent lower flanges


2


are abutted with each other.




As shown in

FIGS. 3 and 9

, the opposite ends of the columnar H-shaped steel


1


are supported on seat surfaces of the adjacent bridge legs


5


,


5


through rubber bearings


6


or the like, and the opposite ends of the lower flanges


2


are attached to the bridge legs


5


through anchor bolts


7


.




As shown in

FIG. 4

, each upper flange


4


is smaller in width than each lower flange


2


, so that a concrete inlet port


8


of

FIG. 1

is formed between the adjacent upper flanges


4


.




As the columnar H-shaped steel


1


, a steel column of JIS specifications (JISG3101 steel material, JISG3106 steel material, JISG3114 steel material) which is composed of a lower flange


2


, an upper flange


4


and a web plate


3


is used. As shown in

FIG. 4

, opposite end parts of the upper flanges


4


of the respective columnar H-shaped steels


1


are cut off by the same width portions so that the upper flanges


4


are smaller in width than the lower flanges


2


. The columnar H-shaped steels


1


having such dimensioned upper and lower flanges


4


,


2


are prepared beforehand and can be carried to a site.




As shown in

FIG. 5

, one half part of the upper flange


4


of each columnar H-shaped steel


1


is cut off at the joining part with respect to the web plate


3


. A plurality of columnar H-shaped steels


1


each having such an upper flange


4


are arranged in side-by-side relation with the adjacent lower flanges


2


abutted with each other to thereby form the concrete inlet port


8


.




As shown in

FIG. 1

, concrete


9


is placed in a space S which is defined between each upper and lower flanges


4


,


2


and between the adjacent web plates


3


through the concrete inlet port


8


so that a lower concrete layer


10


is formed.




Moreover, the concrete


9


is placed on each upper flange


4


to form an upper concrete layer


11


which is connected to the corresponding lower concrete layer


10


through the concrete inlet port


8


.




Plating such as zinc plating, or coating is applied to the outer surface of the columnar H-shaped steel


1


.





FIG. 6

shows another example. As shown in

FIG. 6

, a plurality of columnar H-shaped steels of JIS specifications are supported between adjacent bridge legs


5


without applying a width cutting treatment to the upper flanges


4


. Lower flanges


2


, with a steel joining plate


15


interposed between every adjacent pair of lower flanges


2


, are disposed between the adjacent bridge legs


5


. One end face


15




a


of each joining plate


15


is arranged in abutment relation with a corresponding end face


2




a


of the adjacent lower flange


2


and the other end face


15




a


of each joining plate


15


is arranged in abutment relation with the other end face


2




a


of the adjacent lower flange


2


. A concrete inlet port


8


is formed between every adjacent pair of upper flanges


4


with the help of the joining plate


15


. As shown in

FIGS. 6 and 8

, concrete is placed in space S′ formed between the upper flange


4


and the lower flange


2


and between the adjacent web plates


3


through the concrete inlet port


8


to thereby form a lower concrete layer


10


.




Then, concrete is placed on each upper flange


4


to form an upper concrete layer


11


which is connected to the lower concrete layer


10


through the concrete inlet port


8


.




In the example of

FIG. 1

, the columnar H-shaped steels


1


of JIS specifications, each having an upper flange


4


which is cut in such a manner so as to have a predetermined width, are arranged in side-by-side relation between the adjacent bridge legs


5


and concrete is placed thereon. Merely by doing so, a floor slab bridge can be constructed at a low cost and with a reduced amount of labor time.




In the example of

FIGS. 6 and 8

, a plurality of columnar H-shaped steels


1


of JIS specifications are supported between adjacent bridge legs


5


without applying a width cutting treatment to the upper flanges


4


, and concrete


9


is placed thereon. Merely by doing so, a floor slab bridge can be constructed at a low cost and with a reduced amount of labor time.




As shown in

FIGS. 1

,


6


and


8


, a form side plate


14


is assembled to the outer side of each of the leftmost and rightmost columnar H-shaped steels


1


′ (each columnar H-shaped steel located at the left extreme end or at the right extreme end in the width direction of the bridge), and concrete is placed on the outer side part of the columnar H-shaped steel


1


′ to thereby form a side concrete layer


10


′.




In other words, concrete


9


is placed in a space S″ which is defined by the lower flange


2


, the web plate


3


, the upper flange


4


and the form side plate


14


of the columnar H-shaped steel


1


′ to thereby form a side concrete layer


10


′.




The form side plates


14


are removed after the concrete


9


is cured. In actual practice, the lower concrete layer


10


, the upper concrete layer


11


and the side concrete layers


10


′ are not formed by placing the concrete


9


separately. Instead, by continuously placing the concrete


9


, the side concrete layers


10


″ are integrally formed (or placed) on the opposite ends of the upper concrete layer


11


. A parapet


21


is integrally erected on the upper end of each concrete layer


10


′.




Each joining plate


15


has generally the same thickness as the lower flange


2


. The joining plates


15


and the columnar H-shaped steels


1


are alternately arranged between the bridge legs


5


. The joining plate


15


makes it possible to form the concrete inlet port


8


in case the commercially available columnar H-shaped steel


1


is used in which the upper flange


4


is not partly cut off. The width dimension is established by properly selecting the width of the joining plate


15


.




As shown in

FIGS. 6

,


7


and


8


, each joining plate


15


is provided with a reinforcement plate


18


which is erected from the center of the upper surface thereof and embedded in the lower concrete layer


10


. The joining plate


15


in combination with the reinforcement plate


18


exhibit a T-shaped configuration. Therefore, either by applying a commercially available T-shaped steel, or a T-shaped steel formed by partly cutting off the upper flange of the commercially available columnar H-shaped steel, the joining plate


15


and the reinforcement plate


18


are formed.




As shown in

FIG. 7

, the reinforcement plate


18


is provided at an upper end thereof with a flange


19


which is integral with the joining plate


15


and the reinforcement plate


18


and in parallel with the joining plate


15


. That is, a steel material, which includes the joining plate


15


, the reinforcement plate


18


and the flange


19


, is in the form of the columnar H-shaped steel. The commercially available columnar H-shaped steel


1


of JIS specifications, the joining plate


15


formed by the lower flange of the commercially available columnar H-shaped steel


1


, the reinforcement plate


18


and the upper flange


19


are embedded in the lower concrete layer


10


.




In the same manner as described above, plating such as zinc plating, or coating is applied to the outer surface of the columnar H-shaped steel


1


. Similarly, plating such as zinc plating, or coating is applied to the outer surface of the columnar T-shaped or H-shaped steel which constitutes the joining plate


15


and the reinforcement plate


18


.




By the reinforcement plate


18


and upper flange


19


, the main girder component member of a bridge is further increased in strength and the joining plate


15


and the lower concrete layer


10


are firmly connected together. Of course, the columnar H-shaped steel composing the joining plate


15


is smaller than the columnar H-shaped steel which composes the main girder.




Moreover, an iron reinforcement is horizontally laid on the upper flange


4


, and the suspending iron reinforcement


13


is assembled with the horizontal iron reinforcement


12


. The suspending iron reinforcement


13


is suspended in the space S, S′ through the concrete inlet port


8


. The horizontal iron reinforcement


12


is embedded in the upper concrete layer


11


, and the suspending iron reinforcement


13


is embedded in the lower concrete layer


10


. By doing so, a floor slab bridge can be constructed.




In the same manner as mentioned above, the suspending iron reinforcements


13


are suspended in the left and right outer space S″ of the leftmost and rightmost columnar H-shaped steels


1


′, and the suspended iron reinforcements


13


are embedded in the side concrete layers


10


′.




Each suspending iron reinforcement


13


is, as shown in

FIG. 1

, is formed in a U-shaped configuration in the width direction of the bridge, and, as shown in

FIG. 6

, formed in a U-shaped configuration in the longitudinal direction of the bridge. The opposite upper ends of each suspending iron reinforcement


13


are assembled with the horizontal iron reinforcement


12


in a suspending manner.




The horizontal iron reinforcement


12


is supported on the upper surface of the upper flange


4


so as to bear the horizontal iron reinforcement


12


and suspending iron bar


13


. Of course, a plurality of such plural iron reinforcements


12


,


13


are arranged at small intervals in the longitudinal direction of the H-shaped steel


1


.




Moreover, vertical iron reinforcements


12


′ extending in the longitudinal direction of the bridge are assembled with the horizontal iron reinforcements


12


and the suspending iron reinforcements


13


so as to form a basket shape as a whole. The vertical iron reinforcements


12


′ are also supported on the horizontal iron reinforcements


12


which are horizontally supported on the upper flanges


4


.




By the horizontal iron reinforcements


12


and the suspending iron reinforcements


13


suspended therefrom, the joining strength between the upper concrete layer


11


and the lower concrete layer


12


, particularly the lower concrete layer


10


demarcated by the web plate


3


is properly reinforced, thereby providing a sufficient strength to the entire floor slab bridge.




Thus, the shearing resisting force of the concrete


9


against the live load is increased to effectively prevent cracking of the upper and lower concrete layers


11


,


10


.




As another example, as shown in

FIGS. 1

,


5


and


8


, a through hole


3




a


is formed in each web plate


3


of the columnar H-shaped steel


1


in which the adjacent lower flanges


2


are directly or indirectly abutted with each other. A web through-bar


16


is allowed to pierce through this through hole


3




a


. As shown in

FIGS. 3 and 9

, a plurality of such web through-bars


16


are arranged at small intervals in the longitudinal direction of the bridge. Each web through-bar


16


is provided at both ends thereof with stoppers


17


such as nuts which are to be abutted with the outer side surfaces of the web plates


3


of the leftmost and rightmost columnar H-shaped steels


1


′.




As shown in

FIG. 3

, a plurality of such web through-bars


16


are arranged in a single row at small intervals in the longitudinal direction of the bridge. Alternatively, as shown in

FIG. 9

, the web through-bars


16


are arranged in upper and lower rows.




Each web through-bar


16


is embedded in the lower concrete layer


10


which is formed by placing the concrete through the concrete inlet port


8


, so as to serve as a concrete reinforcement.




Both ends of each web through-bar


16


and each stopper


17


are embedded in the side concrete layers


10


′ which are formed by placing the concrete on the outer side surfaces of the leftmost and rightmost columnar H-shaped steels


1


′.




The web through-bar


16


is preferably of the type having a head (stopper


17


) at one end thereof. A nut (stopper


17


) is threadingly engaged with the other end of the web through-bar


16


so as to fasten to the outer side surfaces of the web plate


3


of the leftmost and rightmost columnar H-shaped steels


1


′. It is also accepted that a nut is threadingly engaged with each end of the web through-bar


16


so as to fasten to the outer side surfaces of the leftmost and rightmost columnar H-shaped steels


1


′.




This fastening force is preferably not so large as to give an abutting force to the abutting parts of the adjacent lower flanges


2


of the columnar H-shaped steels. That is, it is preferred that the adjacent lower flanges of the columnar H-shaped steels


1


are merely loosely contacted (a small space may be formed between the adjacent lower flanges) with each other.




The web through-bar


16


is embedded in the lower concrete layer


10


so as to serve as a concrete reinforcement. That is, as shown in

FIG. 1

, if a vertical load A attributable to passage of vehicles, etc. is applied to the floor slab bridge, a shearing force B would act on the joining part between the columnar H-shaped steel


1


(or joining plate


15


) which is under the load and its adjacent columnar H-shaped steel


1


(or joining plate


15


) and the concrete layers


10


,


11


corresponding to the joining part. However, the web through-bar


16


effectively prevents the induction of cracking (shearing) of the concrete layers


10


,


11


caused by the vertical load A.




Similarly, the horizontal iron reinforcement


12


and the suspending iron reinforcement


13


in combination with the concrete


9


(concrete layers


10


,


11


) increase the shearing preventive effect. The iron reinforcements


12


,


13


may be used in combination with the web through-bar


16


. By embedding the stoppers and the opposite ends of the web through-bars in the side concrete layers, they can be prevented from becoming rotten due to wind and rain, and the outer appearance is not spoiled. Moreover, the web through bars


16


can be kept wholesome so that they can fully exhibit their function in spite of the passage of time.




As shown in

FIGS. 6

,


7


and


8


, in case a reinforcement plate


18


is erected from each joining plate


15


, a through hole


18




a


may be formed in each reinforcement plate


18


so that the web through-bar


16


can pierce through the through hole


18




a


in the manner as mentioned above.




As still another example, as shown in

FIGS. 8 and 9

, a light-weight material


20


such as foamed resin or foamed concrete is disposed in each space S′ which is defined among each upper flange


4


, each web plate


3


, each lower flange


2


and each joining plate


15


, or in the example of

FIG. 1

, in each space S which is defined among each upper flange


4


, each web plate


3


and each lower flange


2


, and embedded in the lower concrete layer


10


.




The light-weight material


20


is preferably in the form of a rectangular block. This light-weight material


20


is interposed between adjacent web plates


3


and intimately contacted therewith. The light-weight material


20


is placed and supported on the upper flange


19


or reinforcement plate


18


of the columnar H-shaped steel.




A plurality of such light-weight materials


20


are, as shown in

FIG. 9

, arranged in the longitudinal direction of the bridge so as not to interfere with the web through-bars


16


. By doing so, while increasing the thickness of the lower concrete layer


10


, i.e., by using a large sized columnar H-shaped steel


1


having a large height, the overall weight can be reduced (reduction of dead load) in spite of the increased thickness of the entire floor plate which is required for filling the light-weight material


20


therein.




The light-weight material


20


is embedded in the central part of the lower concrete layer


10


, while the web through-bars


16


are inserted in the lower concrete layer part on the upper flange


4


side and in the lower concrete layer part on the lower flange


2


side which are demarcated by the light-weight material


20


.




The web through-bar


16


, which is inserted into the lower concrete layer part on the lower flange


2


side, is inserted in the reinforcement plate


18


and embedded in the concrete


9


. As shown in

FIG. 6

, even in case the light-weight material


20


is not filled, the web through-bar


16


may be inserted in the reinforcement plate


18


.




The suspending iron reinforcement


13


and the web through-bar


16


are provided in the upper space of the light-weight material


20


and the concrete


9


is placed thereon, and then embedded in the lower concrete layer part on the upper flange


4


side. A plurality of reinforcements


13


′ each formed in the shape of a ring are arranged in the widthwise direction and in the longitudinal direction of the bridge within the space in a lower part of the light-weight material


20


, and the vertical iron reinforcements


12


′ are assembled with the ring-shape iron reinforcements


13


′ so as to form a basket shape, and embedded in the concrete layer filled in the lower space, i.e., in the lower concrete layer part on the lower flange


2


side. The horizontal iron reinforcements


12


and the suspending iron reinforcements


13


may be used in combination with the joining plates


15


and the web through-bars


16


, where appropriate. By doing so, those elements can function synergistically.



Claims
  • 1. A structure of a floor slab bridge comprising:a plurality of columnar H-shaped steels each of which includes a web plate having at an upper end thereof an upper flange and at a lower end thereof a lower flange, said columnar H-shaped steels being arranged in side-by-side relation with an end face thereof abutted with a corresponding end face of the adjacent columnar H-shaped steel, said upper flanges being smaller in width than said lower flanges so that a concrete inlet port is formed between adjacent upper flanges; a lower concrete layer formed by placing concrete in a space defined between said upper and lower flanges and between the adjacent web plates through said concrete inlet ports; an upper concrete layer formed by placing concrete on said upper flanges and connected to said lower concrete layer through said concrete inlet ports; a horizontal reinforcement horizontally laid on each of said upper flanges; a suspending reinforcement suspended in each of said spaces through said concrete inlet ports; and said horizontal reinforcements being embedded in said upper concrete layer and said suspending reinforcements being embedded in said lower concrete layer.
  • 2. A structure of a floor slab bridge according to claim 1, further comprising:a first stopper that abuts an outer side surface of a leftmost columnar H-shaped steel; a second stopper that abuts an outer side surface of a rightmost columnar H-shaped steel; and a plurality of web through-bars arranged in a longitudinal direction of said bridge at given intervals, wherein each of said web through-bars pierces through at least one of said web plates.
  • 3. A structure of a slab floor bridge according to claim 2, further comprising:a first side concrete layer disposed on an outer side surface of said leftmost columnar H-shaped steel; and a second side concrete layer disposed on an outer side surface of said rightmost columnar H-shaped steel, wherein said first stopper and a first end of each of said web-through bars are embedded in said first side concrete layer, wherein said second stopper and a second end of each of said web-through bars are embedded in said second side concrete layer, and wherein each of said web through-bars is embedded in said lower concrete layer.
  • 4. A structure of a floor slab bridge according to claim 2, further comprising:a light weight material embedded in said lower concrete layer, wherein said light weight material is disposed so as not to interfere with said web through-bars.
  • 5. A structure of a floor slab bridge according to claim 1, wherein said horizontal reinforcement and said suspending reinforcement are formed of iron.
  • 6. A structure of a floor slab bridge comprising:a plurality of columnar H-shaped steels each of which includes a web plate having at an upper end thereof an upper flange and at a lower end thereof a lower flange; a joining plate made of a steel material interposed between every adjacent pair of said lower flanges, wherein left and right end faces of each of said joining plates are in abutment relation with corresponding end faces of said lower flanges of adjacent ones of said left and right columnar H-shaped steels; a concrete inlet port formed between every adjacent pair of said upper flanges with the help of said joining plates; a lower concrete layer formed by placing concrete in a space formed between the upper and lower flanges and between adjacent ones of said web plates through said concrete inlet ports; an upper concrete layer formed by placing concrete on said upper flanges, wherein said upper concrete layer is connected to said lower concrete layer through said concrete inlet ports; a horizontal reinforcement horizontally laid on each of said upper flanges; and a suspending reinforcement suspended in each of said spaces through said concrete inlet ports, wherein said horizontal reinforcements are embedded in said upper concrete layer and said suspending reinforcements are embedded in said lower concrete layer.
  • 7. A structure of a floor slab bridge according to claim 6, further comprising:a first stopper that abuts an outer side surface of a leftmost columnar H-shaped steel; a second stopper that abuts an outer side surface of a rightmost columnar H-shaped steel; and a plurality of web through-bars arranged in a longitudinal direction of said bridge at given intervals, wherein each of said web through-bars pierces through at least one of said web plates.
  • 8. A structure of a slab floor bridge according to claim 7, further comprising:a first side concrete layer disposed on an outer side surface of said leftmost columnar H-shaped steel; and a second side concrete layer disposed on an outer side surface of said rightmost columnar H-shaped steel, wherein said first stopper and a first end of each of said web-through bars are embedded in said first side concrete layer, wherein said second stopper and a second end of each of said web-through bars are embedded in said second side concrete layer, and wherein each of said web through-bars is embedded in said lower concrete layer.
  • 9. A structure of a floor slab bridge according to claim 7, further comprising:a light weight material embedded in said lower concrete layer, wherein said light weight material is disposed so as not to interfere with said web through-bars.
  • 10. A structure of a floor slab bridge according to claim 6, wherein said horizontal reinforcement and said suspending reinforcement are formed of iron.
  • 11. A structure of a floor slab bridge comprising:a plurality of columnar H-shaped steels each of which includes a web plate having at an upper end thereof an upper flange and at a lower end thereof a lower flange; a joining plate made of a steel material interposed between every adjacent pair of said lower flanges, wherein left and right end faces of each of said joining plates are in abutment relation with corresponding end faces of said lower flanges of adjacent ones of said left and right columnar H-shaped steels; a concrete inlet port formed between every adjacent pair of said upper flanges with the help of said joining plates; a lower concrete layer formed by placing concrete in a space formed between the upper and lower flanges and between adjacent ones of said web plates through said concrete inlet ports; and an upper concrete layer formed by placing concrete on said upper flanges, wherein said upper concrete layer is connected to said lower concrete layer through said concrete inlet ports, and wherein, for each of said joining plates, said joining plate is provided with a reinforcement plate, a part of which is erected from an upper surface of said joining plate and the rest of which is embedded in said lower concrete layer.
  • 12. A structure of a floor slab bridge according to claim 11, further comprising:a first stopper that abuts an outer side surface of a leftmost columnar H-shaped steel; a second stopper that abuts an outer side surface of a rightmost columnar H-shaped steel; and a plurality of web through-bars arranged in a longitudinal direction of said bridge at given intervals, wherein each of said web through-bars pierces through at least one of said web plates.
  • 13. A structure of a floor slab bridge according to claim 12, further comprising:a first side concrete layer disposed on an outer side surface of said leftmost columnar H-shaped steel; and a second side concrete layer disposed on an outer side surface of said rightmost columnar H-shaped steel, wherein said first stopper and a first end of each of said web-through bars are embedded in said first side concrete layer, wherein said second stopper and a second end of each of said web-through bars are embedded in said second side concrete layer, and wherein each of said web through-bars is embedded in said lower concrete layer.
  • 14. A structure of a floor slab bridge according to claim 12, further comprising:a light weight material embedded in said lower concrete layer, wherein said light weight material is disposed so as not to interfere with said web through-bars.
  • 15. A structure of a floor slab bridge comprising:a plurality of columnar H-shaped steels each of which includes a web plate having at an upper end thereof an upper flange and at a lower end thereof a lower flange; a joining plate made of a steel material interposed between every adjacent pair of said lower flanges, wherein left and right end faces of each of said joining plates are in abutment relation with corresponding end faces of said lower flanges of adjacent ones of said left and right columnar H-shaped steels; a concrete inlet port formed between every adjacent pair of said upper flanges with the help of said joining plates; a lower concrete layer formed by placing concrete in a space formed between the upper and lower flanges and between adjacent ones of said web plates through said concrete inlet ports; and an upper concrete layer formed by placing concrete on said upper flanges, wherein said upper concrete layer is connected to said lower concrete layer through said concrete inlet ports, wherein each of said joining plates has a planar shape, and wherein each of said joining plates has generally a same thickness as each of said lower flanges.
  • 16. A structure of a floor slab bridge according to claim 15, further comprising:a first stopper that abuts an outer side surface of a leftmost columnar H-shaped steel; a second stopper that abuts an outer side surface of a rightmost columnar H-shaped steel; and a plurality of web through-bars arranged in a longitudinal direction of said bridge at given intervals, wherein each of said web through-bars pierces through at least one of said web plates.
  • 17. A structure of a floor slab bridge according to claim 16, further comprising:a first side concrete layer disposed on an outer side surface of said leftmost columnar H-shape steel; and a second side concrete layer disposed on an outer side surface of said rightmost columnar H-shape steel, wherein said first stopper and a first end of each of said web-through bars are embedded in said first side concrete layer, wherein said second stopper and a second end of each of said web-through bars are embedded in said second side concrete layer, and wherein each of said web through-bar is embedded in said lower concrete layer.
  • 18. A structure of a floor slab bridge according to claim 16, further comprising:a light weight material embedded in said lower concrete layer, wherein said light weight material is dispose so as not interfere with said web through-bars.
Priority Claims (1)
Number Date Country Kind
2002-086134 Mar 2002 JP
US Referenced Citations (10)
Number Name Date Kind
3812636 Albrecht et al. May 1974 A
3894370 Parazader Jul 1975 A
4115971 Varga Sep 1978 A
4615166 Head Oct 1986 A
4653237 Taft Mar 1987 A
4972537 Slaw, Sr. Nov 1990 A
6023806 Dumlao et al. Feb 2000 A
6279281 Lee Aug 2001 B1
6467118 Dumlao et al. Oct 2002 B2
20030046779 Dumlao et al. Mar 2003 A1
Foreign Referenced Citations (3)
Number Date Country
2453955 Dec 1980 FR
03247805 Nov 1991 JP
9-221717 Aug 1997 JP