Information
-
Patent Grant
-
6178936
-
Patent Number
6,178,936
-
Date Filed
Thursday, June 25, 199826 years ago
-
Date Issued
Tuesday, January 30, 200124 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Evenson, McKeown, Edwards & Lenahan, P.L.L.C.
-
CPC
-
US Classifications
Field of Search
US
- 123 9039
- 123 9041
- 123 9044
- 123 9045
- 123 9061
- 123 1935
- 123 1933
- 123 196 W
-
International Classifications
-
Abstract
To simplify the assembling process to mount a valve operating mechanism on a cylinder head, one intake valve and one exhaust valve are mounted on the cylinder head symmetrically with respect to the axis of a cylinder shaft. A rocker arm supporting base which supports rocker arms is fixed to the top of the cylinder head. Rocker arm shafts are supported by the base. The central portions of the rocker arms engage with the rocker arm shafts in such a way that the arms are free to swing. Push rods and the intake and exhaust valves are engaged with the ends of the arms. The valve operating mechanism is enclosed in a head cover which is fixed to the top surface of the cylinder head. This engine is distinguished by having the mounting surface for the rocker arm supporting base, on which the rocker shafts are mounted, and the surface on which the head cover sits be virtually coplanar. This makes it possible to machine the two surfaces at the same time. In order to supply a sufficient quantity of lubricating oil to the entire valve operating mechanism, a particularly designed lubrication device is provided.
Description
FIELD OF THE INVENTION
This invention concerns a structure of an overhead-valve internal combustion engine and the manufacturing method for it. More specifically, it concerns the configuration of the valve operating mechanism which operates the valves in an overhead-valve type internal combustion engine with an intake valve and an exhaust valve, and the lubrication device in the valve operating mechanism of the same kind of engine.
BACKGROUND OF THE INVENTION
It is relatively simple to assemble the valve-operating mechanism in an engine with the aforesaid bathtub-type combustion chamber. However, the combustion efficiency of this chamber is inferior to that of the aforesaid pent roof-type. In recent years, this has led to greater use of pent roof chambers.
FIGS. 18 and 19
show an example of an air-cooled single-cylinder overhead-valve four-cycle internal combustion engine with the aforesaid pent roof combustion chamber which belongs to the prior art.
FIG. 18
is a cross section of the engine which includes the cylinder and the push rods.
FIG. 19
is a cross section taken along line Z—Z in FIG.
18
.
In
FIGS. 18 and 19
,
1
is the combustion chamber;
2
is the air-cooled cylinder;
5
is the crankshaft;
6
is the connecting rod;
7
is the piston;
8
is the cylinder head;
14
a
is the intake valve; and
14
b
is the exhaust valve (Hereafter, the aforesaid intake valve
14
a
and exhaust valve
14
b
will be referred to in common as induction/exhaust valves
14
.)
17
is the camshaft, which is engaged with the aforesaid crankshaft
5
through a gear train;
17
a
is the cam on the said camshaft
17
;
16
is the tappet;
15
is the push rod;
13
is the rocker arm shaft, which is fixed to and supported on rocker arm supporting base
22
, which is itself fixed to the top of the aforesaid cylinder head
8
.
11
is the rocker arm, which engages with the said rocker arm shaft
13
in such a way that it is free to swing.
18
is the valve spring.
19
is the valve spring bearing.
9
is the head cover, which is mounted on top surface
8
b
on top of cylinder head
8
and which covers the mechanism which operates the valves. When this engine operates, induction/exhaust valves
14
open and close according to a timing determined by cam
17
a
, whose rotating speed is reduced to half that of crankshaft
5
by a timing gear (not pictured).
In
FIG. 18
, the rotation of camshaft
17
a
forces push rods
15
upward, and rocker arms
11
swing around shaft
13
. Intake valve
14
a
or exhaust valve
14
b
is pushed upward against the elastic force of valve spring
18
, and the valve opens.
In an OHV engine like this, to insure that the action of cam
17
a
is transmitted reliably to induction/exhaust valve
14
through push rods
15
, the aforesaid valve spring
18
must have a relatively large spring constant, meaning that a strong spring must be used; and rocker arm shaft
13
must have a relatively large diameter.
To insure that the contacting surfaces of the valve operating mechanism do not experience excessive force when the engine is running and the cylinder head gets hot, an adjustment screw (not pictured) is provided to adjust the clearance between the contacting portions of rocker arms
11
and push rods
15
.
In the aforesaid cylinder head
8
, the aforesaid head cover
9
is hermetically sealed to top surface
8
b
, the upper surface of peripheral wall
8
c
, which surrounds the head. The aforesaid rocker arm supporting base
22
for the rocker arms is bolted to an area in the center of upper surface
8
a
which is lower than the said top surface
8
b
by a fixed amount.
In the four-cycle overhead valve internal combustion engine from the prior art which is pictured in
FIGS. 18 and 19
, there are two surfaces at the top of cylinder head
8
,
8
b
and
8
a
.
8
b
is the top surface onto which head cover
9
is fixed;
8
a
is the mounting surface on which rocker arm supporting base
22
, which supports the rocker arms, is fixed. These two surfaces must be finished by a machining process so that they are relatively smooth.
However, in the prior art cylinder head
8
, top surface
8
b
, on which cover
9
is mounted, and mounting surface
8
a
, on which rocker arm supporting base
22
is mounted, are at different heights. This means that they must be machined in a two-stage process or that the machinist must change tools in mid-process. This increases the number of processes required and incurs an extra cost for set-up.
Designs for overhead valve engines with a hemispherical combustion chamber and the intake and exhaust valves arranged so that they radiate from the center have been proposed in Japanese Patent Publications (Kokai) Hei5-133205. In this prior art, one intake valve, one exhaust valve, and one spark plug are arranged so that the angles of these center lines (L
1
), (L
2
), (L
3
) against the center line of cylinder are same as each other, and they are located at a same distance from the center of the cylinder in order to manufacture the cylinder easily.
Another prior art is proposed in Japanese Patent Publications (Kokai) Hei5-133205. In both of these, however, the structure which supports the valve operating mechanism in the cylinder head is three-dimensional. It is difficult to achieve the high level of precision required by the processing, and the structural components of the valve operating mechanism experience torsion force when the valves are driven, which shortens their service life.
For a structure of a lubrication device for an OHV engine, there is a breather passage between the crankcase and the valve operating mechanism chamber which contains the valve operating mechanism. Oil which is taken up by a dipper, splashed about and suspended in the crankcase is conveyed via this breather passage into the aforesaid valve operating mechanism chamber with the movement of air caused by the downward stroke of the piston. In this way the said valve operating mechanism chamber is lubricated.
An example of an existing lubrication device for the valve operating mechanism in a small multipurpose OHV engine can be found in Japanese Utility Model Publication (Kokoku) 63-15530. The details of this device are shown in
FIGS. 20 through 22
.
These drawings show an OHV engine whose cylinder is canted upward from the horizontal. Breather passage
131
, which connects crankcase
101
and valve operating mechanism chamber
102
, is formed within the walls of cylinder barrel
116
and cylinder head
118
.
The end portion
131
a
of the said breather passage
131
in valve operating mechanism chamber
102
faces from above intake valve
151
toward the point where valve stem
152
a
of exhaust valve
152
and rocker arm
162
come in contact. Branching passage
131
b
faces to the point where valve stem
151
a
of intake valve
151
and rocker arm
161
come in contact.
Because this OHV engine is configured in this prior art, the air which is moved by the downward stroke of piston
107
forces the oil picked up by dipper
115
and suspended in crankcase
101
into the aforesaid breather passage
131
. The greater part of this suspended oil goes in a straight line through portion
131
a
and is splashed upon the operating mechanism for exhaust valve
152
in the vicinity of the point where valve stem
152
a
and rocker arm
162
come in contact. This is how most of the suspended oil is supplied.
The remainder of the suspended oil goes through branching passage
131
b
and is splashed upon the operating mechanism for intake valve
151
in the vicinity of the point where valve stem
151
a
and rocker arm
161
come in contact.
When the air forced into the aforesaid valve operating mechanism chamber
102
goes through breather valve
108
, the lubricating oil is separated out. The air enters breather chamber
109
, travels through breather tube
132
and is returned to carburetor
111
. The oil flows down the interior surface of valve operating mechanism chamber
102
. It goes through the space around push rod
122
and tappet
121
and is recovered in crankcase
101
.
In this prior art OHV engine disclosed in the Japanese Utility Model Publication (Kokoku) 63-15530, as may be seen in
FIG. 21
, intake and exhaust valves
151
and
152
are parallel to each other, and the distance traveled by the aforesaid two valves, which protrude into valve operating mechanism chamber
102
, is relatively short. Breather passage
131
, which goes through the aforesaid crankcase
101
and valve operating mechanism chamber
102
, is formed in the thick portion within the walls of cylinder barrel
117
and cylinder head
118
.
In recent years, more and more pent roof combustion chambers have been used in OHV engines to increase combustion efficiency. In an engine with a pent roof combustion chamber, the intake and exhaust valves are canted at a given angle with respect to the axis of the cylinder barrel, with the open side of the angle toward the exterior. As a result, a large space must be provided at the front end of the intake and exhaust valves, where they protrude into the valve operating mechanism chamber for the operating mechanism. At the same time, every possible structural component has been made thinner in the interest of reducing the weight of the engine, and every possible space has been made smaller. With the prior art design, it has proved impossible to simplify the breather passage without increasing the parts count. With the current breather passage, the exhaust valve does not receive sufficient lubrication, which shortens the service life of the engine.
SUMMARY OF THE INVENTION
In view of the problems inherent in the prior art, our first objective in designing this invention is to provide an overhead-valve internal combustion engine with one intake and one exhaust valve which would have the following features. The surface in the cylinder head on which the rocker arm supporting base which supports the rocker arms is mounted and the surface on which the head cover sits can be formed on the same level. This configuration will be able to simplify the assembling process to mount the valve operating mechanism on the cylinder head. The number of production processes and assembly processes would be reduced, and the engine will be able to be made at a lower cost.
Our second objective in designing this invention is to provide a lubrication device for an overhead valve engine with a pent roof combustion chamber such that the breather passage in the valve operating mechanism chamber for the valve operating mechanism would be simplified without increasing the parts count so that a sufficient quantity of lubricating oil can be supplied to the entire valve operating mechanism.
In order to address the above objectives, we propose the following preferred embodiments according to this invention.
The first preferred embodiment of the invention is an overhead-valve internal combustion engine with a hemispherical or pent roof cylinder head. Such a head has a combustion chamber being formed with a curved top portion projecting upward. One intake valve and one exhaust valve are mounted symmetrically with respect to the axis of the cylinder shaft. The rocker arm supporting base which supports the rocker arms is fixed to the top of the aforesaid cylinder head. The rocker arm shaft is supported by the said base. The central portion of the rocker arms engages with the said rocker arm shaft in such a way that the arms are free to swing. The push rods and the aforesaid intake and exhaust valves are connected to the ends of the arms. The valve operating mechanism comprising the aforesaid intake and exhaust valves, the supporting base for the rocker arm shaft, and the rocker arms are enclosed in the head cover which is fixed to the top surface of the aforesaid cylinder head. This engine is distinguished by the fact that on the top surface of the aforesaid cylinder head, the surface for the rocker arm supporting base on which the aforesaid rocker shaft are mounted and that on which the head cover sits are coplanar. More specifically, either these two surfaces are coplanar or the surface of the rocker arm supporting base which is formed in the center of the cylinder head is slightly higher than the aforesaid surface on which the cover sits.
In another example of the first preferred embodiment of the invention, the aforesaid cylinder head in the overhead-valve internal combustion engine according to the first preferred embodiment ideally has a surface on which the head cover can sit which is formed on the top of the peripheral wall. The mounting surface of the aforesaid rocker arm supporting base is formed on two bosses which extend from the aforesaid peripheral wall toward the interior of the head.
According to these examples of the first preferred embodiment, the mounting surface of the cylinder head on which is mounted the rocker arm, the ancillary components such as the adjustment screws which are mounted on the said rocker arms, and the rocker arm supporting base to support the rocker arm shaft, is level with the top surface on the upper surface of the peripheral wall or the mounting surface positioned in the center of the cylinder head is same as, or slightly higher than, the top surface. This makes it possible to machine the two surfaces at the same time.
Thus there is no need for two-stage processing or changing tools during processing, as was the case with prior art designs. This design significantly reduces the number of processes required, and the simultaneous machining described above results in a highly planar surface, which translates into greater precision.
Yet in another example of the first preferred embodiment, the rocker arm supporting base according to the first embodiment is mounted in the center of the top of the aforesaid cylinder head. The aforesaid intake and exhaust valves are on either side of the said rocker arm supporting base. The aforesaid rocker arm shafts are supported at two places to the aforesaid rocker arm supporting base, and they are symmetrical with respect to the center of the cylinder. One shaft is provided for the intake valve and one for the exhaust valve. The shafts are arranged so that they are parallel to each other within the base which is parallel to the mounting surface of the cylinder head. The aforesaid rocker arms are inserted into the shafts for the aforesaid intake and exhaust valves. The supporting portion of each rocker arm which is inserted into one of the aforesaid shafts is sandwiched between two arm units, the first arm unit which is engaged with one of the push rods and the second arm unit which pushes the intake valve.
With this configuration, the shafts for the two rocker arms are fixed to the rocker arm supporting base at both ends. This minimizes the torsion force which acts on the shafts when the rocker arms operate and allows us to achieve rocker arms and a shaft supporting mechanism with a high degree of strength.
In the second preferred embodiment of this invention, the aforesaid rocker arm supporting base according to the first embodiment is mounted to the center of the top of the aforesaid cylinder head. The aforesaid intake and exhaust valves are on both sides of the said rocker arm supporting base. The one end of the aforesaid rocker arm shafts in the center of the engine is supported by the aforesaid rocker arm supporting base. The shaft for the intake valve extends from the rocker arm supporting base at a right angle to the axis of the intake valve, the shaft for the exhaust valve extends from the rocker arm supporting base at a right angle to the axis of the exhaust valve. Each of the aforesaid rocker arms has a central supporting portion which is inserted into one of the shafts. The supporting portion of each rocker arm which is inserted into one of the aforesaid shafts is sandwiched between two arm units, the first arm unit of which is engaged with one of the push rods and the second arm unit of which pushes the intake valve.
With this configuration, the rocker arm shafts are fixed to both sides of the rocker arm supporting base. This allows the rocker arm supporting base to be made smaller, and a smaller mounting surface on the cylinder head will suffice. As a result, fewer processes are required to produce the said mounting surface.
Furthermore, the rocker arms can be made longer so as to prevent the expenditure of unnecessary force in the valve operating mechanism.
In the third preferred embodiment of this invention, the axes of the aforesaid two rocker arm shafts according to the second preferred embodiment, when viewed from above, are at a fixed angle with respect to a line linking the axes of the aforesaid intake and exhaust valves, and they separate from each other more as they move away from the center.
With this configuration, the point at which the rocker arm is engaged with the push rod and the point at which it is in contact with the intake or exhaust valve are arranged in a straight line on either side of the axis of the rocker arm shaft.
In another example of the first preferred embodiment of this invention, an engine according to the first embodiment has a hemispherical or pent roof cylinder head with a combustion chamber being formed with a curved top portion projecting upward. One intake valve and one exhaust valve are mounted symmetrically with respect to the axis of the cylinder shaft. The rocker arm supporting base is fixed to the top of the aforesaid cylinder head. The rocker arm shafts are supported by the said rocker arm supporting base. The central portion of the rocker arms engages with the said rocker arm shafts in such a way that the arms are free to swing. The push rods and the aforesaid intake and exhaust valves are engaged with the ends of the arms. The aforesaid shafts and rocker arms are firstly mounted to the aforesaid rocker arm supporting base, then secondly the rocker arm supporting base can be mounted on the surface prepared for it in the aforesaid cylinder head.
According to this configuration, rocker arm shafts and rocker arms are assembled to the rocker arm supporting base as a unit, then the base is mounted on the mounting surface for the rocker arm supporting base. This makes the assembling process easier and reduces the assembling count.
The ideal manufacturing method for manufacturing an internal combustion engine according to this invention is proposed as the following two examples. A cylinder head is prepared which has a combustion chamber whose roof curves upward. The top surface of this head is formed in such a way that the mounting surface of the aforesaid rocker arm supporting base and the top surface on which the head cover sits are coplanar. An assembly component is prepared which comprises the rocker arm supporting base on which the shafts and the rocker arms have been mounted.
The assembly component which includes the rocker arms is fixed to the top of the aforesaid cylinder head. The intake and exhaust valves are mounted so that they are symmetrical with respect to the axis of the cylinder. The push rods and the aforesaid intake and exhaust valves are engaged, respectively, to the opposite ends of the aforesaid rocker arms.
According to the other example of the ideal manufacturing method, the manufacturing method of manufacturing an overhead-valve internal combustion engine is distinguished by the following. The intake and exhaust valves and push rods of the combustion chamber are mounted to the cylinder head. The rocker arms, rocker arm shafts, rocker arm supporting base, adjustment screws to adjust the gap between the valves and lock nuts are assembled as a unit, which is then mounted to the surface prepared for it, a surface which is virtually level with that on which the head cover sits. The head cover is then fixed to the cylinder head.
With these manufacturing methods mentioned above, the rocker arm shafts, the rocker arms and their ancillary components are all mounted on the rocker arm supporting base to form a unit, which is then mounted to the cylinder head. This procedure simplifies the assembly and adjustment of the valve operating mechanism and reduces the number of procedures required.
The fourth preferred embodiment is for the lubrication device for OHV engine.
According to the fourth preferred embodiment of this invention, a lubrication device for overhead-valve engine having a first breather passage connecting a valve operation mechanism chamber over a cylinder head provided with an intake valve and an exhaust valve, and a crankcase, and passing through said cylinder head and a cylinder, comprises an opening of a first breather passage, a groove, and a second breather passage.
The opening of the first breather passage is provided in a vicinity of a spring retainer for the intake valve, which faces the valve operating mechanism chamber.
The groove is formed by cutting on the cylinder head facing the valve operating chamber and connecting an end of the groove to the opening.
The second breather passage is formed by a tunnel-like passage provided by a guide wall standing in the valve operating mechanism chamber and a peripheral wall of said cylinder head and connecting another end of said groove to the exhaust valve.
According to another example of the fourth preferred embodiment, the second breather passage mentioned above further comprises a protruding portion of a gasket provided between a top surface of the cylinder head and a head cover, which covers the tunnel-like passage.
According to yet another example of the fourth preferred embodiment, the second breather passage connects spaces surrounded with ring-shaped ribs which protrude from spring retainers for an intake valve spring and an exhaust valve spring by the groove formed by cutting on a portion of the ring-shaped rib and the tunnel-like passage.
With this fourth preferred embodiment of the invention, the lubricating oil splashed around in the crankcase goes through the first breather passage and flows out through the opening of the valve operating mechanism chamber in the vicinity of the spring retainer for the intake valve. From the vicinity of the said intake valve, the oil goes through the second breather passage, which comprises a groove formed on the valve operating mechanism chamber surface of the cylinder head and a tunnel surrounded by a guide wall and the peripheral wall of the cylinder head. This passage conducts the oil to the vicinity of the exhaust valve.
With this fourth preferred embodiment of the invention, a sufficient quantity of lubricating oil can be supplied not only to the area around the intake valve, but also, via the second breather passage, to the area around the exhaust valve, where extreme temperatures are experienced. The entire valve operating mechanism can be lubricated uniformly.
Because the aforesaid second breather passage can be created using the valve operating mechanism chamber surface of the cylinder head and the protruding portion of the gasket, no special parts need to be purchased or made, and the parts count can be reduced.
The effects of this invention related to the structure of the cylinder head according the first through third preferred embodiments of this invention are as follows. In these configurations mentioned above, the mounting surface of the cylinder head on which is mounted the rocker arm, and the rocker arm supporting base to support the rocker arm shaft, is level with the top surface on the upper surface of the peripheral wall, or the mounting surface positioned in the center of the cylinder head is slightly higher than the top surface. This makes it possible to machine the two surfaces at the same time.
Thus there is no need for two-stage processing or changing tools during processing, as was the case with prior art designs. This design significantly reduces the number of processes required; and the simultaneous machining described above results in a highly planar surface, which translates into greater precision.
With the configuration according to the example of the first preferred embodiment mentioned above, the shafts for the two rocker arms are fixed to the rocker arm supporting base at both ends, in other words, the shafts are supported at both ends. This minimizes the torsion force which acts on the shafts when the rocker arms operate and allows us to achieve rocker arms and a shaft supporting mechanism with a high degree of strength.
With the configuration according to the second preferred embodiment mentioned above, the rocker arm shafts are fixed at one end. This allows the rocker arm supporting base to be made smaller, and a smaller mounting surface on the cylinder head will suffice. As a result, fewer processes are required to produce the said mounting surface.
Furthermore, the rocker arms can be made longer so as to prevent the expenditure of unnecessary force in the valve operating mechanism, and the durability of the valve operating mechanism can be enhanced.
With the configuration according to the third preferred embodiment, the point at which the rocker arm is engaged with the push rod and the point at which it is in contact with the intake or exhaust valve are arranged in a straight line on either side of the axis of the rocker arm shaft.
With the manufacturing method mentioned above, the rocker arm shafts, the rocker arms and their ancillary components are all mounted on the rocker arm supporting base to form a unit, which is then mounted to the cylinder head. This procedure simplifies the assembly and adjustment of the valve operating mechanism and reduces the number of procedures required.
The mounting surface of the cylinder head on which is mounted the rocker arm, and the rocker arm supporting base to support the rocker arm shaft, is level with the top surface on the upper surface of the peripheral wall, or the mounting surface positioned in the center of the cylinder head is slightly higher than the top surface. This makes it possible to machine the two surfaces at the same time.
Thus there is no need for two-stage processing or changing tools during processing, as was the case with prior art designs. This design significantly reduces the number of processes required; and the simultaneous machining described above results in a highly planar surface, which translates into greater precision.
The effects of the invention related to the lubrication device according the fourth preferred embodiment are as follows. In these configurations of this invention, the lubricating oil splashed around in the crankcase goes through the opening in the vicinity of the spring retainer for intake valve. From the vicinity of the said intake valve, the suspended oil goes through the second breather passage formed by a groove and a tunnel which is surrounded by a straight guide wall and the peripheral wall of the cylinder head. This passage conducts the suspended oil to the vicinity of the exhaust valve. In this fashion, a sufficient quantity of lubricating oil can be supplied not only to the area around the intake valve, but also to the area around the exhaust valve, where extreme temperatures are experienced. The entire valve operating mechanism can be lubricated uniformly.
Because the aforesaid breather passage can be created using the valve operating mechanism chamber surface of the cylinder head and the entrance portion of the oil guide washer plate, no special parts need to be used, and it is easy to assemble the valve operating mechanism chamber. In other words, the parts count can be reduced, and the entire valve operating mechanism can be lubricated perfectly with a low cost.
BRIEF EXPLANATION OF THE DRAWINGS
FIG. 1
is a cross section of an air-cooled overhead-valve single cylinder four-cycle internal combustion engine which is the first configuration of this invention. This drawing shows primarily the cylinder and the push rod.
FIG. 2
is a plan view of the engine in
FIG. 1
with the head cover removed.
FIG. 3
is a cross section taken along line A—A in FIG.
2
.
FIG. 4
corresponds to
FIG. 2
, which shows the second configuration of the second preferred embodiment of this invention.
FIG. 5
is a cross section taken along line B—B in FIG.
4
.
FIG. 6
is the view of the cylinder head in
FIG. 5
as seen from arrow C in that figure (when seen through the valve operating mechanism).
FIG. 7
corresponds to
FIG. 2
but shows the third preferred embodiment of this invention.
FIG. 8
is a cross section taken along line D—D in FIG.
7
.
FIG. 9
is a view of the same cylinder head as seen from arrow E in
FIG. 8
(when seen through the valve operating mechanism).
FIG. 10
corresponds to FIG.
1
and shows an aircooled overhead-valve four-cycle internal combustion engine which is an example of the fourth preferred embodiment of this invention. This shows the cross section showing the center of the cylinder and the push rod.
FIG. 11
is a plan view of the valve operating mechanism from the engine in
FIG. 1
with the head cover removed according to the fourth preferred embodiment of this invention.
FIG. 12
is a cross section taken along line F—F in FIG.
11
.
FIG. 13
shows a plan view of the valve operating mechanism in a multipurpose OHV engine which is the fourth preferred embodiment of this invention. The head cover has been removed.
FIG. 14
is a plan view of the cylinder head in the aforesaid fourth preferred embodiment.
FIG. 15
is a cross section taken along line G—G in FIG.
14
.
FIG. 16
is a cross section taken along line H—H in FIG.
14
.
FIG. 17
shows the oil guide washer plate in the aforesaid fourth preferred embodiment. (a) is a frontal view and (b) is a plan view.
FIG. 18
is a lateral cross section, cut along the center line of the cylinder and push rod, of a multipurpose OHV engine which is an example of the prior art.
FIG. 19
is a cross section taken along line Z—Z in FIG.
18
.
FIG. 20
is a vertical cross section of another example of the prior art.
FIG. 21
is a vertical cross section of the prior art shown in FIG.
20
.
FIG. 22
is a plan view of the valve operating mechanism of the prior art shown in FIG.
20
.
DETAILED DESCRIPTION OF THE INVENTION
In this section we shall give a detailed explanation of several preferred embodiments of this invention with reference to the example configurations pictured in the drawings. To the extent that the dimensions, materials, shape and relative position of the components described in this configuration are not definitely fixed, the scope of the invention is not limited to those specified, which are meant to serve merely as illustrative examples.
FIG. 1
is a cross section of an air-cooled overhead-valve single cylinder four-cycle internal combustion engine which is the first preferred embodiment of this invention. This drawing shows primarily the cylinder and the push rod.
FIG. 2
is a plan view of the engine in
FIG. 1
with the head cover removed.
FIG. 3
is a cross section taken along line A—A in FIG.
2
.
In
FIGS. 1 through 3
,
1
is the combustion chamber;
2
is the air-cooled cylinder;
5
is the crankshaft;
6
is the connecting rod;
7
is the piston;
8
is the cylinder head;
14
a
is the intake valve;
14
b
is the exhaust valve (hereafter, intake valve
14
a
and exhaust valve
14
b
are known collectively as induction/exhaust valves
14
);
51
is the spark plug; and
52
is the crankcase.
17
is the camshaft, which is connected to crankshaft
5
through a gear train:
17
a
is the cam formed on the said camshaft
17
;
16
is the tappet;
15
is the push rod;
18
are the valve springs for the aforesaid induction/exhaust valves
14
;
19
are the spring bearings which support the said valve springs
18
.
9
is the head cover, which encloses the valve operating mechanism (to be discussed shortly). This cover is mounted on top surface
101
of peripheral wall
8
c
, which surrounds the aforesaid cylinder head
8
.
The aforesaid combustion chamber
1
is a pent roof-type chamber. This is why, as can be seen in
FIG. 3
, the aforesaid intake valve
14
a
and exhaust valve
14
b
are arranged so that their respective axes
103
and
104
angle away from the center line
102
of the cylinder. That is to say, the valves incline with respect to the center line at angle in the fashion of radiating lines.
This angle θ is such that 2θ=22° to 45°. Ideally, it should be in the neighborhood of 45°.
21
is the rocker arm for the intake valve.
21
′ is the rocker arm for the exhaust valve. It is placed on the opposite side of center line
102
so that it is symmetrical with respect to the said rocker arm
21
.
23
are the rocker arm shafts, and
22
is the rocker arm supporting base. The aforesaid rocker arms
21
and
21
′, rocker arm shafts
23
, rocker arm supporting base
22
, cam
17
a
, tappet
16
and push rod
15
comprise the valve operating mechanism.
92
is the valve operating mechanism chamber to install the valve operating mechanism, and it is covered by the head cover
9
.
As can be seen in FIG.
2
and
FIG. 3
, the aforesaid rocker arm supporting base
22
is fixed by four bolts
25
to mounting surfaces
100
, the upper surfaces of the four bosses
8
d
which project from peripheral wall
8
c
of cylinder head
8
toward the center of the head. At the ends of the rocker arm supporting base are four retainers
22
a
and
22
b
, which support the two rocker arms
23
for the aforesaid intake and exhaust valves at both their ends. These retainers also immobilize the two rocker arm shafts
23
so that they are parallel to each other.
Furthermore, as can be seen in
FIG. 2
, the aforesaid rocker arm shafts
23
are mounted onto the aforesaid rocker arm supporting base
22
so that their axes
23
a
are at a right angle with respect to line
105
, the line which links the centers of intake valve
14
a
and exhaust valve
14
b.
As is shown in
FIG. 2
, the central tubular portions of rocker arm
21
, which controls the aforesaid intake valve, and rocker arm
21
′, which controls the exhaust valve, are supported by the aforesaid rocker arm shafts
23
in such a way that the rocker arms are free to swing and their movement in the axial direction can be controlled. Shafts
23
must have a diameter large enough to provide a sufficient bearing area.
21
b
and
21
′b
are the first arm units on the ends of the arms which come in contact with push rods
15
in the axial direction of the aforesaid arms
23
.
21
c
and
21
′c
are the second arm units on the ends of the arms which come in contact with intake valve
14
a
and exhaust valve
14
b.
Adjustment screws
24
, which serve to adjust the clearance of the valve operating mechanism, are screwed into the aforesaid arm units
21
b
and
21
′b.
On the end of each adjustment screw
24
is a spherical bearing. The push rods
15
for the aforesaid intake and exhaust valves are linked to the rocker arms through these bearings. The aforesaid rocker arm units
21
c
and
21
′c
contact with intake valve
14
a
and exhaust valve
14
b
through straps
21
a
, which are made from a material that is highly resistant to being worn away.
Mounting surface
100
for rocker arm supporting base
22
on the upper surface of cylinder head
8
is coplanar (unifacial) with top surface
101
, on which head cover
9
is mounted. Ideally, the aforesaid mounting surface
100
and top surface
101
should be on the same plane. However, it would also be acceptable for them to be at slightly different levels. In this case, for the purpose of machining the surfaces, it would be better if the aforesaid top surface
101
, which is on the outside of the head, could be slightly lower than the mounting surface
100
, which is in the interior.
When this OHV engine is operating, induction/exhaust valves
14
open and close according to a timing determined by camshaft
17
, whose rotating speed is reduced to half that of crankshaft
5
by a timing gear (not pictured). That is to say, when camshaft
17
rotates, push rods
15
are thrust upward, and rocker arm
21
, which operates the intake valve, or rocker arm
21
′, which operates the exhaust valve, rotates around shaft
23
. Intake valve
14
a
or exhaust valve
14
b
is pushed upward against the elastic force of its respective valve spring
18
, and the valve opens.
In an OHV engine like this, to insure that the action of cam
17
a
is transmitted reliably to induction/exhaust valve
14
through push rods
15
, the aforesaid valve springs
18
must have a relatively large spring constant, meaning that strong springs must be used; and, as was mentioned above, rocker arms
23
must have a relatively large diameter.
The upper surface of cylinder head
8
, on which is mounted rocker arm supporting base
22
, the base which supports the mechanism in cylinder head
8
that executes this operation, serves as mounting surface
100
. As was discussed earlier, this mounting surface is coplanar with top surface
101
, on which the head cover is mounted. This means that the two surfaces,
100
and
101
, can be finished together in the same machining process. There is no need, as was true in the prior art, to use a two-stage process or to change tools. In this first preferred embodiment, shafts
23
are fixed to rocker arm supporting base
22
, and rocker arm
21
, which operates the intake valve, and rocker arm
21
′, which operates the exhaust valve, are inserted on the shafts with adjustment screw
24
already screwed in. Once this unit is assembled, it can be mounted to cylinder head
8
. This procedure simplifies both the assembly and the adjustment of the valve operating mechanism.
In this first preferred embodiment, rocker arm shafts
23
for the intake and exhaust valves are supported in two places by retainers
22
a
and
22
b
of rocker arm supporting base
22
. This minimizes the torsion force which acts on the shafts when the rocker arms operate and allows us to achieve rocker arms and a shaft support mechanism with a high degree of strength.
In the following second preferred embodiment, the structure of the rocker arm supporting base, and the rocker arm shaft are different from those of the first preferred embodiment.
In
FIGS. 4 through 6
,
27
is the rocker arm supporting base; it is fixed to mounting surface
100
by means of two bolts
25
at bosses
8
d
, which project from peripheral wall
8
c
of cylinder head
8
toward the interior of the head at a right angle to line
105
, the line which links the centers of the aforesaid intake valve
14
a
and exhaust valve
14
b
to the center line
102
of the cylinder.
Just as in the first preferred embodiment, mounting surface
100
of the aforesaid rocker arm supporting base
27
is either coplanar with top surface
101
on which head cover
9
is mounted or slightly higher than that top surface.
28
are the rocker arm shafts. As can be seen in
FIG. 4
, their axes
28
a
when viewed from above are arranged so that they are virtually parallel to line
105
, the line linking the centers of the aforesaid intake and exhaust valves
14
a
and
14
b
. The inner ends of the shafts are fixed to the aforesaid rocker arm supporting base
27
; they are supported at only one end.
The aforesaid rocker arm shafts
28
are arranged so as to have an inclining angle with respect to the center line
102
of the cylinder, as can be seen in FIG.
5
. In this preferred embodiment, their axes
28
a
can form right angles with respect to the center lines
14
a
1
and
14
b
1
of intake and exhaust valves
14
a
and
14
b
, which are arranged to the radiate direction with respect to the center line
102
of the cylinder head.
26
is the rocker arm for the intake valve;
26
′ is the rocker arm for the exhaust valve. They are arranged symmetrically with respect to the center line
102
of the cylinder. The tubular portions in their centers are inserted into the aforesaid rocker arm shafts
28
in such a way that the arms are free to swing and their movement in the axial direction can be controlled.
The aforesaid axes
28
a
of rocker arm shafts
28
are surrounded by the aforesaid rocker arm
26
for the intake valve and
27
′ for the exhaust valve. Their ends
26
b
and
26
′b
come in contact with push rods
15
. Their other ends,
26
c
and
26
′c,
come in contact with intake valve
14
a
and exhaust valve
14
b.
Adjustment screws
24
on ends
26
b
and
26
′b
are used to adjust the clearance of the valve operating mechanism. The rocker arms are engaged with push rods
15
through the spherical bearings on the ends of the adjustment screws.
The aforesaid ends
26
c
and
26
′c
are in contact with intake valve
14
a
and exhaust valve
14
b
through straps
26
a.
All other aspects of the configuration are identical to that of the first preferred embodiment shown in
FIGS. 1 through 3
. Components which are the same have been given the same numbers.
In this second preferred embodiment, just as in the aforesaid first preferred embodiment, mounting surface
100
for the rocker arm supporting base on the top of cylinder head
8
is either coplanar with top surface
101
on top of peripheral wall
8
c
, to which head cover
9
is mounted, or slightly higher than that top surface. This design means that the two surfaces can be processed in a single stage, and the number of required processes is reduced. In addition, rocker arm supporting base
27
is smaller and the area of the said mounting surface
100
can be smaller than in the aforesaid first preferred embodiment. This further simplifies the processing of the said mounting surface
100
and reduces the number of processes.
In regard to configuration, the length of rocker arms
26
and
26
′ can be increased, which provides some leeway in the design of the valve operating mechanism and prevents excessive force from being exerted in that mechanism.
FIGS. 7 through 9
show the third preferred embodiment of this invention.
FIG. 7
is a plan view which corresponds to FIG.
2
.
FIG. 8
is a cross section taken along line D—D in FIG.
7
.
FIG. 9
is a view of the same cylinder head as seen from arrow E in FIG.
8
.
This preferred embodiment is a modification of the previous second one; the arrangement of the rocker arm supporting base and shafts differs from that in the second preferred embodiment.
In
FIGS. 7 through 9
,
32
is the rocker arm supporting base; it is fixed to mounting surface
100
by means of two bolts
25
on bosses
8
d
, which project from peripheral wall
8
c
of cylinder head
8
toward the interior of the head at a right angle to line
105
, the line which links the centers of the aforesaid intake valve
14
a
and exhaust valve
14
b
to the center line
102
of the cylinder. As in the first two preferred embodiments, mounting surface
100
of the aforesaid rocker arm supporting base
32
is either coplanar with top surface
101
on which head cover
9
is mounted or slightly higher than that top surface.
33
are the rocker arm shafts. As can be seen in
FIG. 7
, their axes
33
a
, when viewed from above, are arranged so that they incline from the center to the exterior to form angles α
1
and α
2
with respect to line
105
, the line linking the centers of the aforesaid intake and exhaust valves
14
a
and
14
b
. The inner ends of the shafts are fixed to the aforesaid rocker arm supporting base
32
; the shafts are supported at only one end.
As can be seen in
FIG. 8
, when viewed in the same plane as center line
102
, axes
33
a
of the aforesaid rocker arm shafts
33
form virtually right angles with axes
14
a
1
and
14
b
1
of intake valve
14
a
and exhaust valve
14
b.
31
is the rocker arm for the intake valve;
31
′ is the rocker arm for the exhaust valve. They are arranged symmetrically with respect to the center line
102
of the cylinder. The tubular portions in their centers are inserted into the aforesaid rocker arm shafts
33
in such a way that the arms are free to swing and their movement in the axial direction can be controlled.
The aforesaid axes
33
a
of rocker arm shafts
33
are surrounded by the aforesaid rocker arm
31
for the intake valve and
31
′ for the exhaust valve. Their ends
31
b
and
31
′b
come in contact with push rods
15
. Their other ends,
31
c
and
31
′c,
come in contact with intake valve
14
a
and exhaust valve
14
b .
Adjustment screws
24
on ends
31
b
and
31
′b
are used to adjust the clearance of the valve operating mechanism. The rocker arms are engaged with push rods
15
through the spherical bearings on the ends of the adjustment screws.
The aforesaid ends
31
c
and
31
′c
are in contact with intake valve
14
a
and exhaust valve
14
b
through straps
26
a
. All other aspects of the configuration are identical to that of the second preferred embodiment shown in
FIGS. 4 through 6
. Components which are the same have been given the same numbers.
In this preferred embodiment, just as in the aforesaid first and second preferred embodiments, mounting surface
100
for the locker arm supporting base on the top of cylinder head
8
is either coplanar with top surface
101
on top of peripheral wall
8
c
, to which head cover
9
is mounted, or slightly higher than that top surface. This design means that the two surfaces can be processed in a single stage, and the number of required processes is reduced.
In addition, just as in the aforesaid second preferred embodiment, rocker arm supporting base
32
is smaller and the area of the said mounting surface
100
can be smaller than in the aforesaid first preferred embodiment. Rocker arms
31
and
31
′ can be made smaller, and the processing of the said mounting surface
100
is further simplified. In regard to configuration, the length of rocker arms
31
and
31
′ can be increased, which prevents excessive force from being exerted in the valve operating mechanism.
Furthermore, in this third preferred embodiment, axes
33
a
of rocker arm shafts
33
are inclined at angles α
1
and α
2
. The points at which ends
31
b
and
31
′b
of the arms for valves
14
a
and
14
b
are engaged with push rods
15
(i.e., the centers of adjustment screws
24
) and the points at which ends
31
c
and
31
′c
are in contact with the heads of valves
14
a
and
14
b
(i.e., the centers of straps
26
a
) fall on lines
50
and
50
′, as can be seen in FIG.
7
. There is no deviation along axes
33
a
of the rocker arm shafts between the aforesaid points where the arms are engaged with the push rods and the points where they are in contact with the valves. Thus there is no moment generated in rocker arms
31
and
31
′, and no excessive force experienced by the rocker arms due to moment.
We shall explain the fourth preferred embodiment of this invention in detail with reference of FIG.
10
through FIG.
17
. This fourth preferred embodiment is a modification on the lubrication device for the overhead combustion engine (OHV engine) shown in the first through third preferred embodiments. The OHV engine which this fourth preferred embodiment of the invention is applied is shown in FIG.
10
.
As can be seen in
FIG. 10
, the multipurpose four-cycle OHV engine in which this fourth preferred embodiment of the invention is employed has a cylinder head
8
with a pent-roof combustion chamber
1
, in which one intake valve
14
a
and one exhaust valve
14
b
are arranged so that their center lines radiate symmetrically.
In
FIGS. 10 through 12
,
2
is the cylinder;
5
is the crankshaft;
6
is the connecting rod;
7
is the piston;
8
is an aluminum die cast cylinder head with a pent-roof combustion chamber
1
.
9
is the head cover, which is mounted on top surface of the said cylinder head
8
.
14
and
14
a
are the intake and exhaust valves, arranged symmetrically in radiating fashion in the aforesaid cylinder head
8
.
15
are the push rods;
32
is the push rod chamber for the push rods;
16
are the tappets;
18
are the valve springs for the aforesaid intake and exhaust valves
14
a
and
14
b
;
19
are the spring retainers which transmit to the aforesaid intake and exhaust valves
14
and
14
a
the force of the said valve springs
18
;
21
is the rocker arm for the intake valve;
21
′ is the rocker arm for the exhaust valve, which is arranged so that it is symmetric with the aforesaid rocker arm
21
;
22
is the rocker arm supporting base which supports the rocker arm shafts;
23
are two parallel rocker arm shafts. Valve operating mechanism
74
comprises components
14
,
14
a
,
15
,
16
,
18
,
19
,
21
,
21
′,
22
,
23
and cams
17
a.
The aforesaid rocker arm supporting base
22
is mounted to cylinder head
8
by means of four bolts
25
. The aforesaid parallel rocker arm shafts
23
are supported at two points in the axial direction. Tubular rocker arm
21
, the arm for the intake valve, and rocker arm
21
′, the arm for the exhaust valve, are fixed along their axes to the aforesaid rocker arm shafts
23
so that they are symmetric with respect to the axes of the shafts and they are free to rotate. On one end of the aforesaid rocker arms
21
and
21
′ are first arms
21
b
and
21
′b,
which are pushed by the aforesaid push rods
15
. On the other end are second arms
21
c
and
21
′c,
which operate intake and exhaust valves
14
a
and
14
b.
Adjusting screws
24
, which are used to adjust the clearance of valve operating mechanism
74
, are screwed into the ends of the aforesaid second arms
21
c
and
21
′c.
On the ends of the said screws
24
are spherical bearings (not pictured) which receive the spherical ends of the aforesaid push rods
15
. Hemispherical washers
21
a
which are made of a material highly resistant to be worn away, are mounted on the ends of the aforesaid arms
21
c
and
21
′c
which come in contact with the aforesaid intake and exhaust valves
14
a
and
14
b.
The mounting surface of the aforesaid cylinder head
8
on which the aforesaid rocker arm supporting base
22
for the rocker arm shafts is mounted and the top surface on which head cover
9
is mounted, which are identified in
FIG. 12
, are coplanar. In other words, they constitute a single surface.
When this OHV engine runs, the aforesaid valve operating mechanism
74
works in the following way. The rotational speed of crankshaft
5
is reduced by half by a timing gear (not pictured) and transmitted to camshaft
17
, on which cam
17
a
is mounted. With the help of tappets
16
, push rods
15
and rocker arms
21
and
21
′, cam
17
opens and closes the aforesaid intake and exhaust valves
14
a
and
14
b
at a previously determined timing.
The aforesaid rocker arms
21
and
21
′ are supported by shafts
23
. They swing back and forth in a see-saw motion, and the back-and-forth travel of the aforesaid push rods
15
is conveyed to intake and exhaust valves
14
a
and
14
b
. The aforesaid valve springs
18
accurately transmit the stroke of cam
17
a
to the intake and exhaust valves. This means that a powerful force (a fixed load) is exerted in the direction in which valves
14
a
and
14
b
close.
This is why the aforesaid rocker arms
21
and
21
′ have the aforesaid rocker arm shafts
23
, which have a relatively large diameter in order to be sufficient to withstand the powerful force from the valve spring. When the OHV engine is working, cylinder
2
and cylinder head
8
undergo thermal expansion. To prevent the components of the aforesaid valve operating mechanism
74
which touch each other from experiencing excessive force, the specified clearance for the tappets must be set for the time when the engine is cool and it must be adjusted by turning the aforesaid screws
24
when the engine is assembled.
The detailed structure of the fourth preferred embodiment is shown in FIG.
13
through
FIG. 17. 14
a
is the intake valve,
14
b
is the exhaust valve and
74
is the valve operating mechanism. The said operating mechanism
74
is enclosed in valve operating mechanism chamber
92
, which is formed from the upper chamber of cylinder head
8
and head cover
9
. It comprises the aforesaid rocker arm supporting base
22
; rocker arm shafts
23
; rocker arms
21
and
21
′; adjustment screws
24
; valve springs
18
; push rods
15
; tappets
16
; and cam
17
a.
8
c
is the peripheral wall of the aforesaid cylinder head
8
. It also serves as the wall of the aforesaid valve operating mechanism chamber
92
. On the top of the head is a top surface
101
(see FIG.
12
), on which head cover
9
is fixed (see
FIG. 10
) sandwiching gasket
93
(shown by hatched lines in FIG.
13
).
8
t
are female screws which are drilled in four places on the top surface of the aforesaid peripheral wall
8
c
to fix head cover
9
to the cylinder head.
8
n are four female screws to fix the aforesaid rocker arm supporting base
22
.
8
d
is a cylindrical mounting post for the said rocker arm supporting base
22
.
8
e
is the female screw in which spark plug
51
(see
FIG. 10
) is mounted.
93
b
is a circular hole which is cut in the aforesaid gasket
93
for the aforesaid mounting post
8
m
to go through.
93
a
is the protruding segment of the said gasket
93
. Breather passage
95
, which will be discussed shortly, is cut in such a way that its top is covered by this segment. The said segment
93
a
is held in position when the aforesaid cylindrical mounting post
8
m
engages in the aforesaid circular hole
93
b
. When the aforesaid rocker arm supporting base
22
is fixed to cylindrical mounting post
8
m,
the segment is prevented from slipping off the bottom of that post.
In
FIG. 14
,
8
f
is the spring retainer for one valve spring
18
, the spring for the aforesaid intake valve
14
a
.
8
h
is the spring retainer for the other valve spring
18
, the spring for the aforesaid exhaust valve
14
b.
8
g
is a ring-shaped rib which is built up around the aforesaid spring retainer
8
f
. This rib keeps the valve spring
18
for the aforesaid intake valve
14
a
in the proper position.
8
i
is another ring-shaped rib which is built up around the aforesaid spring retainer
8
h
. This rib keeps the valve spring
18
for the aforesaid exhaust valve
14
b
in the proper position.
Square-sided groove
8
p
, which will be discussed shortly, and oil guide washer plate
76
for the spring retainers is provided in ring-shaped rib
8
g
for the aforesaid intake valve and ring-shaped rib
8
i
for the exhaust valve. The groove and washer plates constitute tubular passages
8
p
(as shown in FIG.
15
).
8
j
is a straight guide wall which is connected to post
8
m
, the mounting post for the aforesaid rocker arm supporting base
22
for the rocker arm shaft bearings. This relatively thin wall stands in a straight line on the aforesaid mounting post
8
m
between intake valve
14
and exhaust valve
14
a
in the fashion that it approaches the aforesaid ring-shaped ribs
8
g
and
8
i
. As can be seen in
FIG. 15
, the height of this wall is slightly less than the top surface
101
of the aforesaid peripheral wall
8
c.
94
is a breather passage. It goes vertically through cylinder head
8
and cylinder
2
and communicates with crankcase
112
.
As is shown in
FIGS. 14 and 15
, the upper end of the said breather passage
94
is opened facing opening
8
k on the outer side of rib
8
g
, the positioning rib for valve spring
18
of intake valve
14
a
. Through the said opening
8
k
, the breather passage is opened toward valve operating mechanism chamber
92
for the valve operating mechanism.
8
p
is a square-sided groove formed on the upper surface of the aforesaid cylinder head which faces valve operating mechanism chamber
92
, or, the side of that valve operating mechanism chamber. A portion of rib
8
g
, the positioning rib for the aforesaid intake valve
14
a
, is cut away;
8
s
is the resulting opening. A plan view would show an S-shaped passage
8
p
going from spring retainer
8
f
for the intake valve toward spring retainer
8
h
for the exhaust valve. One end of the said square-sided groove
8
p
communicates with the aforesaid opening
8
k
; the other, as can be seen in
FIG. 16
, communicates with the space above center protrusion
8
u
in the center of the upper surface of cylinder head
8
. The passage is configured with an angle sufficient to cause one end portion near the central protrusion to be higher than another end portion.
In the small multipurpose OHV engine of this fourth preferred embodiment, the aforesaid square-sided groove
8
p
should ideally be 3 to 5 mm deep.
Breather passage
95
, then, goes from the aforesaid opening
8
k
through groove
8
p
, over center protrusion
8
u
in the center of the head which is the base of the aforesaid straight guide wall
8
j
. It makes use of the tunnel formed by the aforesaid straight guide wall
8
j
and the peripheral wall
8
a
of the cylinder head, which goes as far as spring retainer
8
h
of exhaust valve
14
a.
In
FIGS. 13 through 17
,
76
is the oil guide washer plate for the spring retainer for intake valve
14
a.
In
FIGS. 17
(
a
) (a frontal view) and (
b
) (a plan view), the aforesaid oil guide washer plate
76
comprises washer portion
76
a
, entrance portion
76
b
and exit portion
76
c
. The said washer portion
76
a
engages within ring-shaped rib
8
g
near the aforesaid intake valve
14
a
. When intake valve
14
a
is installed, the elastic force of valve spring
18
exerts downward pressure to the foresaid oil guide washer plate on spring retainer
8
f
. The said entrance portion
76
b
and part of exit portion
76
c
jutting out through opening
8
s
of the foresaid ring-shaped rib
8
g
cover the opening
8
k
in the aforesaid breather passage
94
and the top of S-shaped groove
8
p
. The gap between the end of the aforesaid straight guide wall
8
j
and peripheral wall
8
c
of cylinder head
8
is covered by the aforesaid exit portion
76
c.
The OHV engine in
FIG. 10
according to the fourth preferred embodiment has a lubrication device for its valve operating mechanism which is functioned in the following way. As shown in
FIG. 10
, when it operates and piston
7
moves downward, the volume of space in crankcase
112
is reduced. The oil picked up by oil dipper
115
(as shown in
FIG. 20
) and suspended in crankcase
112
is forced by the air moving through the crankcase to go up to the direction shown by arrow D in FIG.
16
and arrow E in FIG.
15
. This suspended oil travels through breather passage
94
and goes as far as opening
8
k
in cylinder head
8
.
At this point the said suspended oil takes a horizontal turn, passes through S-shaped groove
8
p
and exits from its front end. It then travels through the aforesaid breather passage
95
, which is formed by straight guide wall
8
j
and peripheral wall
8
c
of cylinder head
8
, toward exhaust valve
14
b
. A portion of the suspended oil which is moving forward is repulsed through the gap at the exit portion
76
c
of the aforesaid oil guide washer plate
76
, and it is blown, in an appropriate quantity, to intake valve
14
a
. In this way the said valve
14
is lubricated.
As is stated above, in this fourth preferred embodiment, breather passage
95
comprises square-sided groove
8
m
, which runs between spring retainer
8
f
for supporting the valve spring
18
of intake valve
14
a
in cylinder head
8
and spring retainer
8
h
for supporting the valve spring
18
of exhaust valve
14
b
, and a tunnel-like passage. The said breather passage
95
communicates with breather passage
94
, which connects with crankcase
112
, via opening
8
k
. Thus the oil suspended in crankcase
112
is supplied in a reliable fashion from intake valve
14
a
to exhaust valve
14
b
in valve operating mechanism chamber
92
. In this way a sufficient quantity of oil can be supplied not only to intake valve
14
a
, but also to exhaust valve
14
b
, which experiences conditions of intense heat.
Since this breather passage
95
can be formed by the design of the top surface of cylinder head
8
which faces valve operating mechanism chamber
92
, and gasket
93
, it does not require any specialized parts. This allows the parts count to be reduced.
Claims
- 1. An overhead-valve internal combustion engine, comprising:a hemispherical or pent roof cylinder head which has a combustion chamber formed with a curved top portion projecting upward; an intake valve and an exhaust valve mounted symmetrically with respect to an axis of a cylinder; a rocker arm supporting base fixed on a mounting surface of said cylinder head; rocker arm shafts supported by said rocker arm supporting base; rocker arms engaged with said rocker arm shafts at central portions of said rocker arms in such a way that said rocker arms are free to swing, and engaged with push rods which push said intake and exhaust valves; and a head cover to cover a valve operating mechanism formed by said intake and exhaust valves, said rocker arm supporting base, and said rocker arms, said head cover being fixed on a top surface of said cylinder head, wherein the intake valve and the exhaust valve are inclined when mounted symmetrically with respect to the axis of the cylinder so as to extend out towards the top surface of the cylinder head, wherein said mounting surface is formed on a central portion of said top surface and is positioned between the intake valve and the exhaust valve, wherein said mounting surface is virtually coplanar with said top surface on which said head cover is fixed, and wherein said rocker arm shafts and said rocker arms are first mounted on said rocker arm supporting base, and said rocker arm supporting base is then fixed on said cylinder head.
- 2. An overhead-valve internal combustion engine according to claim 1, wherein said top surface is formed on a peripheral wall of said cylinder head, and said mounting surface is formed on bosses which extend from said peripheral wall toward an interior of said cylinder head.
- 3. An overhead-valve internal combustion engine according to claim 1, wherein said rocker arm supporting base is fixed on a center top of said cylinder head, said intake valve and said exhaust valve are on either side of said rocker arm supporting base, a pair of said rocker arm shafts are supported at both ends of said shafts by said rocker arm supporting base, one of said rocker arm shafts is provided for said intake valve and one for said exhaust valve, said pair of said rocker arm shafts are symmetrical with respect to a center line of said cylinder and parallel to each other and to said mounting surface, said center portion of said rocker arm is mounted on said rocker arm shaft and sandwiched between two arm units, a first arm unit of said rocker arm is engaged with said push rod, and a second arm unit of said rocker arm is provided to push said intake or exhaust valve.
- 4. An overhead-valve internal combustion engine according to claim 1, wherein said rocker arm supporting base is fixed on a center top of said cylinder head, said intake valve and said exhaust valve are on either side of said rocker arm supporting base, a pair of said rocker arm shafts are supported at one end of said shafts by said rocker arm supporting base, one of said rocker arm shafts is provided for said intake valve which extends from said rocker arm supporting base at a right angle to an axis of said intake valve and another of said rocker arm shafts is provided for said exhaust valve which extends from said rocker arm supporting base at a right angle to an axis of said exhaust valve, said center portion of said rocker arm is mounted on said rocker arm shaft and sandwiched between two arm units, a first arm unit of said rocker arm is engaged with said push rod, and a second arm unit of said rocker arm is provided to push said intake or exhaust valve.
- 5. An overhead-valve internal combustion engine according to claim 4, wherein said pair of rocker arm shafts are supported, when viewed from above, at a fixed angle with respect to a linking line to connect two centers of said intake and exhaust valves so as to separate each other more as moving away from said rocker arm supporting base.
- 6. A manufacturing method for an overhead-valve internal combustion engine, wherein the overhead-valve internal combustion engine comprises a hemispherical or pent roof cylinder head which has a combustion chamber formed with a curved top portion projecting upward, an intake valve and an exhaust valve mounted symmetrically with respect to an axis of a cylinder, a rocker arm supporting base fixed on a mounting surface of said cylinder head, rocker arm shafts supported by said rocker arm supporting base, rocker arms engaged with said rocker arm shafts at central portions of said rocker arms in such a way that said rocker arms are free to swing, and engaged with push rods which push said intake and exhaust valves, and a head cover to cover a valve operating mechanism formed by said intake and exhaust valves, said rocker arm supporting base, and said rocker arms, said head cover being fixed on a top surface of said cylinder head, comprising the steps of:forming said mounting surface on a central portion of said top surface of said cylinder head so as to be virtually coplanar with said top surface on which said head cover is fixed; providing an assembly of said rocker arm supporting base on which a rocker arm shaft and a rocker arm are fixed; fixing said assembly on said mounting surface and said intake valve and said exhaust valve symmetrically with respect to an axis of said cylinder head with the intake and exhaust valves inclining out towards the top surface of said cylinder head; and engaging one of the push rods on one end of each said rocker arm and one of said intake valve and said exhaust valve on the other end of each said rocker arm.
- 7. The manufacturing method for an overhead-valve internal combustion engine according to claim 6, and further comprising the steps of:assembling the intake valve and the exhaust valve for a combustion chamber and push rods in the cylinder head; and assembling a pre-assembled valve-operating mechanism comprising the rocker arms, the rocker arm shafts, the rocker arm supporting base, an adjustment screw to adjust a valve gap and a lock nut on said mounting base which is virtually level with a top surface of said cylinder head.
Priority Claims (2)
Number |
Date |
Country |
Kind |
9-184398 |
Jun 1997 |
JP |
|
10-058803 |
Feb 1998 |
JP |
|
US Referenced Citations (8)
Foreign Referenced Citations (10)
Number |
Date |
Country |
2854405 |
Jun 1980 |
DE |
3636180 |
Apr 1988 |
DE |
0 279 445 |
Aug 1988 |
EP |
426064 |
Mar 1935 |
GB |
684221 |
Dec 1952 |
GB |
63-15530Y2 |
May 1988 |
JP |
2-7304 U |
Jan 1990 |
JP |
5-133205 |
May 1993 |
JP |
5-133204 |
May 1993 |
JP |
9-209826 |
Aug 1997 |
JP |