Structure of printhead

Information

  • Patent Grant
  • 6623109
  • Patent Number
    6,623,109
  • Date Filed
    Thursday, June 13, 2002
    22 years ago
  • Date Issued
    Tuesday, September 23, 2003
    20 years ago
Abstract
A structure of a printhead for raising its product acceptance rate and improving its quality is provided. The structure of a printhead includes a base layer, a pattern layer disposed on the base layer, a channel barrier layer having a dry film, an ink channel, a flow channel and plural ink cavities on the pattern layer, and a nozzle plate adhered to the dry film of the channel barrier layer by thermal compression. The pattern layer further includes a flow pattern and a base pattern surrounding a central location for forming thereabove the ink channel.
Description




FIELD OF THE INVENTION




BACKGROUND OF THE INVENTION




In the current market of computer printers, ink-jet printers are relatively inexpensive in terms of good quality they offer. Compared with laser printers, each type of printers has its respective strengths and weaknesses. The ink-jet printers are lower priced but cost more in printing. The laser printers are more expensive, but cost less in printing. Therefore, for the ink-jet printers, the goal of lowering printing cost for greater competitiveness becomes a pressing task for further research and development.




Any ink-jet printing technology generally includes controlling devices for releasing ink to a printing surface. Regarding a ink-jet printing technology in the prior art, a printhead is fitted to a ink-jet cartridge, which releases ink jets in response to control signals.




Two methods, thermal-bubble and piezoelectricity methods, are generally employed by the printhead for releasing ink jets. In the thermal-bubble method, the printhead employs a membrane resistor that heats up small portion of ink (ink droplets) to gaseous state rapidly for releasing in jets through the nozzle.




In the piezoelectricity method, the printhead employs a piezoelectric element that compresses the volume of the ink in response to control signals for creating pressure waves and then forcing the ink droplets in jet though the nozzle.




One type of printheads for thermal-bubble ink-jet printers has been disclosed in the prior art, which is a layer structure manufactured via the VLSI manufacturing process, such as the layer structure disclosed in the U.S. Pat. No. 4,513,298. This layer structure is a three-dimensional structure gradually formed via multiple manufacturing steps.

FIG. 1

shows the plane elevated view of the printhead layer structure. The nozzle plate is removed in

FIG. 1

for clear illustration of the layer structure. As shown in

FIG. 1

, the components of the printhead includes at least the followings in proper order from the bottom to the top: a base layer


11


, a pattern layer


12


and a dry film of a channel barrier layer


13


. This structure is manufactured via the VLSI manufacturing process with add-in silicon chips. The topmost layer of the dry film of the channel barrier layer


13


is represented by dotted lines in FIG.


1


.

FIGS. 2 and 3

illustrate the printhead structure and mechanism.

FIG. 2

is a close-up view of the nozzle cavity and

FIG. 3

is a cross-sectional view of the nozzle cavity which shows the layer structure of one nozzle cavity. The dry film of the channel barrier layer


13


shown in

FIG. 1

is situated on the top of the pattern layer


12


and forms an ink channel


131


in the center of the channel barrier layer


13


and a plurality of ink cavities


132


on the two sides of the ink channel


131


.




As shown in

FIG. 2

, an ink first flows, via an ink cartridge (not shown), into an ink channel


131


and then into each ink cavity


132


. Referring to

FIG. 3

, where the nozzle plate


14


and the dry film of a channel barrier layer


13


are thermally compressed together for tight adhesion. The nozzle plate


14


has a plurality of openings corresponding to each ink cavity


132


. With ink flowed into it, the ink of each nozzle cavity


132


is heated up by the heating layer


121


of the pattern layer


12


in response to the control signals from the printer, so that the ink expands in volume and is jetted out through the openings of the nozzle plate


14


.





FIG. 3

further illustrates the layer structure of the printhead in which the base layer


11


includes a silicon base layer


111


and a silicon dioxide layer


112


for forming the base of the printhead, and the pattern layer


12


includes a heating layer


121


, a first passivation layer


122


and a second passivation layer


123


for forming the ink-heating structure for the printhead.





FIG. 4

is a cross-sectional view along the A—A line of the printhead shown in FIG.


1


. It can be seen that when the pattern layer


12


is formed on the two sides of the ink channel


131


, there emerges a height differential (about 0.6 μm) between the pattern layer


12


and the gap which is formed at the ends of the ink channel


131


because there is none pattern layer


12


arranged on the two opposite ends of the ink channel


131


. Hence as the dry film of channel barrier layer


13


is formed on its top, a step differential d of about 0.6 μm is created at the ink channel


131


. When adhering nozzle plate


14


(usually made of nickel) onto the dry film of a channel barrier layer


13


(usually high polymer compound of Morton, Vacrel or the likes), high temperature at 120° C. and high pressure are needed for 2 to 5 minutes for the high polymer to combine with the nozzle plate


1


.




Referring to

FIG. 4

again, as the nozzle plate


14


is thermally pressed along the directions pointed by the arrows for adhesion with the dry film of the channel barrier layer


13


, a greater pressure is required to deform the dry film of channel barrier layer


13


, so that it pushes and squeezes the ink channel


131


for closing up gaps created by the step differential d for preventing the ink leakage though such gaps.




However, the great tangential shear force B, generated by the great pressure due to the thermal compression of

FIG. 4

, may cause the dry film of the channel barrier


13


in each ink cavity


132


to be deformed transversely so that it leads to reduce internal volume and raises higher printhead ill rates. Generally, the tolerable error for the size of the ink cavity


132


is within +/−10μ. If the thermal pressure is too high, the ill rate will increase.




As the step differential d of pattern layer


12


is responsible for causing in the compression process of the nozzle plate


14


, the primary object of the present invention is to provide a manufacturing method for the printhead and the structure thereof, which can reduce the differential on the two opposite ends of ink channel


131


, so that the dry film of channel barrier layer


13


is made smoother, and the nozzle plate


14


can adhere tightly with the dry film of channel barrier layer


131


for eliminating the ink leakage problem.




SUMMARY OF THE INVENTION




It is an object of the present invention to provide a structure of a printhead for raising its product acceptance rate and improving its quality.




According to the present invention, a structure of a printhead, including a base layer, a pattern layer disposed on the base layer and having a flow pattern disposed on two opposite ends of the base layer and having a space location for forming thereabove a flow channel, and a base pattern disposed on two opposite sides of the base layer and having plural apertures for forming thereabove plural ink cavities, wherein the flow pattern and the base pattern surround a central location for forming thereabove an ink channel, the base pattern includes at least a heating layer and a passivation layer, and the flow pattern is made of the same material and at the same height as those of the base pattern, a channel barrier layer disposed on the pattern layer and having a dry film, the ink channel, the flow channel and the plural ink cavities, and a nozzle plate adhered to the dry film of the channel barrier layer, wherein the nozzle plate has plural ink openings disposed over the ink cavities.




Certainly, the nozzle plate can be adhered to the dry film of the channel barrier layer by thermal compression.




Certainly, the pattern layer can be made by means of a semi-conductor manufacturing process.




Certainly, the heating layer can be made of tantalic aluminum (TaAl).




Certainly, the first passivation can be made of one of silicon nitride (Si3N4) and silicon carbide (SiC).




Certainly, the second passivation can be made of tantalum (Ta).




Certainly, the nozzle plate can be made of nickel (Ni).




Preferably, the base pattern and the flow pattern are in discontinuously alternate arrays.




Preferably, the flow pattern incluses a first flow pattern and a second flow pattern disposed in discontinuously arrays for forming thereabove a flow channel.




Preferably, the flow pattern is formed by a first flow pattern and a second flow pattern disposed in discontinuously arrays for forming thereabove the flow channel.




Preferably, the first passivation layer and the second passivation layer of the pattern layer are continuous and formed in the same shape and the heating layer of the pattern layer is a discontinuous array.




According to the present invention, a structure of a printhead including a base layer, a pattern layer disposed on the base layer and having a flow pattern disposed on two opposite ends of the base layer and having a space location for forming thereabove a flow channel and a base pattern disposed on two opposite sides of the base layer and having plural apertures for forming thereabove plural ink cavities, wherein the flow pattern and the base pattern surround a central location for forming thereabove an ink channel, the flow pattern includes a first flow pattern and a second flow pattern disposed in discontinuously arrays and forming a flow channel, a channel barrier layer having a dry film and the ink channel, and a nozzle plate adhered to the dry film of the channel barrier layer.




According to the present invention, a structure of a printhead, including a base layer, a pattern layer disposed on the base layer and having a flow pattern disposed on two opposite ends of the base layer and having a space location for forming thereabove a flow channel and a base pattern disposed on two opposite sides of the base layer and having plural apertures for forming thereabove plural ink cavities, wherein the flow pattern and the base pattern surround a central location for forming thereabove an ink channel, a channel barrier layer disposed on the pattern layer and having a dry film, the ink channel, the flow channel and the plural ink cavities, and a nozzle plate adhered to the dry film of the channel barrier layer, wherein the nozzle plate has plural ink openings disposed over the ink cavities.




Now the foregoing and other features and advantages of the present invention will be more clearly understood through the following descriptions with reference to the drawings, wherein:











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

illustrates a plane elevated view of the conventional printhead layer structure with the nozzle plate removed according to the prior art;





FIG. 2

illustrates a partially close-up view of the nozzle cavity according to the prior art;





FIG. 3

illustrates a cross-sectional view of the nozzle cavity according to the prior art;





FIG. 4

illustrates a cross-sectional view along the A—A line of

FIG. 1

;





FIG. 5

illustrates a plane elevated view of the first preferred embodiment of the printhead layer structure of the present invention with the nozzle plate removed;





FIG. 6

illustrates a cross-sectional view along the C-C′ line of

FIG. 5

;





FIG. 7

illustrates a plane elevated view of the second preferred embodiment of the printhead layer structure of the present invention with the nozzle plate removed; and





FIG. 8

illustrates a cross-sectional view along the E-E′ line of FIG.


7


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




In printing by thermal bubble ink-jet printers, ink droplets are heated so that they are expanded and shoot out in jets onto a printing paper. The related factors affecting printing effect include the ink quality, the internal pressure control and the printhead of the cartridge. For thermal bubble ink-jet printers, the controlling factor shall be the manufacture of the printhead.




The printhead of the present invention includes a structure of a heating chip combined with a nozzle plate, which forms 50 to 300 independent nozzle openings. At the bottom of each nozzle cavity is an electrical resistor, which heats up instantly in response to an electric current passing therethrough and can vaporize ink. Then, the ink of the nozzle cavities is expanded in volume and the ink droplets are sprayed onto a printing paper. As shown in

FIG. 5

, in the present invention, the heating chip includes a dry film of a channel barrier layer


2


, a pattern layer, a flow pattern


32


and a base layer


4


. And the heating chip is manufactured by the VLSI manufacturing process. The nozzle plate


5


is manufactured by micromachining etching on nickel to form multiple apertures, each of which corresponds to an independent nozzle opening. Both VLSI manufacturing process and micromachining etching are familiar to semi-conductor manufacturers, so their detailed discussion is omitted here.




The printhead is manufactured by adhering heating chip made by VLSI manufacturing process with the nozzle plate


5


. Additionally, the nozzle plate


5


is made by etching by compressing them together inside high-pressure mold in high temperature (about 120° C.). During process of the adhesion, it should be taken care to avoid any formation of minute cracks around the peripheries of the nozzle plate


5


and the dry film of the channel barrier layer


2


. Otherwise, ink leakage will develop in printing. Referring to

FIGS. 5 and 6

, the manufacturing method includes several steps for the heating chip production.




Firstly, silicon for marking a silicon semi-conductors chip is used as the material for the base layer


4


of the printhead, which contains a silicon layer


41


and a silicon dioxide layer


42


. The base layer


4


is flat surfaced in preparation for the following VLSI manufacturing process.




Secondly, by the method of sputtering or masking, the desired pattern layer


3


is formed on the base layer


4


. The pattern layer


3


includes a base pattern


31


and a flow pattern


32


. The base pattern


31


is formed on two sides of the base layer


4


and has plural apertures reserved for plural ink cavities


22


. The base pattern


31


by means of aforementioned manufacturing process includes at least three layers: a heating layer


311


, a first passivation layer


312


and a second passivation layer


313


. The material of the heating layer


311


may be TaAl and the first passivation layer


312


may be Si3N4 or SiC. The material of the second passivation layer


313


may be Ta. The heating layer


311


is for producing heat in response to electric current passing therethrough and the first and second passivation layers


312


and


313


are for preventing any chemical reaction between the ink and the heating layer


311


. In the present invention, the flow pattern


32


is formed simultaneously with the formation of the integrated circuit layout. The flow pattern


32


forms on two opposite ends of the base layer


4


and has space locations reserved for a flow channel


323


. Furthermore, the flow pattern


32


is disposed in discontinuously alternate arrays against to the base pattern


31


so that the flow pattern


32


will not come in substantial contact with the base pattern


31


.

FIG. 5

also illustrates a flow pattern


32


including a first flow pattern


321


in shape of a rectangle and a second flow pattern


322


in shape of “L” wherein the first flow pattern


321


and the second flow pattern


322


are disposed in discontinuously alternate arrays for forming thereabove flow channels


323


. Nonetheless, those skilled in this art should all realize that the flow pattern


32


is not limited to the shape shown in

FIG. 5

, insofar as any layout which is discontinuous and forms on two ends of the base layer


4


between the base pattern


31


. Wherein the flow pattern


32


and the base pattern


31


surround a central location for forming thereabove an ink channel


21


. In

FIG. 6

, the flow pattern


32


is formed together along with the heating layer


311


, the first passivation layer


312


and the second passivation layer


313


so that the layers are all of the same material and therefore at the same height as the pattern layer


31


.




Thirdly, referring to

FIG. 5

, the dry film of the channel barrier layer


2


(usually made of Morton or Vacrel high polymer compounds or the likes,) forms on top of the pattern layer


3


to become a structure represented by the dotted lines, and thus the dry film of the channel barrier layer


2


forms the ink channel


21


connecting with a plurality of nozzle cavities


22


on both sides at the center of a chip.




As shown in

FIG. 6

, the heating chip adheres to the nozzle plate


5


having a plurality of openings by thermal compression. No step differential exists, but only with slight cavities of the flow channel


323


, at the peripheries of the dry film of the channel barrier layer


2


on the chip. Although the base pattern


31


and the flow pattern


32


are disposed in discontinuously alternate arrays and the dry film of the channel barrier layer


2


forms the flow channels


323


with slight cavities, therefore no great pressure force is required during the thermal pressurization, and the pressure force can be evenly distributed throughout the chip without causing large local shape deformation of the dry film of the channel barrier layer


2


. Hence not only is even adhesion of the nozzle plate


5


achieved but the product acceptance rate can also be significantly improved.





FIG. 7

illustrates the second preferred embodiment of the printhead layer structure of the present invention. It shows another preferred embodiment of the flow pattern


72


which forms on two side of the base layer


4


between the base pattern


71


. Wherein the flow pattern


72


includes a first flow pattern


721


and a second flow pattern


722


in which the first flow pattern


721


and the second flow pattern


722


are respectively extended from the base pattern


71


in discontinuously alternate arrays for forming a flow channel


723


. As shown in

FIG. 8

, the heating layer


711


between the first flow pattern


721


and the second flow pattern


722


is disposed in discontinuously arrays for forming thereabove a flow channel


723


, but the first passivation layer


712


and the second passivation layer


713


are formed continuously. The flow pattern


72


is formed together along with the base pattern


71


, the heating layer


711


, the first passivation layer


712


and the second passivation layer


713


so that the layers are all of the same material and therefore at the same height as the pattern layer


71


.




In second embodiment, the base pattern


71


and the first passivation layer


712


and the second passivation


713


of the flow pattern


72


are formed continuously. Merely, the heating layer


711


is in discontinuously arrays. Hence the slight cavities formed due to the dry film of the channel barrier layer


6


are smaller than those of the first embodiment. The pattern layer


71


and the flow pattern


72


are at the same height. No great pressure force is required to achieve adhesion of the nozzle plate


8


during the thermal pressurization, and the pressure force can be evenly distributed throughout the chip without causing large local shape deformation of the dry film of the channel barrier layer


6


. Moreover, the first flow pattern


721


and the second flow pattern


722


of the flow pattern


72


are in discontinuously alternate arrays and the flow channel


723


is formed circuitously. Hence the effect of the adhesion of the nozzle plate


8


is better, the possibility of ink leakage is substantially decreased and the product acceptance rate can also be significantly improved.




Printheads manufacture pursuant to the method described herein shall be of high quality that exhibits a low ill rate. The associated cost is low and this method can be used in conjunction with the conventional printhead manufacturing machine with modified masking layouts. No new production equipment is required for implementing this method. The method of the present invention can provide a low cost and great benefit invention.




In conclusion, the present invention possesses many outstanding characteristics, effectively improves upon the drawbacks associated with the prior art in practice and application, produces practical and reliable products, bears novelty, and adds to economical utility value.




Although the present invention has been described and illustrated in detail, it is to be clearly understood that the same is by the way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.



Claims
  • 1. A structure of a printhead, comprising:a base layer; a pattern layer disposed on said base layer and having: a flow pattern disposed on two opposite ends of said base layer and having a space location for forming thereabove a flow channel; and a base pattern disposed on two opposite sides of said base layer and having plural apertures for forming thereabove plural ink cavities, wherein said flow pattern and said base pattern surround a central location for forming thereabove an ink channel, said base pattern comprises at least a heating layer and a passivation layer, and said flow pattern is made of the same material and at the same height as those of said base pattern; a channel barrier layer disposed on said pattern layer and having a dry film, said ink channel, said flow channel and said plural ink cavities; and a nozzle plate adhered to said dry film of said channel barrier layer, wherein said nozzle plate has plural ink openings disposed over said ink cavities.
  • 2. The structure according to claim 1 wherein said nozzle plate is adhered to said dry film of said channel barrier layer by thermal compression.
  • 3. The structure according to claim 1 wherein said heating layer is made of tantalic aluminum (TaAl).
  • 4. The structure according to claim 1 wherein said first passivation is made of one of silicon nitride (Si3N4) and silicon carbide (SiC).
  • 5. The structure according to claim 1 wherein said second passivation is made of tantalum (Ta).
  • 6. The structure according to claim 1 wherein said nozzle plate is made of nickel (Ni).
  • 7. The structure according to claim 1 wherein said base pattern and said flow pattern are in discontinuously alternate arrays.
  • 8. The structure according to claim 7 wherein said flow pattern comprises a first flow pattern and a second flow pattern disposed in discontinuously arrays for forming thereabove a flow channel.
  • 9. The structure according to claim 1 wherein said flow pattern is formed by a first flow pattern and a second flow pattern disposed in discontinuously arrays for forming thereabove said flow channel.
  • 10. The structure according to claim 1 wherein said first passivation layer and said second passivation layer of said pattern layer are continuous and formed in the same shape and said heating layer of said pattern layer is a discontinuous array.
  • 11. A structure of a printhead comprising:a base layer; a pattern layer disposed on said base layer and having: a flow pattern disposed on two opposite ends of said base layer and having a space location for forming thereabove a flow channel; and a base pattern disposed on two opposite sides of said base layer and having plural apertures for forming thereabove plural ink cavities, wherein said flow pattern and said base pattern surround a central location for forming thereabove an ink channel, said flow pattern comprises a first flow pattern and a second flow pattern disposed in discontinuously arrays and forming therebetween said flow channel; a channel barrier layer having a dry film and said ink channel; and a nozzle plate adhered to said dry film of said channel barrier layer.
  • 12. A structure of a printhead, comprising:a base layer; a pattern layer disposed on said base layer and having: a flow pattern disposed on two opposite ends of said base layer and having a space location for forming thereabove a flow channel; and a base pattern disposed on two opposite sides of said base layer and having plural apertures for forming thereabove plural ink cavities, wherein said flow pattern and said base pattern surround a central location for forming thereabove an ink channel; a channel barrier layer disposed on said pattern layer and having a dry film, said ink channel, said flow channel and said plural ink cavities; and a nozzle plate adhered to said dry film of said channel barrier layer, wherein said nozzle plate has plural ink openings disposed over said ink cavities.
Parent Case Info

This is a continuation-in-part application of U.S. patent application Ser. No. 09/934,859, filed on Aug. 28, 2001 now abandoned. The present invention is related to a structure of a printhead, more particularly to a structure of a printhead for raising its product acceptance rate and improving its quality.

US Referenced Citations (2)
Number Name Date Kind
4513298 Scheu Apr 1985 A
6328428 Keefe et al. Dec 2001 B1
Continuation in Parts (1)
Number Date Country
Parent 09/934859 Aug 2001 US
Child 10/171284 US