1. Technical Field of the Invention
The present invention relates generally to a spark plug which may be employed in automotive engines, and more particularly to an improved structure of a spark plug with a noble metal chip welded to at least one of a center electrode and a ground electrode which provides higher durability at a joint of the noble metal chip to the one of the center and ground electrodes, and a fabricating method thereof.
2. Background Art
There are known spark plugs with a noble metal chip welded to at least one of a center or a ground electrode. Japanese Patent First Publication No. 6-188062 teaches, as illustrated in
The above laser welding, however, encounters drawbacks in that much time is consumed in irradiating the laser beam to the noble metal chip 2a rotating together with the electrode 2 to form the spot welds 200 over an overall circumference of the contact between the noble metal chip 2a and the electrode 2, thus resulting in an increase in manufacturing cost of the spark plugs. Additionally, misalignment of the noble metal chip 2a with the electrode 2 will result in a variation in focus of the laser beam on a plurality of portions of the contact between the noble metal chip 2a and the electrode 2 to be spot-welded, thereby causing, as shown in
Further, in modern engines, a combustible atmosphere is elevated in temperature for increasing an output and reducing a fuel consumption and exhaust emissions. In this type of engine, a park plug is subjected to an intense heat, so that the temperature of center and ground electrodes is increased greatly. The electrodes, therefore, undergo a thermal stress and oxidation, which may cause noble metal chips to be removed from the center and ground electrodes.
It is therefore a principal object of the invention to avoid the disadvantages of the prior art.
It is another object of the invention to provide a structure of a spark plug designed to improve the reliability of a weld of a noble metal chip to at least one of a center electrode and a ground electrode and also to provide a noble metal chip-welding method thereof.
According to one aspect of the invention, there is provided a higher durability spark plug which may be employed in automotive engines. The spark plug comprises: (a) a first electrode; (b) a second electrode opposed to the first electrode through a given air gap; (c) a noble metal member being in contact of a preselected portion thereof with a preselected portion of at least one of the first and second electrodes, the noble metal member being joined at a contact between the preselected portions with the one of the first and second electrodes by laser welding; and (d) a fused portion that forms a weld between the noble metal member and the one of the first and second electrodes and is made of materials of the noble metal member and the one of the first and second electrodes fused together by the laser welding. The fused portion continues over at least half a circumferential direction of the contact between the preselected portions of the noble metal member and the one of the first and second electrodes without interfaces of welds.
In the preferred mode of the invention, the fused portion may continue over an overall circumference of the contact between the preselected portions of the noble metal member and the one of the first and second electrodes.
If a sectional area of the noble metal chip closest to the fused portion is defined as A, an area of a portion of the contact between the preselected portions of the noble metal member and the one of the first and second electrodes which is unfused by the laser welding is defined as B, a percentage, as expressed by (B/A)×100, is 50% or less.
A second fused portion is further provided which is made of materials of the noble metal member and the fused portion fused together by laser welding. The second fused portion extends into an interface between the fused portion and the noble metal member.
The noble metal chip is made of an Ir alloy containing at least 50 Wt % of iridium.
According to the second aspect of the invention, there is provided a method of joining a noble metal member to at least one of first and second electrodes opposed to each other through a given air gap. The method comprises the step of: (a) placing the noble metal member at a preselected portion thereof on a preselected portion of the one of the first and second electrodes in contact therewith; and (b) irradiating a plurality of laser beams simultaneously over at least half a circumferential direction of a contact between the preselected portions of the noble metal member and the one of the first and second electrodes.
In the preferred mode of the invention, the irradiating step irradiates the laser beams simultaneously over an overall circumference of the contact between the preselected portions of the noble metal member and the one of the first and second electrodes.
According to the third aspect of the invention, there is provided a method of joining a noble metal member to at least one of first and second electrodes opposed to each other through a given air gap. The method comprises the step of: (a) placing the noble metal member at a preselected portion thereof on a preselected portion of the one of the first and second electrodes in contact therewith; and (b) irradiating a single annular laser beam over at least half a circumferential direction of a contact between the preselected portions of the noble metal member and the one of the first and second electrodes.
In the preferred mode of the invention, the irradiating step irradiates the annular laser beam over an overall circumference of the contact between the preselected portions of the noble metal member and the one of the first and second electrodes.
The present invention will be understood more fully from the detailed description given hereinbelow and from the accompanying drawings of the preferred embodiments of the invention, which, however, should not be taken to limit the invention to the specific embodiments but are for the purpose of explanation and understanding only.
In the drawings:
Referring to the drawings, wherein like reference numbers refer to like parts in several views, particularly to
The spark plug 1 includes a cylindrical metal shell (housing) 4, a porcelain insulator 5, a center electrode 2, a ground electrode 3, a metallic stem 7, and a resistor 8. The metal shell 4 is made of a conductive iron steel such as a low carbon steel and has cut therein a thread for mounting the spark plug 1 in an engine block (not shown). The porcelain insulator 5 made of an alumina ceramic (Al2O3) is retained within the metal shell 4 and has a tip exposed inside the metal shell 4. The stem 7 has a terminal 6. The resistor 8 has a given resistance value and is disposed between the stem 7 and the center electrode 2 within the porcelain insulator 5. The ground electrode 3 has a tip facing a tip of the center electrode 2 extending from the porcelain insulator 5 to define a spark gap within which a sequence of sparks are produced.
The center electrode 2 is secured in a central chamber of the porcelain insulator 5 and insulated electrically from the metal shell 4. The center electrode 2 is formed by a cylindrical member which is made up of a core portion made of a metallic material such as Cu having a higher thermal conductivity and an external portion made of a metallic material such as an Ni-based alloy having higher thermal and corrosion resistances. A noble metal chip 2a made of, for example, iridium is laser-welded to the end the center electrode 2.
The ground electrode 3 is made of an Ni alloy whose main component is nickel and welded at a base thereof directly to an end of the metal shell 4. The ground electrode 3 is, as clearly shown in
The resistor 8 is made of a cylindrical member formed by sintering a mixture of carbon powder and glass powder that is a main component within a furnace. Seal members 8a and 8b made of a conductive glass material are installed on opposed ends of the resistor 8 to insulate the center electrode 2 (i.e., the inside of a combustion chamber of the engine) from the terminal 6 (i.e., the outside of the combustion chamber).
Joining of the metal shell 4 and the porcelain insulator 5 is accomplished by elastically deforming or staking a peripheral end of the metal shell 4 on the porcelain insulator 5 after the resistor 8 is installed within the porcelain insulator 5.
Joining the noble metal chip 2a to the end of the center electrode 2 is achieved in the first embodiment of the invention by a unique laser welding method which will be discussed below with reference to
First, the noble metal chip 2a is, as shown in
We prepared two kinds of spark plug samples: one having the noble metal chip 2a welded to the center electrode 2 in the conventional manner, as discussed in the introductory part of this application with reference to
For dimensions of the spark plug samples employed in the durability tests, the diameter D1, as shown in
The durability tests were made by idling a 6-cylinder 2000 cc engine in which the spark plug samples were installed at 8000 rpm. for one minute and then running it at a full speed of 6000 rpm. for one minute. This cycle was repeated for 100 hours.
The graph clearly shows that the embodiment spark plug samples are lower in the fused portion separation percentage than the conventional spark plug samples. This is because the fused portion 10 continues over the circumferential direction of the contact between the noble metal chip 2a and the center electrode 2, thus resulting in no thermal stress which would be produced in an interface between adjacent two of welds of the noble metal chip 2a with the center electrode 2 in the conventional structure.
The inventors of this application have studied and confirmed that the spark plug samples whose fused portion separation percentage is less than or equal to 25% may be employed in practical applications. It will, thus, be apparent from the graph that when the unfused sectional area percentage C is less than or equal to 50%, the embodiment spark plug samples will have a desired strength of the weld of the noble metal chip 2a with the center electrode 2. This is because the activity of the fused portion 10 as a thermal stress absorber is enhanced when the unfused sectional area percentage C is less than or equal to 50%. Of course, it is evident that when the unfused sectional area percentage C is zero (i.e., B=0), the fused portion separation percentage will be zero (0) which provides the highest strength of the joint between the noble metal chip 2a and the center electrode 2.
The joining of the noble metal chip 2a to the center electrode 2 may alternatively be achieved by performing the multi-spot simultaneous welding two times. For instance, the laser beams 100 may be radiated simultaneously over 270° of a circumference of the contact between the noble metal chip 2 and the center electrode 2 in the first step, and the remainder of the circumference may be welded in a following step. This also results in a decrease in time required for welding the noble metal chip 2a to the center electrode 2 as compared with the conventional welding, as discussed in the introductory part of this application, which requires a laser welding operation at least three times.
The eight laser beams 100 are used in the multi-spot simultaneous welding of this embodiment, but however, the number of the laser beams 100 is changed preferably depending upon the size and/or shape of the noble metal chip 2a. It is not always necessary to weld the overall circumference of the contact between the noble metal chip 2a and the center electrode 2. It is preferable that at least half a circumference of the noble metal chip 2a is welded to the center electrode 2.
The reflective mirror plate 20 has an opening or window 20a formed in a central portion thereof. The conical mirror 21 has a substantially V-shaped annular groove formed in a major surface thereof to define a central conical reflective surface 21a and a peripheral conical reflective surface 21b. The condenser mirror 22 has a domed concave reflective surface 22a.
A laser beam 110 which is produced by a laser oscillator (not shown) passes through the window 20a of the reflective mirror plate 20 and travels to a central area of the central conical reflective surface 21a of the conical reflective mirror 21. The laser beam 110 is reflected on the central conical reflective surface 21a so that it is expanded outwardly and directed to the peripheral conical reflective surface 21b. The laser beams 110 is reflected on the peripheral conical reflective surface 2b and returned to a flat reflective surface 20b of the mirror plate 20, so that it is emitted to the condenser mirror 22 as an annular leaser beam 111 that is uniform in energy density in a circumferential direction thereof.
The annular laser beam 111 is reflected on the concave reflective surface 22a of the condenser mirror 22 and radiated as an annular condensed laser beam 112 to an overall circumference of a contact between ends of the noble metal chip 2a and the center electrode 2 to be welded. This welding will be referred to as annular beam welding below.
We performed durability tests on spark plug samples in which the noble metal chip 2a is joined to the center electrode 2 by the annular beam welding under the same conditions as discussed in the first embodiment. Results of the tests are shown in the graph of
We prepared and performed durability tests on six kinds of spark plug samples: the first having the noble metal chip 2a welded to the center electrode 2 without the reradiation of the laser beams, the second having the second fused portion 11 formed by radiation of a single laser beam, the third having the second fused portion 11 formed by radiation of two laser beams, the fourth having the second fused portion 11 formed by radiation of four laser beams, the fifth having the second fused portion 11 formed by radiation of eight laser beams, and the sixth having the second fused portion 11 formed by the annular beam welding. The noble metal chip 2a and the center electrode 2 used in each spark plug sample are identical in size and material with the ones discussed in first embodiment. Test conditions are the same as those in the first and second embodiments. After the durability tests, we evaluated the durability of the first to fifth spark plug samples which is shown in FIG. 13. In
The graph of
The noble metal chip 3a is made of, for example, iridium and joined to the ground electrode 3 by the annular beam welding. Specifically, the annular condensed laser beam 112 is radiated to an overall circumference of a contact between the noble metal chip 3a and the ground electrode 3 to be welded to form the fused portion 10, as shown in
The noble metal chip 3a may alternatively be joined to the ground electrode 3 using the multi-spot simultaneous welding.
When laser beams are irradiated, as shown in
The laser welding of this embodiment is achieved by irradiating a laser beam(s) to the fused portion 10 after being formed by either of the multi-spot simultaneous welding and the annular beam welding, thereby forming at least one second fused portion 12. The second fused portion 12 may be used as an orientation mark indicative of a preselected angular position of the center electrode 2 relative to the ground electrode 3.
The laser welding of this embodiment is different from the sixth embodiment of
The tip of the second fused portion(s) 13 sticks, like a wedge, in the noble metal chip 2a, thereby avoiding dislodgement of the noble metal chip 2a even if the fused portion 10 has peeled off the noble metal chip 2a at an interface therebetween.
The laser welding of this embodiment is to perform either of the multi-spot simultaneous welding and the annular beam welding to form a second fused portion 14 in the fused portion 10 formed by either of the multi-spot simultaneous welding and the annular beam welding. The second fused portion 14 is formed in, for example, an interface between the noble metal chip 2a and the center electrode 2 over a circumferential direction thereof and extends inside the noble metal chip 2a and the center electrode 2, thereby resulting in an increased total volume of the weld between the noble metal chip 2a and the center electrode 2, which enhances the activity of the weld (i.e., the fused portions 10 and 14) as a thermal stress absorber.
This embodiment is different from the eighth embodiment, as discussed in
The tip of the second fused portion 15 sticks, like a wedge, in the noble metal chip 2a, thereby avoiding dislodgement of the noble metal chip 2a even if the fused portion 10 has peeled off the noble metal chip 2a at an interface therebetween.
While the present invention has been disclosed in terms of the preferred embodiments in order to facilitate better understanding thereof, it should be appreciated that the invention can be embodied in various ways without departing from the principle of the invention. Therefore, the invention should be understood to include all possible embodiments and modifications to the shown embodiments which can be embodied without departing from the principle of the invention as set forth in the appended claims. For instance, the laser welding, as described in some of the above embodiments, used to join the noble metal chip 2a to the center electrode 2 may also be employed in welding the noble metal chip 3a to the ground electrode 3. Both the noble metal chips 2a and 3a may be installed on the center and ground electrodes 2 and 3 by the same laser welding manner. Further, each of the noble metal chips 2a and 3a may be made from a material which contains a main component of 50 Wt % Ir or more and an additive of at least one of Pt, Rh, Os, Ni, W, Pd, and Ru or a main component of 50 Wt % of Pt or more and an additive of at least one of Ir, Rh, Os, Ni, W, Pd, and Ru. The noble metal chips 2a and 3a used in the above embodiments are each formed by a cylindrical pole, but however, may alternatively be made of a square or triangle pole or a spherical member.
Number | Date | Country | Kind |
---|---|---|---|
2001-256151 | Aug 2001 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5736809 | Matsutani et al. | Apr 1998 | A |
6078129 | Gotou et al. | Jun 2000 | A |
6215235 | Osamura | Apr 2001 | B1 |
20020017846 | Hori | Feb 2002 | A1 |
20020105254 | Hori | Aug 2002 | A1 |
Number | Date | Country |
---|---|---|
0 936 710 | Aug 1999 | EP |
1 133 037 | Sep 2001 | EP |
6-188062 | Jul 1994 | JP |
6-262384 | Sep 1994 | JP |
11-3765 | Jan 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20030038577 A1 | Feb 2003 | US |