The present invention relates to a transformer, and more particularly to a transformer for avoiding high-voltage spark or short circuit.
A transformer has become an essential electronic component for voltage regulation into required voltages for various kinds of electric appliances. Referring to
Since the leakage inductance of the transformer has an influence on the electric conversion efficiency of a power converter, it is very important to control leakage inductance. Related technologies were developed to increase coupling coefficient and reduce leakage inductance of the transformer so as to reduce power loss upon voltage regulation. In the transformer of
In the power supply system of the new-generation electric products (e.g. LCD televisions), the transformers with leakage inductance prevail. For electrical safety, the primary winding coil and the secondary winding coil of this transformer are separated by a partition element of the bobbin. Generally, the current generated from the power supply system will pass through an LC resonant circuit composed of an inductor L and a capacitor C, wherein the inductor L is inherent in the primary winding coil of the transformer. At the same time, the current with a near half-sine waveform will pass through a power MOSFET (Metal Oxide Semiconductor Field Effect Transistor) switch. When the current is zero, the power MOSFET switch is conducted. After a half-sine wave is past and the current returns zero, the switch is shut off. As known, this soft switch of the resonant circuit may reduce damage possibility of the switch, minimize noise and enhance performance.
As the size of the LCD panel is gradually increased, the length and the number of the lamps included in the LCD panel are increased and thus a higher driving voltage is required. Referring to
For winding the primary winding coil 24 on the first bobbin piece 22, a first terminal of the primary winding coil 24 is firstly soldered on a pin 28a under the first base 26a. The primary winding coil 24 is then successively wound on the first bobbin piece 22 in the direction distant from the first side plate 26. Afterward, a second terminal of the primary winding coil 24 is returned to be soldered onto another pin 28b under the first base 26a. For winding the secondary winding coil 25 on the second bobbin piece 23, a first terminal of the secondary winding coil 25 is firstly soldered on a pin 29a under the second base 27a. The secondary winding coil 25 is then successively wound on the winding sections 23b of the second bobbin piece 23 in the direction distant from the second side plate 27. Afterward, a second terminal of the secondary winding coil 25 is returned to be soldered onto another pin 29b under the second base 27a. Moreover, due to the partition plate 23a of the second bobbin piece 23, the primary winding coil 24 is separated from the secondary winding coil 25, thereby maintaining an electrical safety distance and increasing leakage inductance of the transformer.
The winding structure of the transformer 2, however, still has some drawbacks. For example, since the second terminals of the primary winding coil 24 and the secondary winding coil 25 are returned to be soldered onto the pins 28b and 29b under the first base 26a and the second base 27a, respectively, portions of these second terminals are disposed under the primary winding coil 24 wound on the first bobbin piece 22 and the secondary winding coil 25 wound on the second bobbin piece 23. Even if the second terminals are covered by insulating material, the creepage distance is insufficient. Under this circumstance, the transformer 2 is readily suffered from high-voltage spark or short circuit and eventually has a breakdown.
Therefore, there is a need of providing a transformer for avoiding high-voltage spark or short circuit so as to obviate the drawbacks encountered from the prior art.
It is an object of the present invention to provide a transformer for avoiding high-voltage spark or short circuit so as to prevent damage of the transformer.
It is another object of the present invention to provide a transformer for reducing the integral length and height of the transformer.
In accordance with an aspect of the present invention, there is provided a transformer. The transformer includes a first bobbin piece, a second bobbin piece, a first pin, a second pin and a magnetic core assembly. The first bobbin piece has a first channel therein and a covering element. A primary winding coil is wound on the first bobbin piece. The second bobbin piece includes a first secondary side plate, a second secondary side plate opposed to the first secondary side plate, a plurality of partition plates between the first secondary side plate and the second secondary side plate, a wall portion between every two adjacent partition plates, and a secondary base extended from an edge of the first secondary side plate. A secondary winding section is defined by every two adjacent partition plates for winding a secondary winding coil thereon. A second channel is defined within the wall portion. The first pin is arranged on a bottom surface of the secondary base. The second pin includes a wire-arranging part, an insertion part and an intermediate part, wherein the wire-arranging part is protruded from the second secondary side plate, the intermediate part is buried in the wall portion, and the insertion part is protruded from the bottom surface of the secondary base. The magnetic core assembly is partially embedded within said first channel of said first bobbin piece and said second channel of said second bobbin piece. A first terminal of the secondary winding coil is fixed on the first pin and a second terminal of the secondary winding coil is fixed on the wire-arranging part of the second pin. At least parts of the second bobbin piece are received in the covering element of the first bobbin piece, and the covering element has an insulating partition for isolating the magnetic core assembly from the primary winding coil and the secondary winding coil.
The above contents of the present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:
The present invention will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of preferred embodiments of this invention are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.
Referring to
The first bobbin piece 32 includes a primary side plate 320, a primary base 321, a covering element 322 and a first channel 323. A primary winding section 324 is defined between the primary side plate 320 and the covering element 322 such that the primary winding coil 34 can be wound on the primary winding section 324. It is preferred that the covering element 322, the primary winding section 324, the primary side plate 320 and the primary base 321 are integrally formed. The primary base 321 is extended from an edge of the primary side plate 320. The covering element 322 is substantially a rectangular structure having a receptacle (not shown) therein. The first channel 323 penetrates through the primary base 321, the primary side plate 320 and the primary winding section 324 for receiving the first leg 311a of the first magnetic part 311 therein. The receptacle of the covering element 322 is sheathed around the second secondary side plate 338 of the second bobbin piece 33 and the secondary winding coil 35 wound on the second bobbin piece 33, which will be described later. Accordingly, the primary winding coil 34 and the secondary winding coil 35 are separated from each other by the covering element 322.
Further, the covering element 322 is a hollow rectangular structure formed by five side plates and have an opening in the direction away from the primary winding section 324, so that parts of the second bobbin piece 33 are received in the receptacle of the covering element 322 through the opening, wherein the side plate 322a of the covering element 322 which is adjacent to the primary winding section 324 is served as an insulating partition to isolate the first leg 312a of the second magnetic part 312 from the primary winding coil 34 and to isolate the first leg 311a of the first magnetic part 311 from the secondary winding coil 35, especially to isolate the first leg 311a of the first magnetic part 311 from the secondary winding coil 35 wound on the wire-arranging part 337a (as shown in
Please refer to
Further referring to
Hereinafter, an embodiment of winding the primary winding coil 34 will be illustrated as follows with reference to
The hollow partition plates 332 are parallel with the first secondary side plate 330 and the second secondary side plate 338. The wall portion 333 is arranged between the first secondary side plate 330 and the neighboring hollow partition plate 332, between every two hollow partition plates 332, and between the second secondary side plate 338 and the neighboring hollow partition plate 332. The wall portion 333 is also in connection with the first secondary side plate 330, the second secondary side plate 338 and the hollow partition plates 332 so as to form a second channel 335 therein. The first leg 312a of the second magnetic part 312 is embedded into the second channel 335. Moreover, a plurality of winding sections 334 are defined between the first secondary side plate 330, the second secondary side plate 338, the hollow partition plates 332 and the wall portion 333 for winding the secondary winding coil 35 thereon.
The secondary base 331 is extended from an edge of the first secondary side plate 330 and also has an aperture therein corresponding to that of the first secondary side plate 330. A first pin 336 and a second pin 337 are arranged on the bottom surface of the secondary base 331 for plugging onto the printed circuit board (not shown). The first pin 336 can also be an L-shaped pin and inserted into a corresponding hole of the secondary base 331, and the first pin 336 includes a first connection part 336a and a second connection part 336b, which are substantially vertical to each other and protruded from the edges of the secondary base 331, wherein the first pin 336 is plugged onto the printed circuit board through the second connection part 336b.
Furthermore, the first secondary side plate 330, the second secondary side plate 338, the hollow partition plates 332 and the secondary base 331 have corresponding notches 339.
Hereinafter, an embodiment of winding the secondary winding coil 35 will be illustrated as follows with reference to
For assembling the transformer 3, the second secondary side plate 338 of the second bobbin piece 33 and the secondary winding coil 35 wound on the second bobbin piece 33 are firstly embedded into the receptacle of the covering element 322 of the first bobbin piece 32. Accordingly, the primary winding coil 34 and the secondary winding coil 35 are separated from each other by the covering element 322. Next, the fourth engaging element 322c of the covering element 322 is engaged with the third engaging element 331f of the secondary base 331 of the second bobbin piece 33, the first bobbin piece 32 and the second bobbin piece 33 are combined together. Afterwards, the first leg 311a of the first magnetic part 311 and the first leg 312a of the second magnetic part 312 are embedded into the first channel 323 of the first bobbin piece 32 and the second channel 335 of the second bobbin piece 33, respectively. The assembled structure of the transformer 3 is shown in
In the above embodiment, the resulting structure of the transformer 3 is substantially a rectangular solid. The appearance of the overall transformer may be varied according to the utility space and the performance requirement.
From the above description, since the second terminal of the secondary winding coil is soldered onto the wire-arranging part of the second pin without returning to the first pin side, the problem of causing high-voltage spark or short circuit is avoided. As a consequence, the possibility of causing breakdown of the transformer is minimized. Moreover, the first bobbin piece includes a covering element for receiving parts of the second bobbin piece therein, and the covering element has an insulating partition for isolating the magnetic core from the primary winding coil and the secondary winding coil to further control the leakage inductance and reduce the integral length of the transformer. Besides, the provision of the L-shaped pin can reduce the integral height of the transformer.
While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.
Number | Date | Country | Kind |
---|---|---|---|
96148326 A | Dec 2007 | TW | national |
97118542 A | May 2008 | TW | national |
This application is a continuation-in-part of U.S. patent application Ser. No. 12/036,921 filed on Feb. 25, 2008, and entitled “STRUCTURE OF TRANSFORMER”. The entire disclosures of the above application are all incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
7218199 | Chang | May 2007 | B1 |
7221252 | Chang | May 2007 | B1 |
7301430 | Chan et al. | Nov 2007 | B1 |
7345565 | Yang et al. | Mar 2008 | B2 |
7446641 | Fushimi | Nov 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20090153280 A1 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12036921 | Feb 2008 | US |
Child | 12273273 | US |