This application claims priority from Korean Patent Application No. 10-2008-0052321, filed on Jun. 3, 2008 in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference in its entirety.
1. Field of the Invention
The present general inventive concept relates to a structure to guide a print medium supplied from a medium feeding unit and an image forming apparatus employing the same, and more particularly to a structure to guide a print medium and an image forming apparatus employing the same, which can reduce a defect in picture quality of an image transferred to a bottom part of the print medium.
2. Description of the Related Art
In general, an electrophotographic image forming apparatus forms an image through electric charge, exposure, development or the like processes. A transfer unit directly or indirectly transfers an image from a photosensitive medium to a print medium.
For example, the indirect-type transfer unit includes a transfer belt to primarily receive a visible image formed on the photosensitive medium, and a transfer roller to transfer the image from the transfer belt to the print medium supplied through a medium feeding path. In an image forming apparatus using the indirect-type transfer unit, the print medium is taken into a transfer nip in a direction different from a taken-in direction of an image formed on the transfer belt since a layout space where elements are arranged is limited, or for other similar reasons.
Here, because the taken-in direction of the print medium affects picture quality, the taken-in direction of the print medium to the transfer nip is changed from that of when the print medium is supplied from a medium feeding unit, thereby making the taken-in angle of the print medium within a predetermined range.
However, when a bottom part of the print medium is free from a guide member for guiding the taken-in direction of the print medium, the bottom part of the print medium is vibrated or shaken due to change the direction of the print medium. Thus, an image transferred to the bottom part of the print medium may be dislocated or blurred.
The present general inventive concept can provide a structure to guide a print medium and an image forming apparatus employing the same, which can reduce a defect in picture quality of an image due to a shake given in a bottom part of the print medium and prevent the print medium from being jammed, with a minimum change in a layout of components for affecting a taken-in direction of the print medium.
Additional aspects and utilities of the present general inventive concept will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the general inventive concept.
Embodiments of the present general inventive concept can be achieved by providing a structure to guide a take-in direction of a print medium to be taken in a carrying part where the print medium is carried, the structure including: a guide unit which changes a travel direction of the print medium from a feeding direction, in which the print medium is supplied from a medium feeding unit, to the take-in direction of the print medium; and a vibration damper which relieves a bottom part of the print medium from shaking and vibrating when the print medium is free from the guide unit.
The guide unit may be arranged on a medium feeding path from the medium feeding unit, and includes a guide plate changing the travel direction of the print medium into the take-in direction.
The guide unit may further include a guide film to keep the travel direction of the print medium changed by the guide plate in the take-in direction.
The vibration damper may be formed integrally with or coupled to an end part of the guide plate, and includes a regulation plate with a regulation surface bent at least once with respect to a guide surface of the guide plate.
The vibration damper may be coupled to an end part of the guide plate, and includes a regulation member with a regulation surface disposed on a different plane from a guide surface of the guide plate.
The regulation member and the guide plate may be different in material from each other.
The guide unit may include a guide block having a predetermined thickness and a guide surface with which the print medium is in contact, and the vibration damper may include a regulation surface forming a predetermined gradient at an end part of the guide block.
The vibration damper may include a regulation plate spaced apart from the guide unit at a certain position not to obstruct travel of the print medium in the travel direction, and contacting a bottom part of the print medium when the print medium is free from the guide unit.
The regulation plate may be movably installed at the certain position, and the vibration damper includes a driving unit to drive the regulation plate.
Embodiments of the present general inventive concept can also be achieved by providing an image forming apparatus including: a medium feeding unit which supplies a print medium; an image forming unit which forms an image; a transfer unit which transfers the image from the image forming unit to the print medium; a fusing unit which fuses the image transferred to the print medium; a medium take-out unit which takes out the print medium; and a structure for guiding a take-in direction of a print medium to be taken in a carrying part where the print medium is carried, the structure including: a guide unit which changes a travel direction of the print medium from a feeding direction, in which the print medium is supplied from a medium feeding unit, to the take-in direction of the print medium, and a vibration damper which relieves a bottom part of the print medium from shaking and vibrating when the print medium is free from the guide unit.
The structure to guide the print medium may be provided in at least one of carrying paths around the medium feeding unit, the transfer unit, the fusing unit and the medium take-out unit.
The transfer unit may include: a driving roller; a transfer belt to be rotated by the driving roller; and a transfer roller opposite to the driving roller with the transfer belt interposed therebetween and forming a transfer nip.
The guide unit may be arranged on a medium feeding path from the medium feeding unit, and includes a guide plate changing the travel direction of the print medium into the take-in direction.
The guide unit may further include a guide film to keep the travel direction of the print medium changed by the guide plate in the take-in direction.
The vibration damper may be formed integrally with or coupled to an end part of the guide plate, and includes a regulation plate with a regulation surface bent at least once with respect to a guide surface of the guide plate.
The vibration damper may be coupled to the end part of the guide plate, and includes a regulation member with a regulation surface disposed on a different plane from a guide surface of the guide plate.
The guide unit may include a guide block having a predetermined thickness and a guide surface with which the print medium is in contact, and the vibration damper may include a regulation surface forming a predetermined gradient at an end part of the guide block.
The vibration damper may include a regulation plate spaced apart from the guide unit at a certain position not to obstruct travel of the print medium in the travel direction, and contacting a bottom part of the print medium when the print medium is free from the guide unit.
The regulation plate may be movably installed at the certain position, and the vibration damper may include a driving unit to drive the regulation plate.
Embodiments of the present general inventive concept can also be achieved by providing a guide unit to guide a printing medium from a first traveling direction to a take-in direction within an image forming apparatus, the guide unit including a guide member including a guide surface to guide the printing medium along the take-in direction once the printing medium reaches the guide member while traveling along the first direction, and a vibration damper to prevent the printing medium from vibrating when a trailing end of the printing medium extends past the guide member while continuing to travel in the take-in direction.
The vibration damper may be disposed at a position downstream of the guide surface such that the trailing end of the printing medium contacts the vibration damper immediately after moving past the guide member.
The vibration damper can extend from and at an angle with respect to the guide. Surface.
The vibration damper can extend from the guide surface and includes two bent portions to guide the trailing end of the printing medium.
The guide member and the vibration damper can be formed as one unit such that the vibration damper extends from an end thereof at an angle with respect to the guide surface.
The vibration damper can extend along a side of the guide member opposite to a side in which the printing medium extends and to a longer length than the guide member such that the trailing end of the printing medium swings into contact with the vibration member after moving past the guide surface.
The vibration damper includes a plate which is separate from the guide member and includes a driving unit to move the vibration member to different angles with respect to the guide surface.
The above and/or other aspects and utilities of the present general inventive concept will become apparent and more readily appreciated from the following description of the exemplary embodiments, taken in conjunction with the accompanying drawings, in which:
Reference will now be made in detail to the embodiments of the present general inventive concept, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below in order to explain the present general inventive concept by referring to the figures.
The image forming unit 20 includes a photosensitive medium 21; an electric-charger 23 to charge the print medium 21 with a predetermined electric potential; an exposure unit 25 to form a latent image on the print medium 21; and a developing unit 27 to develop a visible image from the latent image formed on the print medium 21. As shown in
The transfer unit 30 includes a driving roller 31, a transfer belt 33 to be rotated by the driving roller 31, and a transfer roller 35 opposite to the driving roller 31 with the transfer belt 33 interposed therebetween.
Thus, the visible images formed on the plurality of photosensitive mediums 21 are primarily transferred to the transfer belt 33, and then transferred from the transfer belt 33 to the print medium M being taken to a transfer nip N (
Meanwhile, the image forming unit 20 and the medium feeding unit 10 are arranged in different places, so that a take-in direction P2 of the print medium M toward the transfer nip N is different from a take-in direction L1 of the image formed in the transfer belt 33 (refer to
If the take-in direction P2 is set up not to satisfy the condition of θ1<θ2, a steep electric-field for the transfer may be formed in the print medium M to be taken in the transfer nip N, thereby deteriorating the picture quality. Further, the take-in direction P2 not satisfying the condition of θ1<θ2 may affect operations of a static eraser 39 that eliminates static from the rear side of the print medium M after the transfer, so that a printed image can have a defective pattern such as, for example, a bird's foot, thereby deteriorating the picture quality.
To make the take-in direction P2 satisfy the condition of θ1<θ2, the image forming apparatus according to an embodiment of the present general inventive concept employs a print-medium guiding structure 60 as shown in
Referring to
The guide unit 61 changes the travel direction of the print medium M from the feeding direction P1 where the print medium M is supplied from the medium feeding unit 10 to the take-in direction P2 of the print medium M. To this end, the guide unit 61 includes a guide plate 63 to change the travel direction of the print medium M into the take-in direction, and a guide film 65 to make the print medium M changed in the travel direction by the guide plate 63 remain in the take-in direction.
The guide plate 63 is arranged on a medium feeding path and has one end placed at a transfer position, i.e., separated from the transfer nip N, which includes a guide surface 63a inclined with regard to the medium feeding path. The guide surface 63a primarily changes the travel direction of the supplied print medium M into the take-in direction. The guide film 65 has one end placed between the guide plate 63 and the transfer nip N, and contacts a rear portion (or trailing end) of a print surface of the print medium M. The guide film 65 guides the print medium M to move toward the transfer nip N while remaining in the take-in direction changed by the guide plate 63.
In this case, such a direction change of the print medium M causes a bottom part M1 of the print medium M to vibrate or shake when the print medium M, being taken in the transfer nip N, becomes free from the guide plate 63, as shown in
To solve this problem, it may be considered to just extend the end of the guide plate 63, but in this case the guide plate 63 has to be rearranged because the extension of the guide plate 63 affects the take-in direction of the print medium M. Further, when the guide plate 63 is rearranged toward the transfer belt 33, an extended part of the guide plate 63 may scratch the surface of the transfer belt 33 since it occupies a relatively large part of a limited space. Also, other adverse effects may be expected, and thus it is difficult to apply this case.
Alternatively, it may be considered that not only the end of the guide plate 63 is extended but also the gradient of the guide surface 63a is changed. In this case, the take-in angle of the print medium M is changed so that the foregoing condition of θ1<θ2 can not be satisfied. At this time, the picture quality may be deteriorated since the steep electric-field for the transfer is formed in the print medium M at the transfer nip N and the static is poorly erased in printing on both sides of the print medium M. Thus, it is difficult to apply this case.
Considering the above described case, the print-medium guiding structure 60 according to an embodiment of the present general inventive concept includes a vibration damper 70 in addition to the guide unit 61. The vibration damper 70 relieves the bottom part of the print medium M from shaking and vibrating when the print medium M is free from the guide unit 61.
Referring to
Thus, the regulation plate 71 prevents the bottom part M1 of the print medium M from shaking and vibrating due to the hardness of the print medium M, since the bottom part M1 contacts the regulation surface 71a, 73a at the time when the bottom part M1 of the print medium M becomes free from the end part of the guide surface 63a. Meanwhile, when the bottom part M1 of the print medium M is placed on the guide surface 63a, the regulation plate 71 does not affect the movement of the print medium M so that the take-in direction formed by the guide plate 63 can be kept constant.
Referring to
Thus, the regulation member 75 prevents the bottom part M1 of the print medium M from shaking and vibrating due to the hardness of the print medium M, since the bottom part M1 is in contact with the regulation surface 75a of the regulation member 75 at the time when the bottom part M1 of the print medium M becomes free from contact with the end part of the guide surface 63a.
Referring to
As shown in
Here, the regulation surfaces 171a and 171b do not affect the travel of the print medium M when the bottom part M1 of the print medium M is placed on the guide surface 163a. On the other hand, when the print medium M becomes free from the guide surface 163a, the bottom part M1 of the print medium M becomes in contact with the regulation surface 171a or 171b, thereby preventing the print medium M from shaking or vibrating, as would occur if the bottom part M1 of the print medium M swings freely after becoming free from the guide surface 163a while being taken into the transfer nip or other take-in directions (take-in direction refers to the printing medium being take into a nip between two rollers, a belt and roller combination, or other type of nip which receives the printing medium therein).
Referring to
Referring to
The regulation plate 273 is provided at a position where it does not obstruct the travel of the print medium M in the traveling direction, and is further movably installed at this position. The driving unit 275 drives the regulation plate 273 to reciprocate or rotate. Thus, the driving unit 275 drives the regulation plate 273 to thereby actively regulate the shaking and vibrating degree of the bottom part M1 of the print medium M.
As described above, the structure to guide the print medium additionally includes the vibration damper with a minimum change in the structure of the guide unit and the layout of components for affecting a taken-in direction of the print medium, thereby reducing a defect in the picture quality of an image to be transferred to the print medium, and particularly to the bottom part thereof.
In comparison between
Accordingly, an image forming apparatus employing the foregoing structures can make the take-in angle of the print medium be within an angle to keep the picture quality, thereby preventing a defective pattern such as a bird's foot pattern, a water-drop pattern, etc. Further, the image forming apparatus prevents the bottom part of the print medium from shaking and vibrating, so that the problem of dislocation or blur caused in an image transferred while shaking and vibrating the bottom part of the print medium can be prevented, thereby enhancing the picture quality.
In the foregoing embodiments, the print-medium guiding structure guides the take-in direction of the print medium toward the transfer position where an image is transferred to the print medium, but is not limited to such a layout.
The print-medium guiding structure may be provided to guide the take-in direction of the print medium to be taken in a carrying part that carries the print medium. In other words, an alternative embodiment of the present general inventive concept may be applied to a part where an angle of carrying the print medium is changed quickly. For example, the carrying part may include all parts such as a feeding roller 11 (refer to
For example, when the print-medium guiding structure according to an embodiment of the present general inventive concept is installed around the feeding roller 11, the bottom part M1 of the print medium M is prevented from shaking even though a carrying angle of the print medium M between the medium feeding unit 10 and the image forming unit 20 is largely changed. Thus, a defective image transfer due to the shaking of the print medium M can be prevented.
In the case that the print-medium guiding structure is provided in a print-medium carrying path around the fusing unit 40, the print-medium guiding structure prevents the bottom part M1 of the print medium M from shaking even though the carrying angle is largely changed around the fusing unit 40. Accordingly, the vibration due to the shaking of the bottom part M1 of the print medium M is prevented at a point of time when the bottom part M1 of the print medium M passes by the part where the carrying angle is largely changed, thereby minimizing or preventing scattering of a non-fused toner and preventing a fusing defect. Also, the print medium heated at a high temperature during a fusing operation is prevented from being easily curled due to the shaking of the bottom part thereof, and thus is prevented from being jammed due to a curling of the print medium.
Further, the print-medium guiding structure may be applied to the medium take-out unit 50, so that the print medium can be prevented from a stacking defect that appears in the print medium taken-out with the shaking.
Further, the print-medium guiding structure according to an embodiment of the present general inventive concept may be applied to not only the foregoing layout but also all parts where the carrying angle of the print medium is rapidly changed.
As described above, the structure to guide the print medium may additionally include the vibration damper with a minimum change in the structure of the guide unit and the layout of components for affecting the taken-in direction of the print medium, thereby reducing a defect in the picture quality of an image to be transferred to the bottom part of the print medium. Further, the print-medium guiding structure is installed in a part where the carrying path for the print medium is rapidly changed, thereby preventing the print medium from the fusing defect, the jam defect and the staking defect which are based on the shaking of the bottom part of the print medium.
Further, the image forming apparatus employing the foregoing structure can take the print medium in the transfer nip at an angle to keep the picture quality, thereby preventing a defective pattern such as a bird's foot pattern, a water-drop pattern, etc. Also, the image forming apparatus prevents the bottom part of the print medium from shaking and vibrating, so that problems of dislocation or blur caused in an image transferred to the shaking and vibrating bottom part of the print medium can be improved, thereby enhancing the picture quality.
As described above, the present general inventive concept provides a structure to guide a print medium and an image forming apparatus employing the same, which can reduce a defect in picture quality of an image due to a shake given in a bottom part of the print medium and prevent the print medium from being jammed, with a minimum change in a layout of components for affecting a taken-in direction of the print medium.
Although a few exemplary embodiments of the present general inventive concept have been shown and described, it will be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the general inventive concept, the scope of which is defined in the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2008-0052321 | Jun 2008 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
6813471 | Sawai et al. | Nov 2004 | B2 |
8019264 | Murayama | Sep 2011 | B2 |
20070201912 | Montfort et al. | Aug 2007 | A1 |
20080003022 | Sakashita et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
06003974 | Jan 1994 | JP |
2004012851 | Jan 2004 | JP |
2005298181 | Oct 2005 | JP |
Entry |
---|
Korean Office Action issued Apr. 16, 2011 in KR Application No. 10-2008-0052321. |
Number | Date | Country | |
---|---|---|---|
20090297241 A1 | Dec 2009 | US |