Structure

Information

  • Patent Grant
  • 10308345
  • Patent Number
    10,308,345
  • Date Filed
    Tuesday, July 7, 2015
    9 years ago
  • Date Issued
    Tuesday, June 4, 2019
    5 years ago
Abstract
The invention relates to a structure having a panel, a stringer and a rib. The stringer has a stringer flange that is joined to an inner surface of the panel and a stringer web that extends away from the stringer flange. The rib has a rib web and a rib foot. The rib foot has a rib foot flange that is joined to the stringer web, first and second rib foot base parts that are joined to the inner surface of the panel or to the stringer flange and a rib foot web that is joined to the rib web. The rib foot is formed as a single folded piece such that the rib foot flange is connected to the rib foot web by a first folded corner, the first rib foot base part is connected to the rib foot flange by a second folded corner and the second rib foot base part is connected to the rib foot web by a third folded corner.
Description
RELATED APPLICATIONS

The present application claims priority from Great Britain Application Number 1412161.0, filed Jul. 8, 2014, the disclosure of which is hereby incorporated by reference herein in its entirety.


FIELD OF THE INVENTION

The present invention relates to a structure. More particularly, although not exclusively, the present invention relates to an aircraft structure, for example a wing, horizontal stabiliser or vertical stabiliser.


BACKGROUND OF THE INVENTION

Traditional aircraft wings have a wing box formed by upper and lower aerodynamic covers, front and rear spars, and a series of transverse ribs spaced apart along the span-wise length of the wing box. Each rib is bolted to the upper and lower covers and reacts fuel pressure loads between them.


Assembly of such a wing box can be very time consuming and complicated due to the need to manufacture, drill, shim, and then bolt many components together. A traditional wing box is also very heavy and does not always make the most efficient use of modern aerospace materials such as composites.


It is desirable to design an aircraft wing box or similar structure which has a reduced part count, simplified manufacturing process and improved mechanical performance.


SUMMARY OF THE INVENTION

A first aspect of the invention provides a structure having a panel, a stringer and a rib, wherein the stringer includes a stringer flange joined to the panel and a stringer web extending away from the stringer flange; and the rib includes a rib web and a rib foot, the rib foot having a rib foot flange joined to the stringer web, first and second rib foot base parts joined to the panel or to the stringer flange, and a rib foot web joined to the rib web; wherein the rib foot flange is connected to the rib foot web by a first corner including at least one layer which runs continuously from the rib foot flange into the rib foot web via the first corner, the first rib foot base part is connected to the rib foot flange by a second corner including at least one layer which runs continuously from the first rib foot base part into the rib foot flange via the second corner, and the second rib foot base part is connected to the rib foot web by a third corner including at least one layer which runs continuously from the second rib foot base part into the rib foot web via the third corner.


The continuous construction of the rib foot enables it to be formed as a single part. This enables the number of components in the structure to be reduced and provides potential for the overall weight of the complete structure to be reduced.


The connection between the rib foot flange and the stringer web provides a robust load path. Typically the rib foot flange is joined to the stringer web by a joint which can transmit load in shear from the stringer web to the rib foot flange.


The construction of the rib foot also enables multiple flange angles to be accommodated or compensated for, which reduces the time and cost associated with controlling joints for tolerance and fit requirements.


Typically the rib foot flange, the first and second rib foot base parts and the rib foot web are formed integrally. By way of example the rib foot flange, the rib foot web and the rib foot base parts may be formed as a single piece which is then bent or folded to form the first, second and third corners. Alternatively the rib foot flange, the rib foot web and the rib foot base parts may be formed integrally by laying them up on a mould tool with an automated tape laying machine, with the first, second and third corners being formed as the tape is laid onto the mould tool. Alternatively the rib foot flange, the rib foot web and the rib foot base parts may be formed integrally by injection moulding or casting.


Regardless of the method of formation of the rib foot, the layers which run round the corners provide efficient load transfer between the adjacent parts of the rib foot which are connected by the corner.


Preferably the rib foot comprises at least one layer which runs round the first, second and third corners.


The structure may only have a single panel. Alternatively, the structure may further comprise a second panel opposite to the first panel. The rib web is arranged to transmit load (such as fuel pressure load) between the first panel and the second panel. Typically the rib web is joined to the second panel, either directly or via additional rib feet.


The structure may have only one stringer, but more typically it has a plurality of stringers joined to the panel with each stringer joined to the rib web by a respective rib foot.


The structure may have only one rib, or it may have more than one rib with each rib joined to the stringer by a respective rib foot.


The panel is typically elongate with a width and a length.


The stringer is typically elongate with a width and a length. The function of the stringer is to stiffen the panel by resisting bending loads along the length of the stringer.


The lengths of the panel and the stringer are typically approximately parallel.


The rib typically extends across the width of the panel.


The stringer may have a variety of cross-sectional shapes, including a T-shape, a Z-shape or a top-hat shape.


The stringer web may be a blade which extends away from the stringer to an elongate edge.


The rib may form a liquid-tight seal with the panel. Alternatively, the rib may allow liquid to flow across it, for example a gap may be provided between the rib web and the panel, the gap being arranged to permit liquid to flow through the gap.


Typically the rib web has an edge with a recess or cut-out through which the stringer web passes. In the case of a sealed rib then the stringer web may form a liquid tight seal with the rib web. Alternatively a gap is provided between the rib web and the stringer web, the gap being arranged to permit liquid to flow through the gap.


The first and/or second rib foot base parts may be joined to both the panel and the stringer flange. Alternatively, the first and/or second rib foot base part may be joined only to the stringer flange (optionally via a protruding grow-out region of the stringer flange).


The second and third folded corners may form an angle of approximately 90 degrees.


The first and/or second rib foot base part may be triangular in shape.


The first and second rib foot base parts may abut each other, or may be joined to one another by co-curing, by adhesive or by any other suitable means. Alternatively, the first and second rib foot base parts may be separate with a gap between them.


The rib foot may have a second rib foot flange joined to the stringer web, the first rib foot flange and the second rib foot flange extending on opposite sides of the rib foot web (forming a T section).


Additionally or alternatively, the rib foot may have third and fourth rib foot base parts joined to the inner surface of the panel and/or to the stringer flange, wherein the first and second rib foot base parts are positioned on a first side of the rib foot web and the third and fourth rib foot base parts are positioned on a second side of the rib foot web opposite the first side.


Optionally the rib foot comprises a pair of back-to-back parts, each part having a rib foot flange joined to the stringer web, first and second rib foot base parts joined to the panel or to the stringer flange, and a rib foot web joined to the rib web; wherein the rib foot flange is connected to the rib foot web by a first corner including at least one layer which runs continuously from the rib foot flange into the rib foot web via the first corner, the first rib foot base part is connected to the rib foot flange by a second corner including at least one layer which runs continuously from the first rib foot base part into the rib foot flange via the second corner, and the second rib foot base part is connected to the rib foot web by a third corner including at least one layer which runs continuously from the second rib foot base part into the rib foot web via the third corner. The rib foot webs of the pair of back-to-back parts are joined to each other and joined to the rib web. Alternatively, instead of having a pair of back-to-back rib foot parts which are joined to each other and both positioned on the same side of the rib web, the pair of rib feet may be arranged on opposite sides of the rib web (with the rib web sandwiched between them)—with each rib foot web contacting, and joined to, a respective face of the rib web.


The rib foot may be formed from a non-composite material (such as a metal) or a composite material including reinforcement elements embedded in a matrix. The reinforcement elements may, for example, comprise carbon fibre and/or glass fibre and/or Kevlar and/or metallic reinforcement in a polymer matrix. The panel and/or stringer and/or the rib web may also comprise a composite material of the same or different construction to the rib foot.


The rib foot may comprise a single layer of non-laminar material (such as a single piece of cast metal) which runs continuously round the first, second and third corners. Alternatively the rib foot may comprise a laminar material with a plurality of layers. In the case of a laminar material then each folded corner typically comprises a plurality of layers which run continuously round the corner.


The rib foot may be formed by arranging a stack of dry reinforcement plies together and subsequently adding matrix material to the stack before curing to form a consolidated component or alternatively by arranging a stack of pre-preg plies comprising reinforcement material before curing to form a consolidated component. Additionally or alternatively, the composite material may comprise randomly distributed reinforcement. For example, the rib foot may be formed as an injection moulded component with chopped strands or nano-tubes or particles of reinforcement material distributed through at least a portion of the composite material.


Preferably the rib foot is formed from a composite material comprising a plurality of fibres, wherein some of the fibres run continuously from the rib foot flange into the rib foot web via the first corner, some of the fibres run continuously from the first rib foot base part into the rib foot flange via the second corner, and some of the fibres run continuously from the second rib foot base part into the rib foot web via the third corner.


The rib foot may be joined to the rib web and/or to the panel and/or to the stringer flange and/or to the stringer web by a bonded joint—for instance: a co-cured joint, a co-bonded joint or a secondary bonded joint. This removes or reduces the need for drilling and/or bolting through the rib foot, the stringer and/or the panel, which increases the strain resistance of the structure and reduces the component weight. The reduced number of external fasteners also provides protection against lightning strike and improved fuel tank sealing if the structure is part of a fuel tank.


Additionally or alternatively, the rib foot may be joined to the panel and/or to the rib web and/or to the stringer flange and/or to the stringer web by one or more mechanical fasteners.


The structure may be adapted to carry fuel. In this case, the panel typically forms part of a sealed wall of a fuel tank which is arranged such that, when the fuel tank contains fuel, fuel pressure load acts on the panel.


The rib web may form a sealed fuel tank wall (that is a boundary wall adapted to retain fuel on one side of the wall with substantially no movement of fuel through the wall to an opposite side of the wall) or alternatively it may be an internal baffle (that is an internal element within a fuel tank adapted to allow fuel to pass from one side to the other via one or more orifices or holes).


The structure is typically part of an aerodynamic aircraft structure such as a wing box, a horizontal stabiliser or a vertical stabiliser. In this case the panel is typically a skin or cover panel with an outer aerodynamic surface over which air flows during flight of the aircraft, and an inner surface to which the stringer flange is joined. The stringer stiffens the panel and carries aerodynamic loads during flight of the aircraft.


A second aspect of the invention provides a method of forming a structure, the method including the steps: (a) providing a panel, a stringer having a stringer flange and a stringer web, and a rib having a rib web; (b) forming a rib foot having a rib foot flange, a rib foot web and first and second rib foot base parts so that the rib foot flange is connected to the rib foot web by a first corner including at least one layer which runs continuously from the rib foot flange into the rib foot web via the first corner, the first rib foot base part is connected to the rib foot flange by a second corner including at least one layer which runs continuously from the first rib foot base part into the rib foot flange via the second corner, and the second rib foot base part is connected to the rib foot web by a third corner including at least one layer which runs continuously from the second rib foot base part into the rib foot web via the third corner; (c) joining the stringer flange to the panel; (d) joining the rib foot flange to the stringer web; (e) joining the first and second rib foot base parts to the inner surface of the panel or to the stringer flange; and (f) joining the rib foot web to the rib web.


In step (c) the stringer flange may be joined to the panel by co-curing or co-bonding and/or in step (d) the rib foot flange may be joined to the stringer web by co-curing or co-bonding and/or in step (e) the first and second rib foot base parts may be joined to the panel or to the stringer flange by co-curing or co-bonding and/or in step (f) the rib foot web may be joined to the rib web by co-curing or co-bonding. Additionally or alternatively, the rib foot web may be joined to the rib web by one or more mechanical fasteners.


Preferably step (b) comprises forming the rib foot flange, the rib foot web and the first and second rib foot base parts as a single piece, then bending or folding the single piece to form the first, second and third corners.


The method of forming the structure may be automated, thereby enabling rapid manufacture of the structure and increased production rates.





BRIEF DESCRIPTION OF THE DRAWINGS

An embodiment of the invention will now be described with reference to the accompanying drawings, in which:



FIG. 1 is a plan view of an aircraft;



FIG. 2a is a schematic plan view of a starboard wing box and centre wing box;



FIG. 2b is a schematic chord-wise sectional view of the starboard wing box;



FIG. 3a is an isometric view of a structure according to the invention from the inboard side;



FIG. 3b is an isometric view of the structure of FIG. 3a from the outboard side;



FIG. 4 is an isometric view of the structure of FIGS. 3a and 3b with the rib removed;



FIG. 5 is a left view of the structure of FIGS. 3a and 3b;



FIG. 6 is front view of the structure of FIGS. 3a, 3b and 5;



FIG. 7 is an isometric view of a pair of rib feet;



FIG. 8 is a top view of the pair of rib feet of FIG. 8; and



FIG. 9 is a plan view of a blank for forming a rib foot.





DETAILED DESCRIPTION OF EMBODIMENT(S)


FIG. 1 shows an aircraft 1 with port and starboard wings 2, 3. Each wing has a cantilevered structure with a length extending in a spanwise direction from a root to a tip, the root being joined to an aircraft fuselage 4. The wings 2, 3 are similar in construction so only the starboard wing 3 will be described in detail with reference to FIGS. 2a and 2b.


The main structural element of the wing is a wing box formed by upper and lower covers 4, 5 and front and rear spars 6, 7, as shown in FIGS. 2a and 2b. The covers 4, 5 and spars 6, 7 are each Carbon Fibre Reinforced Polymer (CFRP) laminate components. Each cover is a panel with an aerodynamic surface (the upper surface of the upper cover 4 and the lower surface of the lower cover 5) over which air flows during flight of the aircraft. Each cover also has an inner surface carrying a series of stringers 8 extending in the spanwise direction. Each cover carries a large number of elongate stringers 8, only five of which are shown in FIGS. 2a and 2b for the purposes of clarity. Each stringer 8 is joined to one cover but not the other, and runs in a span-wise direction approximately parallel to a length of the cover to which it is attached.


The wing box also has a plurality of ribs which run in a chord-wise direction, approximately transverse to the stringers and across the width of the covers, each rib being joined to the covers 4, 5 and the spars 6, 7. The ribs include an innermost inboard rib 10 located at the root of the wing box, and a number of further ribs spaced apart from the innermost rib along the length of the wing box. The wing box is divided into two fuel tanks: an inboard fuel tank bounded by the inboard rib 10 and mid span rib 11, the covers 4, 5 and the spars 6, 7; and an outboard fuel tank bounded by the mid span rib 11 an outboard rib 12 at the tip of the wing box, the covers 4, 5 and the spars 6, 7.


The inboard rib 10 is an attachment rib which forms the root of the wing box and is joined to a centre wing box 20 within the body of the fuselage 4. Baffle ribs 13 (shown in dashed lines) form internal baffles within the fuel tanks which divide the fuel tanks into bays. The ribs 10, 11, 12 are sealed to prevent the flow of fuel out of the two fuel tanks, but the baffle ribs 13 are not sealed so that fuel can flow across them between the bays. As can be seen in FIG. 2a, the stringers 8 stop short of the inboard rib 10 and the outboard rib 12, but pass through the baffle ribs 13 and the mid span rib 11.



FIGS. 3a to 6 show a structure forming part of the interface between one of the baffle ribs 13 and the lower cover 5, including three of the stringers 8. The stringers 8 are CFRP laminate components. Each stringer 8 has a T-shaped cross-section with a pair of flanges 8a co-cured to the cover 5, and a web or blade 8b extending upwardly from the flanges 8a away from the cover 5 to a free upper edge. Each flange 8a has a tapering lateral edge 8c and a protruding grow-out region 8d (FIG. 4). The stringers 8 have a “roll-formed” structure in which the flanges 8a and web 8b are formed from a single folded sheet.


The baffle rib 13 comprises a planar metallic web 14 connected to the lower cover by a plurality of CFRP laminate rib feet 30.


As shown in FIG. 7, each rib foot 30 has a generally horizontal first rib foot base part 31a, a generally horizontal second rib foot base part 31b, an upstanding rib foot flange 32; and an upstanding rib foot web 33. As shown in FIG. 7, the rib foot flange 32 is connected to the rib foot web 33 by a first folded corner 34, the first rib foot base part 31a is connected to the rib foot flange 32 by a second folded corner 35 and the second rib foot base part 31b is connected to the rib foot web 33 by a third folded corner 36. Edge 37a of the first rib foot base part 31a abuts edge 37b of the second rib foot base part 31b to form a mitre joint.


The rib foot flange 32 is co-cured to the stringer flange web 8b, and the rib foot base parts 31a, 31b are co-cured to the protruding grow-out region 8d of the stringer flange 8a. The co-cured joint (without bolts) with the rib foot base parts 31a, 31b mean that no drilled bolt holes need to be provided in the cover 5 or the stringer flange 8a. This enables the thickness (and hence weight) of the cover 5 to be reduced compared with a bolted arrangement. The lack of external bolts in the cover 5 also provides protection against lightning strike and improved fuel tank sealing.


Each rib foot web 33 is joined to the rib web 14 by a bolt 21 (shown in FIGS. 3a and 3b).


The rib web 14 has planar inboard and outboard faces 14a, 14b on opposite sides of the web which meet at a lower edge 22 shown in FIGS. 3a and 3b, and an upper edge (not shown in FIGS. 3a and 3b). The inboard face 14a of the rib web is visible in FIG. 3a and the outboard face 14b of the rib web is visible in FIG. 3b. The lower edge 22 is separated from the inner surface of the cover 5 by a gap 22a. Fuel can flow across the rib web 14 through this gap 22a. The lower edge of the rib web 14 is also formed with recesses or cut-outs through which the stringer webs 8b pass. Fuel can also flow through the arched upper part 26 of each cut-out. Holes (not shown) may also be provided in the rib web 14 to minimise its weight and provide further routes for fuel to flow.


Only the lower part of the rib web 14 is shown in FIGS. 3a and 3b. The upper edge of the rib web may be connected to the upper cover 4 by rib feet 30 in a similar fashion, or it may be connected to the upper cover 4 by more conventional rib feet.


The rib web 14 has fore and aft edges (visible in FIG. 2a) which are secured to the spars 6, 7.


As shown in FIG. 4, the rib feet 30 are arranged in pairs on a stringer such that two rib feet 30 are positioned back-to-back with the rib foot web 33 of one rib foot 30 co-cured to the rib foot web 33 of the other rib foot 30. A pair of back-to-back rib feet 30 is shown in more detail in FIGS. 7 and 8.


As shown in FIGS. 3a and 3b, the back-to-back pair of rib foot webs 33 is joined to the outboard face 14b of the rib web adjacent to the lower edge 22. The inboard one of the pair of rib feet contacts the outboard face of the web. The rib foot base part 31b and the rib foot flange 32 of that inboard rib foot cross over the plane of the rib and then extend in an inboard direction away from the inboard face 14a of the rib web as can be seen in FIG. 3a. The rib foot base part 31b passes through the gap 22a and the rib foot flange 32 passes through the through the recess or cut-out (along with the stringer web 8b to which it is attached).


In an alternative embodiment (not shown) the back-to-back pair of rib foot webs 33 is joined to the inboard face 14a of the rib web (rather than the outboard face 14b) adjacent to the lower edge 22. In this case the outboard one of the pair of rib feet contacts the inboard face of the web.


In both of these embodiments the rib foot web 33 and the rib web 14 have opposed mating faces which are joined at a web joint interface which lies in a plane (i.e. the plane of the inboard face 14a or the plane of the outboard face 14b depending on which face contacts the rib foot). The flange and base parts of one of the pair of rib feet is positioned on one side of this plane, and the flange and base parts of the other one of the pair of rib feet is positioned on the other side of the plane. This provides a more balanced arrangement than if only a single rib foot was used rather than a back-to-back pair.


Each stringer 8 is joined to the rib web by two pairs of rib feet 30—one back-to-back pair on each side of the stringer web 8b which are mirror images of each other, as shown in FIG. 4.


Each rib foot 30 is formed from a blank comprising a flat stack of pre-preg composite plies in the shape shown in FIG. 9. Each ply in the stack consists of unidirectional carbon fibres impregnated with an epoxy resin matrix.


The rib foot base part 31a is bent or folded away from the rib foot flange 32 along a fold line 35a to form the corner 35, and the rib foot base part 31b is bent or folded away from the rib foot web 33 along a fold line 36a to form the corner 36. The rib foot flange 32 is bent or folded away from the rib foot web 33 at a fold line 34a to form the corner 34.


The carbon fibres in each ply are oriented at either 0 degrees, +/−45 degrees or 90 degrees. FIG. 9 shows by way of example four 0 degree fibres A1, A2, two 90 degree fibres B, two +45 degree fibres C, and two −45 degree fibres D. Some of the 0 degree fibres (including the fibres A1) run continuously from the first rib foot base part 31a into the rib foot flange 32 via the fold line 35a. Some of the 0 degree fibres (including the fibres A2) run continuously from the second rib foot base part 31b into the rib foot web 33 via the fold line 36a. Some of the 90 degree fibres (including the fibres B) run continuously from the rib foot flange 32 into the rib foot web 33 via fold line 34a. Some of the +45 degree fibres (including the fibres C) run continuously from the first rib foot base part 31a into the rib foot flange 32 via the fold line 35a and into the rib foot web 33 via the fold line 34a. Some of the −45 degree fibres (including the fibres D) run continuously from the second rib foot base part 31b and into the rib foot web 33 via the fold line 36a and into the rib foot flange 32 via the fold line 34a. In this way, loads are transferred by the carbon fibres around each of the folded corners 34-36.


The stack of pre-preg plies includes a pair of external plies 39 (one being labeled in FIG. 7) and a plurality of internal plies sandwiched between the external plies, two of which are indicated by dashed lines and labeled 38 in FIG. 7. The external plies 39 and the internal plies 38 (along with most if not all of the other internal plies in the stack) run continuously throughout the rib foot from the first rib foot base part 31a into the rib foot flange 32 via the folded corner 35, from the rib foot flange 32 into the rib foot web 33 via the folded corner 34, and from the rib foot web 33 into the second rib foot base part 31b via the folded corner 36.


One of the loads acting on the structure is fuel pressure load which acts down on the lower cover 5 as indicated by arrow 19a in FIG. 3a, and is reacted as tension 19b in the rib web 14. The primary path for this load is through the rib foot base part 31b, the corner 36, the rib foot web 33 and the bolt 21. A secondary path for this load is through the stringer web 8b, the rib foot flange 32, the corner 34, the rib foot web 33 and the bolt 21.


In the example above, the rib feet 30 are formed by pre-preg composite parts. Alternatively, the rib feet 30 may be manufactured by injection moulding of epoxy resin (or other liquid matrix material) containing short fibre reinforcement elements.


In the embodiment described above the rib feet 30 and stringers 8 are formed as separate components which are joined together by co-curing opposed mating faces. Alternatively, some of the internal plies forming the rib feet 30 may be laid up so that they are interleaved with some of the internal plies forming the stringers 8.


The cover assembly of FIG. 4 is formed by placing the various components on a mould in an un-cured or partly cured state. A vacuum bag is laid over the components on the mould, the space between the vacuum bag and the mould is evacuated to apply pressure, and the assembly is heated to cure the components. As the components cure, the various co-cured joints mentioned above are formed. The mould may be made from a rigid material, or more preferably from a semi-rigid material. A suitable semi-rigid material is a synthetic rubber such as Airpad (an uncured non-silicone rubber available from Airtech Europe Sarl), reinforced with open weave dry carbon such as Cristex 170-100, with additional local reinforcement and therefore stiffness added with Toolmaster (R) Pre-preg TMGGP4000 and TMGP4100.


Although the invention has been described above with reference to one or more preferred embodiments, it would be appreciated that various changes or modifications may be made without departing from the scope of the invention as defined in the appended claims.

Claims
  • 1. A structure comprising: a panel;a stringer comprising a stringer flange joined to the panel and a stringer web extending away from the stringer flange;a rib comprising a rib web and a rib foot, the rib foot having a rib foot flange joined to the stringer web;first and second rib foot base parts joined to the panel or to the stringer flange; anda rib foot web joined to the rib web;wherein the rib foot flange is connected to the rib foot web by a first corner that includes at least one layer which runs continuously from the rib foot flange into the rib foot web via the first corner;wherein the first rib foot base part is connected to the rib foot flange by a second corner that includes at least one layer which runs continuously from the first rib foot base part into the rib foot flange via the second corner; andwherein the second rib foot base part is connected to the rib foot web by a third corner that includes at least one layer which runs continuously from the second rib foot base part into the rib foot web via the third corner.
  • 2. The structure according to claim 1, wherein the first rib foot base part abuts the second rib foot base part or is joined to the second rib foot base part.
  • 3. The structure according to claim 1, wherein the rib foot comprises at least one layer which runs around the first, second, and third corners.
  • 4. The structure according to claim 1, wherein the first rib foot base part is joined to the second rib foot base part by a co-cured joint.
  • 5. The structure according to claim 1, wherein the rib foot flange is joined to the stringer web by a co-bonded or co-cured joint.
  • 6. The structure according to claim 1, wherein the first and second rib foot base parts are joined to the panel or to the stringer flange by a co-bonded or co-cured joint.
  • 7. The structure according to claim 1, wherein: the rib foot is formed from a composite material comprising a plurality of fibres,some of the fibres run continuously from the rib foot flange into the rib foot web via the first corner,some of the fibres run continuously from the first rib foot base part into the rib foot flange via the second corner, andsome of the fibres run continuously from the second rib foot base part into the rib foot web via the third corner.
  • 8. The structure according to claim 1, wherein the rib foot comprises a further rib foot flange joined to the stringer web, the further rib foot flange and the rib foot flange extending on opposite sides of the rib foot web.
  • 9. The structure according to claim 8, wherein the second rib foot flange is joined to the stringer web by a co-bonded or co-cured joint.
  • 10. The structure according to claim 1, wherein the rib foot comprises a further rib foot base part joined to the panel or to the stringer flange, the further rib foot base part and the first and second rib foot base parts extending on opposite sides of the rib foot web.
  • 11. The structure according to claim 1, wherein the rib foot comprises a pair of back-to-back parts, each of which comprises: a rib foot flange joined to the stringer web;first and second rib foot base parts joined to the panel or to the stringer flange; anda rib foot web joined to the rib web,wherein the rib foot flange is connected to the rib foot web by a first corner including at least one layer, which is continuous from the rib foot flange into the rib foot web via the first corner,wherein the first rib foot base part is connected to the rib foot flange by a second corner including at least one layer, which is continuous from the first rib foot base part into the rib foot flange via the second corner,wherein the second rib foot base part is connected to the rib foot web by a third corner including at least one layer which is continuous from the second rib foot base part into the rib foot web via the third corner, andwherein the rib foot webs of the pair of back-to-back parts are joined to each other and to the rib web.
  • 12. The structure according to claim 1, wherein the structure is an aerodynamic aircraft structure.
  • 13. The structure according to claim 12, wherein the aerodynamic aircraft structure is an aircraft wing box.
  • 14. An aircraft comprising a fuselage and the structure according to claim 12, wherein the structure is attached to and extends away from the fuselage.
  • 15. A method of forming a structure, the method including steps of: providing a panel, a stringer comprising a stringer flange and a stringer web, and a rib comprising a rib web;forming a rib foot comprising a rib foot flange, a rib foot web, and first and second rib foot base parts;connecting the rib foot flange to the rib foot web by a first corner including at least one layer, which is continuous from the rib foot flange into the rib foot web via the first corner;connecting the first rib foot base part to the rib foot flange by a second corner including at least one layer, which is continuous from the first rib foot base part into the rib foot flange via the second corner; andconnecting the second rib foot base part to the rib foot web by a third corner including at least one layer, which is continuous from the second rib foot base part into the rib foot web via the third corner;joining the stringer flange to the panel;joining the rib foot flange to the stringer web;joining the first and second rib foot base parts to the inner surface of the panel or to the stringer flange; andjoining the rib foot web to the rib web.
  • 16. The method according to claim 15, wherein the rib foot flange, the rib foot web, the first rib foot base part, and the second rib foot base part are formed as a single piece, which is subsequently bent or folded to form the first, second, and third corners.
  • 17. The structure according to claim 12, wherein the aerodynamic aircraft structure is an aircraft horizontal stabilizer.
  • 18. The structure according to claim 12, wherein the aerodynamic aircraft structure is an aircraft vertical stabilizer.
Priority Claims (1)
Number Date Country Kind
1412161.0 Jul 2014 GB national
US Referenced Citations (94)
Number Name Date Kind
4064534 Chen Dec 1977 A
4186535 Morton Feb 1980 A
4310132 Frosch Jan 1982 A
5242523 Willden Sep 1993 A
5297760 Hart-Smith Mar 1994 A
5518208 Roseburg May 1996 A
5893534 Watanabe Apr 1999 A
5963660 Koontz Oct 1999 A
6012883 Engwall Jan 2000 A
6013341 Medvedev Jan 2000 A
6045651 Kline Apr 2000 A
6112792 Barr Sep 2000 A
6114012 Amaoka Sep 2000 A
6155450 Vasiliev Dec 2000 A
6187411 Palmer Feb 2001 B1
6190484 Appa Feb 2001 B1
6205239 Lin Mar 2001 B1
6364250 Brinck Apr 2002 B1
6374750 Early Apr 2002 B1
6386481 Kallinen May 2002 B1
6415581 Shipman Jul 2002 B1
6451152 Holmes Sep 2002 B1
6480271 Cloud Nov 2002 B1
6508909 Cerezo Pancorbo Jan 2003 B1
6510961 Head Jan 2003 B1
6511570 Matsui Jan 2003 B2
6692681 Lunde Feb 2004 B1
6702911 Toi Mar 2004 B2
6730184 Kondo May 2004 B2
6766984 Ochoa Jul 2004 B1
6786452 Yamashita Sep 2004 B2
6802931 Fujihira Oct 2004 B2
7721495 Kismarton May 2010 B2
7740932 Kismarton Jun 2010 B2
7810756 Alby Oct 2010 B2
8038099 Anast Oct 2011 B2
8042315 Ashton Oct 2011 B2
8042767 Velicki Oct 2011 B2
8056859 Kunichi Nov 2011 B2
8096504 Arevalo Rodriguez Jan 2012 B2
8157212 Biornstad Apr 2012 B2
8168023 Chapman May 2012 B2
8173055 Sarh May 2012 B2
8336596 Nelson Dec 2012 B2
8377247 Guzman Feb 2013 B2
8382467 Micheaux Feb 2013 B2
8388795 Tsotsis Mar 2013 B2
8408493 Barnard Apr 2013 B2
8419402 Guzman Apr 2013 B2
8444087 Kismarton May 2013 B2
8500066 Lewis Aug 2013 B2
8534605 Haack Sep 2013 B2
8567722 Rosman Oct 2013 B2
8617687 McCarville Dec 2013 B2
8646161 Bense Feb 2014 B2
8651421 Haack Feb 2014 B2
8695922 Schroeer Apr 2014 B2
8720825 Kismarton May 2014 B2
8726614 Donnellan May 2014 B2
8876053 Moreau Nov 2014 B2
8934702 Engelbart Jan 2015 B2
8943666 Vera Villares Feb 2015 B2
8960606 Diep Feb 2015 B2
8998142 Loupias Apr 2015 B2
9010688 Shome Apr 2015 B2
9187167 Sauermann Nov 2015 B2
9340273 Koefinger May 2016 B2
9527572 Griess Dec 2016 B2
9656319 Sarh May 2017 B2
9919791 Autry Mar 2018 B2
20010042186 Iivonen Nov 2001 A1
20010051251 Noda Dec 2001 A1
20020141632 Engelbart Oct 2002 A1
20030080251 Anast May 2003 A1
20040021038 Solanille Feb 2004 A1
20040031567 Engelbart Feb 2004 A1
20040155148 Folkesson Aug 2004 A1
20050241358 Kaye Nov 2005 A1
20060226287 Grantham Oct 2006 A1
20100272954 Roming Oct 2010 A1
20100308172 Depeige Dec 2010 A1
20110001010 Tacke Jan 2011 A1
20110089291 Dietrich Apr 2011 A1
20120193475 Cabanac Aug 2012 A1
20130048187 Wiles Feb 2013 A1
20130089712 Kwon Apr 2013 A1
20130181092 Cacciaguerra Jul 2013 A1
20140216638 Vetter Aug 2014 A1
20140263836 Guillemaut Sep 2014 A1
20150053818 Charles Feb 2015 A1
20160009061 Marks Jan 2016 A1
20160009365 Marks Jan 2016 A1
20160009366 Marks Jan 2016 A1
20160009367 Marks Jan 2016 A1
Foreign Referenced Citations (8)
Number Date Country
2481668 Aug 2012 EP
2540615 Jan 2013 EP
2565021 Mar 2013 EP
2848519 Mar 2015 EP
2923800 May 2009 FR
2008067460 Jun 2008 WO
2012098331 Jul 2012 WO
2015015152 Feb 2015 WO
Non-Patent Literature Citations (1)
Entry
European Search Report for EP Application No. 15175758.0 dated Nov. 12, 2015.
Related Publications (1)
Number Date Country
20160009365 A1 Jan 2016 US