The present invention is related to fabrication, assembly, integration and operation of low cost, high performance solar energy systems and solar arrays with applications in aerospace, residential, commercial and industrial, remote power and utility scale solar power.
Note that the following discussion may refer to a number of publications and references. Discussion of such publications herein is given for more complete background of the scientific principles and is not to be construed as an admission that such publications are prior art for patentability determination purposes.
Solar cells and associated components can be assembled using various shapes, interconnection methods and mechanical support structures to provide enhanced reliability and superior performance. While traditional assembly methods are quite effective with rigid glass/glass and glass/backsheet configurations, those systems do not accommodate flexing, dynamic loads and large number of rapid temperature cycles expected in a range of applications.
Conventional laser welding based on infrared (IR) laser sources are very commonly used in industry. However, these systems are not very suitable for creating precise connections between thin (several microns to a couple hundred microns thick) traces, for example in copper, and other layers in devices, for example, contacts in solar cells and/or other electronic devices. The energy deposited by the IR laser sources are quite high to produce initial melting of the metal, causing splatter patterns and voids in the melted metal and causing heating related damage in the materials surrounding the connection point. While laser operation can be quite fast (less than a second), movement of the work piece or the optical system makes this process fairly low throughput.
Parallel gap or pinch welding uses a mechanical contact between a tip (with two contact points) and the material(s) to be welded, and current that is forced between the tip causes the target material(s) to melt and be welded. This requires fairly large contact areas (500 μm and larger) coupled with significant amounts of energy deposition, which is hard to control and this can damage the materials adjacent to the connection point. Each connection process takes multiple seconds (up to 10 seconds if tip and work piece movement are included) and is not fast enough for high throughput manufacturing requirements.
Conventional photovoltaic assemblies use large solar cells (156 mm×156 mm and newer 210 mm×210 mm sizes) that are interconnected in series on large, rigid structures. While there are half-cut and third-cut cells starting to become available in the marketplace, these assemblies still do not provide the desired level of mechanical flexibility and resilience that enable rapid deployment, rapid recovery and reliable operation of solar systems.
An embodiment of the present invention is a photovoltaic assembly comprising a plurality of solar cells; interconnects for interconnecting the solar cells; and one or more mechanical support structures, the mechanical support structures each smaller than the photovoltaic assembly. The mechanical support structures preferably comprise various shapes and sizes. At least one support structure is optionally approximately the size and/or shape of a single solar cell or of a subset of the solar cells in the photovoltaic assembly. One or more solar cells in that subset of solar cells are optionally electrically interconnected to solar cells outside said subset of solar cells. Optionally, only some of the solar cells in that subset of solar cells are electrically interconnected with each other. Optionally at least one of the one or more mechanical support structures is transparent, optionally comprising a material selected from the group consisting of acrylic, glass, and polycarbonate. The assembly optionally comprises transparent mechanical support structures disposed in a direction relative to the solar cells from which the solar cells receive light. The one or more mechanical support structures are preferably oriented parallel to a plane of the solar cells. Optionally at least one mechanical support structure is embedded into a polymeric encapsulation layer, is disposed on a cell and interconnect assembly, the cell and interconnect assembly comprising a plurality of the solar cells and corresponding interconnects, is integrated into the cell and interconnect assembly, and/or is disposed in an insulating layer of the cell and interconnect assembly, in which case the mechanical support structure comprises a stamped fiberglass/polymer composite. The interconnects optionally comprise a plurality of interconnect vias through an insulating layer. Each via preferably comprises a protrusion to enhance contact with connection pads disposed on the solar cells. Interconnect traces are optionally shaped to reduce thermal stresses in the photovoltaic assembly, in which case the insulating layer between the interconnect traces and the solar cells comprises cutouts that at least partially approximately conform to the shaped interconnect traces.
Another embodiment of the present invention is a method of manufacturing a photovoltaic assembly, the method comprising providing a plurality of solar cells and interconnects and disposing one or more mechanical support structures in the photovoltaic assembly, the mechanical support structures each smaller than the photovoltaic assembly. The mechanical support structures preferably comprise various shapes and sizes. At least one support structure is optionally approximately the size and/or shape of a single solar cell or of a subset of the solar cells in the photovoltaic assembly. One or more solar cells in that subset of solar cells are optionally electrically interconnected to solar cells outside said subset of solar cells. Optionally, only some of the solar cells in that subset of solar cells are electrically interconnected with each other. Optionally at least one of the one or more mechanical support structures is transparent, optionally comprising a material selected from the group consisting of acrylic, glass, and polycarbonate. The method optionally comprises disposing transparent mechanical support structures in a direction relative to the solar cells from which the solar cells receive light. The method preferably comprises orienting the one or more mechanical support structures parallel to a plane of the solar cells. The method optionally comprises embedding at least one mechanical support structure into a polymeric encapsulation layer, disposing at least one mechanical support structure on a cell and interconnect assembly, the cell and interconnect assembly comprising a plurality of the solar cells and corresponding interconnects, integrating at least one mechanical support structure into the cell and interconnect assembly, and/or disposing the at least one mechanical support structure in an insulating layer of the cell and interconnect assembly.
The method optionally further comprises aligning a plurality of openings in the interconnects with connection pads disposed on the solar cells; depositing material in the openings; and using at least one laser beam to melt or sinter the material, thereby connecting the interconnects with the connection pads. The depositing step is preferably performed using inject printing, screen printing, or aerosol jet nozzle printing. The material preferably comprises powder, ink, paste, metal nanoparticles, copper, aluminum, transparent conductive oxides, indium tin oxide, polysilicon, silicided polysilicon, silver, titanium, or titanium-tungsten. The laser spot size is optionally smaller than a size of the openings, in which case the method preferably comprises scanning the laser beam within each opening. Alternatively, the laser spot size is approximately the same as a size of the openings. The laser color is preferably chosen to enhance laser absorption by the material.
The method optionally further comprises aligning interconnect vias through an insulating layer with connection pads disposed on the solar cells; and using at least one laser beam to melt the interconnect vias, thereby connecting the interconnects to the contact pads. The laser spot size is optionally smaller than a size of the openings, in which case the method preferably comprises scanning the laser beam within each opening. Alternatively, the laser spot size is approximately the same as a size of the openings. The laser color is preferably chosen to enhance laser absorption by the material.
The method of claim 20 comprising forming a protrusion on each of a plurality of interconnect vias through an insulating layer to enhance contact with connection pads disposed on the solar cells. The step of forming the protrusions is preferably performed by mechanically deforming the via with a pin, overplating the via, or double-screen printing a light curable conductive ink or paste layer.
The method optionally comprises shaping interconnect traces to reduce thermal stresses in the photovoltaic assembly, in which case the insulating layer between the interconnect traces and the solar cells preferably comprises cutouts that at least partially approximately conform to the shaped interconnect traces.
Objects, advantages and novel features, and further scope of applicability of the present invention will be set forth in part in the detailed description to follow, taken in conjunction with the accompanying drawings, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
The accompanying drawings, which are incorporated into and form a part of the specification, illustrate the practice of embodiments of the present invention and, together with the description, serve to explain the principles of the invention. The drawings are only for the purpose of illustrating certain embodiments of the invention and are not to be construed as limiting the invention. In the figures:
Recent advances in short wavelength lasers (blue and green) have opened up new processing options in joining metals, either same type or dissimilar, metals and ceramics and polymers. Specific advantages have been provided in joining thin metal traces, such as 5 μm to 200 μm thick copper that can be found on flexible circuit-like assemblies, to components that need to be reliably attached and survive large temperature swings (for example, −100° C. to +100° C., or −200° C. to +200° C.) for a very large number of temperature cycles (50,000 or more). These advantages arise from the ability to deposit the desired amount of energy into the structures very quickly (on a milliseconds to 100 s of milliseconds timescale) based on enhanced absorption of blue and green light in these materials (for example, copper) and the ability to shape spot sizes of the laser beam being used for the process (for example, 10 s of microns to several hundred microns in diameter as a circle, or other shapes as needed). The controlled deposition of energy allows precise control of thermal effects around the desired welded connection, limiting or eliminating undesirable material changes in the assembly stack. Such undesirable changes could be intermixing of materials or thermal damage to layers adjacent to the connection point or mechanical or electrical disruption of the desired final structure.
In order to achieve higher throughput of processed material, it is possible to have multiple laser sources placed within the processing system, such that they can be operated in parallel on the same substrate/assembly or on multiple substrates/assemblies. While larger welding operations need hundreds of watts of power, the 10 s of microns to 100 s of microns lateral dimension weld spots in thinner layers could be generated with only 10 s of watts of power with the blue and green lasers. These lower power assemblies could be made with more compact semiconductor lasers and associated smaller scale optical components which can be placed directly on the structure that is moving inside the tool. Another possible arrangement is the coupling of these compact sources into fibers that are then attached to the moving segments within the tool.
In another embodiment, this approach also enables rapid sintering of metal powders or pastes that are deposited onto the interconnect regions. In this configuration, a hole in the copper trace allows the interconnect pad below to be accessible, and the material to be sintered/adhered is deposited onto that region using jet nozzle, inkjet printing or screen printing. Subsequently the laser beam heats, consolidates and/or melts the material that was deposited and forms the connection between the trace and the component below. The deposited material, for example could be pure copper or silver in nanoparticle form, with additives to provide desired chemical interactions within the deposited material and between the trace and the contact layer below. The contact layer below could also be copper, aluminum, transparent conductive oxides (such as indium-tin-oxide), polysilicon, silicided polysilicon, silver, titanium, titanium-tungsten or any suitable material stack for the interconnect. In case of Ti, Ti—W layers can also serve as adhesion and diffusion barrier layers where diffusion of certain elements is undesirable within the stack.
As shown in
In another embodiment, shown in
In other embodiments, to ensure close mechanical contact between the traces and the contact layer below before the laser welding/joining process, the copper trace contact locations can be shaped, for example in a downward facing semi-hemispherical form, and/or the contact layer below could be made in the shape of a raised bump. As shown in
After formation of the weld or joint between the interconnect and the device, it is preferable to manage the mechanical stresses that may be experienced by this joint. To ensure good mechanical contact between the interconnect traces and the connection pad, a mechanically or otherwise shaped trace contact area is preferable. Similar to the above-mentioned out of plane shaping processes, additional design features can be added and forming processes may also be carried out in the planar dimensions (in-plane with the traces) with folded beam or bent beam traces that allow the traces to move and bend to accommodate any displacements or stresses that could be imposed on the structure, such as thermally driven or vibration/impact driven movements. To mitigate and potentially remove any reliability concerns due to mechanical stresses generated during fabrication or during operation of this structure, a shaped connection can be formed as shown in
Mechanical stresses on the structure may also occur during handling and operation of this assembly. Especially in, but not limited to, those cases, mechanical support structures can be embedded into the assembly, either above or below the cells, that add further mechanical strength to the assembly. These could be above and/or below each individual cell or groups of cells, with flexible interconnects providing the electrical connections and desired mechanical flexibility to the assembly. The support structures can be made out of transparent layers such as polycarbonate, glass, acrylic and placed or embedded above (light input side) and/or below (back side) of the cell, which will allow bifacial operation of the photovoltaic system (accepting light input from both sides of the structure). In another configuration, where light input is blocked or otherwise not desired from the back side, opaque materials can be used for the support structure below the cells. These mechanical structures and grouping of cells are preferably independent from the desired electrical connections among the cells. For example, a support structure could be below two cells only, while electrically a larger number of cells, for example, five cells, could be interconnected without any interference from the mechanical grouping of the cells and support structures.
As shown in
Note that in the specification and claims, “about” or “approximately” means within twenty percent (20%) of the numerical amount cited. As used herein, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a functional group” refers to one or more functional groups, and reference to “the method” includes reference to equivalent steps and methods that would be understood and appreciated by those skilled in the art, and so forth.
Although the invention has been described in detail with particular reference to the disclosed embodiments, other embodiments can achieve the same results. Variations and modifications of the present invention will be obvious to those skilled in the art and it is intended to cover all such modifications and equivalents. The entire disclosures of all patents and publications cited above are hereby incorporated by reference.
This application: claims priority to and the benefit of the filing of U.S. Provisional Patent No. 62/967,498 entitled “Structured Assembly and Interconnect for Photovoltaic Systems”, filed on Jan. 29, 2020, the specification and claims of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/015880 | 1/29/2021 | WO |
Number | Date | Country | |
---|---|---|---|
62967498 | Jan 2020 | US |