Structured-document path-language expression methods and systems

Information

  • Patent Grant
  • 7516399
  • Patent Number
    7,516,399
  • Date Filed
    Thursday, September 30, 2004
    20 years ago
  • Date Issued
    Tuesday, April 7, 2009
    15 years ago
Abstract
Systems and methods for building and/or simplifying structured-document path-language expressions are described. One of these systems or methods enables a user to graphically select structured-document path-language functions and addresses. With these addresses and functions, a structured-document path-language expression can be built without a user having to fully understand or type in syntax for the expression. Another of these systems or methods simplifies structured-document path-language address and function syntax. This simplification can aid a user in building and easily understanding a structured-document path-language expression.
Description
TECHNICAL FIELD

This invention relates to structured-document path-language expression methods and systems.


BACKGROUND

Extensible markup language (XML) is increasingly becoming the preferred format for electronic documents. XML is a tag-based hierarchical language that is extremely rich in terms of the information that it can be used to represent. For example, XML can be used to represent information spanning the spectrum from semi-structured information (such as one would find in a word processing document) to generally structured information (such as that which is contained in a table). For more information on XML, the reader is referred to the XML 1.0 Second Edition Specification which is the work of and currently available from the W3C (World Wide Web consortium).


To locate and process data in XML documents, another language, called the XML Path Language (“XPath”), can be used. XPath includes an addressing syntax for locating nodes in an XML document's hierarchical structure and functions performable on or with the nodes. XPath is a W3C standard. For more information, the reader is referred to the W3C's website, where information about XPath is currently located.


Using XPath, however, can be tedious and require a significant understanding of XPath and XML. To write XPath expressions, for instance, a user often needs lengthy training in how the XPath syntax is constructed and which functions it can perform. Even with this training, writing XPath expressions can be tedious and time consuming. XPath is also unforgiving; a small syntactical error, like a period or comma out of place, can make an XPath expression fail. If the expression fails, XPath is often not helpful in showing the user how to fix the error.


Assume, for example, that a user wishes to write an XPath expression to add the data in two of the “cost” nodes listed below. The namespaces listed below represent names for hierarchically arranged nodes of an XML document.


NS1:myfields

    • NS1:items
      • NS1:item
        • NS1:quantity
        • NS1:price
        • NS1:cost
      • NS1:item
        • NS1:quantity
        • NS1:price
        • NS1:cost
      • NS1:item
        • NS1:quantity
        • NS1:price
        • NS1:cost
      • NS1:item
        • NS1:quantity
        • NS1:price
        • NS1:cost


If the user understands XML and XPath, he or she can write the XPath expression by: 1) determining what syntax is needed to address the first cost node; 2) typing in that syntax; 3) determining what syntax is needed to perform the function of addition; 4) typing in that syntax; 5) determining what syntax is needed to address the third node; and 6) typing in that syntax.


Thus, to construct an XPath expression that can add data within the first and third “cost” nodes, the user has to determine the syntax to address the first cost node and type it in:


/NS1:myfields/NS1:items/NS1:item/NS1:cost[1]


Next, the user has to determine the syntax for the function of addition, which is the “+” symbol. While this symbol is intuitive, many other XPath functions are not intuitive and so can require training to understand. The user then types the “+” symbol in:


/NS1:myfields/NS1:items/NS1:item/NS1:cost[1]+


Next, the user must determine the syntax to address the third cost node and type it in:


/NS1:myfields/NS1:items/NS1:item/NS1:cost[1]+/NS1:myfields/NS1/items /NS1:item/NS1:cost[3]


As this example shows, writing even a simple XPath expression can require training in XML and XPath, and can be tedious and time consuming as well. Also, even a small error in an XPath expression's syntax can cause the expression to fail, potentially requiring the user to find and fix the error or retype the expression.


Given the foregoing, there is a need for a user-friendly and/or non-technical way to create XPath expressions.


SUMMARY

Systems and methods (“tools”) for building and/or simplifying path-language expressions for structured documents are described. In at least some embodiments, these tools enable a user to graphically select structured-document path-language functions and addresses. With these addresses and functions, a structured-document path-language expression can be built without a user having to fully understand or type in syntax for the expression.


In at least some embodiments, the tools can also simplify structured-document path-language address and function syntax. This simplification can aid a user in building and easily understanding a structured-document path-language expression.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an exemplary architecture having an exemplary electronic document and path application.



FIG. 2 sets forth a flow diagram of an exemplary process for building a structured-document path-language expression.



FIG. 3 illustrates an exemplary electronic form and an exemplary function selection window.



FIG. 4 illustrates an exemplary electronic form and an exemplary function presentation window.



FIG. 5 illustrates two exemplary representations of an electronic document: an electronic form; and a hierarchical schema.



FIG. 6 illustrates an exemplary electronic form and an exemplary address and function window having an exemplary minimally logical form of an XPath addressing syntax.



FIG. 7 illustrates the address and function window of FIG. 6 having an exemplary minimally logical form for a second XPath addressing syntax.





The same numbers are used throughout the disclosure and figures to reference like components and features.


DETAILED DESCRIPTION
Overview

Systems and methods (“tools”) for building and/or simplifying structured-document path-language expressions are described below. In at least some embodiments, these tools can enable a user to select parts of a hierarchically structured electronic document though a user interface. The tools then generate an addressing syntax for the selected parts. By so doing, a user is able to add addressing syntax for the selected parts without having to understand or type in the addressing syntax.


In at least some embodiments, the tools can also present addressing syntax to the user in a simplified form, such as with an abbreviation of the syntax or with symbols. This enables users who may not understand path-language addressing syntax to understand what parts of an electronic document they have selected.


In at least some embodiments, the tools can also enable a user to select functions for a structured-document path-language expression to perform, such as from a window in a user interface. The tools then generate a proper syntax for the selected function. This function syntax can be presented to the user in simplified or modified form to further enable a user to understand the path-language expression being built.


Exemplary Architecture


Referring to FIG. 1, an exemplary architecture 100 is shown comprising a computing device 102 having a processor 104 and computer-readable media 106 in communication with a display 108. The processor is capable of accessing and/or executing the computer-readable media. The computer-readable media comprises a hierarchically structured electronic document 110 and a path application 112 having a user interface 114 and an engine 116. The path application is shown comprising the user interface and the engine, though each of these can be separate and operate separately.


The path application is capable of generating and/or modifying structured-document path-language addresses, functions, and expressions. The user interface is capable of presenting and receiving information to and from a user, such as through the display 108 and various user-input devices, such as a keyboard or mouse (not shown). The engine is capable of simplifying the path-language syntax, such as address and function syntax.


This architecture and its components are shown to aid in discussing the tools but are not intended to limit their applicability.


Generating Structured-Document Path-Language Expressions


Referring to FIG. 2, an exemplary process 200 for building a structured-document path-language expression is shown. The process 200 is illustrated as a series of blocks representing individual operations or acts performed by path application 112, user interface 114, and/or engine 116. This process may be implemented in any suitable hardware, software, firmware, or combination thereof. In the case of software and firmware, these processes represent computer-readable media having sets of operations implemented as computer-executable instructions.


At block 202, user interface 114 enables selection of one or more structured-document path-language functions. In this embodiment, the user interface enables selection of functions first, though enabling selection of parts of an electronic document first or concurrently with selection of functions can also be performed. The user interface can provide many functions and explanations about what operations each function can perform. It can also enable users to select a function without having to type in the syntax for that function.


As an example, consider FIG. 3. There, an electronic form 302, which is a hypertext-machine-language (HTML) rendering of electronic document 110, and a function selection window 304 are shown. This electronic form shows one type of electronic form that may be used, though other types of forms enabling electronic entry of information can also be used. In the illustrated embodiment, the electronic document is a hierarchically structured document written in XML (eXtensible Markup Language) and the functions provided are useable with XML Path Language (XPath). Other path languages useable with electronic documents having a structure may also be used.


The electronic form, entitled “Expense Report”, provides one way in which to view and select parts of electronic document 110. Selecting parts of the electronic document through the electronic form is discussed below.


Function selection window 304 provides a graphical user interface enabling a user to quickly and easily select an XPath function. In this illustration, the function selection window shows a few of many possible functions that can be selected, in this case, functions that average (“avg”), concatenate (“concat”), return false as a Boolean (“false”), return a maximum value (“max”), return a minimum value (“min”), return the current date and time (“now”), return a position (“position”), add values and return that sum (“sum”), return the current date (“today”), and return true as a Boolean (“true”).


The function selection window can present functions to a user in a syntactically incomplete or simplified form. By so doing, a user can view functions without having to know details about the syntax for that function or having to type it in. Also, the function selection window can provide information about the functions helpful to instruct the user as to which operation the functions can perform. In the illustrated embodiment, for instance, the function selection window provides explanation information 306 about the highlighted average function 308.


Returning to FIG. 2, at block 204, the user interface receives selection of a structured-document path-language function. In the ongoing example, a selection of an XPath “sum” function is received through function selection window 304. In another embodiment, a structured-document path-language function can be received in another manner, such as by being typed into another embodiment of the user interface. This is helpful in permitting a user to manually type in a function in those situations where the user is familiar and comfortable with that function.


At block 206, the user interface presents a structured-document path-language function. This structured-document path-language function can show the actual syntax of that function for the path language or can be an alteration, a simplification, and/or a symbol representing that function.


As an example, consider FIG. 4. There, a function presentation window 402 is shown. In this example, this window presents the selected “sum” function in a simplified, textual representation 404. This representation can be familiar and easy for a user to understand, which in some cases makes the textual representation of greater or lesser length than the actual syntax of that function. The function presentation window can also enable a user to select another interface for inserting fields or groups (also called “nodes” or “parts” of an electronic document), with text 406 (“double click to insert field”) or selection button 408.


Returning to FIG. 2, at block 208, the user interface enables selection of one or more parts of a hierarchically structured electronic document. The user interface can enable graphical selection of parts of an electronic document through various representations of that electronic document, such as through an HTML rendering of the electronic document or through its logical structure.


As an example, consider FIG. 5. There, two representations of electronic document 110 are shown: the electronic form 302; and a hierarchical schema 502 showing nodes of the electronic document. The hierarchical schema is shown as part of node-selection window 504. A user can select parts of the electronic document by selecting nodes of the hierarchical schema or fields of the electronic form. Path application 112 (FIG. 1) can determine which part of the electronic document is selected by selection of fields or nodes. In the illustrated embodiment, fields shown in the electronic form map to nodes of the hierarchical schema, allowing either to be selected.


Returning to FIG. 2, block 210, the user interface receives selection of part of a hierarchically structured electronic document. Referring again to FIG. 5, a user “cost” node selection is received. In this illustrated embodiment, the cost node is selected by the user clicking a pointer (like with a mouse) on a “cost” icon 506 of hierarchical schema 502, though other selection manners can also be used. Receipt of the same “cost” node can also be received by the user selecting cost data-entry field 508, which maps to the cost node.


At block 212, the user interface or path application 112 generates and/or sends a structured-document path-language address for a part of a hierarchically structured electronic document. By so doing, the path application can create a structured-document path-language addressing syntax for selected parts of an electronic document without a user having to understand or type in the addressing syntax.


At block 214, engine 116 receives a structured-document path-language address for a hierarchically structured electronic document. This address can be a machine-readable and complete syntax for addressing one or more parts of an electronic document. In the ongoing embodiment, the engine receives a full, XPath address for the “cost” node selected by the user at block 210. This XPath address can be textually shown as:


/NS1:ExpenseReport/NS1Expenses/NS1:Expense/NS1:cost


At block 216, the engine simplifies a structured-document path-language address. The engine can simplify the addressing syntax or otherwise enable it to be presented in a more human-understandable or readable form. In one embodiment, the engine simplifies the structured-document path-language address by abbreviating it, such as by removing all of the text from left to right of the address, until the engine encounters a non-unique namespace. If, for instance, the structured-document path-language address is A/B/C/D/E and A, B, C, and D are unique, the engine can remove A/B/C/D/ and leave just E. If, also for instance, there is one A, one B, two Cs, each having one D and one E, the engine can remove A/B/ and leave C/D/E.


In another embodiment, the engine simplifies an address to its minimally logical textual form. In the illustrated embodiment, the minimally logical form is “cost”. The addressing syntax before “cost” is not needed for a user to understand which node of electronic document 110 to which “cost” refers. In other embodiments of an electronic document, however, the minimally logical form may be longer or not the last textual piece (e.g., the last namespace “NS1:cost”).


For example, if electronic document 110 comprises multiple expense nodes, each having date, description, category, and cost nodes, the full XPath address could be:


/NS1ExpenseReport/NS1:Expenses/NS1:Expense[1]/NS1:cost[1]


The minimally logical form for the full address would then address the expense node as well. This form is: “Expense[1] . . . cost”. The “[1]” behind after cost is not needed because there is only one cost node subordinate to the “Expense[1]” node.


Also, for example, if the electronic document further comprises multiple cost nodes for the selected expense node, the full XPath address could be:


/NS1:ExpenseReport/NS1:Expenses/NS1:Expense[1]/NS1:cost[1]


But, the minimally logical form is instead: “Expense[1] . . . cost[1]”, which indicates which of multiple cost nodes is being addressed.


Other forms can also be generated by the engine, such as text that is not as abbreviated as much as the above minimally logical forms.


At block 218, the engine sends a simplified address to a user interface, such as user interface 114.


At block 220, user interface 114 presents a simplified structured-document path-language address. This address can be an easier-to-read or understand form of the actual address, such as an abbreviation of the actual address. It can also be a symbol representing the node, such as an icon representing the node being addressed. By so doing, the path application enables users who may not understand structured-document path-language addressing syntax to understand what parts of an electronic document they have selected.


Referring to FIG. 6, the user interface presents a minimally logical form 602 of an XPath addressing syntax for the cost node of the electronic document. In this example, the user interface presents it in an address and function window The user interface presents the minimally logical form simply as: “Cost”. If the address is selected after the function (as the illustrated embodiment shows), the address can be oriented correctly within the existing function. If the function is chosen after the address, the function can be oriented correctly based on the existing address or addresses.


In another embodiment, the user interface presents an icon or symbol for the address. This icon or symbol can be “Cost” icon 506 of hierarchical schema 502 or cost data-entry field 508 of electronic form 302, for instance. The icon or symbol can also be a highlight or other differentiating mark on a currently presented icon or data-entry field.


Before continuing to block 222, some or all of blocks 202 through 220 can be repeated. The path application can continue to enable a user to select functions and nodes. A user can select, for instance, a cash advance node (shown as a “cash advance” icon 510 of hierarchical schema 504 and cash advance data-entry field 512 of electronic form 302, all of which are shown in FIG. 5). At block 220, an address or indicator for the cash advance node can be presented in the address and function window of FIG. 6.


Referring to FIG. 7, the user interface presents a minimally logical form 702 of an XPath addressing syntax for the cash advance node of the electronic document. Here it is simply “CashAdvance”. Before or after selecting the cash advance node, the user interface enables the user to choose whether or not to add or subtract the cash advance node. Here the user selects to subtract it, shown by the “−” symbol.


At block 222, the user interface receives a selection to finish the process. In the ongoing embodiment, this can comprise receiving an “enter” command or selection of a verify formula button 704.


At block 224, the path application determines whether or not to alter the structured-document path-language expression to treat blanks as zeros. If the path application determines to not alter the path-language expression, the path application proceeds to block 226. If the path application determines to alter the path-language expression, the path application proceeds to block 230. In the illustrated and described embodiment, the path application can determine whether or not to alter the path-language expression based on a default setting or a selection. The user interface can, for instance, enable and receive a selection (such as with a button or check box) indicating that a user wants to treat particular nodes as zero if blank.


At block 226, the path application verifies that the simplified structured-document path-language expression is syntactically valid. This is especially important in cases where a user has typed in a function or some other syntax. If the expression is not valid, the user interface can show the user the syntactical error, such as a period or comma being misplaced.


At block 228, the path application stores or communicates a computer-readable path-language expression. This expression can comprise the full syntax needed for a computer to execute the expression.


In the ongoing embodiment, the path application has built the following XPath expression for the function and nodes selected above:


/NS1:ExpenseReport/NS1:Expenses/NS1:Expense/NS1:Cost−


/NS1:ExpenseReport/NS1:Expenses/NS1:CashAdvance


The path application can evaluate this expression, save it, or send it to other applications or electronic documents. In the ongoing embodiment, the path application adds this expression to a “Total” node 514 of hierarchical schema 502 (shown in FIG. 5). When evaluated, total expenses field 516 can show the value of cost field 508 minus cash advance field 512, which in this case is $0.00 (shown in FIG. 7). The path application also presents the simplified form of the path-language expression in the address and function window, shown in FIG. 7 as “sum(Cost)−CashAdvance”.


If, however, no numbers or strings (e.g., non-numbers) are in one or both of the cost or cash advance nodes, XPath may fail to generate a value for the total field. This is because XPath treats blanks as strings, rather than zeros, and so fails to perform functions intended to handle number values (such as mathematical functions) on nodes not having a number value.


At block 230, the path application alters the structured-document path-language expression to treat blanks as zeros. The path application can do so automatically, such as by a default setting, or without further user interaction based on a user's having previously selected that blank values be treated as zeros. The path application can do so for one particular node or multiple nodes addressed in the expression. This alteration can comprise adding a new function and accompanying syntax that performs this function when executed.


The path application can alter, for example, the path-language expression of the ongoing embodiment. In this example, if the selected nodes are to be treated as zero if blank, the path application can alter the expression resulting in:


Nz(NS1:ExpenseReport/NS1:Expenses/NS1:Expense/NS1:Cost)−


Nz(/NS1:ExpenseReport/NS1:Expenses/NS1:CashAdvance)


As shown, this alteration adds a function, shown with “Nz( )”, to be preformed for the nodes “Cost” and “CashAdvance”. This function dynamically replaces blank values with zero when the expression modified by the function is evaluated.


CONCLUSION

Systems and methods for building and/or simplifying structured-document path-language expressions are described above. Although the invention has been described in language specific to structural features and/or methodological acts, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as exemplary forms of implementing the claimed invention.

Claims
  • 1. One or more computer-readable media embodying computer-readable instructions which, when executed, perform acts comprising: receiving a selection of at least part of a graphical rendering of a hierarchically structured electronic document;receiving a structured-document path-language address usable to locate the part of the hierarchically structured electronic document;automatically producing a simplified form of the structured-document path-language address, the simplified form of the structured-document path-language address being produced by abbreviating the structured-document path-language address by removing one or more unique namespaces; andbuilding a structured-document path-language expression that includes the structured-document path-language address and, if the part of the hierarchically structured electronic document includes a blank value, altering the structured-document path-language expression to treat the blank value as a zero.
  • 2. The media of claim 1, wherein producing the simplified form of the structured-document path-language address comprises simplifying the structured-document path-language address to a minimally logical form.
  • 3. The media of claim 1, further comprising presenting, in a user interface, the simplified form of the structured-document path-language address.
  • 4. The media of claim 1, wherein the structured-document path-language address comprises XML Path language (XPath).
  • 5. The media of claim 1, wherein the electronic document comprises eXtensible Markup Language (XML).
  • 6. A method comprising: enabling selection of a structured-document path-language function;receiving selection of the structured-document path-language function;enabling graphical selection of part of a graphical rendering of a hierarchically structured electronic document;receiving selection of the part;automatically presenting a simplified structured-document path-language expression comprising the selected part and the selected function, the automatically presenting comprising abbreviating the structured-document path-language expression by removing one or more unique namespaces; andaltering the structured-document path-language expression to treat a blank value as a zero if the selected part includes one or more blank values.
  • 7. The method of claim 6, wherein the act of enabling selection of the structured-document path-language function comprises enabling selection through a user interface not requiring entry of a syntax for the structured-document path-language function.
  • 8. The method of claim 6, wherein the act of enabling selection of the structured-document path-language function comprises presenting the structured-document path-language function in a syntactically incomplete form.
  • 9. The method of claim 6, wherein the act of enabling selection of the structured-document path-language function comprises presenting the structured-document path-language function in a simplified form.
  • 10. The method of claim 6, further comprising presenting an explanation of the structured-document path-language function.
  • 11. The method of claim 6, wherein the structured-document path-language function comprises a function of eXtensible Markup Language (XML) Path language (XPath).
  • 12. The method of claim 6, wherein the act of enabling graphical selection of the part comprises presenting a graphical rendering of the electronic document having a selectable field mapped to the part.
  • 13. The method of claim 6, wherein the act of enabling graphical selection of the part comprises presenting a hierarchical schema of the electronic document having a selectable node representing the part.
  • 14. The method of claim 6, wherein the act of presenting comprises presenting the selected part in a simplified form.
  • 15. The method of claim 6, wherein the act of presenting comprises presenting the selected function in a simplified form.
  • 16. The method of claim 6, wherein the act of presenting comprises presenting the selected function and the selected part in simplified forms.
  • 17. The method of claim 6, wherein the hierarchically structured electronic document comprises eXtensible Markup Language (XML).
  • 18. The method of claim 6, further comprising building a syntactically correct form of the structured-document path-language expression.
  • 19. The method of claim 6, further comprising simplifying the structured-document path-language expression.
  • 20. A method comprising: presenting, via a user interface, a selectable simplified form of a structured-document path-language function;presenting, via a user interface, a graphical rendering of a hierarchically structured electronic document, the graphical rendering comprising a plurality of selectable parts;receiving selection of the simplified form;receiving a selection of one or more of the selectable parts;automatically producing a simplified form of a structured-document path-language address for at least one selected selectable part the simplified form of the structured-document path-language address being produced by removing one or more unique namespaces;building a structured-document path-language expression comprising the structured-document path-language function and the structured-document path-language address, andaltering the structured-document path-language expression to treat a blank value as a zero if the selected part includes one or more blank values.
  • 21. The method of claim 20, wherein the simplified form describes an operation of the structured-document path-language function.
  • 22. The method of claim 20, wherein the simplified form comprises a textual string of greater length than a machine-readable syntax for the structured-document path-language function.
  • 23. The method of claim 20, further comprising presenting an explanation of the structured-document path-language function.
  • 24. The method of claim 20, wherein the structured-document path-language function is a function of eXtensible Markup Language (XML) Path language (XPath).
  • 25. A method comprising: presenting a graphical rendering of a hierarchically structured electronic document;receiving selection of a part of the graphical rendering, the selected part corresponding to a node on a hierarchical schema for the hierarchically structured electronic document, the hierarchical schema comprising a plurality of nodes;generating a structured-document path-language addressing syntax for the node;automatically simplifying the structured-document path-language addressing syntax by abbreviating the structured-document path-language address by removing one or more unique name spaces;presenting the simplified structured-document path-language syntax; andbuilding a structured-document path-language expression comprising the structured-document path-language addressing syntax and a syntax for a structured-document path-language function, the building being effective to enable the structured-document path-language expression to treat a blank value of the selected node as a zero.
  • 26. The method of claim 25, wherein the act of simplifying comprises simplifying the structured-document path-language addressing syntax to a minimally logical form.
  • 27. The method of claim 25, wherein the act of presenting the graphical rendering of the hierarchically structured electronic document comprises presenting the hierarchical schema for the electronic document having selectable icons by which one or more of the plurality of nodes are able to be selected.
  • 28. The method of claim 25, wherein the act of presenting the graphical rendering of the hierarchically structured electronic document comprises presenting a rendering of the electronic document having selectable fields by which one or more of the plurality of nodes are able to be selected.
  • 29. The method of claim 25, further comprising: receiving syntax for a structured-document path-language function; andbuilding a structured-document path-language expression comprising the structured-document path-language addressing syntax and the syntax for the structured-document path-language function.
  • 30. The method of claim 29, further comprising determining if the structured-document path-language expression is syntactically correct.
  • 31. The method of claim 29, further comprising presenting information showing a syntactical error in the structured-document path-language expression if the structured-document path-language expression is syntactically incorrect.
  • 32. The method of claim 25, wherein the structured-document path-language comprises XML Path language (XPath).
  • 33. A method comprising: receiving a structured-document path-language expression addressing a node of a hierarchically structured electronic document, the node corresponding to a user selection of a graphical rendering of a part of the hierarchically structured electronic document, and the node being associated with a simplified structured-document path-language address automatically produced by removing one or more unique name spaces; andaltering the structured-document path-language expression effective to enable the structured-document path-language expression to treat a blank value of the node as a zero.
  • 34. The method of claim 33, wherein the act of altering is performed without user interaction.
  • 35. The method of claim 33, wherein the structured-document path-language expression comprises a mathematical function and wherein the act of altering is effective to enable the structured-document path-language expression to produce a numerical result when evaluated.
  • 36. The method of claim 33, wherein the structured-document path-language expression comprises XML Path Language (XPath) and the hierarchically structured electronic document comprises XML.
US Referenced Citations (662)
Number Name Date Kind
4201978 Nally May 1980 A
4498147 Agnew et al. Feb 1985 A
4514800 Gruner et al. Apr 1985 A
4564752 Lepic et al. Jan 1986 A
4641274 Swank Feb 1987 A
4674040 Barker et al. Jun 1987 A
4723211 Barker et al. Feb 1988 A
4739477 Barker et al. Apr 1988 A
4815029 Barker et al. Mar 1989 A
4847749 Collins et al. Jul 1989 A
4910663 Bailey Mar 1990 A
4933880 Borgendal et al. Jun 1990 A
4962475 Hernandez et al. Oct 1990 A
5025484 Yamanari et al. Jun 1991 A
5072412 Henderson, Jr. et al. Dec 1991 A
5179703 Evans Jan 1993 A
5182709 Makus Jan 1993 A
5187786 Densmore et al. Feb 1993 A
5191645 Carlucci et al. Mar 1993 A
5195183 Miller et al. Mar 1993 A
5204947 Bernstein et al. Apr 1993 A
5206951 Khoyi et al. Apr 1993 A
5218672 Morgan et al. Jun 1993 A
5220649 Forcier Jun 1993 A
5222160 Sakai et al. Jun 1993 A
5228100 Takeda et al. Jul 1993 A
5237680 Adams et al. Aug 1993 A
5249275 Srivastava Sep 1993 A
5274803 Dubin et al. Dec 1993 A
5297249 Bernstein et al. Mar 1994 A
5297283 Kelly, Jr. et al. Mar 1994 A
5313631 Kao May 1994 A
5313646 Hendricks et al. May 1994 A
5317686 Salas et al. May 1994 A
5333317 Dann Jul 1994 A
5339423 Beitel et al. Aug 1994 A
5339424 Fushimi Aug 1994 A
5341478 Travis, Jr. et al. Aug 1994 A
5369766 Nakano et al. Nov 1994 A
5369778 San Soucie et al. Nov 1994 A
5371675 Greif et al. Dec 1994 A
5377323 Vasudevan Dec 1994 A
5379419 Heffeman et al. Jan 1995 A
5381547 Flug et al. Jan 1995 A
5390325 Miller Feb 1995 A
5396623 McCall et al. Mar 1995 A
5408665 Fitzgerald Apr 1995 A
5410646 Tondevold et al. Apr 1995 A
5410688 Williams et al. Apr 1995 A
5412772 Monson May 1995 A
5434975 Allen Jul 1995 A
5436637 Gayraud et al. Jul 1995 A
5438659 Notess et al. Aug 1995 A
5440744 Jacobson et al. Aug 1995 A
5446842 Schaeffer et al. Aug 1995 A
5455875 Chevion et al. Oct 1995 A
5459865 Heninger et al. Oct 1995 A
5481722 Skinner Jan 1996 A
5497489 Menne Mar 1996 A
5504898 Klein Apr 1996 A
5517655 Collins et al. May 1996 A
5535389 Elder et al. Jul 1996 A
5542070 LeBlanc et al. Jul 1996 A
5550976 Henderson et al. Aug 1996 A
5551035 Arnold et al. Aug 1996 A
5555325 Burger Sep 1996 A
5566330 Sheffield Oct 1996 A
5572643 Judson Nov 1996 A
5572648 Bibayan Nov 1996 A
5577252 Nelson et al. Nov 1996 A
5581686 Koppolu et al. Dec 1996 A
5581760 Atkinson et al. Dec 1996 A
5600789 Parker et al. Feb 1997 A
5602996 Powers, III et al. Feb 1997 A
5608720 Biegel et al. Mar 1997 A
5625783 Ezekiel et al. Apr 1997 A
5627979 Chang et al. May 1997 A
5630126 Redpath May 1997 A
5634121 Tracz et al. May 1997 A
5634124 Khoyi et al. May 1997 A
5640544 Onodera et al. Jun 1997 A
5644738 Goldman et al. Jul 1997 A
5649099 Theimer et al. Jul 1997 A
5659729 Nielsen Aug 1997 A
5664178 Sinofsky Sep 1997 A
5668966 Ono et al. Sep 1997 A
5669005 Curbow et al. Sep 1997 A
5682536 Atkinson et al. Oct 1997 A
5689667 Kurtenbach Nov 1997 A
5689703 Atkinson et al. Nov 1997 A
5704029 Wright, Jr. Dec 1997 A
5706501 Horikiri et al. Jan 1998 A
5717939 Bricklin et al. Feb 1998 A
5721824 Taylor Feb 1998 A
5740439 Atkinson et al. Apr 1998 A
5742504 Meyer et al. Apr 1998 A
5745683 Lee et al. Apr 1998 A
5745712 Turpin et al. Apr 1998 A
5748807 Lopresti et al. May 1998 A
5758184 Lucovsky et al. May 1998 A
5758358 Ebbo May 1998 A
5761408 Kolawa et al. Jun 1998 A
5761683 Logan et al. Jun 1998 A
5764984 Loucks Jun 1998 A
5764985 Smale Jun 1998 A
5778372 Cordell et al. Jul 1998 A
5778402 Gipson Jul 1998 A
5784555 Stone Jul 1998 A
5790796 Sadowsky Aug 1998 A
5798757 Smith Aug 1998 A
5801701 Koppolu et al. Sep 1998 A
5802304 Stone Sep 1998 A
5806079 Rivette et al. Sep 1998 A
5815830 Anthony Sep 1998 A
5826265 Van Huben et al. Oct 1998 A
5835777 Staelin Nov 1998 A
5838906 Doyle et al. Nov 1998 A
5842018 Atkinson et al. Nov 1998 A
5845077 Fawcett Dec 1998 A
5845090 Collins, III et al. Dec 1998 A
5854630 Nielsen Dec 1998 A
5859973 Carpenter et al. Jan 1999 A
5862372 Morris et al. Jan 1999 A
5862379 Rubin et al. Jan 1999 A
5864819 De Armas et al. Jan 1999 A
5907704 Gudmundson et al. May 1999 A
5910895 Proskauer et al. Jun 1999 A
5911776 Guck Jun 1999 A
5915112 Boutcher Jun 1999 A
5922072 Hutchinson et al. Jul 1999 A
5928363 Ruvolo Jul 1999 A
5929858 Shibata et al. Jul 1999 A
5940075 Mutschler, III et al. Aug 1999 A
5950010 Hesse et al. Sep 1999 A
5956481 Walsh et al. Sep 1999 A
5960199 Brodsky et al. Sep 1999 A
5963964 Nielsen Oct 1999 A
5973696 Agranat et al. Oct 1999 A
5974454 Apfel et al. Oct 1999 A
5982370 Kamper Nov 1999 A
5983348 Ji Nov 1999 A
5987480 Donohue et al. Nov 1999 A
5991710 Papineni et al. Nov 1999 A
5991731 Colon et al. Nov 1999 A
5991877 Luckenbaugh Nov 1999 A
5995103 Ashe Nov 1999 A
5999740 Rowley Dec 1999 A
6005570 Gayraud et al. Dec 1999 A
6014135 Fernandes Jan 2000 A
6016520 Facq et al. Jan 2000 A
6018743 Xu Jan 2000 A
6026379 Haller et al. Feb 2000 A
6026416 Kanerva et al. Feb 2000 A
6031989 Cordell Feb 2000 A
6035297 Van Huben et al. Mar 2000 A
6035309 Dauerer et al. Mar 2000 A
6044205 Reed et al. Mar 2000 A
6052531 Waldin et al. Apr 2000 A
6052710 Saliba et al. Apr 2000 A
6054987 Richardson Apr 2000 A
6070184 Blount et al. May 2000 A
6072870 Nguyen et al. Jun 2000 A
6078326 Kilmer et al. Jun 2000 A
6078327 Liman et al. Jun 2000 A
6078924 Ainsbury et al. Jun 2000 A
6081610 Dwork et al. Jun 2000 A
6084585 Kraft et al. Jul 2000 A
6088708 Burch et al. Jul 2000 A
6091417 Lefkowitz Jul 2000 A
6094657 Hailpern et al. Jul 2000 A
6097382 Rosen et al. Aug 2000 A
6098081 Heidorn et al. Aug 2000 A
6108637 Blumenau Aug 2000 A
6108783 Krawczyk et al. Aug 2000 A
6115646 Fiszman et al. Sep 2000 A
6121965 Kenney et al. Sep 2000 A
6122647 Horowitz et al. Sep 2000 A
6144969 Inokuchi et al. Nov 2000 A
6151624 Teare et al. Nov 2000 A
6154128 Wookey et al. Nov 2000 A
6163772 Kramer et al. Dec 2000 A
6167521 Smith et al. Dec 2000 A
6167523 Strong Dec 2000 A
6182094 Humpleman et al. Jan 2001 B1
6182095 Leymaster et al. Jan 2001 B1
6188401 Peyer Feb 2001 B1
6191797 Politis Feb 2001 B1
6192367 Hawley et al. Feb 2001 B1
6195661 Filepp et al. Feb 2001 B1
6199204 Donohue Mar 2001 B1
6209128 Gerard et al. Mar 2001 B1
6216152 Wong et al. Apr 2001 B1
6219698 Iannucci et al. Apr 2001 B1
6225996 Gibb et al. May 2001 B1
6235027 Herzon May 2001 B1
6253366 Mutschler, III Jun 2001 B1
6253374 Dresevic et al. Jun 2001 B1
6263313 Milsted et al. Jul 2001 B1
6266810 Tanaka et al. Jul 2001 B1
6268852 Lindhorst et al. Jul 2001 B1
6272506 Bell Aug 2001 B1
6275227 DeStefano Aug 2001 B1
6275599 Adler et al. Aug 2001 B1
6279042 Ouchi Aug 2001 B1
6281896 Alimpich et al. Aug 2001 B1
6282711 Halpern et al. Aug 2001 B1
6286033 Kishinsky et al. Sep 2001 B1
6292897 Gennaro et al. Sep 2001 B1
6297819 Furst Oct 2001 B1
6300948 Geller et al. Oct 2001 B1
6307955 Zank et al. Oct 2001 B1
6308179 Petersen et al. Oct 2001 B1
6308273 Goertzel et al. Oct 2001 B1
6311271 Gennaro et al. Oct 2001 B1
6314415 Mukherjee Nov 2001 B1
6321259 Ouellette et al. Nov 2001 B1
6321334 Jerger et al. Nov 2001 B1
6327628 Anuff et al. Dec 2001 B1
6331864 Coco et al. Dec 2001 B1
6342907 Petty et al. Jan 2002 B1
6343149 Motoiwa Jan 2002 B1
6343302 Graham Jan 2002 B1
6345256 Milsted et al. Feb 2002 B1
6345278 Hitchcock et al. Feb 2002 B1
6345361 Jerger et al. Feb 2002 B1
6347323 Garber et al. Feb 2002 B1
6349408 Smith Feb 2002 B1
6351574 Yair et al. Feb 2002 B1
6353851 Anupam et al. Mar 2002 B1
6353926 Parthesarathy et al. Mar 2002 B1
6356906 Lippert et al. Mar 2002 B1
6357038 Scouten Mar 2002 B1
6366907 Fanning et al. Apr 2002 B1
6366912 Wallent et al. Apr 2002 B1
6367013 Bisbee et al. Apr 2002 B1
6369840 Barnett et al. Apr 2002 B1
6369841 Salomon et al. Apr 2002 B1
6374402 Schmeidler et al. Apr 2002 B1
6381742 Forbes et al. Apr 2002 B2
6381743 Mutschler, III Apr 2002 B1
6389434 Rivette et al. May 2002 B1
6393456 Ambler et al. May 2002 B1
6396488 Simmons et al. May 2002 B1
6405221 Levine et al. Jun 2002 B1
6405238 Votipka Jun 2002 B1
6408311 Baisley et al. Jun 2002 B1
6414700 Kurtenbach et al. Jul 2002 B1
6421070 Ramos et al. Jul 2002 B1
6421656 Cheng et al. Jul 2002 B1
6425125 Fries et al. Jul 2002 B1
6429885 Saib et al. Aug 2002 B1
6434563 Pasquali et al. Aug 2002 B1
6434564 Ebert Aug 2002 B2
6442563 Bacon et al. Aug 2002 B1
6442755 Lemmons et al. Aug 2002 B1
6446110 Lection et al. Sep 2002 B1
6449617 Quinn et al. Sep 2002 B1
6457009 Bollay Sep 2002 B1
6460058 Koppolu et al. Oct 2002 B2
6463419 Kluss Oct 2002 B1
6470349 Heninger et al. Oct 2002 B1
6473800 Jerger et al. Oct 2002 B1
6476828 Burkett et al. Nov 2002 B1
6476833 Moshfeghi Nov 2002 B1
6477544 Bolosky et al. Nov 2002 B1
6480860 Monday Nov 2002 B1
6487566 Sundaresan Nov 2002 B1
6490601 Markus et al. Dec 2002 B1
6493702 Adar et al. Dec 2002 B1
6501864 Eguchi et al. Dec 2002 B1
6502101 Verprauskus et al. Dec 2002 B1
6502103 Frey et al. Dec 2002 B1
6505200 Ims et al. Jan 2003 B1
6505230 Mohan et al. Jan 2003 B1
6505300 Chan et al. Jan 2003 B2
6507856 Chen et al. Jan 2003 B1
6516322 Meredith Feb 2003 B1
6519617 Wanderski et al. Feb 2003 B1
RE38070 Spies et al. Apr 2003 E
6546546 Van Doorn et al. Apr 2003 B1
6549221 Brown et al. Apr 2003 B1
6549878 Lowry et al. Apr 2003 B1
6549922 Srivastava et al. Apr 2003 B1
6553402 Makarios et al. Apr 2003 B1
6560616 Garber May 2003 B1
6560620 Ching May 2003 B1
6560640 Smethers May 2003 B2
6563514 Samar May 2003 B1
6571253 Thompson et al. May 2003 B1
6578144 Gennaro et al. Jun 2003 B1
6581061 Graham Jun 2003 B2
6584469 Chiang et al. Jun 2003 B1
6584548 Bourne et al. Jun 2003 B1
6585778 Hind et al. Jul 2003 B1
6589290 Maxwell et al. Jul 2003 B1
6594686 Edwards et al. Jul 2003 B1
6598219 Lau Jul 2003 B1
6603489 Edlund et al. Aug 2003 B1
6604099 Chung et al. Aug 2003 B1
6606606 Starr Aug 2003 B2
6609200 Anderson et al. Aug 2003 B2
6611822 Beams et al. Aug 2003 B1
6611840 Baer et al. Aug 2003 B1
6611843 Jacobs Aug 2003 B1
6613098 Sorge et al. Sep 2003 B1
6615276 Mastrianni et al. Sep 2003 B1
6629109 Koshisaka Sep 2003 B1
6631357 Perkowski Oct 2003 B1
6631379 Cox Oct 2003 B2
6631497 Jamshidi et al. Oct 2003 B1
6631519 Nicholson et al. Oct 2003 B1
6632251 Rutten et al. Oct 2003 B1
6635089 Burkett et al. Oct 2003 B1
6636845 Chau et al. Oct 2003 B2
6643633 Chau et al. Nov 2003 B2
6643652 Helgeson et al. Nov 2003 B2
6643684 Malkin et al. Nov 2003 B1
6651217 Kennedy et al. Nov 2003 B1
6654737 Nunez Nov 2003 B1
6654932 Bahrs et al. Nov 2003 B1
6658417 Stakutis et al. Dec 2003 B1
6658622 Aiken et al. Dec 2003 B1
6661920 Skinner Dec 2003 B1
6668369 Krebs et al. Dec 2003 B1
6671805 Brown et al. Dec 2003 B1
6675202 Perttunen Jan 2004 B1
6678717 Schneider Jan 2004 B1
6681370 Gounares et al. Jan 2004 B2
6691230 Bardon Feb 2004 B1
6691281 Sorge et al. Feb 2004 B1
6697944 Jones et al. Feb 2004 B1
6701434 Rohatgi Mar 2004 B1
6701486 Weber et al. Mar 2004 B1
6704906 Yankovich et al. Mar 2004 B1
6711679 Guski et al. Mar 2004 B1
6720985 Silverbrook et al. Apr 2004 B1
6725426 Pavlov Apr 2004 B1
6728755 de Ment Apr 2004 B1
6735721 Morrow et al. May 2004 B1
6745367 Bates et al. Jun 2004 B1
6748385 Rodkin et al. Jun 2004 B1
6751777 Bates et al. Jun 2004 B2
6754874 Richman Jun 2004 B1
6757826 Paltenghe Jun 2004 B1
6757868 Glaser et al. Jun 2004 B1
6760723 Oshinsky et al. Jul 2004 B2
6763343 Brooke et al. Jul 2004 B1
6772139 Smith, III Aug 2004 B1
6772165 O'Carroll Aug 2004 B2
6774926 Ellis et al. Aug 2004 B1
6779154 Nussbaum et al. Aug 2004 B1
6781609 Barker et al. Aug 2004 B1
6782144 Bellavita et al. Aug 2004 B2
6799299 Li et al. Sep 2004 B1
6801929 Donoho et al. Oct 2004 B1
6816849 Halt, Jr. Nov 2004 B1
6828992 Freeman et al. Dec 2004 B1
6845380 Su et al. Jan 2005 B2
6845499 Srivastava et al. Jan 2005 B2
6847387 Roth Jan 2005 B2
6848078 Birsan et al. Jan 2005 B1
6850895 Brodersen et al. Feb 2005 B2
6871220 Rajan et al. Mar 2005 B1
6874130 Baweja et al. Mar 2005 B1
6876996 Czajkowski et al. Apr 2005 B2
6889359 Conner et al. May 2005 B1
6901403 Bata et al. May 2005 B1
6915454 Moore et al. Jul 2005 B1
6931532 Davis et al. Aug 2005 B1
6941510 Ozzie et al. Sep 2005 B1
6941511 Hind et al. Sep 2005 B1
6941521 Lin et al. Sep 2005 B2
6948129 Loghmani Sep 2005 B1
6948133 Haley Sep 2005 B2
6948135 Ruthfield et al. Sep 2005 B1
6950980 Malcolm Sep 2005 B1
6961897 Peel, Jr. et al. Nov 2005 B1
6963875 Moore et al. Nov 2005 B2
6968503 Chang et al. Nov 2005 B1
6968505 Stoll et al. Nov 2005 B2
6993714 Kaler et al. Jan 2006 B2
6996776 Makely et al. Feb 2006 B1
6996781 Myers et al. Feb 2006 B1
7000179 Yankovich et al. Feb 2006 B2
7002560 Graham Feb 2006 B2
7003722 Rothchiller et al. Feb 2006 B2
7010580 Fu et al. Mar 2006 B1
7020869 Abriari et al. Mar 2006 B2
7024417 Russakovsky et al. Apr 2006 B1
7032170 Poulose Apr 2006 B2
7036072 Sulistio et al. Apr 2006 B1
7039875 Khalfay et al. May 2006 B2
7051273 Holt et al. May 2006 B1
7058663 Johnston et al. Jun 2006 B2
7062764 Cohen et al. Jun 2006 B2
7065493 Homsi Jun 2006 B1
7080083 Kim et al. Jul 2006 B2
7080325 Treibach-Heck et al. Jul 2006 B2
7086009 Resnick et al. Aug 2006 B2
7086042 Abe et al. Aug 2006 B2
7088374 David et al. Aug 2006 B2
7100147 Miller et al. Aug 2006 B2
7103611 Murthy et al. Sep 2006 B2
7106888 Silverbrook et al. Sep 2006 B1
7107282 Yalmanchi Sep 2006 B1
7107521 Santos Sep 2006 B2
7120863 Wang Oct 2006 B1
7130885 Chandra et al. Oct 2006 B2
7143341 Kohli Nov 2006 B1
7146564 Kim et al. Dec 2006 B2
7152205 Day et al. Dec 2006 B2
7168035 Bell et al. Jan 2007 B1
7178166 Taylor et al. Feb 2007 B1
7190376 Tonisson Mar 2007 B1
7191394 Ardeleanu et al. Mar 2007 B1
7213200 Abe et al. May 2007 B2
7236982 Zlatanov et al. Jun 2007 B2
7272789 O'Brien Sep 2007 B2
7281018 Begun et al. Oct 2007 B1
7296017 Larcheveque et al. Nov 2007 B2
7313758 Kozlov Dec 2007 B2
7316003 Dulepet et al. Jan 2008 B1
7318237 Moriconi et al. Jan 2008 B2
7334178 Stanciu et al. Feb 2008 B1
7346610 Ruthfield et al. Mar 2008 B2
7346848 Ruthfield et al. Mar 2008 B1
7350141 Kotler et al. Mar 2008 B2
20010007109 Lange Jul 2001 A1
20010022592 Alimpich et al. Sep 2001 A1
20010024195 Hayakawa Sep 2001 A1
20010037345 Kiernan, et al. Nov 2001 A1
20010054004 Powers Dec 2001 A1
20010056429 Moore et al. Dec 2001 A1
20010056460 Sahota et al. Dec 2001 A1
20020010700 Wotring Jan 2002 A1
20020010743 Ryan et al. Jan 2002 A1
20020010746 Jilk et al. Jan 2002 A1
20020010855 Reshef et al. Jan 2002 A1
20020013788 Pennell et al. Jan 2002 A1
20020019941 Chan et al. Feb 2002 A1
20020023113 Hsing et al. Feb 2002 A1
20020026441 Kutay et al. Feb 2002 A1
20020026461 Kutay et al. Feb 2002 A1
20020032590 Anand et al. Mar 2002 A1
20020032692 Suzuki et al. Mar 2002 A1
20020032706 Perla et al. Mar 2002 A1
20020032768 Voskuil Mar 2002 A1
20020035579 Wang et al. Mar 2002 A1
20020035581 Reynar et al. Mar 2002 A1
20020040469 Pramberger Apr 2002 A1
20020054126 Gamon May 2002 A1
20020057297 Grimes et al. May 2002 A1
20020065798 Bostleman et al. May 2002 A1
20020065847 Furukawa et al. May 2002 A1
20020070973 Croley Jun 2002 A1
20020078074 Cho et al. Jun 2002 A1
20020078103 Gorman et al. Jun 2002 A1
20020083318 Larose Jun 2002 A1
20020099952 Lambert et al. Jul 2002 A1
20020100027 Binding et al. Jul 2002 A1
20020112224 Cox Aug 2002 A1
20020129056 Conant Sep 2002 A1
20020133484 Chau et al. Sep 2002 A1
20020152222 Holbrook Oct 2002 A1
20020152244 Dean et al. Oct 2002 A1
20020156772 Chau et al. Oct 2002 A1
20020156846 Rawat et al. Oct 2002 A1
20020156929 Hekmatpour Oct 2002 A1
20020169752 Kusama et al. Nov 2002 A1
20020169789 Kutay et al. Nov 2002 A1
20020174147 Wang et al. Nov 2002 A1
20020174417 Sijacic et al. Nov 2002 A1
20020178380 Wolf et al. Nov 2002 A1
20020184219 Preisig et al. Dec 2002 A1
20020188597 Kern et al. Dec 2002 A1
20020188613 Chakraborty et al. Dec 2002 A1
20020194219 Bradley et al. Dec 2002 A1
20020196281 Audleman et al. Dec 2002 A1
20020196288 Emrani Dec 2002 A1
20020198891 Li et al. Dec 2002 A1
20020198935 Crandall, Sr. et al. Dec 2002 A1
20030004951 Chokshi Jan 2003 A1
20030007000 Carlson et al. Jan 2003 A1
20030014397 Chau et al. Jan 2003 A1
20030018668 Britton et al. Jan 2003 A1
20030020746 Chen et al. Jan 2003 A1
20030023641 Gorman et al. Jan 2003 A1
20030026507 Zlotnick Feb 2003 A1
20030028550 Lee et al. Feb 2003 A1
20030037303 Bodlaender et al. Feb 2003 A1
20030043986 Creamer et al. Mar 2003 A1
20030046665 IIin Mar 2003 A1
20030048301 Menninger Mar 2003 A1
20030051243 Lemmons et al. Mar 2003 A1
20030055811 Stork et al. Mar 2003 A1
20030055828 Koch et al. Mar 2003 A1
20030056198 Al-Azzawe et al. Mar 2003 A1
20030061386 Brown Mar 2003 A1
20030061567 Brown et al. Mar 2003 A1
20030084424 Reddy et al. May 2003 A1
20030093755 O'Carroll May 2003 A1
20030110443 Yankovich et al. Jun 2003 A1
20030120578 Newman Jun 2003 A1
20030120651 Bernstein et al. Jun 2003 A1
20030120659 Anandampillai Jun 2003 A1
20030120671 Kim et al. Jun 2003 A1
20030120686 Kim et al. Jun 2003 A1
20030126555 Aggarwal et al. Jul 2003 A1
20030128196 Lapstun et al. Jul 2003 A1
20030135825 Gertner et al. Jul 2003 A1
20030140132 Champagne et al. Jul 2003 A1
20030142072 Lapstun et al. Jul 2003 A1
20030149934 Worden Aug 2003 A1
20030158897 Ben-Natan et al. Aug 2003 A1
20030163285 Nakamura et al. Aug 2003 A1
20030167277 Hejlsberg et al. Sep 2003 A1
20030182268 Lal Sep 2003 A1
20030182327 Ramanujam et al. Sep 2003 A1
20030187756 Klivington, Eva T., et al. Oct 2003 A1
20030187930 Ghaffar et al. Oct 2003 A1
20030188260 Jensen et al. Oct 2003 A1
20030189593 Yarvin Oct 2003 A1
20030192008 Lee Oct 2003 A1
20030200506 Abe et al. Oct 2003 A1
20030204511 Brundage Oct 2003 A1
20030204814 Elo et al. Oct 2003 A1
20030205615 Marappan Nov 2003 A1
20030212664 Breining et al. Nov 2003 A1
20030212902 van der Made Nov 2003 A1
20030217053 Bachman et al. Nov 2003 A1
20030220930 Milleker et al. Nov 2003 A1
20030225469 DeRemer et al. Dec 2003 A1
20030225768 Chaudhuri Dec 2003 A1
20030225829 Pena et al. Dec 2003 A1
20030226132 Tondreau et al. Dec 2003 A1
20030233374 Spinola et al. Dec 2003 A1
20030233644 Cohen et al. Dec 2003 A1
20030236859 Vaschillo et al. Dec 2003 A1
20030236903 Piotrowski Dec 2003 A1
20030237046 Parker et al. Dec 2003 A1
20030237047 Borson Dec 2003 A1
20040002939 Arora Jan 2004 A1
20040002950 Brennan et al. Jan 2004 A1
20040003031 Brown et al. Jan 2004 A1
20040003353 Rivera et al. Jan 2004 A1
20040003389 Reynar et al. Jan 2004 A1
20040010752 Chan et al. Jan 2004 A1
20040024842 Witt Feb 2004 A1
20040030991 Hepworth et al. Feb 2004 A1
20040039990 Bakar et al. Feb 2004 A1
20040039993 Kougiouris et al. Feb 2004 A1
20040044961 Pesenson Mar 2004 A1
20040044965 Toyama et al. Mar 2004 A1
20040054966 Busch et al. Mar 2004 A1
20040059754 Barghout et al. Mar 2004 A1
20040073565 Kaufman et al. Apr 2004 A1
20040073868 Easter et al. Apr 2004 A1
20040078756 Napper et al. Apr 2004 A1
20040083426 Sahu Apr 2004 A1
20040088647 Miller et al. May 2004 A1
20040088652 Abe et al. May 2004 A1
20040093596 Koyano May 2004 A1
20040107367 Kisters Jun 2004 A1
20040117769 Lauzon et al. Jun 2004 A1
20040123277 Schrader et al. Jun 2004 A1
20040146199 Berkner et al. Jul 2004 A1
20040148178 Brain Jul 2004 A1
20040163041 Engel Aug 2004 A1
20040172442 Ripley Sep 2004 A1
20040181711 Johnson et al. Sep 2004 A1
20040186762 Beaven et al. Sep 2004 A1
20040189716 Paoli et al. Sep 2004 A1
20040194035 Chakraborty Sep 2004 A1
20040205473 Fisher et al. Oct 2004 A1
20040205525 Murren et al. Oct 2004 A1
20040205534 Koelle Oct 2004 A1
20040205571 Adler Oct 2004 A1
20040205592 Huang Oct 2004 A1
20040205605 Adler et al. Oct 2004 A1
20040205653 Hadfield et al. Oct 2004 A1
20040205671 Sukehiro et al. Oct 2004 A1
20040210599 Friedman et al. Oct 2004 A1
20040210645 Kouznetsov et al. Oct 2004 A1
20040221238 Cifra et al. Nov 2004 A1
20040221245 Chickles et al. Nov 2004 A1
20040237030 Malkin Nov 2004 A1
20040260593 Abraham-Fuchs et al. Dec 2004 A1
20040261019 Imamura et al. Dec 2004 A1
20040268229 Paoli et al. Dec 2004 A1
20050004893 Sangroniz Jan 2005 A1
20050005248 Rockey et al. Jan 2005 A1
20050015279 Rucker Jan 2005 A1
20050015732 Vedula et al. Jan 2005 A1
20050022115 Baumgartner et al. Jan 2005 A1
20050028073 Henry et al. Feb 2005 A1
20050033728 James Feb 2005 A1
20050038711 Marlelo Feb 2005 A1
20050055627 Lloyd et al. Mar 2005 A1
20050060324 Johnson et al. Mar 2005 A1
20050060721 Choudhary et al. Mar 2005 A1
20050065933 Goering Mar 2005 A1
20050065936 Goering Mar 2005 A1
20050066287 Tattrie et al. Mar 2005 A1
20050071752 Marlatt Mar 2005 A1
20050076049 Qubti et al. Apr 2005 A1
20050091285 Krishnan et al. Apr 2005 A1
20050091305 Lange et al. Apr 2005 A1
20050097536 Bernstein et al. May 2005 A1
20050102370 Lin et al. May 2005 A1
20050102612 Allan et al. May 2005 A1
20050108104 Woo May 2005 A1
20050108624 Carrier May 2005 A1
20050114757 Sahota et al. May 2005 A1
20050132043 Wang et al. Jun 2005 A1
20050132196 Dietl Jun 2005 A1
20050138031 Wefers Jun 2005 A1
20050138086 Pecht-Seibert Jun 2005 A1
20050138539 Bravery et al. Jun 2005 A1
20050149375 Wefers Jul 2005 A1
20050160398 Bjornson et al. Jul 2005 A1
20050171746 Thalhammer-Reyero Aug 2005 A1
20050198086 Moore Sep 2005 A1
20050198125 Beck et al. Sep 2005 A1
20050198247 Perry et al. Sep 2005 A1
20050210263 Levas et al. Sep 2005 A1
20050223063 Chang et al. Oct 2005 A1
20050223320 Brintzenhofe et al. Oct 2005 A1
20050246304 Knight et al. Nov 2005 A1
20050262112 Moore Nov 2005 A1
20050268222 Cheng Dec 2005 A1
20060020586 Prompt et al. Jan 2006 A1
20060026534 Ruthfield et al. Feb 2006 A1
20060031757 Vincent, III Feb 2006 A9
20060036995 Chickles et al. Feb 2006 A1
20060041838 Khan Feb 2006 A1
20060059107 Elmore et al. Mar 2006 A1
20060059434 Boss et al. Mar 2006 A1
20060069605 Hatoun Mar 2006 A1
20060069985 Friedman et al. Mar 2006 A1
20060080657 Goodman Apr 2006 A1
20060085409 Rys et al. Apr 2006 A1
20060101037 Brill et al. May 2006 A1
20060101051 Carr et al. May 2006 A1
20060129978 Abriani et al. Jun 2006 A1
20060143220 Spencer, Jr. Jun 2006 A1
20060161559 Bordawekar et al. Jul 2006 A1
20060173865 Fong Aug 2006 A1
20060200754 Kablesh et al. Sep 2006 A1
20070036433 Teutsch Feb 2007 A1
20070050719 Lui et al. Mar 2007 A1
20070061467 Essey Mar 2007 A1
20070061706 Cupala Mar 2007 A1
20070074106 Ardeleanu Mar 2007 A1
20070094589 Paoli Apr 2007 A1
20070100877 Paoli May 2007 A1
20070101280 Paoli May 2007 A1
20070118803 Walker et al. May 2007 A1
20070130504 Betancourt et al. Jun 2007 A1
20070186157 Walker et al. Aug 2007 A1
20070208606 MacKay et al. Sep 2007 A1
20070208769 Boehm et al. Sep 2007 A1
20080028340 Davis Jan 2008 A1
Foreign Referenced Citations (20)
Number Date Country
0841615 Nov 1999 EP
0961197 Dec 1999 EP
1076290 Feb 2001 EP
1221661 Jul 2002 EP
63085960 Apr 1988 JP
401173140 Jul 1989 JP
3191429 Aug 1991 JP
4225466 Aug 1992 JP
5314152 Nov 1993 JP
406014105 Jan 1994 JP
6139241 May 1994 JP
6180697 Jun 1994 JP
6180698 Jun 1994 JP
2000132436 May 2000 JP
2002183652 Jun 2002 JP
2003173288 Jun 2003 JP
WO 9924945 May 1999 WO
WO 9956207 Nov 1999 WO
WO 0144934 Jun 2001 WO
WO0157720 Aug 2001 WO
Related Publications (1)
Number Date Country
20060074930 A1 Apr 2006 US