The present disclosure relates to narrow beam divergence semiconductor sources and their incorporation into structured light projection systems.
Structured light projection systems can be used, for example, to obtain depth and surface information of objects in the scene. Such systems sometimes use light emitting devices such as vertical-cavity surface-emitting lasers (VCSELs). A vertical-cavity surface-emitting laser (VCSEL) is a semiconductor-based laser diode that can emit a highly efficient optical beam vertically, for example, from its top surface. In VCSELs, high reflectivity mirrors are generally required. The high reflectivity mirrors can be implemented, for example, as distributed Bragg reflectors (DBR) (e.g., quarter-wave-thick layers of alternating high and low refractive indexes), made of semiconductor or dielectric material. To achieve a high reflectivity with a reasonable number of layers, a high index contrast is provided (e.g., a high-contrast DBR). However, use of high-contrast DBR can generate a broad stop-band and, in the case of VCSELs with a long internal monolithic cavity, this will allow multiple longitudinal modes to lase. The longitudinal modes can, in some applications, give rise to undesirable or unstable operation (e.g., “kinks” in the power versus current curve; mode-hoping).
The present disclosure describes narrow beam divergence semiconductor sources and their integration into structured light projection systems.
For example, in one aspect, a structured light projector includes an array of narrow beam divergence semiconductor sources, each narrow beam divergence semiconductor source within the array being operable to generate a beam with a substantially narrow beam divergence and substantially uniform beam intensity. Multiple electrical contacts are operable to direct electric current to the array of narrow beam divergence semiconductor sources. A projection lens is operable to generate an image of the array of narrow beam divergence semiconductor source.
Each of the narrow beam divergence semiconductor sources can include an extended length mirror (also referred to sometimes as a hybrid mirror) that can help suppress one or more longitudinal and/or transverse modes such that the beam divergence and/or the spectral width of emission is substantially reduced.
Some implementations include one or more of the following features. For example, each narrow beam divergence semiconductor source can include an optical resonant cavity including a high reflection mirror having first and second sides, an extended length mirror having first and second sides, and an active region. The high reflection mirror and the extended length mirror can be disposed on distal sides of the active region such that the first side of the high reflection mirror is coupled to a first side of the active region and the first side of the extended length mirror is coupled to a second side of the active region opposing the first. Electrical contacts are operable to direct electric current to the active region. The extended length mirror and the high reflection mirror can be operable to suppress one or more longitudinal and/or transverse modes. In some implementations, only one longitudinal mode lases.
The array can include any of various types of narrow beam divergence semiconductor sources including, for example, VCSELs, VECSELs, LEDs and RC-LEDs, and edge-emitting lasers, such as those described in greater detail below.
Other aspects, features and various advantages will be readily apparent fro the following detailed description, the accompanying drawings, and the claims.
The present disclosure describes VCSELs having low divergence and/or operable for high single-mode power in some cases. In particular, a hybrid mirror is provided by combining a narrow bandwidth mirror with a high-reflectivity mirror, such that the narrow bandwidth mirror is place within the laser cavity (i.e., between two high-reflectivity mirrors). Preferably, the narrow bandwidth mirror has a sufficiently large penetration depth to achieve the desired diffraction losses of higher order transverse modes, and has a narrow enough stop-band to filter out unwanted modes. The reflectivity of the high-reflectivity mirror should be insufficient by itself for the laser to achieve lasing. There should be an adequate phase matching layer between the two mirrors for constructive interference. The combined reflectivity at the designed wavelength (peak reflectivity) is sufficient for the laser to achieve lasing.
As shown in
A gain section 103, which may be referred to as an active section and can include quantum wells, is disposed between the hybrid reflector 110 and the top reflector 104. A current aperture 106 confines the current in the center region of the VCSEL device 100 to activate the quantum wells to produce optical gain and to generate a laser cavity mode in the VCSEL laser cavity. In the top-emitting VCSEL device illustrated in
The VCSEL device 100 is activated by applying current through an anode and cathode electrical connections 107, 108, which can be implemented, for example, as metal contacts. The presence of the low-contrast DBR in the hybrid mirror 110 increases the effective length of the optical resonant cavity such that multiple longitudinal modes are present. Thus, the hybrid mirror 110 also may be referred to as an extended length mirror. Because of the effective narrower bandwidth of the hybrid mirror 110, the additional, unwanted longitudinal modes have much higher round-trip losses compared to the main mode and, thus, the longitudinal modes do not achieve lasing. Thus, the hybrid mirror 110 and the high reflection mirror 104 are operable to provide mode filtering by suppressing one or more longitudinal and/or transverse modes. Preferably, in some implementations, only one longitudinal mode lases.
Various details of the hybrid mirror 110 can vary depending on the implementation. Nevertheless, in a particular example, the hybrid mirror 110 can be composed of the following layers: a low-contrast N-DBR layer 112 having a thickness in a range of 4 μm-15 μm, and a refractive index difference Δn/n in the range of 1%-7%; a N-phase matching layer 114 having a quarter wavelength optical thickness, and an index of refraction n of about 3.5; and a high-contrast N-DBR mirror 102 having a thickness in a range of 2 μm-4 μm, and refractive index difference Δn/n in the range of 10%-20%. Some or all of the foregoing values may differ for other implementations.
In some instances, the extended length mirror has an effective penetration depth extending multiple emission wavelength distances from the first side of the extended length mirror. For example, the effective penetration depth of the extended length mirror extends, in some cases, between 46-116 emission wavelength distances. In some cases, the penetration depth of the extended length mirror is between 6-15 μm, the emission wavelength is between 700-1064 nm, and the relative refractive index difference is between 1-7%. In some instances, the penetration depth of the high reflection mirror is between 2-4 μm, the emission wavelength is between 700-1064 nm, and the relative refractive index difference is between 10-20%.
In some instances, the high reflection mirror has an effective penetration depth extending multiple emission wavelength distances from the first side of the high reflection mirror. In some cases, the effective penetration depth of the high reflection mirror extends between 15-30 emission wavelength distances
In some implementations, the full-width half-maximum (FWHM) intensity divergence angle is less than 10 degrees.
Some implementations include additional features to enhance operation. For example, as shown in
A hybrid mirror as described above also can be integrated into a bottom-emitting VCSEL 200 as shown in the example of
The gain section 203, which can include quantum wells, is disposed between the hybrid mirror 210 and the top mirror 204. A current aperture 206 confines the current in the center region of the VCSEL device 200 to activate the quantum wells to produce optical gain and to generate a laser cavity mode in the VCSEL laser cavity. The VCSEL device 200 is activated by applying current through an anode and cathode electrical connections 207, 208, which can be implemented, for example, as metal contacts. In the bottom-emitting VCSEL device illustrated in
As with the top-emitting VCSEL, the bottom-emitting VCSEL 200 is operable to provide mode filtering by suppressing one or more longitudinal and/or transverse modes. Preferably, in some implementations, only one longitudinal mode lases.
A low-contrast mirror can be used with other device such as vertical external-cavity surface-emitting lasers (VECSELs) as well, light emitting diodes (LEDs) and RC-LEDs.
As shown in the example of
Similarly,
Although the foregoing examples illustrate incorporation of a low-contrast mirror 112 or 212 onto vertically emitting devices, the techniques also can be used in connection with edge-emitting devices (e.g., edge-emitting lasers). As illustrated in
The VCSELs and other light emitting devices described here can be used for applications such as compact, high-sensitivity LIDAR time-of-flight (TOF) systems and optical, high-bandwidth communications for high-speed data links. Examples of such applications include measuring short distances in self-driving automobiles and other proximity sensing applications. The devices also can be incorporated into three-dimensional sensing and gesture recognition, for example, in gaming and mobile devices. Further, in data-link applications, replacing low bandwidth data optoelectronics with higher bandwidth can enable existing fiber links to be upgraded at relatively low cost without the need to add fiber infrastructure.
In some applications, multiple narrow beam divergence semiconductor sources such as those described above can be integrated into an illumination system. For example, an array of narrow beam divergence semiconductor sources (e.g., VCSELs) as described above can be used for structured light projection in which a known optical pattern is projected onto a scene. Structured light projection systems can be used, for example, to obtain depth and surface information of objects in the scene.
As shown in the example of
In the example of
As the projected pattern 804 is used to capture 3D images, the depth of focus of the VCSEL image should be sufficiently large so that the pattern maintains its structure over a relatively long distance. The depth of focus depends on the beam divergence. If the beam divergence is large, the depth of focus will be short because adjacent spots in the pattern 804 will overlap at locations away from the focus position. For beams with low divergence, the distance before the beams overlap will be larger, thereby increasing the depth of focus.
The system 800 also includes multiple electrical contacts operable to direct electric current to the array 802 of narrow beam divergence semiconductor sources.
Although the foregoing example includes an array of VCSELs (e.g., as described in connection with any of
Various modifications can be made to the foregoing examples. Further, various features may be omitted in some implementations, while other features may be added. Features described in connection with different embodiments may, in appropriate instances, be combined in a single implementation. Thus, other implementations are within the scope of the claims.
The present application claims the benefit of priority of U.S. Provisional Patent Application No. 62/611,159 filed on Dec. 28, 2017, the contents of which are incorporated by reference herein in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/067593 | 12/27/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62611159 | Dec 2017 | US |