The present disclosure relates generally to a structured plasma cell energy converter for a nuclear reactor.
This section provides background information related to the present disclosure and is not necessarily prior art.
Thermionic Energy Conversion (TEC) systems provide a direct heat to electric energy conversion by generating electricity from thermionic emission. TEC systems provide a benefit over traditional power plants because the TEC system eliminates the dynamic heat to electric energy conversion methods. In particular, TEC systems use heat to emit electrons from an electron-emitting material in order to produce electric energy. In some instances, the amount of heat applied to the electron-emitting material is directly proportional to the amount of electric energy the TEC system generates. However, the amount of heat required to generate electric energy in the TEC system is a potential limiting factor. Increasing the amount of electric energy output that is independent of the amount of heat applied to the system may allow for broader application of TEC systems for electrical energy production.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
One aspect of the disclosure provides a structured plasma cell energy converter for a nuclear reactor. The structured plasma cell includes a first electrode including a first plurality of micro-cavities and a first plasma disposed within one or more micro-cavities of the first plurality of micro-cavities. The structured plasma cell also includes a second electrode including a second plurality of micro-cavities and a second plasma disposed within one or more micro-cavities of the second plurality of micro-cavities. The structured plasma cell also includes an inter-electrode gap disposed between the first electrode and the second electrode.
Implementations of this aspect of the disclosure may include one or more of the following optional features. In some examples, the structured plasma cell further includes a bulk plasma disposed within the inter-electrode gap. In other examples, the structured plasma cell further includes an insulator disposed within the inter-electrode gap. Here, the insulator may include conductive paths configured to electrically connect one or more of the first plurality of micro-cavities with one or more of the second plurality of micro-cavities. Optionally, plasma may be disposed within the conductive paths of the insulator.
In some implementations, the first plurality of micro-cavities of the first electrode are disposed one a surface and a body of the first electrode. In these implementations, the first plurality of micro-cavities disposed on the surface of the first electrode are directly exposed to the inter-electrode gap. A quantity of the first plurality of micro-cavities may be less than a quantity of the second plurality of micro-cavities. In some examples, the first electrode includes a plurality of channels configured to electrically connect a first micro-cavity of the first plurality of micro-cavities with a second micro-cavity of the second plurality of micro-cavities. The first plasma may include a sheath surrounding the first plasma.
Another aspect of the disclosure provides a method of operating a structured plasma cell to produce electricity. The structured plasma cell includes a first electrode including a first surface and a first plasma, the first surface defining a first micro-cavity and the first plasma disposed within the first micro-cavity. The structured plasma cell also includes a second electrode including a second surface and a second plasma, the second surface defining a second micro-cavity and the second plasma disposed within the second micro-cavity. The method includes generating, by an electromagnetic (EM) source, and EM field and propagating the EM field in a direction parallel to the second surface. The method also includes increasing, by the EM field, a temperature of electrons disposed within the second plasma.
This aspect may include one or more of the following optional features. In some implementations, the first surface includes a conductive material. In some examples, the method further includes absorbing the EM field into the second plasma. In these examples, the method further includes ionizing the first plasma using charged particles from a nuclear reaction, emitting electrons from the first surface of the first electrode into the first plasma disposed within the first plurality of micro-cavities, conducting the emitted electrons from the first plurality of micro-cavities through an inter-electrode gap to the second plurality of micro-cavities, and collecting the emitted electrons at the second surface of the second electrode.
The method may further include providing an insulator at an inter-electrode gap disposed between the first electrode and the second electrode. Optionally, the EM field may include one of a radiofrequency wave or a microwave. In some examples, the first electrode includes a dielectric material. In some implementations, the first electrode includes a first body that is concealed from the first plasma. The increased temperature of the electrons in the second plasma may increase an amount of electricity produced by the structured plasma cell. In some examples, the first plurality of micro-cavities is less than the second plurality of micro-cavities.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected configurations and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the drawings.
Example configurations will now be described more fully with reference to the accompanying drawings. Example configurations are provided so that this disclosure will be thorough, and will fully convey the scope of the disclosure to those of ordinary skill in the art. Specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of configurations of the present disclosure. It will be apparent to those of ordinary skill in the art that specific details need not be employed, that example configurations may be embodied in many different forms, and that the specific details and the example configurations should not be construed to limit the scope of the disclosure.
Thermionic energy conversion (TEC) is a direct heat to electric energy conversion process which generates electricity from thermionic emission. In particular, TEC systems produce electricity by emitting electrons from a first electrode (i.e., emitter or cathode) that are collected at a second electrode (i.e., collector or anode). The space or gap disposed between the emitter and collector is referred to as an inter-electrode gap. As electrons emit from the emitter, the electrons collect in the inter-electrode gap creating the space charge effect. The space charge effect refers to the collection of negative charge from electrons near the surface of an electrode. That is, as the electrons collect in the inter-electrode gap and/or near the surface of the electrode, the negative charge of the electrons repel further emission of electrons. The space charge effect repels additional electrons from emitting from the emitter, thus, preventing additional electrons from travelling from the emitter to the collector.
Current implementations of TEC systems utilize a conductive medium in the inter-electrode gap to mitigate the space charge effect. In some examples, TEC devices include a conductive gas (i.e., a bulk plasma) in the inter-electrode gap. The bulk plasma in the inter-electrode gap mitigates the space charge effect by conducting the electrons across the inter-electrode gap. That is, the bulk plasma (e.g., cesium) is a conductive gas that conducts the electrons that emit from the emitter, through the conductive bulk plasma, to the collector. The bulk plasma facilitates the electrons travelling from the emitter through the inter-electrode gap to the collector such that the electrons do not collect in the inter-electrode gap creating the space charge effect. That is, without a conductive medium (e.g., bulk plasma) in the inter-electrode gap, the electrons are unable to conduct across the inter-electrode gap and instead collect at or near the surface of the emitter. Thus, the bulk plasma by conducting electrons through the inter-electrode gap mitigates the space charge effect.
However, in some implementations, the bulk plasma in the inter-electrode gap may not conduct electrons in a natural, pre-ionized state. Once the plasma ionizes, the plasma may conduct electrons from the emitter to the collector. In some examples, the bulk plasma may be ionized by coming into contact with the emitter, allowing the emitter to transmit electrons across the plasma. The plasma may be ionized by electrons emitted from the emitter such that the emitted electrons both ionize the plasma and traverse the inter-electrode gap.
In other examples, the plasma is a diffusion-dominated plasma that ionizes from charged particles striking a neutral atom of the plasma and ionizing the neutral atom into an additional electron and an ion, also referred to as charged particle ionization. Here, charged particles may include fission fragments, alpha decay particles, and/or beta decay particles. In particular, TEC systems may include a neutron source that produces neutrons that are absorbed by a net neutron-producing material. The net neutron-producing material can either be fissile (e.g., U-235)—that is, capable of a fission reaction after absorbing a neutron—or fertile (e.g., U-238)—that is, not capable of undergoing a fission reaction after absorbing a neutron. After absorbing the neutron, the net neutron-producing material becomes unstable splitting into fission fragments. In some implementations, the fission fragments undergo beta decay such that a fission fragment converts one of its neutrons into a proton by releasing an additional electron referred to herein as a “beta decay particle.” The fission fragments and/or beta decay particles (collectively referred to as charged particles) generated by a nuclear reaction (e.g., fission and/or beta decay) may ionize the plasma of the TEC system. Thus, the charged particles (e.g., fission fragments and/or beta decay particle) ionize the plasma and the electrons emitted from the emitter traverse the inter-electrode gap to the collector to produce electricity.
The quantity of electrons that emit from the emitter to the collector represents the current density of the TEC system. That is, the higher the current density of the TEC system the greater amount of electricity the TEC system generates. The current density output of the TEC system is dependent on a surface area ratio between the electrodes (e.g., emitter and collector) and the plasma. In particular, an increased surface area between the emitter and the plasma increases the quantity of electrons that emit from the emitter into the plasma. An increased surface area between the collector and the plasma increases the quantity of electrons that collect at the collector to produce the electric current.
Implementations herein are directed toward a structured plasma cell energy converter for a nuclear reactor. The structured plasma cell includes electrodes (e.g., emitter and collector) that include a plurality of micro-cavities. The micro-cavities are configured to increase the surface area of the electrodes. Thus, the micro-cavities, by increasing the surface area of the electrodes, increases the surface area ratio between the plasma and the electrodes. In some examples, the increased surface area ratio between the plasma and the electrodes increases the amount of electricity produced by the TEC system. In other examples, the increased surface area ratio between the plasma and the electrodes allows the TEC system to operate at a lower temperature while the current output of the TEC system remains the same.
Referring now to
In some implementations, the inter-electrode gap 120 includes a bulk plasma 122 referred to herein as plasma 122. The plasma 122, disposed within the inter-electrode gap 120, is configured to mitigate space charge. In particular, the plasma 122 may include a conductive gas (i.e., cesium) that conducts electrons 102 emitted from the emitter 110a through the inter-electrode gap 120 to the collector 110b. By conducting electrons 102 across the inter-electrode gap 120, the plasma 122 reduces the quantity of electrons 102 that collect at and/or near the emitter 110a thereby reducing the space charge effect. The plasma 122 may also include a sheath (not shown) that surrounds the conductive material of the plasma 122. The sheath may include a positively charged ion density that is greater than the electron density in the sheath. The greater density of positively charged ions in the sheath happens because the weight of the electron is less than the weight of the ion. The lower weight of the electron allows the electron to be more mobile than the ion, thus, the electrons escape the TEC system 100 (e.g., producing a current output) at a rate that is higher than the rate of ions escaping the TEC system 100.
The electrodes 110 may include an electrode surface 112 and an electrode body 114. In particular, the emitter 110a includes an emitter surface 112a and an emitter body 114a. The emitter surface 112a is directly exposed to the plasma 122 such that electrons 102 emit from the emitter surface 112a into the plasma 122. In some examples, the emitter surface 112a is directly exposed to the plasma 122 disposed within the inter-electrode gap 120. In other examples, the emitter surface 112a is directly exposed to the plasma 122 disposed outside of the inter-electrode gap 120. The emitter body 114a is surrounded by the emitter surface 112a such that the emitter body 114a is concealed from direct exposure of the plasma 122 disposed either within or outside of the inter-electrode gap 120.
The collector 110b may include a collector surface 112b and a collector body 114b. The collector surface 112b is directly exposed to the plasma 122 disposed within the inter-electrode gap 120 such that electrons 102 that traverse the plasma 122 through the inter-electrode gap 120 collect at the collector surface 112b. In some examples, the collector surface 112b is directly exposed to plasma 122 disposed within the inter-electrode gap 120. In other examples, the collector surface 112b is directly exposed to plasma 122 disposed outside of the inter-electrode gap 120. The collector body 114b is surrounded by the collector surface 112b such that the collector body 114b is concealed from direct exposure to the plasma 122 disposed either within or outside of the inter-electrode gap 120.
The output power or electricity of the TEC system 100 may be represented by:
Pout=IVout (1)
In equation (1), Pout represents the output power or electricity produced by the TEC system 100, I represents the current of the TEC system 100, and Vout represents the output voltage of the TEC system 100. The output voltage Vout of the TEC system 100 may be represented by:
Vout=(ϕE−ϕC)+Vp,bias (2)
In equation (2), Vout represents the output voltage of the TEC system 100, ϕE represents the emitter 110a work function, ϕC represents the collector 110b work function, and Vp,bias represents the bias voltage applied to the plasma 122 in the inter-electrode gap 120. Vp,bias may be represented by:
In equation (3), A represents the ratio of the emitter surface area to the collector 110b to the emitter 110a surface area, R represents the ratio of plasma electron current to the thermionic current, μ represents the ratio of the plasma electron current to the ion current, TE represents the temperature of the emitter 110a, Te represents the temperature of the electrons, Ith represents the thermionic emission current, VE represents the voltage potential at the emitter 110a, and Vp represents the voltage potential of the plasma 122. Thus, equation 3 represents output voltage Vout as a function of the current I in terms of the thermionic emission current Ith and the surface areas of the emitter 110a and collector 110b A. The current I of the TEC system 100 and the thermionic emission current Ith may be represented respectively by:
In equations (4) and (5), AE represents the surface area of the emitter 110a, ϕE represents the emitter 110a work function, TE represents the temperature of the emitter 110a, e represents electron 102 charge in coulombs, me represents electron 102 mass in kilograms, k represents Boltzmann's constant in joules per kelvin, h represents Planck's constant in joule seconds, and Ie,E represents the electron current at the emitter 110a.
In some implementations, increasing the surface area of the electrodes 110 increases the output power Pout of the TEC system 100. In particular, as shown by equations (1), (4), and (5) above, increasing the surface area AE of the emitter 110a causes the thermionic emission current Ith to also increase thereby increasing the power output of the TEC system 100. Increasing the surface area AE of the emitter 110a may also allow the temperature of the emitter TE to decrease while the thermionic emission current Ith remains the same. That is, the increased surface area AE of the emitter 110a allows the TEC system 100 to operate at a lower temperature TE while the output power Pout remains the same. Operating TEC systems 100 at lower temperatures TE increases the life expectancy of the TEC system 100.
In some implementations, the surface area of the electrodes 110 is increased by increasing the size of the electrodes 110 which increases the volume V of the TEC system 100. However, the TEC system 100 may include a volume V constraint that prevents increasing the size of the electrodes 110 in order to increase the surface area AE. In other implementations, the surface area AE is increased by providing a plurality micro-cavities 116 at the electrodes 110. Specifically, the emitter 110a may include a first plurality of micro-cavities 116a and the collector 110b may include a second plurality of micro-cavities 116b. The micro-cavities 116 may be voids, dimples, pores, micro-structures, or other suitable constructs, included at the electrode surface 112 and/or the electrode body 114. The micro-cavities 116 may include any suitable geometric shape, size, quantity, and/or configuration or combination thereof that is dependent upon the particular TEC system 100 application. For example, an electrode 110 may include a spherical micro-cavity 116 with a surface area of 10 mm2 per 1 mm3 volume of the electrode 110. In some examples, the quantity of the first plurality of micro-cavities 116a is less than the quantity of the second plurality of micro-cavities 116b at the collector 110b. The micro-cavities 116 increase the surface area of the surface 112 of electrode 110 (e.g., surface area of the emitter AE) while the volume V of the TEC system 100 remains the same.
In some examples, the micro-cavities 116 of the electrode 110 are disposed within the electrode body 114 such that the increased surface area of the electrode surface 112 is concealed from direct exposure to the plasma 122 disposed within the inter-electrode gap 120. In other examples, the micro-cavities 116 of the electrode 110 are disposed on the electrode surface 112 that is directly exposed to the inter-electrode gap 120. Here, the micro-cavities 116 disposed on the electrode surface 112 are also directly exposed to the plasma 122 disposed within the inter-electrode gap 120. The electrodes 110 may include any combination of micro-cavities 116 disposed on the electrode surface 112 and/or the electrode body 114.
The increased surface area of the electrode surface 112 created by the micro-cavities 116 may be configured to emit or collect electrons 102. For example, as the heat source 106 heats the emitter 110a the additional emitter surface 112a created by the micro-cavities 116 emits electrons 102 into the void created by the micro-cavities 116. The electrons 102 emitted from the emitter surface 112a into the micro-cavities 116 may collect at or near the emitter surface 112a creating the space charge effect at the micro-cavities 116. In some examples, the micro-cavities 116 of the electrodes 110 include plasma 122 configured to mitigate the space charge effect. In particular, a first plasma 122a may be disposed within each micro-cavity 116 disposed on the emitter 110a and a second plasma 122b may be disposed within each micro-cavity 116 disposed on the collector 110b. In some examples, the decreased surface area exposure between the emitter 110a and collector 110b surfaces creates reduced radiative losses improving the overall efficiency of the TEC system 100. The decreased surface area also significantly lowers the emission current I and TE required to offset radiative losses.
Referring now to
In some examples, the one or more channels 118 electrically connect and/or allows for electrical communication from the one more micro-cavities 116a to the plasma 122 disposed within the inter-electrode gap 120. For example, as shown in
In some implementations, as the heat source 106 heats the emitter 110a and electrons 102 emit from the emitter surface 112a the electrons 102 enter the plasma 122 disposed within the micro-cavities 116a of the emitter 110a. Here, the electrons 102 may conduct, via the one or more channels 118, to another micro-cavity 116a of the emitter 110a and/or to the plasma 122 disposed within the inter-electrode gap 120. Once the electron 102 reaches the plasma 122 disposed within the inter-electrode gap 120, the electron 102 conducts to a micro-cavity 116b disposed on the collector 110b via the one or more channels 118 of the collector 110b. In some examples, the electron 102 collects at the collector surface 112b and produces an electric current to drive the load 108.
Referring now to
In some implementations, the insulator 124 disposed within the inter-electrode gap includes conductive paths 126. The conductive paths 126 are configured to conduct electrons 102 from the emitter 110a to the collector 110b through the inter-electrode gap 120. Because the insulator prevents electrons 102 from conducting from the emitter 110a to the collector 110b the conductive paths 126 conduct electrons from the emitter 110a to the collector 110b to produce a current output and drive the load 108. The conductive paths 126 may include a conductive medium (e.g., plasma 122) that conducts the electrons 102 from the emitter 110a to the collector 110b.
Each conductive path 126 may connect one or more micro-cavities 116a of the emitter 110a to one or more micro-cavities 116b of the collector 110b. In some examples, the conductive path 126 connects a single micro-cavity 116a disposed on the emitter 110a to one or more micro-cavities 116b disposed on the collector 110b. In some implementations, as the heat source 106 heats the emitter 110a and electrons 102 emit from the emitter surface 112a the electrons 102 enter the first plasma 122a disposed within the micro-cavities 116a of the emitter 110a. Here, the electrons 102 may conduct, via the one or more channels 118, to another micro-cavity 116a of the emitter 110a and/or to the conductive paths 126 of the insulator 124. Once the electron 102 reaches the conductive path 126, the plasma 122 disposed within the conductive path 126 conducts the electron to one or more micro-cavities 116b disposed on the collector 110b. In some examples, the electron 102 collects at the collector surface 112b and produces an electric current to drive the load 108.
In some implementations, TEC devices utilize electromagnetic (EM) fields to ionize the plasma. However, current TEC devices (e.g., TEC devices that include electrodes without micro-cavities) use electrodes that have a conductive surface. The conductive surface of the electrodes shields the plasma by absorbing the EM field energy such that the plasma does not absorb any of the EM field energy. The conductive surface of the electrodes allows electrons to emit from the emitter and be absorbed by the collector. Some techniques attempt to reduce the thickness of the electrode material such that the conductive surface of the electrodes do not absorb all of the EM field energy and a portion of the EM field energy is absorbed by the plasma. However, these techniques reduce the overall life expectancy of the TEC devices because the thin electrode materials are unable to withstand the high operating temperature of the TEC device.
Implementations herein are directed towards a method of producing electricity with a TEC system with electrodes that include micro-cavities. These implementations include generating EM fields that propagate parallel to the conductive surfaces of the electrodes. The parallel propagation direction of the EM fields relative to the conductive surfaces of the electrodes allows the EM fields to propagate into the micro-cavities of the electrodes and absorb into the plasma disposed within the micro-cavities and channels of the electrodes. The absorption of the EM fields into the plasma ionizes and/or increases the temperature of electrons in the plasma thereby increasing the efficiency of the TEC system and ionizing the plasma.
In some examples, the conductive surfaces 112 absorb the EM fields 304 and shield any of the EM fields 304 from absorbing into the plasma 122. However, generating the EM fields 304 in the propagation direction 306 that is parallel to the conductive surfaces 112 allows the EM fields 304 absorb into the plasma 122. Specifically, the micro-cavities 116 provide holes in which the EM fields 304 can penetrate. The channels 118 and conductive paths 126 that are connected to the micro-cavities 116 provide additional parallel conductive surfaces 112 that the EM fields 304 can propagate through. Thus, the micro-cavities 116, channels 118, and conductive paths 126 may each provide a parallel conductive surface 112 for the EM fields 304 to propagate through. As the EM fields 304 propagate through the parallel conductive surfaces 112 the EM fields 304 absorb into the plasma 122 disposed within the conductive surfaces 112. By absorbing into the plasma 122, the energy of the EM fields 304 ionize the plasma 122, referred to as EM field ionization. EM field ionization may be used additionally and/or alternatively to charged particle ionization to ionize the plasma 122. In some examples, as the EM fields 304 absorb into the plasma 122 the plasma ionizes. In other examples, the EM fields 304 may increase the temperature of the electrons 102 disposed within the plasma 122. That is, as the EM field 304 absorb into the plasma 122 the electrons 102 are excited (i.e., move) causing the electrons 102 to heat up. The increased temperature of the electrons 102 is directly proportional to the plasma voltage bias (e.g., Vp,bias from equation 2). Thus, the increased temperature of the electrons 102 from the EM fields 304 absorbing into the plasma 122 may increase the plasma voltage bias Vp,bias thereby increasing the output voltage Vout and the output power Pout.
In other implementations, the EM sources 302 generate EM fields 304 that ionize only one of the first plasma 122a or the second plasma 122b. For example, the EM field 304 may travel in a propagation direction 306 that is parallel only to the conductive surface 112b of the collector 110b. Specifically, the EM fields 304 propagating in the propagation direction 306 parallel to the conductive surface 112b allow the EM fields 304 to absorb into the second plasma 122b, thereby increasing the temperature of the electrons 102 disposed within the second plasma 122b. Here, the micro-cavities 116b and channels 118 of the collector 110b provide holes and/or voids in which the EM fields 304 can penetrate and absorb into the plasma 122122b disposed within the conductive surfaces 112b.
In these implementations, the EM sources 302 generate EM fields 304 in the propagation direction 306 that is parallel only to the conductive surface 112b of the collector 110b, such that the propagation direction 306 is transverse (e.g., not parallel) to the conductive surface 112a of the emitter 110a. The energy of the EM fields 304 travelling in the propagation direction 306 that is transverse to the conductive surface 112a of the emitter 110a is absorbed by the conductive surface 112a of the emitter 110a. Thus, the EM fields 304 are unable to penetrate the holes of the micro-cavities 116a and channels 118 of the emitter 110a in order to absorb into and ionize the first plasma 122a. Here, the EM fields 304 travelling in the propagation direction 306 parallel to the conductive surface 112b and transverse to the conductive surface 112a ionize only the second plasma 122b while the EM fields 304 are unable to ionize the first plasma 122a.
In some examples, the TEC system 300 uses a combination of charged particle ionization and EM field ionization. For example, the TEC system 300 may use EM field ionization to ionize the second plasma 122b disposed within the collector 110b and charged particle ionization to ionize the first plasma 122a disposed within the emitter 110a. In this example EM sources 302 generate EM fields 304 in a propagation direction parallel to the conductive surface 112b of the collector 110b. The EM fields 304 penetrate the micro-cavities 116b and channels 118 of the collector 110b absorbing into the second plasma 122b (e.g., EM field ionization), thus, ionizing and/or increasing the temperature of the second plasma 122b. Continuing with the example, the TEC system 300 ionizes the first plasma 122a using charged particle ionization. The TEC system 300 generates charged particles (e.g., fission fragments, alpha decay particles, and/or beta decay particles) from a nuclear reaction (e.g., fission and/or beta decay) that enter and ionize the first plasma 122a. Here, the charged particles ionize the first plasma 122a to mitigate the space charge effect and electrons emit from the emitter 110a to traverse the inter-electrode gap 120 to the collector 110b. Here, the first plasma 122a ionizes using charged particle ionization and the second plasma 122b ionizes using EM field ionization. In other examples, the TEC system 300 uses both EM field ionization and charged particle ionization to ionize the first and second plasma 122a, 122b. Any combination of EM field ionization and charged particle ionization may be used to ionize the first and second plasma 122a, 122b.
With reference to
Each of the configurations described in the detailed description above may include any of the features, options, and possibilities set out in the present disclosure, including those under the other independent configurations, and may also include any combination of any of the features, options, and possibilities set out in the present disclosure and figures. Further examples consistent with the present teachings described herein are set out in the following numbered clauses:
Clause 1: A structured plasma cell comprising: a first electrode including a first plurality of micro-cavities; a first plasma disposed within one or more micro-cavities of the first plurality of micro-cavities; a second electrode including a second plurality of micro-cavities; and a second plasma disposed within one or more micro-cavities of the second plurality of micro-cavities; and an inter-electrode gap disposed between the first electrode and the second electrode.
Clause 2: The structured plasma cell of clause 1, further comprising a bulk plasma disposed within the inter-electrode gap.
Clause 3: The structured plasma cell of any of clauses 1 through 2, further comprising an insulator disposed within the inter-electrode gap.
Clause 4: The structured plasma cell of clause 3, wherein the insulator includes conductive paths configured to electrically connect one or more of the first plurality of micro-cavities with one or more of the second plurality of micro-cavities.
Clause 5: The structured plasma cell of clause 4, wherein plasma is disposed within the conductive paths of the insulator.
Clause 6: The structured plasma cell of any of clauses 1 through 5, wherein the first plurality of micro-cavities of the first electrode are disposed on a surface and a body of the first electrode.
Clause 7: The structured plasma cell of clause 6, wherein the first plurality of micro-cavities disposed on the surface of the first electrode are directly exposed to the inter-electrode gap.
Clause 8: The structured plasma cell of any of clauses 1 through 7, wherein a quantity of the first plurality of micro-cavities is less than a quantity of the second plurality of micro-cavities.
Clause 9: The structured plasma cell of any of clauses 1 through 8, wherein the first electrode comprises a first plurality of channels configured to electrically connect a first micro-cavity of the first plurality of micro-cavities with a second micro-cavity of the first plurality of micro-cavities.
Clause 10: The structured plasma cell of any of clauses 1 through 9, further comprising a heat source configured to heat the first electrode that emits electrons into the inter-electrode gap.
Clause 11: A method of operating a structured plasma cell to produce electricity, wherein the structured plasma cell comprises a first electrode including a first surface and a first plasma, the first surface defining a first micro-cavity and the first plasma disposed within the first micro-cavity and a second electrode including a second surface and a second plasma, the second surface defining a second micro-cavity and the second plasma disposed within the second micro-cavity, the method comprising: generating, by an electromagnetic (EM) source, an EM field; propagating the EM field in a direction parallel to the second surface; and increasing, by the EM field, a temperature of electrons disposed within the second plasma.
Clause 12: The method of clause 11, wherein the first surface includes a conductive material.
Clause 13: The method of any of clauses 11 through 12, further comprising absorbing the EM field into the second plasma.
Clause 14: The method of clause 13, further comprising: ionizing the first plasma using charged particles from a nuclear reaction; emitting electrons from the first surface of the first electrode into the first plasma disposed within the first micro-cavity; conducting the emitted electrons from the first micro-cavity through an inter-electrode gap to the second micro-cavity; and collecting emitted the electrons at the second surface of the second electrode.
Clause 15: The method of any of clauses 11 through 14, further comprises providing an insulator at an inter-electrode gap disposed between the first electrode and the second electrode.
Clause 16: The method of any of clauses 11 through 15, wherein the EM field comprises one of: a radiofrequency wave; or a microwave.
Clause 17: The method of any of clauses 11 through 16, wherein the first electrode includes a dielectric material.
Clause 18: The method of any of clauses 11 through 17, wherein the first electrode includes a first body that is concealed from the first plasma.
Clause 19: The method of any of clauses 11 through 18, wherein the increased temperature of the electrons in the second plasma increases an amount of electricity produced by the structured plasma cell.
Clause 20: The method of any of clauses 11 through 19, wherein the first electrode includes a plurality of first micro-cavities and the second electrode includes a plurality of second micro-cavities.
The terminology used herein is for the purpose of describing particular exemplary configurations only and is not intended to be limiting. As used herein, the singular articles “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. Additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” “attached to,” or “coupled to” another element or layer, it may be directly on, engaged, connected, attached, or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” “directly attached to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
The terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections. These elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example configurations.
The foregoing description has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular configuration are generally not limited to that particular configuration, but, where applicable, are interchangeable and can be used in a selected configuration, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application is a divisional of U.S. application Ser. No. 17/202,952, filed on Mar. 16, 2021, the disclosure of which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3022240 | Bassett | Feb 1962 | A |
3147191 | Crowther | Sep 1964 | A |
3228849 | Fellows | Jan 1966 | A |
3480803 | Jamerson et al. | Nov 1969 | A |
3660230 | Bailey, Jr. et al. | May 1972 | A |
3672642 | Beisswenger | Jun 1972 | A |
4367196 | Wende et al. | Jan 1983 | A |
6489704 | Kucherov | Dec 2002 | B1 |
9190177 | Ahlfeld et al. | Nov 2015 | B2 |
10163537 | Hamilton | Dec 2018 | B2 |
20060150611 | Allen | Jul 2006 | A1 |
20070148522 | Cordelle | Jun 2007 | A1 |
20080057370 | Lee | Mar 2008 | A1 |
20090130016 | Mills | May 2009 | A1 |
20130059226 | Gomi | Mar 2013 | A1 |
20140116490 | Morgan | May 2014 | A1 |
20170133956 | Landa et al. | May 2017 | A1 |
20190027347 | Schwede | Jan 2019 | A1 |
20190237313 | Davidson | Aug 2019 | A1 |
20190371582 | Clark et al. | Dec 2019 | A1 |
20200274045 | Birmingham | Aug 2020 | A1 |
20200274046 | Birmingham | Aug 2020 | A1 |
Number | Date | Country |
---|---|---|
254709 | Jan 1964 | AU |
817754 | Aug 1959 | GB |
847902 | Sep 1960 | GB |
850876 | Oct 1960 | GB |
905559 | Sep 1962 | GB |
1018828 | Feb 1966 | GB |
2020522681 | Jul 2020 | JP |
1215115 | Dec 2012 | KR |
2018204470 | Nov 2018 | WO |
Entry |
---|
Korean Intellectual Property Office, International Search Report and Written Opinion for PCT/US2022/016057, dated Jun. 9, 2022. |
USPTO, Non-Final Office Action for U.S. Appl. No. 17/202,952, dated Apr. 28, 2022. |
Dwyer, “Spectral structure of electron antineutrinos from nuclear reactors,” Physical review letters, , p. 114, No. 1, 2015: 012502 (Year 2015). |
Kopeikin, “Inverse beta decay in nonequilibrium antineutrino flux from a nuclear reactor,” Physics of Atomic Nuclei 64, No. 5, 2001, pp. 849-854, (Year 2001). |
Huber, “Determination of antineutrino spectra from nuclear reactors,” Physical Review C 84, No. 2, 2011, 024617, (Year 2011). |
Algora, “Total absorption study of beta decays relevant for nuclear applications and nuclear structure,” Nuclear Data Sheets 120, 2014, pp. 12-15, (Year 2014). |
Number | Date | Country | |
---|---|---|---|
20230197298 A1 | Jun 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17202952 | Mar 2021 | US |
Child | 17870957 | US |