The present invention generally relates to thermal management of structures subjected to thermal energy, nonlimiting examples of which include lighting units that utilize one or more light-emitting diodes (LEDs) as a light source.
As known in the art, LEDs (which as used herein also encompasses organic LEDs, or OLEDs) are solid-state semiconductor devices that convert electrical energy into electromagnetic radiation that includes visible light (wavelengths of about 400 to 750 nm). An LED typically comprises a chip (die) of a semiconducting material doped with impurities to create a p-n junction. The LED chip is electrically connected to an anode and cathode, all of which are often mounted within a package. Lamps (bulbs) that utilize LED technology provide a variety of advantages over more traditional incandescent and fluorescent lamps, including but not limited to a longer life expectancy, high energy efficiency, and full brightness without requiring time to warm up. Because, in comparison to other lamps such as incandescent or fluorescent lamps, LEDs emit visible light that is more directional in a narrower beam, LED-based lamps have traditionally been utilized in applications such as automotive, display, safety/emergency, and directed area lighting. However, advances in LED technology have enabled high-efficiency LED-based lighting systems to find wider use in lighting applications that have traditionally employed other types of lighting sources, including omnidirectional lighting applications previously served by incandescent and fluorescent lamps. As a result, LEDs are increasingly being used for area lighting applications in residential, commercial and municipal settings.
An LED-based light source, often an LED array comprising multiple LEDs, is typically located at the lower end of the enclosure 12 adjacent the base 16. Because LEDs emit visible light in narrow bands of wavelengths, for example, green, blue, red, etc., combinations of different LEDs are often combined in LED lamps to produce various light colors, including white light. The LEDs may be mounted on a carrier mounted to or within the base 16, and may be encapsulated on the carrier, for example, with a protective cover, often formed of an index-matching material to enhance the efficiency of visible light extraction from the LEDs. As a nonlimiting example,
To promote the capability of the lamp 10 to emit visible light in a nearly omnidirectional manner, the enclosure 12 is represented in
Area lighting applications typically require significantly higher electrical power levels for LED-based light units (such as of the type represented in
The present invention provides thermal management approaches and methods for structures requiring certain optical properties, for example, components of LED-based lighting units.
According to one aspect of the invention, a structure is in thermal communication with a source of visible light and thermal energy, and visible light emitted by the source passes through the structure. The structure includes a portion formed of a composite material comprising a polymeric matrix material and a fiber material that contributes an optical scattering effect to the visible light passing through the composite material. The polymeric matrix material is transparent or translucent to the visible light of the source, and the fiber material causes the composite material to have a thermal conductivity greater than that of the polymeric matrix material. The fiber material comprises individual fibers that each comprise a core material. Individual fibers further have an opaque diffusive white coating on an external surface of their core material. The coating causes external surfaces of the individual fibers to have higher optical reflectivities than the core material, and the fiber material and its coating contribute to an optical scattering effect of the composite material and the portion of the structure formed thereof.
According to another aspect of the invention, an LED-based lighting unit includes an enclosure comprising a translucent diffuser portion. At least one LED device emits visible light through the diffuser portion, generates thermal energy, and is in thermal communication with the diffuser portion. The diffuser portion is formed of a composite material comprising a polymeric matrix material and a fiber material that contributes an optical scattering effect to the visible light passing through the diffuser portion. The polymeric matrix material is transparent or translucent to the visible light of the LED device, and the fiber material causes the composite material to have a thermal conductivity greater than that of the polymeric matrix material. The fiber material comprises individual fibers that each comprise a core material. Individual fibers further have an opaque diffusive white coating on an external surface of their core material. The coating causes external surfaces of the individual fibers to have higher optical reflectivities than the core material, and the fiber material and its coating contribute to an optical scattering effect of the composite material and the diffuser portion formed thereof.
According to yet another aspect of the invention, a method is provided for thermal management of an LED-based lighting unit. The method includes providing a fiber material comprising individual fibers that each comprise a core material and an opaque diffusive white coating on an external surface thereof, wherein the coating causes external surfaces of the individual fibers to have higher optical reflectivities than the core material. A portion of the structure is then formed of a composite material comprising a polymeric matrix material and the fiber material, wherein the fiber material causes the composite material to have a thermal conductivity greater than that of the polymeric matrix material. Visible light and heat are then generated with the source so that the visible light passes through the structure and the fiber material contributes an optical scattering effect to the visible light passing through the composite material.
A technical effect of the invention is the ability of the composite material to have a sufficient thermal conductivity to promote heat transfer from the source of visible light and thermal energy, while also providing an optical scattering effect to promote a near omnidirectional lighting capability for a lighting unit.
Other aspects and advantages of this invention will be better appreciated from the following detailed description.
The following discussion will make reference to the LED-based lamp 10 and LED device 20 represented in
As previously discussed in reference to
In view of the above construction, it can be appreciated that visible light generated by the LED device 20 impinges and passes through portions of the diffusers 30 and 32, which are desired to have a diffusive optical effect to promote an omnidirectional lighting capability. Furthermore, visible light (and other electromagnetic wavelengths) generated by the LED device 20 subject components of the lamp, including the base 16, fins 18, PCB 26, and diffusers 30 and 32, to heat and flux (for example, ultraviolet (UV) and high-intensity blue flux). However, the diffusers 30 and 32 have traditionally played a limited role in dissipating heat from the lamp 10 as a result of being produced from optically translucent materials having relatively low thermal conductivities, for example, translucent polycarbonate materials having thermal conductivity coefficients of about 0.2 W/mK. The use of such traditional fillers capable of promoting thermal conductance, as well as more advanced fillers such as those disclosed in U.S. Patent Application Publication Nos. 2004/0190305 and 2012/0098425, have not been practical due to the negative effect on the optical properties required of the diffusers 30 and 32.
According to one aspect of the invention, at least a portion of the enclosure 12 of the lamp 10, for example, a portion of at least one of the diffusers 30 and 32, is produced from a composite material whose thermal conductivity is capable of significantly exceeding that of conventional materials of traditional diffusers (e.g., about 0.2 W/mK), yet retains a desirable level of translucence. Preferred composite materials comprise an optical grade transparent polymeric material as a matrix material, in which a fiber material is contained that promotes the thermal conductivity and also preferably an optical scattering effect and the optical translucence of the composite material relative to the polymeric matrix material.
Preferred matrix materials include, but are not limited to, transparent and translucent polymeric materials such PC, acrylics (for example, PMMA), epoxies, and silicones. The fiber material may be present in the composite material in the form of relative short Adiscontinuous@ fibers randomly dispersed in the polymeric matrix material, or may be longer Acontinuous@ fibers or tows (bundles of fibers) that may be straight or coiled and arranged to have a specific orientation. As examples, continuous individual fibers can be unidirectionally oriented within the matrix material, or can be braided or woven to form a fabric or other mat-like structures that can be laminated or otherwise embedded in the matrix material. Mat-like structures can be produced using conventional textile weave patterns, in which two or more sets of fiber tows (“warp” and “weft”) are woven in a two-dimensional pattern, with the individual tows of each set passing over and under transverse tows of the other set or sets. The term “fiber material” will be used herein to refer to any such arrangement of fibers, and the term “individual fiber(s)” will be used herein to refer to fibers or tows which may be continuous or discontinuous and randomly dispersed in the matrix material, or may be continuous and oriented within the matrix material, or braided, or woven to form a mat-like structure that can be laminated or otherwise embedded in the matrix material.
Individual fibers utilized in the composite material preferably comprise a base or core material that predominantly determines the thermal conductivity of the fiber material, and an opaque diffusive white coating on their external surfaces that predominantly determines the optical properties of the fiber material. In particular, the core material of the individual fibers is preferably coated with a coating material that enables the surfaces of the individual fibers to have higher optical reflectivities than the core material, preferably reflectivities greater than 90%, for the purpose of promoting the translucent and optical scattering properties of the enclosure 12 and/or its individual diffusers 30 and 32.
Preferred core materials for the individual fibers include, but are not limited to, carbon-based materials such as pitch-derived carbon fibers, which are opaque to visible light and have thermal conductivities that can be in excess of 200 W/mK. A nonlimiting commercial example is Mitsubishi DIALEAD K13C6U, which is reported to have a thermal conductivity of 580 W/mK. As known in the art, pitch-derived carbon fibers are composed entirely or mostly of carbon atoms and can be produced from pitch that may be natural or manufactured, derived from petroleum, coal tar, or plants. Optimal diameters of the individual fibers may depend on whether the fiber material is a dispersion of individual fibers or in the form of oriented, braided, or woven structures fabricated of individual fibers.
Preferred coating materials include, but are not limited to, liquids and powders that can be applied by a variety of processes, depending on the nature of the material. As nonlimiting examples, the coating material may be a white liquid coating material that can be applied through spray coating, dip coating and flow coating techniques, or may be a dry white powder coating material that may be applied through electrostatic coating techniques, etc. The coating material may be intrinsically white, for example, polymers such as some fluoropolymers including PVDF, ETFE, PVDF, etc. Alternatively, the coating material may comprise a transparent binder, as examples, polymers such as some acrylics, silicones, epoxies, polyesters, etc., that may optionally contain one or more optical scatterers, as examples, TiO2, Al2O3, and/or other optical scatterers having a refractive index that is sufficiently different from the binder to cause diffusive reflectance. A particular but nonlimiting example of a coating material is a dry white powder that contains titania particles in a cross-linkable polyester resin, an example of which is commercially available under the name Valspar PTW90135 from Valspar Corporation. The coating formed by a preferred coating material is opaque and is applied to sufficiently or completely encapsulate the individual fibers or resulting fiber material to contribute a diffusive white or near-white appearance to the individual fibers or fiber material and the composite material formed therewith. In addition, such coating materials have optical reflectivities of greater than 90% over a wavelength region of at least 350 nm to 800 nm, and can promote optical scattering of the composite material. Optimal thicknesses for the coatings on the individual fibers may depend on whether the fiber material is a dispersion of individual fibers or tows or in the form of oriented, braided, or woven structures fabricated of individual fibers or tows.
In addition to being reflective of visible light, the coated individual fibers or fiber material and composite materials formed therewith are preferably electrically insulating, stable at temperatures of at least 150° C. and more preferably at least 260° C., exhibit oxygen and humidity resistance, and do not absorb high-intensity near-UV/blue flux (wavelengths of 350 to 800 nm). The resulting composite material can also be capable of serving as a flame-retardant barrier attributable to the carbon fibers serving as an oxygen barrier, thereby promoting the ability of the lamp 10 to meet flame retardance standards, for example, the UL 94 standard for plastic materials. With such capabilities, the composite material may allow for the enclosure 12 and its diffusers 30 and 32 to be thinner than otherwise possible if these components were formed of solely of the polymer matrix material, for example, PC.
In preferred embodiments, the enclosure 12 and/or its diffusers 30 and 32 assist in conducting heat from the LED device 20 within the base 16 to the fins 18, from which the conducted heat can be dissipated to the surrounding environment. For example, forming the entire enclosure 12 of the composite material can significantly promote heat transfer and dissipation for the lamp 10. It should be understood that the composite material can be used to form other components of the lamp 10, for example, the base 16, fins 18, etc.
Investigations leading to the present invention indicated that a composite material formed of pitch-derived carbon fibers woven to form a fabric or mat and laminated or embedded in a matrix material of PC should have a fiber material loading of at least 0.01 volume percent, more preferably about 0.1 to about 5 volume percent, in order to have a significantly beneficial effect on the desired optical and thermal properties of the composite material. In addition, the coating thickness on the individual fibers or fiber material should be at least 1 micrometer and up to about 500 micrometers, more preferably about 50 to about 200 micrometers. To decrease the amount of fiber material required in the composite material to achieve a desired level of reflectivity through optical scattering, the composite material may further contain organic and/or inorganic fillers, for example, refractive index mismatched particles of titania (TiO2), PTFE, etc. As such, the inclusion of additional materials within the composite material is also within the scope of this invention, whether for achieving or tailoring certain optical or thermal properties, or for any other purpose. Nonlimiting examples include sources of Nd3+ ions.
While the invention has been described in terms of specific embodiments, it is apparent that other forms could be adopted by one skilled in the art. Therefore, the scope of the invention is to be limited only by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
20040190305 | Arik | Sep 2004 | A1 |
20110169394 | Chowdhury | Jul 2011 | A1 |
20110242817 | Chowdhury | Oct 2011 | A1 |
20120098425 | Arik | Oct 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20160169500 A1 | Jun 2016 | US |