This Small Business Technology Transfer Research (STTR) Phase I project proposes to develop a design tool for magnetohydrodynamic (MHD) based microfluidic devices. SFC Fluidics' exclusive MHD microfluidic technology has the potential to play an important role in the emerging microfluidic applications market, but this requires the availability of an application development design tool for MHD microfluidic devices. No such design tool presently exists. In Phase I, a software program that will be able to predict the flow characteristics of an MHD microfluidic system given user defined design parameters will be developed. MHD microfluidic networks can potentially provide an elegant, inexpensive, flexible, customizable fluidic platform that will allow one to move fluids along programmable paths, stir liquids, and facilitate chemical and biological interaction and thermal cycling. While no single approach to microfluidic control works well for all applications, the proposed approach has several unique advantages that make it very promising for many applications.<br/><br/>Much of the current laboratory equipment and instrumentation existing today can potentially be implemented in a laboratory-on-a-chip configuration using microfluidics. This potential transformation has been compared by some to the transformation in electronics that occurred upon the transition from vacuum tubes to integrated circuits. The anticipated advantages include increased speed and performance, reduced materials usage, reduced size and power requirements, improved reliability and robustness, and reduced opportunity for contamination. As an enabling technology, MHD-based microfluidics could improve microfluidic technology for a wide variety of devices, leading to smaller, less expensive, more portable and more sensitive devices for industrial, medical, and defense purposes. MHD-based microfluidics can move samples through fluidic channels at pl/min to ml/min flow rates without moving parts, and without bulky power supplies, making the technology especially well suited for handheld devices. Successful development of MHD-based microfluidics will further knowledge about microfluidic systems, and will lead to more advanced microfluidic devices.