STTR Phase I: Photonics Enabled Extreme Bandwidth Wireless Communications Spectrum Manager

Information

  • NSF Award
  • 1217637
Owner
  • Award Id
    1217637
  • Award Effective Date
    7/1/2012 - 12 years ago
  • Award Expiration Date
    6/30/2013 - 11 years ago
  • Award Amount
    $ 150,000.00
  • Award Instrument
    Standard Grant

STTR Phase I: Photonics Enabled Extreme Bandwidth Wireless Communications Spectrum Manager

This Small Business Technology Transfer (STTR) Phase I project aims to use and adapt a photonics based extreme bandwidth RF and Microwave spectrum analyzer as a real-time spectral manager for wireless communication systems. The approach is enabled by a spatial-spectral holographic based spectrum analyzer developed by the STTR team that can have instantaneous processing bandwidth of 40 GHz or greater while retaining with high spectral resolution and low latency (<<1 ms) output. This sensor hardware will be applied to wideband, real-time spectral management of wireless communications for operation in environments with new spectral access regulatory models. When combined with low latency digital processing, using specialized digital signal processing hardware such as field programmable gate arrays and appropriate databases and software, the system will allow continuous and simultaneous monitoring of all common wireless communication bands for rapid distribution of channel occupancy data. Project activities include: identifying the physical measurements and spectral signatures needed for wideband spectrum management, implementing specialized computer based algorithms to extract this information for real-time management, and investigating advanced spatial-spectral optical signal processing architectures to automatically recognize wireless signal characteristics such as modulation formats that are beyond the current power spectrum measurement capability.<br/><br/>The broader impact/commercial potential of this project includes uses in commercial wireless communication systems, RF test and measurement, defense signal intelligence and communications, regulatory spectrum management, and navigation and geo-location applications. The first commercial impact is to enable dynamic identification and allocation of unused spectral resources in real time, in order to maximize the efficiency and increase the capacity of wireless networks. The large bandwidth and frequency scalability of the spatial-spectral sensor technology could assist the growth of emerging radio communication technologies in existing bands, and in emerging bands such as E-band. Additionally, this technology could assist governmental spectrum regulatory compliance enforcement, which could help to lead to changes in spectrum allocation policy. Increased wireless capacity will help to enhance access to broadband internet access, including to poor or rural areas, where the capital costs of implementing physical infrastructure like fiber optic lines is cost prohibitive (evidenced by the developing world's use of cellular phones over landlines). Beyond communications, RF monitoring has several applications ranging from electronic defense, to navigation and geo-location.

  • Program Officer
    Muralidharan S. Nair
  • Min Amd Letter Date
    5/17/2012 - 12 years ago
  • Max Amd Letter Date
    6/4/2012 - 12 years ago
  • ARRA Amount

Institutions

  • Name
    S2 Corporation
  • City
    Bozeman
  • State
    MT
  • Country
    United States
  • Address
    2310 University Way Bldg 4 -1
  • Postal Code
    597156504
  • Phone Number
    4069220334

Investigators

  • First Name
    Zeb
  • Last Name
    Barber
  • Email Address
    barber@spectrum.montana.edu
  • Start Date
    5/17/2012 12:00:00 AM
  • First Name
    Kristian
  • Last Name
    Merkel
  • Email Address
    merkel@s2corporation.com
  • Start Date
    5/17/2012 12:00:00 AM