This Small Business Technology Transfer (STTR) Phase II project aims to develop a method for rapid, direct and large-scale production of pristine nano-graphene platelets (NGPs). A combined molecular dynamic, macroscopic modeling and experimental approach will be used to (1) further improve the understanding of the underlying principles behind effective peeling of single-layer graphene sheets from graphite particles in selected liquid mediums, and (2) to clearly determine the most critical processing conditions that govern the graphene production rate in a continuous processing reactor. <br/><br/>The broader/commercial impacts of this project will be the potential to offer a cost-effective method to produce pristine nano-graphene in large quantities. NGPs are of exceptional scientific and technological significance. The ability to produce large-volume pristine nano-graphene will have a profound impact on the evolution of nano-graphene science and technology. Highly conductive graphene may find practical applications in transparent and conductive coating, supercapacitor, battery electrode, fuel cell bipolar plates, and conductive nanocomposite.