1. Field of the Invention
The present invention pertains to the field of fiber optics. The invention more particularly concerns an optical fiber mounted in a stub where one end of the optical fiber is cleaved and the other end of the optical fiber is polished. Glass material is used to construct the optical fiber or waveguide.
2. Discussion of the Background
Cleaving an optical fiber by mechanical means is known in the art and cleaving with a laser or cutting beam is also known in the art and is disclosed in U.S. Pat. Nos. 4,710,605, and 6,139,196. U.S. Pat. Nos. 4,710,605, and 6,139,196 are hereby incorporated herein by reference. U.S. Pat. No. 4,710,605 discloses a single optical fiber mounted in a fixture where the laser cleaves a bare optical fiber. U.S. Pat. No. 6,139,196 discloses a single optical fiber, including a fiber jacket surrounding the optical fiber, mounted in a fixture where the laser cleaves the fiber jacket and the optical fiber. In both cases, the cleaved optical fibers are then removed from their respective fixtures for further processing.
Additionally, forming a lens at an end of an optical fiber with a laser is known in the art and is disclosed in U.S. Pat. Nos. 4,932,989; 5,011,254; and 5,256,851. U.S. Pat. Nos. 4,932,989; 5,011,254; and 5,256,851 are hereby incorporated herein by reference. U.S. Pat. No. 4,932,989 discloses a single optical fiber mounted in a fixture, where the optical fiber has a tapered lens formed at an end of the optical fiber with a laser. U.S. Pat. No. 5,011,254 discloses a single optical fiber mounted in a fixture, where the optical fiber has a hyperbolic lens formed at an end of the optical fiber with a laser. U.S. Pat. No. 5,256,851 discloses a single optical fiber mounted in a fixture, where the optical fiber has an asymmetric hyperbolic lens formed at an end of the optical fiber with a laser. In all three cases, the cleaved and lensed optical fibers are then removed from their respective fixtures for further processing.
Typically, the cleaved and lensed optical fiber is mounted in a housing which contains either an optoelectronic transmitter or an optoelectronic receiver. In the case of the optoelectronic transmitter, the optoelectronic transmitter emits a light signal which shines on the lens of the optical fiber where the light signal is efficiently introduced into the optical fiber. In the case of the optoelectronic receiver, a light signal propagates along a length of the optical fiber and exits the optical fiber, thus focusing the light signal, in an efficient manner, on the optoelectronic receiver.
Both the cleaving step and the lensing step of the prior art require numerous time consuming set-up operations, low yields, and result in difficulty in handling and placing the optical fiber in an assembly.
Therefore, it is an object of the invention to provide a device which is easily assembled into other structures or housings.
It is another object of the present invention to provide a terminated optical fiber which includes a stub attached to the optical fiber which provides for shorter set-up times and thus increased productivity.
It is yet another object of the present invention to provide a cleaved and lensed optical fiber which is robust and rugged enough not to be damaged by a vibrating feeding machine which is part of an assembly line process to feed the device to another structure for assembly.
In one form of the invention, the device includes a stub, and an optical fiber, the stub having an aperture, and a first end and a second end. The optical fiber is mounted in the aperture of the stub. The optical fiber has a first end and a second end. The first end of the optical fiber is polished so as to be flush with the first end of the stub. The polished end is in conformity with the physical contact surface finish standard. The second end of the optical fiber is terminated at a predetermined position so as to provide for a predetermined length of the optical fiber measured from the first end of the optical fiber to the second end of the optical fiber.
In yet another form of the invention, the device includes a stub, an adhesive material, and an optical fiber, the stub having an aperture, and a first end and a second end. The optical fiber is attached to the aperture of the stub by way of the adhesive material. The optical fiber has a first end and a second end. The first end of the optical fiber is polished so as to be flush with the first end of the stub. The polished end is in conformity with the physical contact surface finish standard. The second end of the optical fiber is cleaved at a predetermined position so as to provide for a predetermined length of the optical fiber measured from the first end of the optical fiber to the second end of the optical fiber.
In still yet another form of the invention, a method is set forth for producing the first above-described device. The method includes the steps of selecting a stub having an aperture; inserting the optical fiber into the aperture of the stub; polishing a first end of the stub and a first end of the optical fiber so as to form a physical contact surface finish; and terminating the optical fiber so as to form a second end of the optical fiber.
In another form of the invention, a method is set forth for producing the second above-described device. The method includes the steps of selecting a stub having an aperture; applying an adhesive material to at least one of the aperture of the stub and optical fiber; inserting the optical fiber into the aperture of the stub so as to affix the optical fiber to the stub by way of the adhesive material; polishing a first end of the stub and a first end of the optical fiber so as to form a physical contact surface finish; and cleaving the optical fiber so as to form a second end of the optical fiber.
Thus, the device of the invention is superior to existing solutions since the stub having the optical fiber is connectorized. The device can be assembled in large quantities and stored. The device can be assembled into a housing containing an optoelectronic device or it can be assembled onto a board which has unfinished or un-connectorized optical fiber which need to be terminated. Thus, the device of the invention is more cost effective than prior art devices.
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, and more particularly to
Initially, a stub 20 is selected which includes an appropriate aperture 21. The size of the aperture 21 of the stub 20 is based on the size of the optical fiber 30. Typically, the diameter of the aperture 21 is greater than the diameter of the optical fiber 30. During assembly, an optical fiber 30 has an adhesive material 38 (for reasons of clarity the adhesive material 38 is not shown in
The length L1 of the optical fiber 30 and hence the device 10 is predetermined. Thus, after the first ends 22, 32 are polished the exact location for cutting the optical fiber 30 at the second end 34 can be determined to achieve the overall length L1. Once the location of the second end 34 of the optical fiber is determined a cleaving step is employed to perform the cut. The cleaving step can be performed mechanically or by lasing.
Mechanical cleaving consists of scoring the surface of the optical fiber 30 with a diamond or sapphire tipped tool so as to create a crack on the surface of the optical fiber 30 at the location of the second end 34. The optical fiber 30 is then stressed, typically by bending, so as to propagate the crack across the diameter of the optical fiber 30.
Laser cleaving consists of ablating a portion of the optical fiber 30 at the designated position. The laser does not harm the stub 20 material. The stub 20 is typically made of a ceramic material. However, the stub 20 can be made of a polymer material or a metallic material.
Compared to polishing, the cleaving process is quick and accurate, and increases yields, and the length L1 can be controlled.
In another variation of the invention,
In yet another variation of the invention,
During manufacture, the device 210 is constructed by selecting a stub 220 having an appropriate aperture. An optical fiber 230 is inserted into the aperture so that the optical fiber 230 extends past both ends of the stub 220. The optical fiber 230 extending past the end of the stub 220 having the conically shaped aperture is either cleaved or has been pre-cleaved prior to insertion and also that end of the optical fiber 230 can be lensed or can pre-lensed if a lens is so desired. Then an adhesive is placed on the optical fiber 230 near the portion of the optical fiber extending past the conically shaped aperture of the stub 220. The optical fiber 230 is then moved relative to the stub 220 so that the end of the optical fiber 230 is situated near the apex of the conical portion of the aperture of the stub 220. Any amount of the optical fiber 230 extending beyond the other end of the stub 220 is polished flush with the surface of the stub 220 as described in the previous embodiments. Depending on the application, the position of the end of the optical fiber 230 near the conically shaped aperture of the stub 220 can be controlled and prescribed relative to the end of the stub 230 located near the conically shaped aperture. Therefore, the end of the optical fiber 230 near the conically shaped aperture may be flush with the apex of the cone or it may extend into the conical region. Thus, the mechanical length of the stub and the length of the optical fiber can be separated during assembly of the device 210. The conically shaped portion of the aperture is sized so as to prevent light energy emanating from the end of the optical fiber 230, or entering it, from impinging on the surface of the conically shaped portion of the aperture.
Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.
This is a division of U.S. patent application Ser. No. 10/151,362, filed May 20, 2002 now U.S. Pat. No. 6,805,491, which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3910677 | Becker et al. | Oct 1975 | A |
4300813 | Gravel | Nov 1981 | A |
4710605 | Presby | Dec 1987 | A |
4932989 | Presby | Jun 1990 | A |
4964688 | Caldwell et al. | Oct 1990 | A |
5011254 | Edwards et al. | Apr 1991 | A |
5061342 | Jones | Oct 1991 | A |
5256851 | Presby | Oct 1993 | A |
5501385 | Halpin | Mar 1996 | A |
5568581 | Johnson et al. | Oct 1996 | A |
5598493 | Bonham et al. | Jan 1997 | A |
5631986 | Frey et al. | May 1997 | A |
5800666 | Bonham, Jr. et al. | Sep 1998 | A |
5909528 | Tamekuni et al. | Jun 1999 | A |
5940557 | Harker | Aug 1999 | A |
6139196 | Feth et al. | Oct 2000 | A |
6246026 | Vergeest | Jun 2001 | B1 |
6599029 | Yamazaki et al. | Jul 2003 | B2 |
Number | Date | Country |
---|---|---|
09152524 | Jun 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20040240795 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10151362 | May 2002 | US |
Child | 10884225 | US |