Stubbing systems and methods in a data replication environment

Information

  • Patent Grant
  • 9483511
  • Patent Number
    9,483,511
  • Date Filed
    Thursday, March 12, 2015
    9 years ago
  • Date Issued
    Tuesday, November 1, 2016
    8 years ago
Abstract
Stubbing systems and methods are provided for intelligent data management in a replication environment, such as by reducing the space occupied by replication data on a destination system. In certain examples, stub files or like objects replace migrated, de-duplicated or otherwise copied data that has been moved from the destination system to secondary storage. Access is further provided to the replication data in a manner that is transparent to the user and/or without substantially impacting the base replication process. In order to distinguish stub files representing migrated replication data from replicated stub files, priority tags or like identifiers can be used. Thus, when accessing a stub file on the destination system, such as to modify replication data or perform a restore process, the tagged stub files can be used to recall archived data prior to performing the requested operation so that an accurate copy of the source data is generated.
Description
BACKGROUND

1. Field


The present disclosure relates to performing copy and/or data management operations in a computer network and, in particular, to systems and methods for managing stub files in a data replication system.


2. Description of the Related Art


Computers have become an integral part of business operations such that many banks, insurance companies, brokerage firms, financial service providers, and a variety of other businesses rely on computer networks to store, manipulate, and display information that is constantly subject to change. Oftentimes, the success or failure of an important transaction may turn on the availability of information that is both accurate and current. Accordingly, businesses worldwide recognize the commercial value of their data and seek reliable, cost-effective ways to protect the information stored on their computer networks.


To address the need to maintain current copies of electronic information, certain data replication systems have been provided to “continuously” copy data from one or more source machines to one or more destination machines. These continuous data replication (CDR) systems provide several advantages for disaster recovery solutions and can substantially reduce the amount of data that is lost during an unanticipated system failure.


One drawback of such CDR systems is that synchronization of the source and destination machines generally requires the same amount of storage space on both the source and destination. Thus, not only do many conventional CDR systems require large amounts of disk space, but they also tend to be less useful for general data backup purposes.


SUMMARY

In view of the foregoing, a need exists for improved systems and methods for the managing replication data in a storage system, such as a CDR system. For example, there is a need for conserving disk space on a destination storage device, while maintaining the ability to provide sufficient and timely recovery of the replicated data. Moreover, there is a need for providing user access to the replicated data in a manner that is transparent to the user and/or without substantially impacting the CDR, or other replication, process.


In certain embodiments of the invention disclosed herein, stubbing systems and methods are provided for destination storage devices in a CDR system. For instance, data on a destination storage device can be selectively moved to secondary storage based on archive, de-duplication, or other storage policies, to free up space on the destination system.


For example, certain embodiments of the invention involve the de-duplication, or single-instancing, of replication data. In such systems, de-duplicated data blocks on the replication storage device can be replaced with substantially smaller stub files that serve as pointers to, or placeholders for, the actual data. In certain embodiments, a data migration module of the replication system periodically examines the replication data to identify common blocks that have not been accessed for a period of time and that can be replaced by smaller stub files, while a copy of the actual data is archived to secondary storage, such as a less-expensive medium or the like.


In order to distinguish the stub files representing migrated replication data from original stub files that have been replicated from the source system, certain embodiments of the invention use priority tags. Thus, when accessing a stub file on the destination system, such as to modify the replication data or to perform a system restore process, the tagged stub files can be used to recall the archived data prior to performing the requested operation so that an accurate replica of the source data can be compiled.


Certain embodiments of the invention include a method for performing data management operations on replicated data of a destination storage device. The method includes processing, with one or more routines, at least one log file having a plurality of log entries indicative of operations generated by a computer application executing on a source system, the operations being directed to data on a source storage device. The method further includes replaying, with the one or more routines, the operations on a destination storage device to modify replication data on the destination storage device, wherein said replaying further comprises: (i) identifying a plurality of stub files within the replication data, wherein the plurality of stub files comprises one or more first stub files each comprising a predetermined tag value, and wherein the plurality of stub files further comprises one or more second stub files that do not comprise the predetermined tag value; (ii) for each of the one or more first stub files, recalling from a secondary storage one or more data objects represented by each of the one or more first stub files and replacing each of the one or more first stub files with the corresponding data object prior to modifying the replication data; and (iii) modifying the replication data on the destination storage device to match the data on the source storage device.


Certain embodiments of the invention further include a destination system for performing data replication in a computer network. The destination system comprises a destination storage device, at least one replication log file, a replication module and a migration module. The destination storage device stores replication data having a plurality of stub files, the plurality of stub files comprising one or more first stub files each having at least one predetermined tag value and one or more second stub files that do not have the at least one predetermined tag value. The at least one replication log file comprises a plurality of log entries indicative of data operations generated by a computer application for execution on a source storage device. A replication module traverses the plurality of log entries in the replication log file(s) and copies the log entries to execute the data operations on replication data of the destination storage device. The migration module restores copied data from a secondary storage device to the destination storage device based on the one or more first stub files. In certain embodiments, the replication module is further configured to identify the first stub file(s) and instruct the migration module to replace the first stub file(s) with the copied data from the secondary storage device prior to executing the data operations on the replication data.


In certain embodiments, a destination system is disclosed for performing data replication in a computer network. The destination system comprises means for storing replication data having a plurality of stub files, the plurality of stub files comprising one or more first stub files each comprising at least one predetermined tag value and one or more second stub files that do not comprise the at least one predetermined tag value. The system further includes means for receiving a plurality of log entries indicative of data operations generated by a computer application for execution on a source storage device, and means for traversing the plurality of log entries in the receiving means and for copying the log entries to execute the data operations on replication data of the storing means. The system further includes means for restoring copied data from a secondary storage device to the storing means based on the first stub file(s). Furthermore, the traversing means can identify the first stub file(s) and instruct the restoring means to replace the first stub file(s) with the copied data from the secondary storage device prior to executing the data operations on the replication data.


In certain embodiments, a method is disclosed for performing data management operations in a computer network. The method includes monitoring operations associated with a source computing device, the operations operative to write data to a source storage device. The method further includes copying the data to a destination storage device based at least in part on the operations, the data comprising at least one first stub file, and scanning the data of the destination storage device to identify a common data object repeated between multiple portions of the data on the destination storage device. The method also includes archiving a copy of the common data object on a second storage device and determining a last access time of each of the multiple data portions of the destination storage device having the common data object. For each of the multiple data portions having a last access time at or before the time of the archiving of the copy of the common data object, the method includes replacing the common data object of the particular data portion with a second stub file, wherein the second stub file comprises a tag value not possessed by any of the first stub file(s), and wherein the second stub file comprises information indicative of a location of the copy of the common data object.


In further embodiments, a continuous data replication system is disclosed that comprises a first storage device, at least one monitoring module, a replication module and a migration module. The first storage device stores data write operations from at least one computer application at a first location, the first location comprising at least one first stub file. The at least one module monitors the data write operations and generates first log entries based on the data write operations. The second storage device comprises second log entries, wherein the second log entries comprise copies of at least a portion of the first log entries. The replication module is in communication with the second storage device and is configured to process the second log entries to modify replicated data stored in a second location to substantially mirror the data of the first location, the replicated data comprising a copy of the first stub file(s). The migration module is configured to archive select data objects of the replicated data to a third location and to replace each of the select data objects of the replicated data with a second stub file, wherein each of the second stub files comprises an identifier not possessed by the first stub file(s) and wherein each of the second stub files comprises information indicative of a location of the archived copy of the data object at the third location.


In certain embodiments a continuous data replication system is disclosed that comprises means for storing data write operations from at least one computer application at a first location, the first location comprising at least one first stub file. The replication system further includes means for monitoring the data write operations and for generating first log entries based on the data write operations and also means for receiving second log entries, wherein the second log entries comprise copies of at least a portion of the first log entries. The replication system further includes means for processing the second log entries to modify replicated data stored in a second location to substantially mirror the data of the first location, the replicated data comprising a copy of the first stub file(s), and means for archiving select data objects of the replicated data to a third location and for replacing each of the select data objects of the replicated data with a second stub file, wherein each of the second stub files comprises an identifier not possessed by the first stub file(s) and wherein each of the second stub files comprises information indicative of a location of the archived copy of the data object at the third location.


In certain further embodiments, a method is disclosed for restoring data in a continuous data replication system. The method includes receiving, with a first computing device, a request to restore data of one or more snapshots of replication data of a destination storage device, the replication data having first stub files replicated from a source system and second stub files indicative of select data blocks of the replication data copied to a secondary storage device from the destination storage device. The method further includes mounting the snapshot(s); identifying the second stub files captured by the snapshot(s); and recalling to a staging area the select data blocks from the secondary storage device corresponding to each of the identified second stub files. In addition, the method includes, following said recalling, restoring the replication data from the snapshot(s), the restored data comprising each of the first stub files and comprising none of the second stub files.


In certain embodiments, a system is disclosed for restoring data in a continuous data replication environment. The system includes a first storage device comprising data replicated from a source storage system, the replicated data comprising first stub files replicated from the source storage system and second stub files indicative of select data blocks of the replicated data copied to a secondary storage device. The system also includes a restore module configured to mount a snapshot of the replicated data, the snapshot representing a point-in-time image of the replicated data, wherein the restore module is further configured to identify the second stub files captured by the snapshot(s). The system further includes a migration module in communication with the restore module, the migration module being configured to recall to a staging area the select data blocks from the secondary storage device corresponding to each of the identified second stub files. Moreover, in certain embodiments, the restore module is configured to restore the replication data represented by the snapshot, the restored data comprising each of the first stub files and comprising none of the second stub files.


In certain embodiments, a system is disclosed for restoring data in a continuous data replication environment. The system comprises means for storing data replicated from a source storage system, the replicated data comprising first stub files replicated from the source storage system and second stub files indicative of select data blocks of the replicated data copied to a secondary storage device. The system also comprises means for mounting a snapshot of the replicated data, the snapshot representing a point-in-time image of the replicated data, wherein the mounting means further identifies the second stub files captured by the one or more snapshots. Moreover, the system comprises means for recalling to a staging area the select data blocks from the secondary storage device corresponding to each of the identified second stub files, and wherein the mounting means further restores the replication data represented by the snapshot, the restored data comprising each of the first stub files and comprising none of the second stub files.


For purposes of summarizing the disclosure, certain aspects, advantages and novel features of the inventions have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a block diagram of a data replication system, according to certain embodiments of the invention.



FIG. 2 illustrates a block diagram of an exemplary embodiment of a destination system of the data replication system of FIG. 1.



FIG. 3 illustrates an exemplary de-duplication stub file usable with the destination system of FIG. 2.



FIGS. 4-6 illustrate flowcharts of an exemplary embodiment of a de-duplication method for destination data of a CDR system, such as the data management system of FIG. 1.


In particular, FIG. 4 illustrates a flowchart of an exemplary embodiment of a scan process of the de-duplication method;



FIG. 5 illustrates a flowchart of an exemplary embodiment of an archive process of the de-duplication method; and



FIG. 6 illustrates a flowchart of an exemplary embodiment of a stubbing process of the de-duplication method.



FIG. 7 illustrates a flowchart of an exemplary embodiment of a synchronization process usable by the data replication system of FIG. 1.



FIG. 8 illustrates a flowchart of an exemplary embodiment of a restore process usable by the data replication system of FIG. 1.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

As will be seen from the disclosure herein, systems and methods are provided for intelligent and efficient data management. For instance, certain embodiments of the invention provide for improved CDR systems that reduce the amount of space required for replication data on a destination system. Such systems can utilize stub files or the like to replace migrated, de-duplicated or otherwise copied data that has been moved from the destination system to secondary storage. Disclosed systems and methods further provide access to the replication data in a manner that is transparent to the user and/or without substantially impacting the CDR, or like replication, process.


In certain examples, embodiments of the invention are directed to the de-duplication, or single-instancing, of replication data. In such systems, de-duplicated data blocks on the destination storage device can be replaced with stub files that serve as pointers to the storage locations of the actual data. For instance, like stub files can be used to reference the same common data block that has been de-duplicated from the destination system. In certain embodiments, a migration module on the destination system periodically examines the replication data to identify the common data blocks that have not been accessed for a period of time and that can be replaced by the smaller stub file, while a copy of the actual data is archived to secondary storage.


In order to distinguish stub files representing migrated replication data from original stub files that have been replicated from the source system, embodiments of the invention can advantageously utilize priority tags or like identifiers. Thus, when accessing a stub file on the destination system, such as to modify the replication data or to perform a system restore process, the tagged stub files can be used to recall the archived data prior to performing the requested operation so that an accurate replica of the source data is generated.


Embodiments of the invention can also be used to restore data from one or more snapshots that represent replicated data in a “known good,” “stable” or “recoverable” state, even when the snapshots comprise one or more stub files. Certain tags or other priority identifiers can be used to distinguish the stub files that represent migrated replication data from those stub files that had been replicated from a source machine.


The features of the systems and methods will now be described with reference to the drawings summarized above. Throughout the drawings, reference numbers are re-used to indicate correspondence between referenced elements. The drawings, associated descriptions, and specific implementation are provided to illustrate embodiments of the invention and not to limit the scope of the disclosure.


In addition, methods and functions described herein are not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described blocks or states may be performed in an order other than that specifically disclosed, or multiple blocks or states may be combined into a single block or state.



FIG. 1 illustrates a block diagram of a data management or replication system 100 according to certain embodiments of the invention. In general, the data replication system 100 can engage in continuous data replication between source and destination device(s), such that the replicated data is substantially synchronized with data on the source device(s). Moreover, the data replication system 100 advantageously provides for further migration of the destination data, such as based on de-duplication or other storage policies, to conserve available disk space of the destination system. In doing so, the data replication system 100 is advantageously configured to identify replication data that has been migrated and to account for the migrated data when engaging in additional data management operations, such as when modifying and/or restoring replication data.


As shown in FIG. 1, the data replication system 100 comprises a source system 102 capable of communicating with a destination system 104 by sending and/or receiving data over a network 106. For instance, in certain embodiments, the destination system 104 receives and/or stores a replicated copy of at least a portion of data, such as application-specific data, associated with the source system 102, such as on a source storage device 112.


The illustrated network 106 advantageously comprises any means for communicating data between two or more systems or components. It certain embodiments, the network 106 comprises a computer network. For example, the network 106 may comprise a public network such as the Internet, a virtual private network (VPN), a token ring or TCP/IP based network, a wide area network (WAN), a local area network (LAN), an intranet network, a point-to-point link, a wireless network, a cellular network, a wireless data transmission system, a two-way cable system, an interactive kiosk network, a satellite network, a broadband network, a baseband network, combinations of the same or the like. In embodiments wherein the source system 102 and destination system 104 are part of the same computing device, the network 106 may represent a communications socket or other suitable internal data transfer path or mechanism.


In certain embodiments, the source system 102 can comprise any computing device or means for processing data and includes, for example, a server computer, a workstation, a personal computer, a cell phone, a portable computing device, a handheld computing device, a personal digital assistant (PDA) or the like.


As shown, the source system 102 comprises one or more applications 108 residing on and/or being executed by a computing device. For instance, the applications 108 may comprise software applications that interact with a user to process data and may include, for example, database applications (e.g., SQL applications), word processors, spreadsheets, financial applications, management applications, e-commerce applications, browsers, combinations of the same or the like. For example, in certain embodiments, the applications 108 may comprise one or more of the following: MICROSOFT EXCHANGE, MICROSOFT SHAREPOINT, MICROSOFT SQL SERVER, ORACLE, MICROSOFT WORD and LOTUS NOTES.


The source system 102 further comprises one or more processes, such as filter drivers 110, that interact with data (e.g., production data) associated with the applications 108 to capture information usable to replicate application data to the destination system 104. For instance, the filter driver 110 may comprise a file system filter driver, an operating system driver, a filtering program, a data trapping program, an application, a module of the application 108, an application programming interface (“API”), or other like software module or process that, among other things, monitors and/or intercepts particular application requests targeted at a file system, another file system filter driver, a network attached storage (“NAS”), a storage area network (“SAN”), mass storage and/or other memory or raw data. In some embodiments, the filter driver 110 may reside in the I/O stack of the application 108 and may intercept, analyze and/or copy certain data traveling from the application 108 to a file system.


In certain embodiments, the filter driver 110 may intercept data modification operations that include changes, updates and new information (e.g., data writes) with respect to application(s) 108 of interest. For example, the filter driver 110 may locate, monitor and/or process one or more of the following with respect to a particular application 108, application type or group of applications: data management operations (e.g., data write operations, file attribute modifications), logs or journals (e.g., NTFS change journal), configuration files, file settings, control files, other files used by the application 108, combinations of the same or the like. In certain embodiments, such data may also be gathered from files across multiple storage systems within the source system 102. Furthermore, the filter driver 110 may be configured to monitor changes to particular files, such as files identified as being associated with data of the application(s) 108.


In certain embodiments, multiple filter drivers 110 may be deployed on a computing system, each filter driver being dedicated to data of a particular application 108. In such embodiments, not all information associated with the client system 102 may be captured by the filter drivers 110 and, thus, the impact on system performance may be reduced. In other embodiments, the filter driver 110 may be suitable for use with multiple application types and/or may be adaptable or configurable for use with multiple applications 108. For example, one or more instances of customized or particular filtering programs may be instantiated based on application specifics or other needs or preferences.


The illustrated source system 102 further comprises the source storage device 112 for storing production data of the application(s) 108. The source storage 112 may include any type of physical media capable of storing electronic data. For example, the source storage 112 may comprise magnetic storage, such as a disk or a tape drive, or other type of mass storage. In certain embodiments, the source storage 112 may be internal and/or external to (e.g., remote to) the computing device(s) having the applications 108 and the filter drivers 110. In yet other embodiments, the source storage 112 can include a NAS or the like.


In yet other embodiments, the source storage 112 can comprise one or more databases and database logs. For instance, in certain embodiments, database transactions directed to the source storage 112 may be first written to a file in the database logs and subsequently committed to the database in accordance with data management techniques for enhancing storage operation performance.


As further illustrated in FIG. 1, the destination system 104 comprises a replication module 114 and a destination storage device 116. In certain embodiments, the replication module 114 is configured to monitor and/or manage the copying of data from the source system 102 to the destination system 104, such as data associated with the information obtained by the filter drivers 110. For example, the replication module 114 can comprise any computing device capable of processing data and includes, for example, a server computer, a workstation, a personal computer or the like. In yet other embodiments, the replication module 114 is a “dumb” server or terminal that receives and executes instructions from the source system 102.


The destination storage 116 may include any type of physical media capable of storing electronic data, such as replication data sent from the source system 102. For example, the destination storage 116 may comprise magnetic storage or other type(s) of mass storage. In certain embodiments, the destination storage 116 may be internal and/or external to the computing device(s) having the replication module 114.


In certain embodiments, the source storage 112 and/or the destination storage 116 may be implemented as one or more storage “volumes” that include physical storage disks defining an overall logical arrangement of storage space. For instance, disks within a particular volume may be organized as one or more groups of redundant array of independent (or inexpensive) disks (RAID). In certain embodiments, either or both of the storage devices 112, 116 may include multiple storage devices of the same or different media.


As shown, the data replication system 100 further includes a data migration module 118 in communication with the destination storage 116. In general, the migration module 118 is configured to copy, or migrate, data from the destination storage 116 to a secondary storage 120. For example, the migration module 118 can selectively archive, back up or otherwise copy certain portions of the replication data on the destination storage 116 to the secondary storage 120. In certain embodiments, the migration module 118 is further configured to truncate data on the destination storage 116.


In certain embodiments, the migration module 118 is configured to perform file or block-level single instancing, or de-duplication, of the data stored on the destination storage 116. Examples of single instancing methods and structures usable with embodiments of the invention are discussed in U.S. patent application Ser. No. 12/145,342, filed Jun. 24, 2008, published as U.S. Patent Application Publication No. 2009-0319585 A1, which is hereby incorporated herein by reference in its entirety to be considered part of this specification. In yet other embodiments, the migration module 118 is configured to perform one or more of the following copy operations: archiving, backup, Hierarchical Storage Management (“HSM”) copies, Information Lifecycle Management (“ILM”) copies or the like.


In certain embodiments, the migration module 118 can advantageously replace the copied data on the destination storage 116 with a stub file or like object that indicates the new location of the migrated data on the secondary storage 120. For instance, the stub file can comprise a relatively small, truncated file (e.g., several kilobytes) having the same name as the original file. The stub file can also include metadata that identifies the file as a stub and that can be used by the storage system to locate and restore the migrated data to the destination storage 116 or other location.


The secondary storage 120 can include any type of physical media capable of storing electronic data, such as the migrated data from the destination storage 116. In certain embodiments, secondary storage 120 comprises media configured for long-term data retention, such as tape media or the like. In yet other embodiments, the secondary storage 120 can comprise a disk or other type of mass storage. For example, in certain embodiments, the secondary storage 120 advantageously comprises a slower access time and/or a less expensive storage medium than the destination storage 116.


Moreover, although the migration module 118 and the secondary storage 120 are illustrated as being external to the destination system 104, it will be understood that either or both of these components can be integrated into the destination system 104. For instance, in certain embodiments the replication module 114 can include the migration module 118, and/or the destination storage 116 can include the secondary storage 120.



FIG. 2 illustrates a block diagram of an exemplary embodiment of a destination system 204 that provides for de-duplication of data in a CDR system. For instance, the destination system 204 can be advantageously configured to maintain a replication copy of data from a source system while conserving space used on the destination storage device.


In certain embodiments, the destination system 204 can be used in the data replication system 100 of FIG. 1. Thus, to simplify the description, certain components of the destination system 204 of FIG. 2 will not be redescribed in detail if they were described above. Rather, the components of the destination system 204 will be given a reference numeral that retains the same last two digits as the reference numeral used in data replication system 100 of FIG. 1, and the last two digits will be preceded with a numeral “2.”


As shown in FIG. 2, the destination system 204 comprises a replication agent 230 and one or more processes, such as threads 232, that populate a destination storage 216. In certain embodiments, the replication agent 230 comprises one or more software modules that coordinate the transfer of data from a source system, such as the source system 102 to the destination storage 216. For instance, the replication agent 230 can manage replication based on one or more predefined preferences, storage policies or the like.


In certain embodiments, the replication agent 230 instantiates an appropriate number of threads, processes, or routines, 232 for copying data from replication log files 233 to the destination storage 216 to maintain a replicated copy of a source storage device. In operation, in certain embodiments, the threads 232 advantageously process or traverse the entries of the replication logs 233 for particular types of data and then copy that data to certain locations on one or more replication volumes based on data paths identified by the replication agent 230 and/or associated with each thread 232.


For example, in certain embodiments, the replication logs 233 can contain a copy of the data stored on source logs of a client system and/or particular data operations being performed on the source system data. Such replication logs 233 can comprise any type of memory capable of storing data including, for example, cache memory. In certain embodiments, the replication logs 233 may reside on the destination system 204, such as, for example, on the destination storage 216, or at least a portion of the replication logs 233 may be external to the destination system 204. In certain embodiments, once the replication logs 233 have been populated with the data from the source logs, the data on the source logs is available to be erased and/or overwritten to conserve memory space.


In certain embodiments, one thread 232 may write to one or more volumes of the destination storage 216 and/or multiple threads 232 may write to a single volume in parallel. Moreover, each thread 232 can be assigned to a hard-coded path pair, which includes (i) a source path identifying the location on the source storage device associated with a data management operation (e.g., “C:\Folder\”) and (ii) a destination path identifying the location on the destination storage 216 to receive the replicated data (e.g., “D:\folder\”) from the thread 232.


The destination system 204 further includes a de-duplication module 218 that traverses the data in the destination storage 216 to identify common data objects within one or more files on the destination storage 216. For instance, in certain embodiments, the de-duplication module 218 performs block-level de-duplication to identify common 64 KB blocks of data on the destination storage 216.


In certain embodiments, the de-duplication module 218 generates a substantially unique identifier for each 64 KB block, such as by performing a cryptographic hash function (e.g., message-digest algorithm 5 (MD5)), a secure hash algorithm (e.g., SHA-256), a (digital) digital fingerprint, a checksum, combinations of the same or the like. For each block having a matching identifier, the de-duplication module 218 can assume that such blocks contain identical data. For instance, the de-duplication module 218 can generate the substantially unique identifier for each block on-the-fly while traversing the blocks of the destination storage 216.


In yet other embodiments, the identifier for each block can be calculated by a module other than the de-duplication module 218, such as by a media agent, the replication agent 230 or the like. For instance, the identifier can be generated, in certain embodiments, when the block is initially stored on the destination storage 216, as part of the replication process from the source system 102 to the destination system 104, or at any other time prior to the comparison by the de-duplication module 218.


To conserve storage space, each set of common or identical blocks of data found in the destination storage 216 can be stored as a single block in the de-duplication storage 220. Moreover, the de-duplication module 218 can replace each of the common blocks on the destination storage 216 with a substantially smaller stub file that indicates that the actual data block has been copied to the de-duplication storage 220.


For instance, as shown in FIG. 2, the destination storage 216 comprises three files, File A 234, File B 236 and File C 238. Two of the files, File A 234 and File C 238, have a common data block, which has been replaced with a de-duplication stub file (i.e., Stub X 240) by the de-duplication module 218. This common data block is stored in the de-duplication storage 232 as common block 244.


In certain embodiments, the de-duplication stub file 240 is distinguishable from other stub files via a tag, a header entry or other like identifier. Such identification can be advantageous in a replication system, such as the destination system 204, so that the system can distinguish between stubs that have been replicated to the destination storage 216 from a source storage device and stubs that represent actual data on the destination storage 216 that has been archived, de-duplicated or otherwise migrated from the destination storage 216 to de-duplication storage 220.


For example, File B 242 on the destination storage 216 also includes a stub file (i.e., Stub Y 242) that has been replicated from a source storage device. Thus, in certain embodiments, Stub Y 242, a non de-duplication stub file, does not necessarily correspond to a common block stored on the de-duplication storage 220 and does not include the same tag or other identifier contained by the de-duplication stub files.


In certain embodiments, the de-duplication module 218 further maintains a tag index 239 that tracks tag values used by stubs on the destination storage 216. For instance, the index 239 can indicate which tag value(s) are assigned to de-duplication stub files (e.g., Stub X 240) and/or replicated stub files (e.g., Stub Y 242). Thus, in such embodiments, the de-duplication module 218 can access the index 239 any time it encounters a stub file on the destination storage 216 based on the tag value contained by the stub. In yet other embodiments, the index 239 can be maintained on the destination storage 216, the de-duplication storage 220 or other component of the destination system 204.


Although not illustrated in FIG. 2, the destination system 204 can further comprise a de-duplication database that associates de-duplication stub files 240 on the destination storage 216 with their corresponding common block(s) 244 on the de-duplication storage 220. For example, the de-duplication module 218 can be configured to maintain and/or access a table, index, linked list or other structure that stores entries for each of the de-duplication stub files 240 on the destination storage 216 and the location of the corresponding common block 244 on the de-duplication storage 220.


Although the stub files illustrated in FIG. 2 have been described with reference to common data blocks, in other embodiments of the invention the stub files can be used to identify other identical data objects, such as files, strings or the like. Moreover, the common data objects need not be limited to 64 KB but may be larger or smaller depending on the specifications (e.g., operating system) of the applicable system.


The de-duplication module 218 can further be configured to restore and/or recall data from the de-duplication storage 220. For instance, as discussed in more detail below, the de-duplication module 218 can advantageously retrieve the de-duplication or archived data in response to a request to access the replication data on the destination storage 216.


Furthermore, although the destination system 204 of FIG. 2 has been described with reference to de-duplication of data, it will be understood from the disclosure herein that other embodiments of the destination system 204 can be configured to perform other migration processes, as disclosed above, that result in the copying and/or stubbing of data.


As is further illustrated, in certain embodiments the replication agent 230 can communicate directly with the de-duplication module 218. For instance, the two components can schedule access to replication data on the destination storage 216, and/or the replication agent 230 can instruct the de-duplication module to restore data, such as the common block 244, from the de-duplication storage 220 to the destination storage 216.



FIG. 3 illustrates an exemplary de-duplication stub file 340 usable with the destination system 204 of FIG. 2. In general, the de-duplication stub file 340 contains information that is necessary to locate and/or recall a migrated file or data object. In certain embodiments, the de-duplication stub file 340 comprises a self-describing stub that distinguishes the stub 340 from other types of stubs, such as those that have been replicated from a source system in a replication system.


For instance, in certain embodiments, the de-duplication stub file 340 comprises a 4 KB file that represents a common 64 KB block of data. In certain embodiments, the de-duplication module 218 or other like module utilizes the data within the stub 340 to retrieve the 64 KB data block in response to a data modification or restore operation request for the replication data. For example, the de-duplication stub file 340 can reference a block offset of the corresponding 64 KB data block 244 within the de-duplication storage 220. In yet other embodiments, the stub file 340 can represent an entire file or data object rather than a fixed block size.


For exemplary purposes, the de-duplication stub file 340 is shown in FIG. 3 with a plurality of fields. It will be understood that the illustrated stub file 340 is merely exemplary and that one or more of such fields can be optional and/or dependent on the type of operating system(s) used in the replication system.


As shown, the stub file 340 includes a tag value field 352. In certain embodiments, the tag value 352 distinguishes the de-duplication stub file 340 from regular stub files. For instance, in certain embodiments, the tag value 352 can be one of two preset values: a first value that identifies the stub file as a de-duplication stub file or a second value associated with a replicated stub file that represents a file migrated from a source storage device (e.g., a stub file that was itself replicated in a copy operation). For example, the tag value 352 could comprise a single bit to distinguish the two types of stub files.


In yet other embodiments, the tag value 352 can comprise a unique, substantially unique or other identifier (e.g., an alphanumeric value) that can be used in accessing a lookup table or like structure (e.g., index 239) to determine if the stub file 340 is a de-duplication stub file or a regular stub file.


A time stamp field 354 can store an indication of when the represented file was migrated to secondary storage and replaced with the stub file. The file size field 356 can indicate the size of the file and/or block represented by the stub file 340. In environments wherein all stub files reference a predetermined block size, the stub file 340 may not have such a field.


A file name field 358 indicates the name of the file referenced by the stub file 340. In certain embodiments, the stub file 340 itself is assigned the same name as the migrated file, thereby presenting the appearance that the actual file is located in the particular storage location.


The stub file 340 further includes a file location information field 360 containing data for locating and/or retrieving the migrated file. For example, the field 360 can comprise an archive file identifier, volume identifier, one or more offset values, a pathname, an address, combinations of the same or the like. It will be understood from the disclosure herein that the field 360 is illustrated as one field for simplification purposes and that other embodiments of the stub file 340 can comprise multiple fields (adjacent or non-adjacent) with information relating to the location of the migrated file. In general, the field 360 comprises enough information such that a migration module (e.g., migration module 118) can access the migrated file.


A checksum field 362 includes data for verifying that a restored file is not corrupted and/or accurately represents the data object that was migrated. For instance, when restoring a migrated file or object, the value in the checksum field 362 of the corresponding stub file 340 can be compared with a checksum of the restored file to validate the data.


The stub file 340 further includes a flag field 364 that contains other information regarding the migrated file or data object. For example, the flag field 364 can indicate whether or not the migrated file is encrypted, compressed or the like. In yet other embodiments, the stub file 340 can function without the flag field 364.


Although the de-duplication stub file 340 has been described with respect to particular embodiments, it will be understood from the disclosure herein that the stub file 340 can comprise more or fewer fields or information than what is illustrated in FIG. 3. Moreover, the stub file 340 may comprise a file between 511 bytes and 16 KB in size.



FIGS. 4-6 illustrate three flowcharts of an exemplary embodiment of a method for de-duplicating, or single instancing, replicated data in a data replication system, such as a CDR system. In general, the illustrated de-duplication method provides for the migrating and stubbing of common data objects on a destination storage device without significantly impacting the performance of data replication to the destination storage device. For exemplary purposes, the blocks of the flowcharts of FIG. 4-6 will be described with reference to the components of the destination system 204 of FIG. 2.


With respect to FIG. 4, a flowchart is shown of an exemplary embodiment of a scan process 400 of a de-duplication method for the destination system 204. In general, the scan process 400 involves identifying common data objects within replication data of a destination storage device.


At Block 405, the replication agent 230 and thread(s) 232 replicate data from a source storage device to the destination storage device 216. In certain embodiments, this block continues to be executed throughout the scan process 400 and/or other processes of FIGS. 5 and 6. In certain embodiments, the replication of data to the destination storage 216 is given priority over one or more other data operations of the de-duplication method described below in order to maintain substantial coherency between the replicated data and the source system data. Moreover, the de-duplication of the replicated data can be performed without significantly impacting the primary data replication process.


At Block 410, the de-duplication module 218 receives a command to archive data on the destination machine. In certain embodiments, the de-duplication module 218 initiates archiving based on a storage policy and/or user input. For instance, the storage policy can dictate that archiving be performed daily or on another periodic basis. In yet other embodiments, archiving can be performed based on an available storage capacity of the destination storage 216.


At Block 415, the de-duplication module 218 scans the destination storage 216 to identify common data objects. For instance, the de-duplication module 218 can identify 64 KB data blocks on the destination storage 216, such as from different files, that comprise identical data. In certain embodiments, the de-duplication module 218 can perform a cryptographic hash function or other algorithm, as discussed previously, to generate a substantially unique identifier based on the data contained in each block. For each block having the same identifier, the de-duplication module 218 can identify the block as a candidate for de-duplication together with the other like blocks, such as through a flag or other marker, listing the blocks in a data structure, or the like.


The term “data object” as used herein is a broad term and is used in its ordinary sense and includes, without limitation, any distinct or identifiable grouping of electronic information that exists in storage and/or on which operations can be performed. For example, a data object can comprise a data file, a data block, a program, an array, any other collection of electronic information or the like.


In certain embodiments, in order to avoid excessive restore operations on migrated data of secondary storage 220, it is preferred to not archive data that has a relatively high likelihood of being accessed in the future. Thus, during the scanning, the de-duplication module 218 can identify those common data objects on the destination storage 216 that have not been modified and/or accessed within a predetermined period of time (e.g., within the last seven days).


At Block 420, the process 400 records the scan time of the destination data. As discussed in more detail below with respect to FIG. 6, the scan time can advantageously be used to determine whether or not a particular data object should be stubbed. It will be understood that Block 420 can comprise recording of individual scan times for each data object on the destination storage 216 or the time that the scan process was initiated for the entire set of replication data.


At Block 425, the de-duplication module 218 maintains a list or other record of the common data objects that were identified on the destination storage as being candidates for de-duplication.


Although the scan process 400 has been described with respect to particular blocks, other embodiments of the process can include different and/or fewer blocks than those described above. For instance, in certain embodiments, the process 400 can conduct an initial scan of the destination storage 216 for all data objects that have not been modified and/or accessed for a predetermined period of time (e.g., more than seven days), which data objects are identified as candidates for archiving or migration to secondary storage. A second pass is then made by the de-duplication module 218 through these identified data objects to locate common data objects that can be de-duplicated to the de-duplication storage 220.


Following the scan process 400, the de-duplication module 218 commences with the archive process portion of the de-duplication method. FIG. 5 illustrates a flowchart of an exemplary embodiment of an archive process 500 of the de-duplication method for a replication system. In general, this archive process 500 involves determining appropriate times to migrate or copy replication data from the destination storage 216.


At Block 505, the de-duplication module 505 accesses a common data object identified in the list created in Block 425. Before archiving each data object, the de-duplication module 218 at Block 510 determines if the particular data object is currently in use by a CDR process (e.g., is being modified based on changes to source system data). If the data object is currently in use, the de-duplication module 515 pauses the archive process 500 until the CDR process has completed (Block 515). In yet other embodiments, the de-duplication module 218 can move to a next identified data object for archiving.


At Block 520, if the current data object is not in use by a CDR process, the de-duplication module 218 archives the current data object in secondary storage 220. In certain embodiments, Block 520 comprises storing only a single common block 244 in the de-duplication storage 220 for identical data blocks within the replication data set.


The archive process 500 then determines if there are additional data objects on the destination storage 216 that have been identified for archiving (Block 525). If there are additional data objects, the de-duplication module 218 moves to the next data object (Block 530), and the archive process 500 returns to Block 510. Otherwise, the archive process 500 completes, and the de-duplication method commences with stubbing.


Although the process 500 has been described with reference to “archiving,” it should be understood that the process 500 can apply similarly to migrating, de-duplicating, single instancing or other types of copy operations. Rather, the term “archiving” is used with respect to process 500, and the remainder of the de-duplication process, for simplification purposes.



FIG. 6 illustrates a flowchart of an exemplary embodiment of a stubbing process 600 usable with the destination system 204. In general, the process 600 can be performed on each of the data objects archived by the process 500 to replace the objects with stub files or like truncation objects in order to conserve space on a destination storage device of a replication system.


In particular, in certain circumstances, the data of a replicated file can change on the destination storage 216 between the time of a scan of the destination storage (Block 415) and the time at which the data object is to be stubbed. Thus, the process 600 advantageously accounts for such data modifications by requiring the de-duplication module 218 to first access the metadata of each data object on the destination storage 216 that has been archived on secondary storage 220 to determine a last accessed and/or modified time for the data object (Block 605).


In certain further embodiments, such data objects can be tagged or otherwise identified or recorded during the scan process 400 and or archive process 500 such that the de-duplication module 218 can quickly locate the data objects during the process 600.


If the last accessed and/or modified time of the particular data object is after the recorded scan time (Block 610), the de-duplication module 218 does not proceed with replacing the data object with a stub file (Block 615). In such situations, it is possible that the data object archived on secondary storage 220 is no longer consistent with the data object on the destination storage 216.


In yet other embodiments, the process 600 determines at Block 610 if the last accessed and/or modified time is after a time that the data object was archived or copied instead of the scan time. If so, the process 600 continues with Block 615.


If the data object has not been accessed and/or modified since the scan time and/or archive time, the de-duplication module 218 replaces the archived data object with a stub file, such as the de-duplication stub file 340 illustrated in FIG. 3. As discussed above, the stub file can advantageously be a self-describing stub file that is used to identify archived and/or de-duplicated data and can differ in content and/or structure from other types of stub files. Moreover, in the de-duplication environment, multiple data objects on the destination storage 216 can be replaced with the same stub file or a stub file with the same tag, which references a common data block on the secondary storage 220. Once the stubbing process 600 has completed processing each of the identified data objects, the de-duplication method 600 is completed.


In yet other embodiments of the invention, systems and methods can immediately replace archived data objects with stub files on the destination storage 216 prior to continuing with scanning the entire storage device. In such embodiments, the likelihood of the data object being accessed and/or modified between the time of the scan and the time of stubbing is decreased substantially.


In certain embodiments of the data replication system 100, the source system 102 communicates with the associated destination system 104 to verify that the two systems are synchronized. For instance, the source system 102 may receive from the destination system 104 an identification (e.g., unique serial number) of the data operation currently being replicated by the destination system. The source system 102 may then compare the received identification with the data operation being forwarded to the source storage 112.


In order to ensure that the data modifications are being made to the same data on the destination system as the source system, certain embodiments of the invention are configured to account for the use of stub files in the replication data. FIG. 7 illustrates a flowchart of an exemplary embodiment of a synchronization process 700 usable in a data replication environment. In particular, the synchronization process 700 is capable of modifying files on a destination storage device of a replication system that have been stubbed according to a de-duplication policy, archive policy, migration policy or the like. For exemplary purposes, the synchronization process 700 will be described with reference to the components of the data replication system 100 of FIG. 1.


At Block 705, the synchronization process 700 identifies a modification to data on the source system 102. For instance, a log file indicative of data modifications of the source system 102 data can be sent over a network to the destination system 104 via a CDR process. Examples of CDR processes and configurations usable with embodiments of the invention are described in U.S. Pat. No. 7,651,593, issued Jan. 26, 2010, which is hereby incorporated herein by reference in its entirety.


In certain embodiments, the replication module 114 receives the command to modify the replication data on the destination storage 116 based on changes made to the source data (Block 710). Prior to doing so, the replication module 114 determines if the replication data to be modified includes a stub file (Block 715). For instance, the replication module 114 can read metadata of the replication data to determine if any of the data comprises a stub file. In yet other embodiments, the replication module 114 can access an index or cache that maintains a record of the stub files within the replication data. Such a cache or index may be maintained, for example, by the migration module 118.


If the replication data includes a stub file, the process 700 continues with Block 720 to determine if the stub file includes a tag or other predetermined value (e.g., via tag value 352). In certain embodiments, the tag value distinguishes the particular stub file as being associated with replication data that has been migrated, archived, de-duped or otherwise moved to secondary storage 120 by the migration module 118 as opposed to a stub file replicated from the source storage 112. For instance, the tag value can comprise an identifier that is compared with a list of identifiers in a migration table or index to determine if the stub file is a de-duplication stub file or a replicated stub file.


If the stub file does include the tag value, the process 700 recalls the actual data object(s) referenced by the stub file and restores the data to the destination storage 116. In certain embodiments, the replication module 114 can invoke the migration module 118 to recall the data. In certain further embodiments, the recall function can take priority over other jobs being performed or scheduled to be performed by the migration module 118 because the CDR process is halted until the pertinent replication data is recalled and restored to the destination storage 116 from secondary storage 120.


Once the data is restored from secondary storage 120, or if the replication data does not include (tagged) stub files, the process 700 moves to Block 730 to apply the requested modification to the replication data, after which the process 700 terminates for the particular requested modification.


The tagged stub files can advantageously be used in a variety of other processes. FIG. 8 illustrates a flowchart of an exemplary embodiment of a process 800 for restoring data from one or more snapshots in a CDR system. In general, the restore process 800 is capable of restoring data from a snapshot including one or more stub files representing replication data that has been de-duplicated, archived, migrated or the like. For exemplary purposes, the restore process 800 will be described with reference to the components of the data replication system 100 of FIG. 1.


At Block 805, the replication module 114 identifies a point in time when the data of destination storage device 116 represents a “known good,” “stable” or “recoverable” state. In certain embodiments, such a state may be defined as when particular computing operations of the application(s) 108 are complete to a point such that further operation, recovery and/or rolling back of the application(s) 108 may occur, based on the recorded or replicated data, without the loss of critical information or computing operations needed for operation of the application(s) 108. This point of referential integrity is generally referred to herein as a “known good” state of the application data.


In certain embodiments of the invention, a consistency point marker (e.g., logical marker or tag) in one or more CDR log files can identify when replication data represents a known good state. For instance, such a marker can be generated and/or inserted in the log files by the filter driver 110 and/or a data agent denoting that a “consistency point” or “consistency recovery point” has been reached. In some embodiments, the consistency point marker further indicates the time at which the application 108 was in the known good state. Additional details on such consistency point markers are disclosed in U.S. Pat. No. 7,651,593, issued Jan. 26, 2010, which is hereby incorporated herein by reference in its entirety.


In certain embodiments, the consistency point marker is replicated to the destination system 104 along with replicated data. As the replication marker 114 comes across the consistency point marker, it knows that the replication data, at that point in time, represents a known good state. Based on the consistency point marker, the replication module 114 can advantageously perform a snapshot on the replication data (Block 810). As a result, the snapshot represents a point-in-time copy of the replication data in a known good state.


At Block 815, the process 800 later receives a request to restore the data that was the subject of the snapshot. For instance, the data restore request may be in response to a system crash or failure, and can involve restoring the storage device or volume to a previous or most recent known good state. In certain embodiments, the restore request comprises the replication module 114 or other component mounting the snapshot to obtain a full logical file system of the replication data at the time the snapshot was taken.


The replication module 114 then identifies whether or not the snapshot comprises any stub files (Block 820). If the snapshot comprises stub files, the process 800 determines if any of the stub files includes a particular tag or like identifier (Block 825). For instance, the replication module 114 can determine if a tag value of the stub file matches one or more predetermined values that identify stub files as representing migrated, archived or de-duplicated data as opposed to a stub file that was replicated from the source system 102.


If the stub file has such a tag or identifier, the process 800 recalls the actual data represented by the stub file to a staging area that serves as a temporary repository for the recalled data while the restore process 800 is being performed (Block 830). For instance, the replication module 114 and/or migration module 118 can recall archived data blocks to an area on the destination storage 116 or the secondary storage 120. For example, this staging area can be a temporary folder created to receive the recalled data for a brief duration until it is restored, after which the temporary folder can be deleted.


After the archived data has been recalled, or if the snapshot does not include any (tagged) stub files, the replication module 114 restores the data from the snapshot (Block 835). While performing the restore, when the replication module 114 comes across a stub file referenced by the snapshot, the replication module 114 can restore the appropriate data from the staging area rather than restore the stub file.


Although the process 800 has been described with reference to particular arrangements, other embodiments of the process 800 can have more or fewer blocks than those described above. For instance, the process 800 can be performed on snapshots that do not represent the replication data in a known good or recoverable state.


In certain embodiments of the invention, data replication systems and methods may be used in a modular storage management system, embodiments of which are described in more detail in U.S. Pat. No. 7,035,880, issued Apr. 5, 2006, which is hereby incorporated herein by reference in its entirety. For example, the data replication system may be part of a storage operation cell that includes combinations of hardware and software components directed to performing storage operations on electronic data. Exemplary storage operation cells usable with embodiments of the invention include CommCells as embodied in the QNet storage management system and the QINETIX or SIMPANA storage management systems offered by CommVault Systems, Inc. (Oceanport, N.J.), and as further described in U.S. Pat. No. 7,454,569, issued Nov. 18, 2008, which is hereby incorporated herein by reference in its entirety.


Systems and modules described herein may comprise software, firmware, hardware, or any combination(s) of software, firmware, or hardware suitable for the purposes described herein. Software and other modules may reside on servers, workstations, personal computers, computerized tablets, PDAs, and other devices suitable for the purposes described herein. Software and other modules may be accessible via local memory, via a network, via a browser, or via other means suitable for the purposes described herein. Data structures described herein may comprise computer files, variables, programming arrays, programming structures, or any electronic information storage schemes or methods, or any combinations thereof, suitable for the purposes described herein. User interface elements described herein may comprise elements from graphical user interfaces, command line interfaces, and other interfaces suitable for the purposes described herein.


Embodiments of the invention are also described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, may be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the acts specified in the flowchart and/or block diagram block or blocks.


These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means which implement the acts specified in the flowchart and/or block diagram block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operations to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the acts specified in the flowchart and/or block diagram block or blocks.


While certain embodiments of the inventions have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the disclosure. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosure.

Claims
  • 1. A computer-implemented method comprising: receiving, in response to a communication from a first computing device, a modification instruction to modify a first portion of data at a second computing device, at least a portion of the first portion of data received from the first computing device at a point in time prior to receiving the communication from the first computing device, the first portion of data including a stub file;determining, based at least in part on whether the stub file includes a tag value, whether the stub file is of a first type of stub file or a second type of stub file, wherein the first type of stub file indicates that the stub file was received with the first portion of data from the first computing device and wherein the second type of stub file indicates that the stub file was created at the second computing device after the first portion of data was received from the first computing device;in response to determining that the stub file is of the second type of stub file: retrieving a data block from a secondary storage of the second computing device;replacing the stub file with the data block to obtain a restored first portion of data; andmodifying the restored first portion of data based on the modification instruction.
  • 2. The computer-implemented method of claim 1, further comprising: receiving, in response to a second communication from the first computing device, a second modification instruction to modify a second portion of data at the second computing device, the second portion of data received from the first computing device at a point in time prior to receiving the second communication from the first computing device, the second portion of data including a second stub file;determining whether the second stub file is of the first type or the second type; andin response to determining that the second stub file is of the first type, modifying the second portion of data based on the modification instruction, wherein the second stub file does not correspond to data blocks stored at the secondary storage of the second computing device.
  • 3. The computer-implemented method of claim 1, wherein the said determining comprises: accessing an index of stub files; anddetermining whether the stub file is identified in the index.
  • 4. The computer-implemented method of claim 1, wherein a duplicate of the stub file is included in a second portion of data at the second computing device.
  • 5. The computer-implemented method of claim 1, wherein said retrieving the data block is prioritized over other data replication operations.
  • 6. The computer-implemented method of claim 1, wherein the stub file of the second type is associated with a tag, the tag used to distinguish stub files of the first type from stub files of the second type.
  • 7. The computer-implemented method of claim 1, wherein the stub file comprises a self-describing stub file that identifies a type of the stub file and a location of the data block.
  • 8. The computer-implemented method of claim 1, wherein the data block referenced by the stub file corresponds to a file.
  • 9. The computer-implemented method of claim 1, wherein the communication from the first computing device comprises a log file indicative of modification to data at the first computing device corresponding to the first portion of data.
  • 10. A system comprising: a secondary storage device configured to store one or more common data blocks, the one or more common data blocks comprising data blocks included in multiple portions of data stored at a destination computing device;the destination computing device in communication with the secondary storage device and configured to: receive, from a source computing device, an indication to modify a first portion of data at the destination computing device, at least a portion of the first portion of data received from the source computing device;determine whether the first portion of data includes a stub file;in response to determining that the first portion of data includes the stub file, determine, based at least in part on whether the stub file includes a tab value, whether the stub file was received from the source computing device or generated by a migration module of the destination computing device;in response to determining that the stub file was generated by the destination computing device, the destination computing device is further configured to: restore a common data block from the one or more common data blocks stored at the secondary storage device, the common data block corresponding to the stub file;replace the stub file with the common data block to obtain a restored first portion of data; andmodify the restored first portion of data based on the indication to modify the first portion of data.
  • 11. The system of claim 10, wherein the destination computing device is further configured to determine whether the stub file was generated by the destination computing device by accessing an index of stub files.
  • 12. The system of claim 10, wherein the destination computing device is further configured to prioritize restoring the common data block over operations performed by the migration module.
  • 13. The system of claim 10, wherein the stub file is associated with a tag when the stub file is generated by the destination computing device.
  • 14. The system of claim 10, wherein the indication to modify the first portion of data is included in a log file received from the source computing device, the log file indicative of changes to source data at the source computing device, the source data corresponding to the first portion of data.
  • 15. The system of claim 10, wherein the destination computing device is further configured to: receive a second portion of data from the source computing device;identify an occurrence of the common data block in the second portion of data; andreplace the common data block in the second portion of data with a copy of the stub file.
  • 16. The system of claim 15, wherein the second portion of data includes a second stub file received from the source computing device, the second stub file of a different type than the stub file.
  • 17. A computer-readable, non-transitory storage medium storing computer executable instructions that, when executed by one or more computing devices, configure the one or more computing devices to perform operations comprising: receiving an identification of a modification to a first portion of data stored at a second computing device, at least a portion of the first portion of data received from a first computing device, the first portion of data including a stub file, and the modification occurring at the first computing device;determining, based at least in part on whether the stub file includes a tab value, whether the stub file is of a first type of stub file or a second type of stub file, wherein the first type of stub file indicates that the stub file was included with the first portion of data when the first portion of data was received from the first computing device and wherein the second type of stub file indicates that the stub file was created at the second computing device after the first portion of data was received from the first computing device; andin response to determining that the stub file is of the second type of stub file: accessing a data block from a secondary storage of the second computing device;replacing the stub file with the data block to obtain a restored first portion of data; andmodifying the restored first portion of data based on the indication of the modification.
  • 18. The computer-readable, non-transitory storage medium of claim 17, wherein the said determining comprises: accessing an index of stub files; anddetermining whether the stub file is referenced in the index.
  • 19. The computer-readable, non-transitory storage medium of claim 17, wherein the operations further comprise: receiving a second portion of data from the source computing device;identifying an occurrence of the data block in the second portion of data; andreplacing the data block in the second portion of data with a copy of the stub file.
  • 20. The computer-readable, non-transitory storage medium of claim 19, wherein the second portion of data includes a second stub file, wherein the second stub file is of the first type.
RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/955,445, filed on Jul. 31, 2013 and titled “STUBBING SYSTEMS AND METHODS IN A DATA REPLICATION ENVIRONMENT,” which is incorporated by reference in its entirety herein and which is a continuation of U.S. application Ser. No. 12/750,067, filed on Mar. 30, 2010 and titled “STUBBING SYSTEMS AND METHODS IN A DATA REPLICATION ENVIRONMENT,” which is incorporated by reference in its entirety herein and which is related to the following U.S. patent applications filed on Mar. 30, 2013, each of which is hereby incorporated herein by reference in its entirety: U.S. application Ser. No. 12/749,949, entitled “Stub File Prioritization in a Data Replication System”; andU.S. application Ser. No. 12/749,953, entitled “Data Restore Systems and Methods in a Replication Environment.”

US Referenced Citations (645)
Number Name Date Kind
4296465 Lemak Oct 1981 A
4686620 Ng Aug 1987 A
4995035 Cole et al. Feb 1991 A
5005122 Griffin et al. Apr 1991 A
5093912 Dong et al. Mar 1992 A
5133065 Cheffetz et al. Jul 1992 A
5193154 Kitajima et al. Mar 1993 A
5212772 Masters May 1993 A
5226157 Nakano et al. Jul 1993 A
5231668 Kravitz Jul 1993 A
5239647 Anglin et al. Aug 1993 A
5241668 Eastridge et al. Aug 1993 A
5241670 Eastridge et al. Aug 1993 A
5263154 Eastridge et al. Nov 1993 A
5265159 Kung Nov 1993 A
5276860 Fortier et al. Jan 1994 A
5276867 Kenley et al. Jan 1994 A
5287500 Stoppani, Jr. Feb 1994 A
5301351 Jippo Apr 1994 A
5311509 Heddes et al. May 1994 A
5317731 Dias et al. May 1994 A
5321816 Rogan et al. Jun 1994 A
5333315 Saether et al. Jul 1994 A
5347653 Flynn et al. Sep 1994 A
5369757 Spiro et al. Nov 1994 A
5403639 Belsan et al. Apr 1995 A
5410700 Fecteau et al. Apr 1995 A
5448724 Hayashi et al. Sep 1995 A
5455926 Keele et al. Oct 1995 A
5487072 Kant Jan 1996 A
5491810 Allen Feb 1996 A
5495607 Pisello et al. Feb 1996 A
5504873 Martin et al. Apr 1996 A
5544345 Carpenter et al. Aug 1996 A
5544347 Yanai et al. Aug 1996 A
5546536 Davis et al. Aug 1996 A
5555404 Torbjornsen et al. Sep 1996 A
5559957 Balk Sep 1996 A
5559991 Kanfi Sep 1996 A
5598546 Blomgren Jan 1997 A
5604862 Midgely et al. Feb 1997 A
5606693 Nilsen et al. Feb 1997 A
5615392 Harrison et al. Mar 1997 A
5619644 Crockett et al. Apr 1997 A
5638509 Dunphy et al. Jun 1997 A
5642496 Kanfi Jun 1997 A
5668986 Nilsen et al. Sep 1997 A
5673381 Huai et al. Sep 1997 A
5675511 Prasad et al. Oct 1997 A
5677900 Nishida et al. Oct 1997 A
5682513 Candelaria et al. Oct 1997 A
5687343 Fecteau et al. Nov 1997 A
5689706 Rao et al. Nov 1997 A
5699361 Ding et al. Dec 1997 A
5719786 Nelson et al. Feb 1998 A
5720026 Uemura et al. Feb 1998 A
5729743 Squibb Mar 1998 A
5737747 Vishlitzky et al. Apr 1998 A
5742792 Yanai et al. Apr 1998 A
5745753 Mosher, Jr. Apr 1998 A
5751997 Kullick et al. May 1998 A
5758359 Saxon May 1998 A
5761677 Senator et al. Jun 1998 A
5761734 Pfeffer et al. Jun 1998 A
5764972 Crouse et al. Jun 1998 A
5765173 Cane et al. Jun 1998 A
5778395 Whiting et al. Jul 1998 A
5790114 Geaghan et al. Aug 1998 A
5790828 Jost Aug 1998 A
5802265 Bressoud et al. Sep 1998 A
5805920 Sprenkle et al. Sep 1998 A
5812398 Nielsen Sep 1998 A
5813009 Johnson et al. Sep 1998 A
5813017 Morris Sep 1998 A
5829046 Tzelnic et al. Oct 1998 A
5860104 Witt et al. Jan 1999 A
5875478 Blumenau Feb 1999 A
5875481 Ashton et al. Feb 1999 A
5878408 Van Huben et al. Mar 1999 A
5887134 Ebrahim Mar 1999 A
5901327 Ofek May 1999 A
5907621 Bachman et al. May 1999 A
5907672 Matze et al. May 1999 A
5924102 Perks Jul 1999 A
5926836 Blumenau Jul 1999 A
5933104 Kimura Aug 1999 A
5933601 Fanshier et al. Aug 1999 A
5950205 Aviani, Jr. Sep 1999 A
5956519 Wise et al. Sep 1999 A
5958005 Thorne et al. Sep 1999 A
5970233 Liu et al. Oct 1999 A
5970255 Tran et al. Oct 1999 A
5974563 Beeler, Jr. Oct 1999 A
5987478 See et al. Nov 1999 A
5991779 Bejar Nov 1999 A
5995091 Near et al. Nov 1999 A
6003089 Shaffer et al. Dec 1999 A
6009274 Fletcher et al. Dec 1999 A
6012090 Chung et al. Jan 2000 A
6021415 Cannon et al. Feb 2000 A
6021475 Nguyen et al. Feb 2000 A
6023710 Steiner et al. Feb 2000 A
6026414 Anglin Feb 2000 A
6049889 Steely, Jr. et al. Apr 2000 A
6052735 Ulrich et al. Apr 2000 A
6058066 Norris et al. May 2000 A
6061692 Thomas et al. May 2000 A
6072490 Bates et al. Jun 2000 A
6076148 Kedem et al. Jun 2000 A
6088697 Crockett et al. Jul 2000 A
6094416 Ying Jul 2000 A
6105129 Meier et al. Aug 2000 A
6112239 Kenner et al. Aug 2000 A
6122668 Teng et al. Sep 2000 A
6131095 Low et al. Oct 2000 A
6131148 West et al. Oct 2000 A
6131190 Sidwell Oct 2000 A
6137864 Yaker Oct 2000 A
6148377 Carter et al. Nov 2000 A
6148412 Cannon et al. Nov 2000 A
6154787 Urevig et al. Nov 2000 A
6154852 Amundson et al. Nov 2000 A
6158044 Tibbetts Dec 2000 A
6161111 Mutalik et al. Dec 2000 A
6163856 Dion et al. Dec 2000 A
6167402 Yeager Dec 2000 A
6175829 Li et al. Jan 2001 B1
6195695 Cheston et al. Feb 2001 B1
6205450 Kanome et al. Mar 2001 B1
6212512 Barney et al. Apr 2001 B1
6212521 Minami et al. Apr 2001 B1
6230164 Rekieta et al. May 2001 B1
6260068 Zalewski et al. Jul 2001 B1
6260069 Anglin Jul 2001 B1
6269431 Dunham Jul 2001 B1
6275953 Vahalia et al. Aug 2001 B1
6279078 Sicola et al. Aug 2001 B1
6292783 Rohler Sep 2001 B1
6301592 Aoyama et al. Oct 2001 B1
6304880 Kishi Oct 2001 B1
6311193 Sekido et al. Oct 2001 B1
6324581 Xu et al. Nov 2001 B1
6328766 Long Dec 2001 B1
6330570 Crighton Dec 2001 B1
6330642 Carteau Dec 2001 B1
6343324 Hubis et al. Jan 2002 B1
6350199 Williams et al. Feb 2002 B1
RE37601 Eastridge et al. Mar 2002 E
6353878 Dunham Mar 2002 B1
6356801 Goodman et al. Mar 2002 B1
6363464 Mangione Mar 2002 B1
6366986 St. Pierre et al. Apr 2002 B1
6366988 Skiba et al. Apr 2002 B1
6374336 Peters et al. Apr 2002 B1
6374363 Wu et al. Apr 2002 B1
6389432 Pothapragada et al. May 2002 B1
6397308 Ofek et al. May 2002 B1
6418478 Ignatius et al. Jul 2002 B1
6421711 Blumenau et al. Jul 2002 B1
6434681 Armangau Aug 2002 B1
6438595 Blumenau et al. Aug 2002 B1
6466950 Ono Oct 2002 B1
6473775 Kusters et al. Oct 2002 B1
6487561 Ofek et al. Nov 2002 B1
6487644 Huebsch et al. Nov 2002 B1
6487645 Clark et al. Nov 2002 B1
6502205 Yanai et al. Dec 2002 B1
6516314 Birkler et al. Feb 2003 B1
6516327 Zondervan et al. Feb 2003 B1
6516348 MacFarlane et al. Feb 2003 B1
6519679 Devireddy et al. Feb 2003 B2
6538669 Lagueux, Jr. et al. Mar 2003 B1
6539462 Mikkelsen et al. Mar 2003 B1
6542468 Hatakeyama Apr 2003 B1
6542909 Tamer et al. Apr 2003 B1
6542972 Ignatius et al. Apr 2003 B2
6564228 O'Connor May 2003 B1
6564229 Baweja et al. May 2003 B1
6564271 Micalizzi, Jr. et al. May 2003 B2
6581143 Gagne et al. Jun 2003 B2
6604118 Kleiman et al. Aug 2003 B2
6604149 Deo et al. Aug 2003 B1
6611849 Raff et al. Aug 2003 B1
6615223 Shih et al. Sep 2003 B1
6629189 Sandstrom et al. Sep 2003 B1
6631477 LeCrone et al. Oct 2003 B1
6631493 Ottesen et al. Oct 2003 B2
6647396 Parnell et al. Nov 2003 B2
6647473 Golds et al. Nov 2003 B1
6651075 Kusters et al. Nov 2003 B1
6654825 Clapp et al. Nov 2003 B2
6658436 Oshinsky et al. Dec 2003 B2
6658526 Nguyen et al. Dec 2003 B2
6662198 Satyanarayanan et al. Dec 2003 B2
6665815 Goldstein et al. Dec 2003 B1
6681230 Blott et al. Jan 2004 B1
6691209 O'Connell Feb 2004 B1
6721767 De Meno et al. Apr 2004 B2
6728733 Tokui Apr 2004 B2
6732124 Koseki et al. May 2004 B1
6732125 Autrey et al. May 2004 B1
6742092 Huebsch et al. May 2004 B1
6748504 Sawdon et al. Jun 2004 B2
6751635 Chen et al. Jun 2004 B1
6757794 Cabrera et al. Jun 2004 B2
6760723 Oshinsky et al. Jul 2004 B2
6763351 Subramaniam et al. Jul 2004 B1
6789161 Blendermann et al. Sep 2004 B1
6792472 Otterness et al. Sep 2004 B1
6792518 Armangau et al. Sep 2004 B2
6799258 Linde Sep 2004 B1
6820035 Zahavi Nov 2004 B1
6836779 Poulin Dec 2004 B2
6839724 Manchanda et al. Jan 2005 B2
6871163 Hiller et al. Mar 2005 B2
6871271 Ohran et al. Mar 2005 B2
6880051 Timpanaro-Perrotta Apr 2005 B2
6886020 Zahavi et al. Apr 2005 B1
6892211 Hitz et al. May 2005 B2
6912482 Kaiser Jun 2005 B2
6925476 Multer et al. Aug 2005 B1
6925512 Louzoun et al. Aug 2005 B2
6938135 Kekre et al. Aug 2005 B1
6938180 Dysert et al. Aug 2005 B1
6941393 Secatch Sep 2005 B2
6944796 Joshi et al. Sep 2005 B2
6952705 Knoblock et al. Oct 2005 B2
6952758 Chron et al. Oct 2005 B2
6954834 Slater et al. Oct 2005 B2
6968351 Butterworth Nov 2005 B2
6973553 Archibald, Jr. et al. Dec 2005 B1
6978265 Schumacher Dec 2005 B2
6981177 Beattie Dec 2005 B2
6983351 Gibble et al. Jan 2006 B2
6993539 Federwisch et al. Jan 2006 B2
7003519 Biettron et al. Feb 2006 B1
7003641 Prahlad et al. Feb 2006 B2
7007046 Manley et al. Feb 2006 B2
7020669 McCann et al. Mar 2006 B2
7032131 Lubbers et al. Apr 2006 B2
7035880 Crescenti et al. Apr 2006 B1
7039661 Ranade May 2006 B1
7051050 Chen et al. May 2006 B2
7062761 Slavin et al. Jun 2006 B2
7065538 Aronoff et al. Jun 2006 B2
7068597 Fijolek et al. Jun 2006 B1
7082441 Zahavi et al. Jul 2006 B1
7085787 Beier et al. Aug 2006 B2
7085904 Mizuno et al. Aug 2006 B2
7093012 Olstad et al. Aug 2006 B2
7096315 Takeda et al. Aug 2006 B2
7103731 Gibble et al. Sep 2006 B2
7103740 Colgrove et al. Sep 2006 B1
7106691 Decaluwe et al. Sep 2006 B1
7107298 Prahlad et al. Sep 2006 B2
7107395 Ofek et al. Sep 2006 B1
7111021 Lewis et al. Sep 2006 B1
7111189 Sicola et al. Sep 2006 B1
7120757 Tsuge Oct 2006 B2
7130860 Pachet Oct 2006 B2
7130970 Devassy et al. Oct 2006 B2
7139932 Watanabe Nov 2006 B2
7155465 Lee et al. Dec 2006 B2
7155633 Tuma et al. Dec 2006 B2
7158985 Liskov Jan 2007 B1
7177866 Holenstein et al. Feb 2007 B2
7181477 Saika et al. Feb 2007 B2
7188292 Cordina et al. Mar 2007 B2
7191198 Asano et al. Mar 2007 B2
7194454 Hansen et al. Mar 2007 B2
7194487 Kekre et al. Mar 2007 B1
7200620 Gupta Apr 2007 B2
7203807 Urabe et al. Apr 2007 B2
7209972 Ignatius et al. Apr 2007 B1
7225204 Manley et al. May 2007 B2
7225208 Midgley et al. May 2007 B2
7225210 Guthrie, II May 2007 B2
7228456 Lecrone et al. Jun 2007 B2
7231391 Aronoff et al. Jun 2007 B2
7231544 Tan et al. Jun 2007 B2
7234115 Sprauve et al. Jun 2007 B1
7246140 Therrien et al. Jul 2007 B2
7246207 Kottomtharayil et al. Jul 2007 B2
7250963 Yuri et al. Jul 2007 B2
7257689 Baird Aug 2007 B1
7269612 Devarakonda et al. Sep 2007 B2
7269641 Powers et al. Sep 2007 B2
7272606 Borthakur et al. Sep 2007 B2
7275138 Saika Sep 2007 B2
7275177 Armangau et al. Sep 2007 B2
7278142 Bandhole et al. Oct 2007 B2
7284153 Okbay et al. Oct 2007 B2
7287047 Kavuri Oct 2007 B2
7293133 Colgrove et al. Nov 2007 B1
7296125 Ohran Nov 2007 B2
7315923 Retnamma et al. Jan 2008 B2
7318134 Oliveira et al. Jan 2008 B1
7340652 Jarvis et al. Mar 2008 B2
7343356 Prahlad et al. Mar 2008 B2
7343365 Farnham et al. Mar 2008 B2
7343453 Prahlad et al. Mar 2008 B2
7343459 Prahlad et al. Mar 2008 B2
7346623 Prahlad et al. Mar 2008 B2
7346751 Prahlad et al. Mar 2008 B2
7356657 Mikami Apr 2008 B2
7359917 Winter et al. Apr 2008 B2
7363444 Ji Apr 2008 B2
7370232 Safford May 2008 B2
7373364 Chapman May 2008 B1
7380072 Kottomtharayil et al. May 2008 B2
7383293 Gupta et al. Jun 2008 B2
7389311 Crescenti et al. Jun 2008 B1
7392360 Aharoni et al. Jun 2008 B1
7395282 Crescenti et al. Jul 2008 B1
7401064 Arone et al. Jul 2008 B1
7409509 Devassy et al. Aug 2008 B2
7415488 Muth et al. Aug 2008 B1
7428657 Yamasaki Sep 2008 B2
7430587 Malone et al. Sep 2008 B2
7433301 Akahane et al. Oct 2008 B2
7440982 Lu et al. Oct 2008 B2
7454569 Kavuri et al. Nov 2008 B2
7457980 Yang et al. Nov 2008 B2
7461230 Gupta et al. Dec 2008 B1
7464236 Sano et al. Dec 2008 B2
7467167 Patterson Dec 2008 B2
7467267 Mayock Dec 2008 B1
7469262 Baskaran et al. Dec 2008 B2
7472238 Gokhale Dec 2008 B1
7472312 Jarvis et al. Dec 2008 B2
7475284 Koike Jan 2009 B2
7484054 Kottomtharayil et al. Jan 2009 B2
7490207 Amarendran Feb 2009 B2
7496589 Jain et al. Feb 2009 B1
7496690 Beverly et al. Feb 2009 B2
7500053 Kavuri et al. Mar 2009 B1
7500150 Sharma et al. Mar 2009 B2
7502902 Sato Mar 2009 B2
7509316 Greenblatt et al. Mar 2009 B2
7512601 Cucerzan et al. Mar 2009 B2
7516088 Johnson et al. Apr 2009 B2
7519726 Palliyil et al. Apr 2009 B2
7523483 Dogan Apr 2009 B2
7529745 Ahluwalia et al. May 2009 B2
7529748 Wen et al. May 2009 B2
7529782 Prahlad et al. May 2009 B2
7529898 Nguyen et al. May 2009 B2
7532340 Koppich et al. May 2009 B2
7533181 Dawson et al. May 2009 B2
7536291 Retnamma et al. May 2009 B1
7539707 Prahlad et al. May 2009 B2
7539835 Kaiser May 2009 B2
7543125 Gokhale Jun 2009 B2
7546324 Prahlad et al. Jun 2009 B2
7546364 Raman et al. Jun 2009 B2
7552358 Asgar-Deen et al. Jun 2009 B1
7565572 Yamasaki Jul 2009 B2
7581077 Ignatius et al. Aug 2009 B2
7590668 Kathuria et al. Sep 2009 B2
7593966 Therrien et al. Sep 2009 B2
7596586 Gokhale et al. Sep 2009 B2
7606841 Ranade Oct 2009 B1
7606844 Kottomtharayil Oct 2009 B2
7607037 LeCrone et al. Oct 2009 B1
7613748 Brockway et al. Nov 2009 B2
7613750 Valiyaparambil et al. Nov 2009 B2
7617253 Prahlad et al. Nov 2009 B2
7617262 Prahlad et al. Nov 2009 B2
7617321 Clark Nov 2009 B2
7617369 Bezbaruah et al. Nov 2009 B1
7617541 Plotkin et al. Nov 2009 B2
7627598 Burke Dec 2009 B1
7627617 Kavuri et al. Dec 2009 B2
7634477 Hinshaw Dec 2009 B2
7636743 Erofeev Dec 2009 B2
7651593 Prahlad et al. Jan 2010 B2
7661028 Erofeev Feb 2010 B2
7668798 Scanlon et al. Feb 2010 B2
7669029 Mishra et al. Feb 2010 B1
7672979 Appellof et al. Mar 2010 B1
7673000 Smoot et al. Mar 2010 B2
7685126 Patel et al. Mar 2010 B2
7689467 Belanger et al. Mar 2010 B1
7694086 Bezbaruah et al. Apr 2010 B1
7702533 Barnard et al. Apr 2010 B2
7702670 Duprey et al. Apr 2010 B1
7707184 Zhang et al. Apr 2010 B1
7716171 Kryger May 2010 B2
7734715 Hyakutake et al. Jun 2010 B2
7739235 Rousseau et al. Jun 2010 B2
7809691 Karmarkar et al. Oct 2010 B1
7810067 Kaelicke et al. Oct 2010 B2
7831553 Prahlad et al. Nov 2010 B2
7831622 Prahlad et al. Nov 2010 B2
7840533 Prahlad et al. Nov 2010 B2
7840537 Gokhale et al. Nov 2010 B2
7870355 Erofeev Jan 2011 B2
7904681 Bappe Mar 2011 B1
7930476 Castelli et al. Apr 2011 B1
7962455 Erofeev Jun 2011 B2
7962709 Agrawal Jun 2011 B2
8005795 Galipeau et al. Aug 2011 B2
8024294 Kottomtharayil Sep 2011 B2
8121983 Prahlad et al. Feb 2012 B2
8166263 Prahlad Apr 2012 B2
8190565 Prahlad et al. May 2012 B2
8195623 Prahlad et al. Jun 2012 B2
8204859 Ngo Jun 2012 B2
8219524 Gokhale Jul 2012 B2
8271830 Erofeev Sep 2012 B2
8285684 Prahlad et al. Oct 2012 B2
8291101 Yan et al. Oct 2012 B1
8352422 Prahlad et al. Jan 2013 B2
8463751 Kottomtharayil Jun 2013 B2
8489656 Erofeev Jul 2013 B2
8504515 Prahlad et al. Aug 2013 B2
8504517 Agrawal Aug 2013 B2
8572038 Erofeev Oct 2013 B2
8589347 Erofeev Nov 2013 B2
8655850 Ngo et al. Feb 2014 B2
8656218 Erofeev Feb 2014 B2
8666942 Ngo Mar 2014 B2
8725694 Kottomtharayil May 2014 B2
8725698 Prahlad et al. May 2014 B2
8726242 Ngo May 2014 B2
8745105 Erofeev Jun 2014 B2
8793221 Prahlad et al. Jul 2014 B2
8805818 Zane et al. Aug 2014 B2
8868494 Agrawal Oct 2014 B2
8935210 Kottomtharayil Jan 2015 B2
9002785 Prahlad et al. Apr 2015 B2
9002799 Ngo et al. Apr 2015 B2
9003374 Ngo Apr 2015 B2
9020898 Prahlad et al. Apr 2015 B2
9047357 Ngo Jun 2015 B2
9208210 Erofeev Dec 2015 B2
9298382 Kottomtharayil Mar 2016 B2
9396244 Ngo Jul 2016 B2
20010029512 Oshinsky et al. Oct 2001 A1
20010029517 De Meno et al. Oct 2001 A1
20010032172 Moulinet et al. Oct 2001 A1
20010035866 Finger et al. Nov 2001 A1
20010042222 Kedem et al. Nov 2001 A1
20010044807 Kleiman et al. Nov 2001 A1
20020002557 Straube et al. Jan 2002 A1
20020004883 Nguyen et al. Jan 2002 A1
20020019909 D'Errico Feb 2002 A1
20020023051 Kunzle et al. Feb 2002 A1
20020040376 Yamanaka et al. Apr 2002 A1
20020042869 Tate et al. Apr 2002 A1
20020049626 Mathias et al. Apr 2002 A1
20020049718 Kleiman et al. Apr 2002 A1
20020049738 Epstein Apr 2002 A1
20020049778 Bell et al. Apr 2002 A1
20020062230 Morag et al. May 2002 A1
20020069324 Gerasimov et al. Jun 2002 A1
20020083055 Pachet et al. Jun 2002 A1
20020091712 Martin et al. Jul 2002 A1
20020103848 Giacomini et al. Aug 2002 A1
20020107877 Whiting et al. Aug 2002 A1
20020112134 Ohran et al. Aug 2002 A1
20020120741 Webb et al. Aug 2002 A1
20020124137 Ulrich et al. Sep 2002 A1
20020133511 Hostetter et al. Sep 2002 A1
20020133512 Milillo et al. Sep 2002 A1
20020161753 Inaba et al. Oct 2002 A1
20020174107 Poulin Nov 2002 A1
20020174139 Midgley et al. Nov 2002 A1
20020174416 Bates et al. Nov 2002 A1
20020181395 Foster et al. Dec 2002 A1
20030005119 Mercier et al. Jan 2003 A1
20030018657 Monday Jan 2003 A1
20030023893 Lee et al. Jan 2003 A1
20030028736 Berkowitz et al. Feb 2003 A1
20030033308 Patel et al. Feb 2003 A1
20030061491 Jaskiewicz et al. Mar 2003 A1
20030079018 Lolayekar et al. Apr 2003 A1
20030097296 Putt May 2003 A1
20030126200 Wolff Jul 2003 A1
20030131278 Fujibayashi Jul 2003 A1
20030135783 Martin et al. Jul 2003 A1
20030161338 Ng et al. Aug 2003 A1
20030167380 Green et al. Sep 2003 A1
20030177149 Coombs Sep 2003 A1
20030177321 Watanabe Sep 2003 A1
20030182312 Chen et al. Sep 2003 A1
20030187847 Lubbers et al. Oct 2003 A1
20030225800 Kavuri Dec 2003 A1
20040006572 Hoshino et al. Jan 2004 A1
20040006578 Yu Jan 2004 A1
20040010487 Prahlad et al. Jan 2004 A1
20040015468 Beier et al. Jan 2004 A1
20040039679 Norton et al. Feb 2004 A1
20040044830 Gibble Mar 2004 A1
20040078632 Infante et al. Apr 2004 A1
20040098425 Wiss et al. May 2004 A1
20040107199 Dairymple et al. Jun 2004 A1
20040117438 Considine et al. Jun 2004 A1
20040117572 Welsh et al. Jun 2004 A1
20040133634 Luke et al. Jul 2004 A1
20040139128 Becker et al. Jul 2004 A1
20040158588 Pruet Aug 2004 A1
20040193625 Sutoh Sep 2004 A1
20040193953 Callahan et al. Sep 2004 A1
20040205206 Naik et al. Oct 2004 A1
20040212639 Smoot et al. Oct 2004 A1
20040215724 Smoot et al. Oct 2004 A1
20040225437 Endo et al. Nov 2004 A1
20040230615 Blanco et al. Nov 2004 A1
20040230829 Dogan et al. Nov 2004 A1
20040236958 Teicher et al. Nov 2004 A1
20040249883 Srinivasan et al. Dec 2004 A1
20040250033 Prahlad et al. Dec 2004 A1
20040254919 Giuseppini Dec 2004 A1
20040260678 Verbowski et al. Dec 2004 A1
20040267777 Sugimura et al. Dec 2004 A1
20040267835 Zwilling et al. Dec 2004 A1
20040267836 Armangau et al. Dec 2004 A1
20050015409 Cheng Jan 2005 A1
20050027892 McCabe et al. Feb 2005 A1
20050033800 Kavuri et al. Feb 2005 A1
20050044114 Kottomtharayil et al. Feb 2005 A1
20050055445 Gupta et al. Mar 2005 A1
20050060613 Cheng Mar 2005 A1
20050071389 Gupta et al. Mar 2005 A1
20050071391 Fuerderer et al. Mar 2005 A1
20050080928 Beverly et al. Apr 2005 A1
20050086443 Mizuno et al. Apr 2005 A1
20050108292 Burton et al. May 2005 A1
20050114406 Borthakur et al. May 2005 A1
20050131900 Palliyll et al. Jun 2005 A1
20050138306 Panchbudhe et al. Jun 2005 A1
20050144202 Chen Jun 2005 A1
20050172073 Voigt Aug 2005 A1
20050187982 Sato Aug 2005 A1
20050187992 Prahlad et al. Aug 2005 A1
20050188109 Shiga et al. Aug 2005 A1
20050188254 Urabe et al. Aug 2005 A1
20050193026 Prahlad et al. Sep 2005 A1
20050198083 Saika et al. Sep 2005 A1
20050228875 Monitzer et al. Oct 2005 A1
20050246376 Lu et al. Nov 2005 A1
20050246510 Retnamma et al. Nov 2005 A1
20050254456 Sakai Nov 2005 A1
20050268068 Ignatius et al. Dec 2005 A1
20060005048 Osaki et al. Jan 2006 A1
20060010154 Prahlad et al. Jan 2006 A1
20060010227 Atluri Jan 2006 A1
20060010341 Kodama Jan 2006 A1
20060020616 Hardy et al. Jan 2006 A1
20060034454 Damgaard et al. Feb 2006 A1
20060036901 Yang et al. Feb 2006 A1
20060047805 Byrd et al. Mar 2006 A1
20060047931 Saika Mar 2006 A1
20060092861 Corday et al. May 2006 A1
20060107089 Jansz et al. May 2006 A1
20060120401 Harada et al. Jun 2006 A1
20060129537 Torii et al. Jun 2006 A1
20060136685 Griv et al. Jun 2006 A1
20060155946 Ji Jul 2006 A1
20060171315 Choi et al. Aug 2006 A1
20060174075 Sutoh Aug 2006 A1
20060215564 Breitgand et al. Sep 2006 A1
20060230244 Amarendran et al. Oct 2006 A1
20060242371 Shono et al. Oct 2006 A1
20060242489 Brockway et al. Oct 2006 A1
20070033437 Kawamura Feb 2007 A1
20070043956 El Far et al. Feb 2007 A1
20070050547 Sano Mar 2007 A1
20070055737 Yamashita et al. Mar 2007 A1
20070094467 Yamasaki Apr 2007 A1
20070100867 Celik et al. May 2007 A1
20070112897 Asano et al. May 2007 A1
20070113006 Elliott et al. May 2007 A1
20070124347 Vivian et al. May 2007 A1
20070124348 Claborn et al. May 2007 A1
20070130373 Kalwitz Jun 2007 A1
20070143371 Kottomtharayil Jun 2007 A1
20070143756 Gokhale Jun 2007 A1
20070179990 Zimran et al. Aug 2007 A1
20070183224 Erofeev Aug 2007 A1
20070185852 Erofeev Aug 2007 A1
20070185937 Prahlad et al. Aug 2007 A1
20070185938 Prahlad et al. Aug 2007 A1
20070185939 Prahland et al. Aug 2007 A1
20070185940 Prahlad et al. Aug 2007 A1
20070186042 Kottomtharayil et al. Aug 2007 A1
20070186068 Agrawal Aug 2007 A1
20070226438 Erofeev Sep 2007 A1
20070233756 D'Souza et al. Oct 2007 A1
20070244571 Wilson et al. Oct 2007 A1
20070260609 Tulyani Nov 2007 A1
20070276848 Kim Nov 2007 A1
20070288536 Sen et al. Dec 2007 A1
20080016126 Kottomtharayil et al. Jan 2008 A1
20080016293 Saika Jan 2008 A1
20080059515 Fulton Mar 2008 A1
20080077634 Quakenbush Mar 2008 A1
20080077636 Gupta et al. Mar 2008 A1
20080103916 Camarador et al. May 2008 A1
20080104357 Kim et al. May 2008 A1
20080114815 Sutoh et al. May 2008 A1
20080147878 Kottomtharayil et al. Jun 2008 A1
20080183775 Prahlad et al. Jul 2008 A1
20080205301 Burton et al. Aug 2008 A1
20080208933 Lyon Aug 2008 A1
20080228987 Yagi Sep 2008 A1
20080229037 Bunte et al. Sep 2008 A1
20080243914 Prahlad et al. Oct 2008 A1
20080243957 Prahlad et al. Oct 2008 A1
20080243958 Prahlad et al. Oct 2008 A1
20080244205 Amano et al. Oct 2008 A1
20080250178 Haustein et al. Oct 2008 A1
20080306954 Hornqvist Dec 2008 A1
20080313497 Hirakawa Dec 2008 A1
20090013014 Kern Jan 2009 A1
20090044046 Yamasaki Feb 2009 A1
20090113056 Tameshige et al. Apr 2009 A1
20090150462 McClanahan et al. Jun 2009 A1
20090182963 Prahlad et al. Jul 2009 A1
20090187944 White et al. Jul 2009 A1
20090300079 Shitomi Dec 2009 A1
20090319534 Gokhale Dec 2009 A1
20090319585 Gokhale Dec 2009 A1
20100005259 Prahlad Jan 2010 A1
20100049753 Prahlad et al. Feb 2010 A1
20100094808 Erofeev Apr 2010 A1
20100100529 Erofeev Apr 2010 A1
20100131461 Prahlad et al. May 2010 A1
20100131467 Prahlad et al. May 2010 A1
20100145909 Ngo Jun 2010 A1
20100153338 Ngo et al. Jun 2010 A1
20100179941 Agrawal et al. Jul 2010 A1
20100205150 Prahlad et al. Aug 2010 A1
20100211571 Prahlad et al. Aug 2010 A1
20110066599 Prahlad et al. Mar 2011 A1
20120011336 Saika Jan 2012 A1
20130006942 Prahlad et al. Jan 2013 A1
20140067764 Prahlad et al. Mar 2014 A1
20140164327 Ngo et al. Jun 2014 A1
20140181022 Ngo Jun 2014 A1
20140181029 Erofeev Jun 2014 A1
20140244586 Ngo Aug 2014 A1
20140324772 Prahlad et al. Oct 2014 A1
20150199375 Prahlad et al. Jul 2015 A1
Foreign Referenced Citations (34)
Number Date Country
2006331932 Dec 2006 AU
2632935 Dec 2006 CA
0259912 Mar 1988 EP
0405926 Jan 1991 EP
0467546 Jan 1992 EP
0774715 May 1997 EP
0809184 Nov 1997 EP
0862304 Sep 1998 EP
0899662 Mar 1999 EP
0981090 Feb 2000 EP
1174795 Feb 2000 EP
1349089 Jan 2003 EP
1349088 Oct 2003 EP
1579331 Sep 2005 EP
1974296 Oct 2008 EP
2256952 Dec 1992 GB
2411030 Aug 2005 GB
05189281 Jul 1993 JP
06274605 Sep 1994 JP
09016463 Jan 1997 JP
11259348 Sep 1999 JP
2000347811 Dec 2000 JP
WO 9303549 Feb 1993 WO
WO 9513580 May 1995 WO
WO 9839707 Sep 1998 WO
WO 9912098 Mar 1999 WO
WO 9914692 Mar 1999 WO
WO 02095632 Nov 2002 WO
WO 03028183 Apr 2003 WO
WO 2004034197 Apr 2004 WO
WO 2005055093 Jun 2005 WO
WO 2005086032 Sep 2005 WO
WO 2007053314 May 2007 WO
WO 2010068570 Jun 2010 WO
Non-Patent Literature Citations (47)
Entry
Ngo, U.S. Appl. No. 61/121,418, Now Expired, filed Dec. 10, 2008, Systems and Methods for Managing Replicated Database Data.
Agrawal, et al., U.S. Appl. No. 61/121,438, Now Expired, filed Dec. 10, 2008, Systems and Methods for Performing Discrete Data Replication.
Ngo, et al., U.S. Appl. No. 12/712,245, Abandoned, filed Feb. 25, 2010, Systems and Methods for Resynchronizing Information.
Kottomtharayil, U.S. Appl. No. 14/592,770, filed Jan. 8, 2015, Systems and Methods for Performing Replication Copy Storage Operations.
U.S. Appl. No. 14/038,540, filed Sep. 26, 2013, Erofeev.
Armstead et al., “Implementation of a Campus-Wide Distributed Mass Storage Service: The Dream vs. Reality,” IEEE, 1995, pp. 190-199.
Arneson, “Development of Omniserver; Mass Storage Systems,” Control Data Corporation, 1990, pp. 88-93.
Arneson, “Mass Storage Archiving in Network Environments” IEEE, 1998, pp. 45-50.
Ashton, et al., “Two Decades of policy-based storage management for the IBM mainframe computer”, www.research.ibm.com, 19 pages, published Apr. 10, 2003, printed Jan. 3, 2009., www.research.ibm.com, Apr. 10, 2003, pp. 19.
Cabrera, et al. “ADSM: A Multi-Platform, Scalable, Back-up and Archive Mass Storage System,” Digest of Papers, Compcon '95, Proceedings of the 40th IEEE Computer Society International Conference, Mar. 5, 1995-Mar. 9, 1995, pp. 420-427, San Francisco, CA.
Calvert, Andrew, “SQL Server 2005 Snapshots”, published Apr. 3, 2006, http:/www.simple-talk.com/contnet/print.aspx?article=137, 6 pages.
Eitel, “Backup and Storage Management in Distributed Heterogeneous Environments,” IEEE, 1994, pp. 124-126.
Gait, “The Optical File Cabinet: A Random-Access File system for Write-Once Optical Disks,” IEEE Computer, vol. 21, No. 6, pp. 11-22 (1988).
Gray, et al. “Transaction processing: concepts andtechniques” 1994, Morgan Kaufmann Publishers, USA, 646-655.B7
Harrington, “The RFP Process: How to Hire a Third Party”, Transportation & Distribution, Sep. 1988, vol. 39, Issue 9, in 5 pages.
http://en.wikipedia.org/wiki/Naive—Bayes—classifier, printed on Jun. 1, 2010, in 7 pages.
IBM, “Intelligent Selection of Logs Required During Recovery Processing”, ip.com, Sep. 16, 2002, 4 pages.
IBM, “Near Zero Impact Backup and Data Replication Appliance”, ip.com, Oct. 18, 2004, 5 pages.
Jander, “Launching Storage-Area Net,” Data Communications, US, McGraw Hill, NY, vol. 27, No. 4(Mar. 21, 0998), pp. 64-72.
Kashyap, et al., “Professional Services Automation: A knowlege Mangement approach using LSI and Domain specific Ontologies”, FLAIRS-01 Proceedings, 2001, pp. 300-302.
Lyon, J., Design considerations in replicated database systems for disaster protection, COMPCON 1988, Feb. 29, 1988, pp. 428-430.
Microsoft Corporation, “Microsoft Exchange Server: Best Practices for Exchange Database Management,” 1998.
Park, et al., “An Efficient Logging Scheme for Recoverable Distributed Shared Memory Systems”, IEEE, 1997, 9 pages.
Rosenblum et al., “The Design and Implementation of a Log-Structure File System,” Operating Systems Review SIGOPS, vol. 25, No. 5, New York, US, pp. 1-15 (May 1991).
The Oracle8 Replication Manual, Part No. A58245-01; Chapters 1-2; Dec. 1, 1997; obtained from website: http://download-west.oracle.com/docs/cd/A64702—01/doc/server.805/a58245/toc.htm on May 20, 2009.
Veritas Software Corporation, “Veritas Volume Manager 3.2, Administrator's Guide,” Aug. 2001, 360 pages.
Wiesmann, M, Database replication techniques: a three parameter classification, Oct. 16, 2000, pp. 206-215.
Final Office Action for Japanese Application No. 2003531581, Mail Date Mar. 24, 2009, 6 pages.
International Search Report and Written Opinion dated Nov. 13, 2009, PCT/US2007/081681.
First Office Action for Japanese Application No. 2003531581, Mail Date Jul. 8, 2008, 8 pages.
International Preliminary Report on Patentability, PCT Application No. PCT/US2009/066880, mailed Jun. 23, 2011, in 9 pages.
Canadian Office Action dated Sep. 24, 2012, Application No. 2,632,935, 2 pages.
European Examination Report; Application No. 06848901.2, Apr. 1, 2009, pp. 7.
Examiner's First Report ; Application No. 2006331932, May 11, 2011 in 2 pages.
Canadian Office Action dated Dec. 29, 2010, Application No. CA2546304.
Examiner's Report for Australian Application No. 2003279847, Dated Dec. 9, 2008, 4 pages.
First Office Action in Canadian application No. 2,632,935 dated Feb. 16, 2012, in 5 pages.
International Search Report dated May 15, 2007, PCT/US2006/048273.
Second Examination Report in EU Appl. No. 06 848 901.2-2201 dated Dec. 3, 2010.
International Search Report and Written Opinion dated Mar. 25, 2010, PCT/US2009/066880.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2011/030396, mailed Jul. 18, 2011, in 20 pages.
International Preliminary Report on Patentability and Written Opinion in PCT/US2011/030396 mailed Oct. 2, 2012.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2011/38436, mailed Sep. 21, 2011, in 18 pages.
International Preliminary Report on Patentability and Written Opinion in PCT/US2011/038436 mailed Dec. 4, 2012.
International Search Report dated Dec. 28, 2009, PCT/US204/038324.
International Search Report and Written Opinion dated Jan. 11, 2006 , PCT/US2004/038455.
Exam Report in Australian Application No. 2009324800 dated Jun. 17, 2013.
Related Publications (1)
Number Date Country
20150248444 A1 Sep 2015 US
Continuations (2)
Number Date Country
Parent 13955445 Jul 2013 US
Child 14645982 US
Parent 12750067 Mar 2010 US
Child 13955445 US