1. Field of the Invention
This invention relates to a stud frame wall system. More particularly, the invention relates to a stud frame and a superinsulated wall comprising a plurality of stud frames.
2. Description of Related Art
There is a need, increasingly apparent, for buildings that are environmentally friendly and energy efficient. In cooler climates, this means, among other things, buildings with a high degree of thermal retention. A solution has been to construct buildings with thicker walls and roofs, capable of enclosing increased amounts of insulation. There is also a need, ever present, to reduce the cost of construction. One solution has been to construct buildings, at least in part, from prefabricated sections.
In their research report, Building America Special Research Project: High-R Walls Case Study Analysis, John Straube and Jonathan Smegal show a truss wall, with a wide inner wall space for insulation, provided with a plurality of truss frames. The truss frames are provided with a front stud and a back stud coupled by three rectangular gussets. A narrow-side of the front stud is parallel with a narrow-side of the back stud. Moreover, the front stud and the back stud are shown to have different dimensions.
An alternative solution, with a wide inner wall space for insulation, is provided by U.S. Pat. No. 6,926,141, issued on Aug. 9, 2005 (Hefner). Hefner discloses a prefabricated truss frame for a truss frame wall. The truss frame is provided with a front stud and a back stud with different widths. The truss frame is further provided with spacers and diagonal cross braces coupled with the front stud and the back stud. In particular, the truss frame is provided with an upper spacer between the front stud and the back stud. The truss frame is also provided with metal truss plates coupling various joints. For coupling the truss frames with a foundation, each of the truss frames is provided with a box sill.
Therefore, it is an object of the invention to provide a stud frame wall system that overcomes deficiencies in the prior art.
The inventor has recognized that a wall for sides of a superinsulated building, with a wide inner wall space for insulation, may be constructed more strongly, with less labor involved, and with less expense, than is now conventional. The inventor has further recognized that prefabricated stud frames for superinsulated walls may be constructed which have fewer parts, and provide easier on-site installation, than is now typical.
An exemplary embodiment of a stud frame 1 for walls of a building with a roof and a foundation is demonstrated in
As best shown in
The top plate 19 and the bottom plate 21 are each disposed horizontally. The top plate 19 and the bottom plate 21 may be substantially equal in width to the front stud 15 and the back stud 17. A top side 3 and a bottom side 5 of the top plate 19 and the bottom plate 21 may be wider than a first side 11 and a second side 13 of the top plate 19 and the bottom plate 21. The top side 3 and the bottom side 5 of the top plate 19 may be parallel with the top side 3 and the bottom side 5 of the bottom plate 21. The bottom side 5 of the top plate 19 may be coupled with a top side 3 of the front stud 15 and a top side 3 of the back stud 17. Positioning a broad side of the top plate 21 on top of the top side 3 of the front stud 15 and the top side 3 of the back stud 17, allows a load to be borne equally by the front stud 15 and the back stud 17. An outer side 7 of the top plate 19 may be flush with the outer side 7 of the front stud 15, and an inner side 9 of the top plate 19 may be flush with the inner side 9 of the back stud 17.
The bottom plate 21 may be coupled between the front stud 15 and the back stud 17. The bottom side 5 of the bottom plate 21 may be flush with a bottom side 5 of the front stud 15 and a bottom side 5 of the back stud 17.
The top plate 19 may be coupled with the front stud 15 and the back stud 17 via, for example, a plurality of fasteners, such as screws or nails. Similarly, the bottom plate 21 may be coupled with the front stud 15 and the back stud 17 via, for example, a plurality of fasteners, such as screws or nails.
The front stud 15, the back stud 17, the top plate 19, and the bottom plate 21 may each be a standard nominal two inches thick by four inches wide board (substantially 1½ inches by 3½ inches). Standard nominal two inches thick by four inches wide board has the advantages of being widely available, sufficiently strong for wall construction, and cost effective when compared with alternatives. Additionally, the front stud 15 and the back stud 19 may each be a standard nominal eight feet long (substantially 96 inches). The top plate 19 may be substantially twenty-one inches long; correspondingly, the bottom plate 21 may be substantially eighteen inches long, resulting in a stud frame 1 with a width of twenty-one inches.
As best shown in
The at least two apertures 25 of the bottom plate 21 may be two apertures 25 of the bottom plate 21. Each of the apertures 25 of the bottom plate 21 may each be ½ inch in diameter. One of the apertures 25a of the bottom plate 21 may be 3½ inches from an outer side 7 of the bottom plate 21; and the other aperture 25b of the bottom plate 21 may be 3½ inches from an inner side 9 of the bottom plate 21. Further, each of the apertures 25 of the bottom plate 21 may have a center 1¾ inches from the first side 11 and the second side 13 of the stud frame 1.
The top plate 19 may be provided with at least one aperture 25. A roof bolt 35, such as a carriage bolt 31, may be provided through each of the apertures 25 of the top plate 19, whereby the stud frames 1 is coupled with the roof. Thus, for example, the top plate 19 of the stud frame 1 may be coupled with the roof via the roof bolt 35 through both the top plate 19 and a roof truss.
As best shown in
As best shown in
The top gusset 37 may be coupled with the front stud 15, the back stud 17 and the top plate 19 via, for example, a plurality of fasteners. Similarly, the bottom gusset 39 may be coupled with the front stud 15, the back stud 17 and the bottom plate 21 via a plurality of fasteners. And the center gusset 41 may be coupled with the front stud 15 and the back stud 17 via a plurality of fasteners. The fasteners may be, for example, screws or nails. Glue may also be used to adhere the top gusset 37, the bottom gusset 39, and the center gusset 41 with the respective parts with which they are coupled.
The top gusset 37, the bottom gusset 39, and the center gusset 41 may each be, for example, oriented strand board (OSB). OSB has the advantages of being both durable and less expensive than alternatives. Furthermore, to minimize the amount of cutting, and hence labor, involved, the top gusset 37, the bottom gusset 39, and the center gusset 41 may each be cut from standard OSB (substantially 7/16 of one inch thick) with a width of four feet and a length of eight feet.
The top gusset 37, the bottom gusset 39 and the center gusset 41 may each be, for example, substantially eight inches wide and twenty-one inches long. A standard four feet wide by eight feet long OSB board may be cut into sections to produce twenty-four gussets. The inventor has recognized that the top gusset 37, the bottom gusset 39, and the center gusset 41 may, in this manner, be fabricated at substantially less expense than the cost of purchasing premade gussets. The left-over pieces of OSB may be used, for example, as mortar boards, spacers, or corner braces.
Coupling the front stud 15, the back stud 17, the top plate 19, the bottom plate 21, the top gusset 37, the bottom gusset 39, and the center gusset 41, as described above, with the broad sides of the front stud 15 and the back stud 17 substantially parallel, produces a box structure that provides increased lateral rigidity, resistance to vertical and horizontal twisting, and load strength. The top gusset 19 and the bottom gusset 21, when coupled as described above, keep the stud frame 1 square. The center gusset 41 provides resistance, in particular, against vertical flex.
The wall is provided with a plurality of stud frames 1, such as a plurality of the stud frame 1 of the exemplary embodiment of a stud frame 1 described above. As best shown in
As best shown in
The at least one row 49 may be multiple rows 49, each new row 49 on top of the previous row 49, for buildings with multiple levels. Accordingly, the bottom plate 21 of each of the stud frames 1 at the bottom side 5 of the wall may be coupled with the foundation via at least two foundation bolts 27; and the top plate 19 of each of stud frames 1 at the top side 3 of the wall may be coupled with the roof via at least one roof bolt 35. Where one row 49 is coupled with another row 49, the rows 49 may be coupled via, for example, a floor, with a top side 3 of the stud frames 1 of the lower row 49 coupled with a bottom side 5 of the floor, and a bottom side 5 of the stud frames 1 of the higher row 49 coupled with a top side 3 of the floor.
The wall is provided with an outer layer 43 coupled with an outer side 7 of each of the stud frames 1 and an inner layer 45 coupled with an inner side 9 of each of the stud frames 1. As best shown in
As best shown in
By utilizing boards and other components of standard lengths and dimensions, and avoiding resizing boards and components whenever possible, the amount of time involved in construction, and hence labor cost, may be reduced. Waste is also thereby reduced. For example, by utilizing, for the front stud 15 and the back stud 17, boards having a standard nominal length of eight feet, the stud frame 1 may be constructed so as to be compatible with standard sized wallboards 55, such as sheets of oriented strand board (OSB) or drywall, substantially 4 feet wide by 8 feet long, without the need to alter the length of the wallboards 55. Further, by using a spacing interval 51 of two feet on center between stud frames 1 of each of the rows 49 of stud frames 1, each of the wallboards 55 may be coupled with the outer side 7 of three of the stud frames 1; and each of the wall sheets 53 may be coupled with the inner side 9 of three of the stud frames 1.
As shown in
The stud frames 1 may be prefabricated to facilitate easier on-site construction. Fabrication may be achieved, for example, via a jig. Making the broad sides of the front stud 15 parallel with the broad sides of the back stud 17, as opposed to parallel narrow sides, provides greater strength and stability for the stud frame 1, and more particularly, substantially increased lateral rigidity and load strength. The increased strength and rigidity of prefabricated stud frames 1 is particularly advantageous during construction, before both an outer layer 43 and an inner layer 45 have been completely coupled with the at least one row of stud frames 1 to produce a wall. Further, by orienting the front stud 15 and the back stud 17 so that the outer side 7 and inner side 9 are broad sides, an increased surface area is provided for attaching the outer layer 43 and the inner layer 45. The increased surface area makes it less difficult to couple the stud frames 1 with the outer layer 43 and the inner layer 45 via, for example, nails or screws, as it is easier not to miss the front stud 15 and the back stud 17.
By orienting the bottom plate 21 so that the top side 3 and the bottom side 5 are broad sides, and by having the bottom plate 21 flush with the bottom side 5 of the front stud 15 and the back stud 17, an increased surface area is provided for attaching prefabricated stud frames 1 with the foundation, thus increasing the stability of the stud frames 1 while the stud frames 1 are coupled with the foundation. The increased stability, in turn, provides for easier installation, allowing fewer individuals to be involved in coupling the stud frames 1 (and hence a wall) with the foundation.
Installation of prefabricated stud frames 1 is made even easier by use of the foundation bolts 27, which allow the stud frames 1 to be quickly coupled with the foundation of a building. Importantly, the foundation bolts 27 provide right angle alignment of the stud frame 1 with the foundation. By making installation easier, foundation bolts further contribute to making wall construction by fewer individuals possible. Further, coupling the bottom plates 21 at a bottom side 5 of the wall with the foundation via at least two foundation bolts 27 results in at least two rows of foundation bolts 27, thus preventing twisting of the stud frames 1 with respect to the foundation. Coupling stud frames 1 with the foundation via foundation bolts 27, as opposed, for example, to sill plates, also provides increased strength against external lateral and vertical forces.
The at least one roof bolt 35, like the foundation bolts 27, provide the advantage of efficient and cost effective on-site building installation for prefabricated stud frames 1, allowing for the stud frames 1 to be quickly coupled with the roof of a building. The roof bolts 35 also provide the advantage of superior alignment (true flush alignment). The improved alignment provided by the roof bolts 35, in combination with the improved alignment provided by the foundation bolts 27, makes it possible for construction to be achieved with fewer involved individuals. Further, coupling the stud frames 1 with the roof via the roof bolts 35, as opposed to, for example, nails or screws, provides increased strength against, for example, vertical lift forces, vertical snow loads and lateral winds.
Where in the foregoing description reference has been made to ratios, integers or components having known equivalents then such equivalents are herein incorporated as if individually set forth.
While the present invention has been illustrated by the description of the embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, representative apparatus, methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departure from the spirit or scope of applicant's general inventive concept. Further, it is to be appreciated that improvements and/or modifications may be made thereto without departing from the scope or spirit of the present invention as defined by the following claims.