Sub-Saharan Africa bares the brunt of the world's malaria burden, with nearly 80% of all cases occurring in this region. However, we are now at a turning point in the history of malaria control in Africa. For the first time in a generation reports of malaria declining have become common due to high coverage with long-lasting insecticide treated nets and the prompt and effective treatment of clinical cases. In order to maintain these hard won gains and to make further reductions in malaria transmission it is important to improve and develop new strategies for vector control, which will be applicable in different environments, affordable, and complement existing interventions, so that greater reductions in malaria transmission can be achieved. This project aims to develop more efficient and cost-effective methods for controlling and monitoring Anopheles gambiae populations, the major vector of malaria in Africa. This approach is underpinned by multi-disciplinary research to identify the visual and olfactory stimuli that cause female An. gambiae to lay eggs at certain sites and not others. Such knowledge will be used to (1) identify important breeding sites and selectively treat preferred sites with novel, long-lasting and environmentally friendly larvicides and (2) provide a rational basis for developing traps to monitor adult mosquitoes. Specifically we propose to test: (1) if bacteria-generated volatiles from aquatic habitats function as oviposition semiochemicals; (2) whether the bacterial communities and chemicals released from and present in stagnant water bodies differ between sites with and without An. gambiae larvae, (3) test novel residual larvicides (pyriproxyfen, an insect growth regulator and a silicon-based monomolecular surface film) against An. gambiae and (5) develop an oviposition trap for collecting gravid An. gambiae. Therefore, the performance of two relatively novel agents, will be evaluated under laboratory and field conditions and their potential in an `attract-and-kill' strategy combining findings from all specific objectives tested. Most of these studies will be carried out in the laboratory, in enclosed greenhouses and in the field in Kenya. However, some of the detailed chemical analysis will need to be carried out in specialised laboratories in Sweden. The findings from this study may lead to the development of new sampling and control tools for malaria vectors. Such tools would be valuable additions to an Integrated Vector Management package for the control of malaria in sub-Saharan Africa.