Bicycles provide transportation and mobility for many, but some people are disabled or unstable on bicycles. Tricycles provide added stability, but allow only for a cycling motion, not a walking or jogging motion of the user. A walker is also used to provide stability and mobility to disabled persons and/or persons undergoing rehabilitation. Such walkers generally have four legs with either 4 wheels or 2 wheels and two other legs, sometimes having tennis balls or skis on the non-wheeled legs. Walkers are designed to provide some stability and assistance, and offer some limited load transfer capability.
Rollators are wheeled version of walkers and come in 3 or 4 wheel models. Like walkers, they provide for a limited amount of weight transfer for an upright user and are less than optimal when stability assistance is desired on uneven terrains. The following U.S. Patent documents are illustrative of known upright support devices: U.S. Pat. Nos. 7,111,856; 7,494,138; 7,866,677; 8,215,652; 8,596,658; 9,289,347; and U.S. Pat. No. 9,314,395. However, walkers and rollators are generally not designed for distance mobility, fitness training, or outdoor activities on uneven terrain.
The present invention aims to solve this gap and provides a mobility device adapted so that a user may walk or jog and yet still derive stability from the device that may be necessary depending on the user's particular needs. This is especially useful on uneven terrains.
The ambulatory device's unique design and construction allows a disabled or unsteady person to ambulate with more ease and security, particularly over uneven terrain. The stylized ambulatory mobility device (SAMD) comprises:
a frame having right and left frame portions joined at a forward vertex defining a midline plane and joined by a cross member extending between the right and left frame portions rearward from the vertex, the frame defining a space for a user rearward of the cross member;
a pair of rear forks, one attached to each of the right and left frame portions for supporting a pair of rear wheels rotatable about an axis approximately normal to the midline plane;
a front fork assembly having a central shaft pivotably supported by the frame at said vertex, and forks extending from the central shaft for rotatably supporting a front wheel steerable by altering the pivot angle of the front fork assembly;
a user weight support system including a forearm support bar mounted to a post pivotably supported by the cross member, and at least one hand grip mounted in a position suitable for gripping with a user's hand when the user's forearm is supported on the forearm support bar; and
a steering mechanism for altering the pivot angle of the front fork assembly in response to a pivoting motion of the forearm support bar.
In general terms, the steering mechanism comprises a tie link (or cable) that causes pivoting of the fork assembly when the forearm support bar is pivoted. When the link (or cable) is connected at any of multiple radially-displaced positions on the forearm support or on a crank lever pivotable with the forearm support bar, or at any of multiple radially-displaced positions on the front fork assembly, the steering mechanism is “adjustable.” Thus, in some embodiments, the steering mechanism is an adjustable steering mechanism capable of adjusting the steering sensitivity, i.e. the steering ratio.
The tri-wheeled SAMD provides stability for users. It is adjustable for persons of different stature and different support needs. In some embodiments, the device employs large diameter wheels relative to the height of the forearm support. For example the wheel diameter may be 40% to 90% of the height of the device; for example more than 50%, or more than 60% of the height, as defined herein. In some embodiments, the SAMD includes a forearm rest attached to forearm support bar for supporting the weight of a user. A key feature of the SAMD is that a user may transfer some or most of his or her weight (load) to the device itself, by resting a forearm or elbow on the arm rest. In some embodiments the amount of load transferred may be monitored and/or quantified by means of a suitable sensor, such as a strain gauge.
A further advantage is the facile steerable nature of the present invention, without losing the ability to transfer load to the device frame. The device is made of lightweight materials, making it easy to handle by compromised individuals, and, in some embodiments, includes weighted wheels in order to keep the center of gravity low to provide additional stability.
In some embodiments, the SAMD includes a suspension system to absorb the shocks of an uneven or bumpy terrain. For example, the rear fork may be attached to the frame with a hinge and a spring/shock absorber may act as a suspension system.
The accompanying drawings, incorporated herein and forming a part of the specification, illustrate the present invention in its several aspects and, together with the description, serve to explain the principles of the invention. In the drawings, the thickness of the lines, layers, and regions may be exaggerated for clarity.
Various aspects of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiment, when read in light of the accompanying drawings.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described herein. All references cited herein, including books, journal articles, published U.S. or foreign patent applications, issued U.S. or foreign patents, and any other references, are each incorporated by reference in their entireties, including all data, tables, figures, and text presented in the cited references.
Numerical ranges, measurements and parameters used to characterize the invention—for example, angular degrees, quantities of ingredients, polymer molecular weights, reaction conditions (pH, temperatures, charge levels, etc.), physical dimensions and so forth—are necessarily approximations; and, while reported as precisely as possible, they inherently contain imprecision derived from their respective measurements. Consequently, all numbers expressing ranges of magnitudes as used in the specification and claims are to be understood as being modified in all instances by the term “about.” All numerical ranges are understood to include all possible incremental sub-ranges within the outer boundaries of the range. Thus, a range of 30 to 90 units discloses, for example, 35 to 50 units, 45 to 85 units, and 40 to 80 units, etc. Unless otherwise defined, percentages are wt/wt %.
Adaptive Device
The adjective “adaptive,” as used herein, refers to devices that are re-engineered or reconfigured or modified to be more user-friendly for persons with disabilities of any nature or degree. A “mobility device” is any wheeled aid for use in mobilizing or transporting an individual, such as a bicycle, tricycle, or wheelchair. Such a device will have components for interacting with the ground or terrain and components for interacting with the user; and either or both components may be “adaptive.” “Disabled” as used herein means does not require any officially established disability, such as might be recognized by the Americans with Disabilities Act (ADA), but rather refers to a user that is compromised in some way with regard to balance, stability, ability to bear weight on his or her own legs, or just needing additional security.
The frame 12L comprises one or more transverse members 14L, and an upright stem or post 16L. The stem 16L will generally be straight, but the members 14L may be arcuate as seen in
In the embodiment of
The right frame has corresponding frame members 14R, 16R, (18R), and 20R, and the right rear fork 20R rotatably supports a right rear wheel 24R. The rear wheels 24 are rotatable about an axis approximately normal (i.e. perpendicular) to the midline plane, M. As seen in
The two frame halves 12L and 12R are joined together at the forward vertex 40, where transverse members 14L and 14R meet. In some embodiments this is a rigid or fixed connection, such as a weld. In other embodiments, the two halves 12L and 12R are joined in foldable clamshell halves at a tubular pivot found at the vertex 40. A transverse cross member 26 extends from one frame member 12 L to the other 12 R, such as the cross member 26 between transverse members 14L and 14R. The cross member 26 ensures the device remains consistently and stably in its open position during use. In rigid frame construction, the cross member 26 may be welded in place, whereas in foldable embodiments, the cross member 26 may be releasably attached using, for example, clamps or bolts with easily removable wingnuts. Cross member 26 may be angled or curved as shown so that a portion toward the midline is more forward than the outward portions attached to the right and left frames 12R and 12L. This curvature defines a space rearward of the cross member 26 that is suitable for accommodating a user, as will be described below.
The vertex 40 joins the clamshell halves of the frame 12, and also supports a pivotable front fork 28 assembly that contains a rotatable front wheel 30. The vertex 40 may comprise a typical bicycle head tube and headset, which may be threaded or threadless, and will generally contain bearings and races for facile pivoting. As with typical bicycle forks, two blades or tines 28a divide to either side of the wheel and hold an axle for the rotatable wheel 30. The tines 28a attach to a shoulder or cross piece which is attached to a central post 28b that is pivotable within the vertex 40, as in known bicycle headsets. The device 10 is steerable by pivoting the front fork 28 assembly along with its rotatable wheel 30, about the axis of the central post 28b with the housing of the frame vertex 40 as will be described momentarily.
As part of the adaptive features of the adaptive mobility device, cross member 26 houses or is attached to a second headset or pivot tube 50 near the midline M that is functionally similar to that found at vertex 40 housing the central post 28b. It may also contain similar bearings and races. Pivot tube 50 houses a post 51 extending upwards and attached to forearm support bar 52. Forearm support bar 52 extends transversely right and left approximately perpendicular to the post 51. Additional frame members, such as midline support member 19, may provide additional strength and rigidity to frame as it supports the pivot tube 50.
The forearm support bar 52 may be fitted with one or two forearm rests 44, mounted to the forearm support bar 52 spaced apart between the post 51 and the right and left ends of the support bar 52. The forearm rests 54 may be planar disk-like structures, or they may be elongated and U-shaped or otherwise curved to comfortably accommodate the forearm and/or elbow of the user in the concavity of the rest. (See
The forearm rests 54 may be mounted to the forearm support bar 52 by means of a clamp or bracket 55 that permits adjustments of several types. The brackets 55 may be moved laterally right or left to account for greater or lesser spacing between elbows or forearms, depending on the width of the user. Secondly, the brackets 55 may allow for a rotation about a transverse axis (i.e. a “pitch” motion in aeronautical terms) to cause the forearm rests to deviate from horizontal if desired. The brackets 55 may be secured to the forearm support bar 52 by a two-piece, clamp-like portion that grasps the bar and can quickly be tightened into a desired position by knurled knob screws, or by any other suitable securing means. The bracket 55 or clamp may also provide for a “yaw-like” pivoting motion of the forearm rests 54, as described below in connection with the embodiment of
As shown in the embodiment of
Pitch rotation is particularly desirable if the rest 54 is U-shaped. This allows the user to comfortably cradle the forearm and/or elbow in the concavity of the U-shaped rests 54 while simultaneously reaching forward to grip the upright handgrips 45 with the hands, the forearm and upper arm forming an angle of roughly 90 degrees, but ranging from about 60 to about 120 degrees.
In embodiments designed for users having the use of both hands and arms, the rests 54 and the handgrips 45 may each be spaced between about 5 to about 15 inches from the midline in right and left directions. In general, the grips 45 may be spaced apart about the same distance or slightly closer to center than the forearm rests 54. In embodiments designed for users having the use of only one arm, a single rest 54 may desirably be spaced closer to the midline for better distribution of weight.
In the alternative embodiment of
Brake levers 38 are much like typical bicycle brake levers and can be mounted to the handgrip 45 and connected to cables that draw brake calipers together around the rim of the wheels 24, 30. If one brake level is used it may control the front wheel 30. If two brake levers are used, they may control the rear wheels 24, or both the front and rear wheels. The brake calipers, levers and cabling are well known and need not be described in detail here. In still other embodiments, the brake levers and calipers are optional, and the device may be stopped by user effort.
In particular embodiments of the SAMD, a load sensor may be employed to monitor and/or quantify the amount of weight or load a user transfers to the device. For example, in one embodiment the sensor may be associated with the suspension system and may monitor the angular deflection of a hinged fork or the linear displacement of a shock absorber piston or spring. In another embodiment, the load sensor may monitor the pressure, tension or displacement at the forearm rest. A conventional strain gauge may be adapted for this purpose. Quantifying the amount of load transfer may facilitate monitoring the progress of a rehabilitation user, who might seek gradually to reduce the amount of load transfer over time during rehabilitation. Other reasons for quantification of load transfer may be apparent as well.
The adaptive device 10 of the invention may be made of lightweight materials to make it easier for a disabled person to use. For example, the frame 12 may be made from aluminum, graphite, carbon fiber, magnesium or titanium. Forearm rests 34 may be padded for comfort and may be adjustable as to angle as well as height. Grips may be soft polymer or foam padded. The spring and shock absorber, if used, may be adjustable, or may come in different size or strength models, to accommodate users needing to transfer more or less weight to the adaptive device.
Wheels may be very similar to bicycle wheels, using a hub and spokes to support a rim and tire, and may come in varying diameters from about 20 inches to about 36 inches, usually from about 24 inches to about 30 inches, to accommodate different users. Tires may be inflatable or a solid polymer-type not susceptible to flats. In some embodiments the wheels may be weighted to maintain a lower center of gravity for the entire device. The wheels are removable in most embodiments.
Large wheels may afford greater comfort and stability over uneven terrain Consequently, in some embodiments the wheels have a diameter that is more than 40% of the height of the SAMD, for example more than 45% of the height, more than 50% of the height, more than 55% of the height, or more than 60% of the height, and up to 90% of the height of the device. For the purpose of this diameter-to-height ratio, illustrated best in
In some embodiments of the device (not shown) the device 10 may be folded and stored compactly. The rear wheels 24 may be removed so that pivotable rear forks 20 may be folded up approximately parallel to frame stem 16 or removable forks may be removed. Additionally, the two frame halves 12R and 12L may be folded inward toward the midline M, pivoting at the clamshell attachment about the vertex 40. Optionally the front fork may be folded so that the front wheel occupies the remaining space between the frame halves.
Adjustable Steering Mechanisms
A steering mechanism is required for pivoting the front fork 28 assembly and front wheel 30 in response to a pivoting motion of the forearm support bar 52. A “steering ratio” as used herein refers to the degrees of turn or pivot of the forearm support bar divided by the degrees of turn or pivot of the front wheel. Steering ratio is a sensitivity adjustment that is possible with adjustable steering mechanisms. At slower speeds (e.g. walking) a lower steering ratio may be desirable for improved, more sensitive directional control, but at higher speeds (e.g. running) a less sensitive, higher steering ratio may be desired to prevent oversteering. There are multiple embodiments for accomplishing this.
In the embodiment of
A similar crank or lever arm is secured to and extends laterally from any portion of the front fork 28 assembly; for example, the stub or lever arm 142 shown secured to the right fork tine 28a. A tie rod or tie link 156 connects the crank arm 152 with the lever arm 142. In this arrangement, pivoting the forearm support bar 52 causes rotation of the post 51, which causes pivoting of the crank arm 152, which pushes (or pulls) the tie link 156 to cause a corresponding pivot in lever arm 142 and the front fork 28 assembly to which it is secured, which turns the front wheel 30. It is understood that the connection points must allow free pivot of the tie link 156 relative to the crank arm 152 and the lever arm 142. Lock pins, rivets, hinge pins, bolts with lock nuts, etc. may all serve such a purpose. By connecting the tie link 156 to a crank arm connection point 110 that is farther displaced radially from the center, as shown in
For ease of adjusting the steering ratio, a convenient quick-release lock pin may be employed at the connection points 110, Suitable quick-release connections include, for example, a clevis pin, a cotter pin, a cotterless pin, a “D” or square link pin, lynch pins, etc. A bolt and captive nut may also be used. It should be understood that either the crank arm 152 or the lever arm 142 may contain the multiple radially-displaced connection points 110, but the general triangular nature of the device 10 makes it more palatable to place the longer torque lever rearward at the location of the crank arm 152, and to place the shorter torque lever on the front fork assembly, e.g. at the location of the lever arm 152.
An alternative steering mechanism is shown in
One or more linkages 56L and/or 56R may optionally be used to link the two pivoting bars 42, 52 together to move in unison. The links may be connected anywhere along the lengths of the bars 42, 52, such as at one or both outboard ends. The links 56, if used, should also pivot relative to the bars 42, 52 for reasons already described. See
To adjust the steering ratio in this embodiment, only one linkage 56 is used and it will have variable connection points radially displaced along either the handlebar 42 or the forearm support bar 52, analogous to those described above for the crank arm 152. Although the linkage 56 may be adjustable in length to accommodate different height adjustments of the bars 42, 52, one bar heights are selected, the linkage 56 should remain at a fixed length in order to provide adjustment of a steering ratio as described above. Since the user's forearms resting on the forearm support and grasping the handgrips 45 on the handlebar 52 could act as a pseudo linkage, the actual linkage 56 must be rigid enough to overcome this to adjust steering ratios.
As best seen in
In
For the embodiment of
Optionally in some embodiments, vertex 40 (and/or tubular pivot 50 described below) may be fitted with another adaptive feature to cause the steering bar 42 and wheel 30 to return to a central position until a steering force is applied by a user. Such an adaptive feature may include any of several well-known detent mechanisms: for example, bearing surfaces that have a depression or are slightly eccentric, or torque spring mechanisms.
It should be appreciated that the device 10 is adjustable in many respects for users of different stature and size. First, frame size and wheel diameter may be varied for shorter or taller users. For a given frame and wheel diameter, the height of the forearm rests 54 may be adjustable relative to the ground, for example, by use of mounting posts that slide vertically into clamps on the support bar 52 as best shown in
The foregoing description of the various aspects and embodiments of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive of all embodiments or to limit the invention to the specific aspects disclosed. Obvious modifications or variations are possible in light of the above teachings and such modifications and variations may well fall within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled.
The present invention relates generally adaptive mobility devices and, in particular, to a three-wheeled adaptive device enabling mobility for ambulatory persons needing or wanting stabilization. This application is a national phase application of international application PCT/US17/23770, filed under the authority of the Patent Cooperation Treaty on Mar. 23, 2017; which claims priority to U.S. Provisional Application No. 62/315,935, filed under 35 U.S.C. § 111(b) on Mar. 31, 2016, and U.S. Provisional Application No. 62/425,246, filed under 35 U.S.C. § 111(b) on Nov. 22, 2016. The entire content of each of the aforementioned applications is expressly incorporated herein by reference for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/023770 | 3/23/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/172473 | 10/5/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2654416 | Maniscalco | Oct 1953 | A |
4239248 | Ewers | Dec 1980 | A |
5020560 | Turbeville | Jun 1991 | A |
5657783 | Sisko | Aug 1997 | A |
6003532 | Pi | Dec 1999 | A |
6546291 | Merfeld et al. | Apr 2003 | B2 |
6743156 | Jacques, II | Jun 2004 | B1 |
7001313 | Crnkovich | Feb 2006 | B1 |
7111856 | Graham | Sep 2006 | B1 |
7866677 | Rothstein et al. | Jan 2011 | B1 |
7938413 | Anderson | May 2011 | B2 |
8608184 | Janis et al. | Dec 2013 | B2 |
8608479 | Liu | Dec 2013 | B2 |
8678425 | Schaaper et al. | Mar 2014 | B2 |
8752658 | Kurek | Jun 2014 | B2 |
8961186 | LoSasso | Feb 2015 | B2 |
9149408 | Karlovich | Oct 2015 | B2 |
9566207 | Ratliff | Feb 2017 | B1 |
20030228959 | Perlstein | Dec 2003 | A1 |
20040201191 | Jacques, II et al. | Oct 2004 | A1 |
20080061529 | Schmautz | Mar 2008 | A1 |
20080079230 | Graham | Apr 2008 | A1 |
20120043730 | Walther et al. | Feb 2012 | A1 |
20150076797 | Alink | Mar 2015 | A1 |
20170112706 | Bruk | Apr 2017 | A1 |
20190254918 | Fellingham | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
101032113 | May 2011 | KR |
Entry |
---|
PCT International Search Report and Written Opinion, Application No. PCT/US17/23770, dated Jun. 16, 2017. |
Number | Date | Country | |
---|---|---|---|
20190099319 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
62315935 | Mar 2016 | US | |
62425246 | Nov 2016 | US |