Embodiments of the invention generally pertain to computing devices and more particularly to sub-block based wear leveling for memory devices.
For memory and storage devices whose memory cells can endure a limited number of write cycles, some cells might fail much earlier than the others due to uneven write traffic to cells by system applications. In this case, a device becomes unusable much sooner than the expected device lifetime, as expected device lifetimes are determined based on relatively even write usage of the cells. Examples of non-volatile memory devices with limited write endurance include flash memory, phase-change memory (PCM) and magneto-resistive random-access memory (MRAM).
Wear leveling is the approach of (relatively) evenly distributing writes across all device cells, thus extending the device lifetime. Typically it is achieved through dynamically re-mapping a physical address (i.e., the physical device addresses that would be used in the absence of wear leveling) to a different actual device address.
Wear leveling is particularly important and challenging for memory devices that operate as the memory of a computer system. Because the memory is relatively closer to the processor, ideal wear leveling processes are robust and efficient to handle high write traffic. They also have low performance cost and minimal write overhead. In addition, it is important for wear leveling processes to be highly secure against malicious attacks that compromise the security of the host system.
The following description includes discussion of figures having illustrations given by way of example of implementations of embodiments of the invention. The drawings should be understood by way of example, and not by way of limitation. As used herein, references to one or more “embodiments” are to be understood as describing a particular feature, structure, or characteristic included in at least one implementation of the invention. Thus, phrases such as “in one embodiment” or “in an alternate embodiment” appearing herein describe various embodiments and implementations of the invention, and do not necessarily all refer to the same embodiment. However, they are also not necessarily mutually exclusive.
Descriptions of certain details and implementations follow, including a description of the figures, which may depict some or all of the embodiments described below, as well as discussing other potential embodiments or implementations of the inventive concepts presented herein. An overview of embodiments of the invention is provided below, followed by a more detailed description with reference to the drawings.
Embodiments of an apparatus, system and method for sub-block based wear leveling for memory devices are described herein. In the following description numerous specific details are set forth to provide a thorough understanding of the embodiments. One skilled in the relevant art will recognize, however, that the techniques described herein can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring certain aspects.
Embodiments of the invention may receive a write request to a physical memory address including a physical block address and a physical sub-block address. An address remapping table is accessed to translate the physical block address to a memory device block address to locate a plurality of memory device sub-blocks. A plurality of sub-block activity counters are accessed, each sub-block activity counter associated with one of the memory device sub-blocks. One of the plurality of memory device sub-blocks is selected to store write data of the write request based, at least in part, on values of the plurality of sub-block activity counters, and the value of the sub-block activity counter associated with the selected memory device sub-block is updated. Thus, embodiments of the invention track the wear-out status of sub-blocks within larger blocks in a cost efficient matter, thereby improving the efficiency of wear-leveling processes.
Each of said memory banks may include a plurality of blocks, each of which include a plurality of sub-blocks (e.g., block 120 including sub-blocks 130, 131 . . . 161). In this example, sub-blocks may comprise any size smaller than block 120 (e.g., block 120 may be a 4 k block comprised of 64 byte sub-blocks).
Embodiments of the invention describe wear leveling modules or logic to dynamically re-map a physical address (i.e., the physical device addresses that would be used in the absence of wear leveling) to a different actual device address based on a wear leveling algorithm. In order to translate between the physical address and the device address, an address remapping table (ART) (or any other suitable equivalent device, mechanism or process), is utilized. Embodiments of the invention update said ART based on activity tracking sub-blocks (e.g., sub-blocks 130, 131 . . . 161) as described below. Said ART holds physical to actual device address mappings in a block granularity that is larger than or equal to the read/write granularity of the device (i.e., sub-blocks). Managing the ART in a larger block granularity generally results in smaller hardware overhead, thus providing a robust and efficient wear-leveling solution to handle high write traffic.
Physical block address 202 points to a corresponding entry in ART 208, which includes device block address 212 and shuffle key 210. The architecture comprises a memory device with limited write endurance and an address remap table (ART) that can be implemented as a separate hardware structure or software allocated in the memory itself.
Embodiments of the invention obtain the actual memory device address through ART 208. Specifically, said device address is constructed by concatenating (1) the device block address (DBA) looked up from the ART, (2) device sub-block address (DSBA) 216, which is a function of PSBA 204 and shuffle key 210 maintained in the ART, and (3) the original data offset from the logical address of the operation. For example, PSBA 204 may be randomized based on a static randomization mapping. Then, the resulting value is xor-ed or modulo summed with the shuffle key. Because the shuffle key is changed each time the translation is modified, it helps for within-block wear leveling (i.e., sub-block wear leveling).
In this embodiment, the wear-leveling state of memory device 214 is tracked at sub-block granularity using saturating sub-block activity counters 220 (shown as a0 230, a1 231 . . . an 239), each of which correspond to one of the plurality of sub-blocks 218 (shown as SB0 220, SB1 221 . . . SBn 229). In some embodiments, a sub-block activity counter tracks the writes to the corresponding sub-block with a particular probability; avoiding update of the counters at every write operation is beneficial for reducing the storage requirement for activity counters and also for preventing the counters from becoming heavily written themselves.
In some embodiments of the invention, because a wear-leveling algorithm is in place, sub-blocks are presumed to wear out evenly. This allows for an approach to efficiently track hot sub-blocks using narrow-width activity counters (e.g. 1-, 2-, 4-bits wide), which in turn reduces the storage overhead of the implemented wear leveling process.
The variation across the activity counters 218 is an indication of whether the sub-blocks are wearing out evenly. For example, a large variation indicates hot-spot(s) in a subset of the sub-blocks. Once a hot spot is detected, embodiments of the invention may re-shuffle the sub-blocks of the block in order to achieve within-block wear leveling, or swap the whole block with another one to avoid excessive writes to the block in the future. In some embodiments, a shuffle threshold value is utilized in order to limit the number of sub-block shuffles before performing a block swap. The policy to select a second block for swap operation may vary (e.g., random logical block selection). In some embodiments, if the sub-blocks wear out evenly, sub-block re-shuffling is not triggered, but block swaps are performed periodically to ensure even wear out across all blocks in the memory device (e.g., by monitoring block activity counter 240). In one embodiment, the shuffle counter is utilized to control this periodic timing.
Process 300 illustrates an example wear-leveling process. In this embodiment, all counters described below are initialized to zero, the activity counters of sub-blocks are incremented in a saturating manner and write operations are described to affect the memory device' wear leveling state.
Upon receiving a write request to a sub-block, 302, the associated sub-block activity counter is incremented, 304, and the associated block-activity counter (i.e., the activity counter of the block which includes said sub-block) is incremented, 306. In this embodiment, if all activity counters related to sub-blocks of the targeted block are non-zero, 308, all are decremented, 310, as the example algorithm need only detect the difference between the activity counters in a block; thus, in this embodiment, the minimum activity counter value for sub-blocks in the block is essentially anchored to zero in order to utilize narrow width activity counters. In other embodiments, multiple sub-blocks may share a single activity counter, which provides further storage overhead reduction.
If the block activity counter exceeds a threshold value related to block swap rate for even wear out (shown as threshold—1), 312, then the data in the target block is swapped with another block, 318. This ensures excessive writes to this block are avoided. If said block activity counter does not exceed said threshold value, then sub-block wear-leveling processes are executed as described below.
If, a hot sub-block is identified—i.e., the associated activity counter is greater than or equal to a threshold value, 314, then the data is written to another sub-block of the block selected based on the new shuffle key, 316, ensuring excessive writes to sub-blocks are avoided.
Upon receiving a write request to a sub-block, 402, the associated activity counter is incremented, 404. In this embodiment, if all activity counters related to sub-blocks of the targeted block are non-zero, 406, all are decremented, 408, as the example algorithm need only detect the difference between the activity counters in a block; thus, in this embodiment, the minimum activity counter value for sub-blocks in the block is essentially anchored to zero in order to utilize narrow width activity counters. In other embodiments, multiple sub-blocks may share a single activity counter, which provides further storage overhead reduction.
If, a hot sub-block is identified—i.e., the associated activity counter is greater than or equal to a threshold value, 410, then the shuffle counter for the block is incremented, 414. If the write is not to a hot sub-block, it is determined if all counters have evened out (determined by checking if all counter values are zero, 412); if they have been evened out, the shuffle counter for the block is incremented, 416.
If the shuffle counter for the block exceeds a threshold value for controlling the number of shuffles (shown as threshold—3), 420, then the data in the target block is swapped with another block, 422. For the original block, a new shuffle key is used, the activity counters are cleared, and address mappings are updated accordingly. This ensures excessive writes to this block are avoided. The above process similarly occurs if the shuffle counter for the block exceeds a threshold value related to block swap rate for even wear out (shown as threshold—2), 418. If the shuffle counter for the block does not exceed the threshold value, the sub-blocks are re-shuffled to cause wear-leveling of the block, 424.
Processor 504 may include one or more processing cores to execute computer program instructions for the host system. Cache unit 506 may comprise a single or multi-level cache memory—e.g., a first level (L0) cache memory and a second level (L1) cache memory. Processor 504 generates instructions (alternatively referred to herein as micro-operations or “micro-ops”), such as memory loads, stores, and pre-fetches. The micro-ops may be in a sequence that differs from the sequence in which the instructions appear within a computer program. Micro-ops which involve memory accesses, such as memory loads, stores, and pre-fetches may be managed, at least in part, by memory controller 510.
In this embodiment, TLB 512 maintains a mapping of address translations between linear addresses and corresponding physical addresses. When a memory access type micro-op is loaded into an execution pipeline, it is intercepted by TLB 512, which performs a lookup to determine whether its internal cache lines contain the physical address corresponding to the linear address of the micro-op. If the address translation is found therein, i.e., if a hit occurs, TLB 512 re-dispatches a micro-op, updated to include the physical address. If a miss occurs, TLB 512 notifies PMH 508 that a page walk is to be performed via page table walk logic 514 to determine the physical address corresponding to the linear address of the micro-op.
As described above, wear leveling is achieved through dynamically re-mapping a physical address (i.e., the physical device addresses that would be used in the absence of wear leveling) to a different actual device address based on a wear leveling algorithm. Some embodiments of the invention translate the physical addresses into an actual device addresses at memory controller 510. In other embodiments of the invention, actual device address translation occurs right after the page-table-based linear to physical address translation in a manner transparent to the operating system or executive. For example, embodiments of the invention may implement the above described wear leveling algorithms at PMH 508. Upon a TLB miss, the PMH 508 walks the page table included in page table logic 514 to obtain the required physical address. Once successfully obtained, the PMH utilizes an above described wear leveling algorithm (i.e., sub-block based wear leveling) for the actual device address currently mapped to the physical address.
System 600 may include processor 610 to exchange data, via system bus 620, with user interface 660, system memory 630, peripheral device controller 640 and network connector 650. Said system memory may include NAND flash memories, NOR flash memories, PCM, PCMS, MRAM and silicon nanowire-based non-volatile memory cells, and subject to sub-block based wear-leveling according to any of the embodiments of the invention described above.
System 600 may further include antenna and RF circuitry 670 to send and receive signals to be processed by the various elements of system 600. The above described antenna may be a directional antenna or an omni-directional antenna. As used herein, the term omni-directional antenna refers to any antenna having a substantially uniform pattern in at least one plane. For example, in some embodiments, said antenna may be an omni-directional antenna such as a dipole antenna, or a quarter wave antenna. Also for example, in some embodiments, said antenna may be a directional antenna such as a parabolic dish antenna, a patch antenna, or a Yagi antenna. In some embodiments, system 600 may include multiple physical antennas.
While shown to be separate from network connector 650, it is to be understood that in other embodiments, antenna and RF circuitry 670 may comprise a wireless interface to operate in accordance with, but not limited to, the IEEE 802.11 standard and its related family, Home Plug AV (HPAV), Ultra Wide Band (UWB), Bluetooth, WiMax, or any other form of wireless communication protocol. In other embodiments, RF circuitry 670 may comprise cellular network connectivity logic or modules provided by wireless carriers, such as provided via GSM (global system for mobile communications) or variations or derivatives, CDMA (code division multiple access) or variations or derivatives, TDM (time division multiplexing) or variations or derivatives, or other cellular service standards.
Processor cores may be implemented in different ways, for different purposes, and in different processors. For instance, implementations of such cores may include: 1) a general purpose in-order core intended for general-purpose computing; 2) a high performance general purpose out-of-order core intended for general-purpose computing; 3) a special purpose core intended primarily for graphics and/or scientific (throughput) computing. Implementations of different processors may include: 1) a CPU including one or more general purpose in-order cores intended for general-purpose computing and/or one or more general purpose out-of-order cores intended for general-purpose computing; and 2) a coprocessor including one or more special purpose cores intended primarily for graphics and/or scientific (throughput). Such different processors lead to different computer system architectures, which may include: 1) the coprocessor on a separate chip from the CPU; 2) the coprocessor on a separate die in the same package as a CPU; 3) the coprocessor on the same die as a CPU (in which case, such a coprocessor is sometimes referred to as special purpose logic, such as integrated graphics and/or scientific (throughput) logic, or as special purpose cores); and 4) a system on a chip that may include on the same die the described CPU (sometimes referred to as the application core(s) or application processor(s)), the above described coprocessor, and additional functionality. Exemplary core architectures are described next, followed by descriptions of exemplary processors and computer architectures.
In
The front end unit 730 includes a branch prediction unit 732 coupled to an instruction cache unit 734, which is coupled to an instruction translation lookaside buffer (TLB) 736, which is coupled to an instruction fetch unit 738, which is coupled to a decode unit 740. The decode unit 740 (or decoder) may decode instructions, and generate as an output one or more micro-operations, micro-code entry points, microinstructions, other instructions, or other control signals, which are decoded from, or which otherwise reflect, or are derived from, the original instructions. The decode unit 740 may be implemented using various different mechanisms. Examples of suitable mechanisms include, but are not limited to, look-up tables, hardware implementations, programmable logic arrays (PLAs), microcode read only memories (ROMs), etc. In one embodiment, the core 790 includes a microcode ROM or other medium that stores microcode for certain macroinstructions (e.g., in decode unit 740 or otherwise within the front end unit 730). The decode unit 740 is coupled to a rename/allocator unit 752 in the execution engine unit 750.
The execution engine unit 750 includes the rename/allocator unit 752 coupled to a retirement unit 754 and a set of one or more scheduler unit(s) 756. The scheduler unit(s) 756 represents any number of different schedulers, including reservations stations, central instruction window, etc. The scheduler unit(s) 756 is coupled to the physical register file(s) unit(s) 758. Each of the physical register file(s) units 758 represents one or more physical register files, different ones of which store one or more different data types, such as scalar integer, scalar floating point, packed integer, packed floating point, vector integer, vector floating point, status (e.g., an instruction pointer that is the address of the next instruction to be executed), etc. In one embodiment, the physical register file(s) unit 758 comprises a vector registers unit, a write mask registers unit, and a scalar registers unit. These register units may provide architectural vector registers, vector mask registers, and general purpose registers. The physical register file(s) unit(s) 758 is overlapped by the retirement unit 754 to illustrate various ways in which register renaming and out-of-order execution may be implemented (e.g., using a reorder buffer(s) and a retirement register file(s); using a future file(s), a history buffer(s), and a retirement register file(s); using a register maps and a pool of registers; etc.). The retirement unit 754 and the physical register file(s) unit(s) 758 are coupled to the execution cluster(s) 760. The execution cluster(s) 760 includes a set of one or more execution units 762 and a set of one or more memory access units 764. The execution units 762 may perform various operations (e.g., shifts, addition, subtraction, multiplication) and on various types of data (e.g., scalar floating point, packed integer, packed floating point, vector integer, vector floating point). While some embodiments may include a number of execution units dedicated to specific functions or sets of functions, other embodiments may include only one execution unit or multiple execution units that all perform all functions. The scheduler unit(s) 756, physical register file(s) unit(s) 758, and execution cluster(s) 760 are shown as being possibly plural because certain embodiments create separate pipelines for certain types of data/operations (e.g., a scalar integer pipeline, a scalar floating point/packed integer/packed floating point/vector integer/vector floating point pipeline, and/or a memory access pipeline that each have their own scheduler unit, physical register file(s) unit, and/or execution cluster—and in the case of a separate memory access pipeline, certain embodiments are implemented in which only the execution cluster of this pipeline has the memory access unit(s) 764). It should also be understood that where separate pipelines are used, one or more of these pipelines may be out-of-order issue/execution and the rest in-order.
The set of memory access units 764 is coupled to the memory unit 770, which includes a data TLB unit 772 coupled to a data cache unit 774 coupled to a level 2 (L2) cache unit 776. In one exemplary embodiment, the memory access units 764 may include a load unit, a store address unit, and a store data unit, each of which is coupled to the data TLB unit 772 in the memory unit 770. The instruction cache unit 734 is further coupled to a level 2 (L2) cache unit 776 in the memory unit 770. The L2 cache unit 776 is coupled to one or more other levels of cache and eventually to a main memory.
By way of example, the exemplary register renaming, out-of-order issue/execution core architecture may implement the pipeline 700 as follows: 1) the instruction fetch 738 performs the fetch and length decoding stages 702 and 704; 2) the decode unit 740 performs the decode stage 706; 3) the rename/allocator unit 752 performs the allocation stage 708 and renaming stage 710; 4) the scheduler unit(s) 756 performs the schedule stage 712; 5) the physical register file(s) unit(s) 758 and the memory unit 770 perform the register read/memory read stage 714; the execution cluster 760 perform the execute stage 716; 6) the memory unit 770 and the physical register file(s) unit(s) 758 perform the write back/memory write stage 718; 7) various units may be involved in the exception handling stage 722; and 8) the retirement unit 754 and the physical register file(s) unit(s) 758 perform the commit stage 724.
The core 790 may support one or more instructions sets (e.g., the x86 instruction set (with some extensions that have been added with newer versions); the MIPS instruction set of MIPS Technologies of Sunnyvale, Calif.; the ARM instruction set (with optional additional extensions such as NEON) of ARM Holdings of Sunnyvale, Calif.), including the instruction(s) described herein. In one embodiment, the core 790 includes logic to support a packed data instruction set extension (e.g., AVX1, AVX2), thereby allowing the operations used by many multimedia applications to be performed using packed data.
It should be understood that the core may support multithreading (executing two or more parallel sets of operations or threads), and may do so in a variety of ways including time sliced multithreading, simultaneous multithreading (where a single physical core provides a logical core for each of the threads that physical core is simultaneously multithreading), or a combination thereof (e.g., time sliced fetching and decoding and simultaneous multithreading thereafter such as in the Intel® Hyperthreading technology).
While register renaming is described in the context of out-of-order execution, it should be understood that register renaming may be used in an in-order architecture. While the illustrated embodiment of the processor also includes separate instruction and data cache units 734/774 and a shared L2 cache unit 776, alternative embodiments may have a single internal cache for both instructions and data, such as, for example, a Level 1 (L1) internal cache, or multiple levels of internal cache. In some embodiments, the system may include a combination of an internal cache and an external cache that is external to the core and/or the processor. Alternatively, all of the cache may be external to the core and/or the processor.
The local subset of the L2 cache 804 is part of a global L2 cache that is divided into separate local subsets, one per processor core. Each processor core has a direct access path to its own local subset of the L2 cache 804. Data read by a processor core is stored in its L2 cache subset 804 and can be accessed quickly, in parallel with other processor cores accessing their own local L2 cache subsets. Data written by a processor core is stored in its own L2 cache subset 804 and is flushed from other subsets, if necessary. The ring network ensures coherency for shared data. The ring network is bi-directional to allow agents such as processor cores, L2 caches and other logic blocks to communicate with each other within the chip. Each ring data-path is 1012-bits wide per direction.
Thus, different implementations of the processor 900 may include: 1) a CPU with the special purpose logic 908 being integrated graphics and/or scientific (throughput) logic (which may include one or more cores), and the cores 902A-N being one or more general purpose cores (e.g., general purpose in-order cores, general purpose out-of-order cores, a combination of the two); 2) a coprocessor with the cores 902A-N being a large number of special purpose cores intended primarily for graphics and/or scientific (throughput); and 3) a coprocessor with the cores 902A-N being a large number of general purpose in-order cores. Thus, the processor 900 may be a general-purpose processor, coprocessor or special-purpose processor, such as, for example, a network or communication processor, compression engine, graphics processor, GPGPU (general purpose graphics processing unit), a high-throughput many integrated core (MIC) coprocessor (including 30 or more cores), embedded processor, or the like. The processor may be implemented on one or more chips. The processor 900 may be a part of and/or may be implemented on one or more substrates using any of a number of process technologies, such as, for example, BiCMOS, CMOS, or NMOS.
The memory hierarchy includes one or more levels of cache within the cores, a set or one or more shared cache units 906, and external memory (not shown) coupled to the set of integrated memory controller units 914. The set of shared cache units 906 may include one or more mid-level caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or other levels of cache, a last level cache (LLC), and/or combinations thereof. While in one embodiment a ring based interconnect unit 912 interconnects the integrated graphics logic 908, the set of shared cache units 906, and the system agent unit 910/integrated memory controller unit(s) 914, alternative embodiments may use any number of well-known techniques for interconnecting such units. In one embodiment, coherency is maintained between one or more cache units 906 and cores 902-A-N.
In some embodiments, one or more of the cores 902A-N are capable of multi-threading. The system agent 910 includes those components coordinating and operating cores 902A-N. The system agent unit 910 may include for example a power control unit (PCU) and a display unit. The PCU may be or include logic and components needed for regulating the power state of the cores 902A-N and the integrated graphics logic 908. The display unit is for driving one or more externally connected displays.
The cores 902A-N may be homogenous or heterogeneous in terms of architecture instruction set; that is, two or more of the cores 902A-N may be capable of execution the same instruction set, while others may be capable of executing only a subset of that instruction set or a different instruction set.
Referring now to
The optional nature of additional processors 1015 is denoted in
The memory 1040 may be, for example, dynamic random access memory (DRAM), phase change memory (PCM), or a combination of the two. For at least one embodiment, the controller hub 1020 communicates with the processor(s) 1010, 1015 via a multi-drop bus, such as a frontside bus (FSB), point-to-point interface such as QuickPath Interconnect (QPI), or similar connection 1095.
In one embodiment, the coprocessor 1045 is a special-purpose processor, such as, for example, a high-throughput MIC processor, a network or communication processor, compression engine, graphics processor, GPGPU, embedded processor, or the like. In one embodiment, controller hub 1020 may include an integrated graphics accelerator.
There can be a variety of differences between the physical resources 1010, 1015 in terms of a spectrum of metrics of merit including architectural, microarchitectural, thermal, power consumption characteristics, and the like.
In one embodiment, the processor 1010 executes instructions that control data processing operations of a general type. Embedded within the instructions may be coprocessor instructions. The processor 1010 recognizes these coprocessor instructions as being of a type that should be executed by the attached coprocessor 1045. Accordingly, the processor 1010 issues these coprocessor instructions (or control signals representing coprocessor instructions) on a coprocessor bus or other interconnect, to coprocessor 1045. Coprocessor(s) 1045 accept and execute the received coprocessor instructions.
Referring now to
Processors 1170 and 1180 are shown including integrated memory controller (IMC) units 1172 and 1182, respectively. Processor 1170 also includes as part of its bus controller units point-to-point (P-P) interfaces 1176 and 1178; similarly, second processor 1180 includes P-P interfaces 1186 and 1188. Processors 1170, 1180 may exchange information via a point-to-point (P-P) interface 1150 using P-P interface circuits 1178, 1188. As shown in
Processors 1170, 1180 may each exchange information with a chipset 1190 via individual P-P interfaces 1152, 1154 using point to point interface circuits 1176, 1194, 1186, 1198. Chipset 1190 may optionally exchange information with the coprocessor 1138 via a high-performance interface 1139. In one embodiment, the coprocessor 1138 is a special-purpose processor, such as, for example, a high-throughput MIC processor, a network or communication processor, compression engine, graphics processor, GPGPU, embedded processor, or the like.
A shared cache (not shown) may be included in either processor or outside of both processors, yet connected with the processors via P-P interconnect, such that either or both processors' local cache information may be stored in the shared cache if a processor is placed into a low power mode.
Chipset 1190 may be coupled to a first bus 1116 via an interface 1196. In one embodiment, first bus 1116 may be a Peripheral Component Interconnect (PCI) bus, or a bus such as a PCI Express bus or another third generation I/O interconnect bus, although the scope of the present invention is not so limited.
As shown in
Referring now to
Referring now to
Embodiments of the mechanisms disclosed herein may be implemented in hardware, software, firmware, or a combination of such implementation approaches. Embodiments of the invention may be implemented as computer programs or program code executing on programmable systems comprising at least one processor, a storage system (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device.
Program code, such as code 1130 illustrated in
The program code may be implemented in a high level procedural or object oriented programming language to communicate with a processing system. The program code may also be implemented in assembly or machine language, if desired. In fact, the mechanisms described herein are not limited in scope to any particular programming language. In any case, the language may be a compiled or interpreted language.
One or more aspects of at least one embodiment may be implemented by representative instructions stored on a machine-readable medium which represents various logic within the processor, which when read by a machine causes the machine to fabricate logic to perform the techniques described herein. Such representations, known as “IP cores” may be stored on a tangible, machine readable medium and supplied to various customers or manufacturing facilities to load into the fabrication machines that actually make the logic or processor.
Such machine-readable storage media may include, without limitation, non-transitory, tangible arrangements of articles manufactured or formed by a machine or device, including storage media such as hard disks, any other type of disk including floppy disks, optical disks, compact disk read-only memories (CD-ROMs), compact disk rewritable's (CD-RWs), and magneto-optical disks, semiconductor devices such as read-only memories (ROMs), random access memories (RAMs) such as dynamic random access memories (DRAMs), static random access memories (SRAMs), erasable programmable read-only memories (EPROMs), flash memories, electrically erasable programmable read-only memories (EEPROMs), phase change memory (PCM), magnetic or optical cards, or any other type of media suitable for storing electronic instructions.
Accordingly, embodiments of the invention also include non-transitory, tangible machine-readable media containing instructions or containing design data, such as Hardware Description Language (HDL), which defines structures, circuits, apparatuses, processors and/or system features described herein. Such embodiments may also be referred to as program products.
In some cases, an instruction converter may be used to convert an instruction from a source instruction set to a target instruction set. For example, the instruction converter may translate (e.g., using static binary translation, dynamic binary translation including dynamic compilation), morph, emulate, or otherwise convert an instruction to one or more other instructions to be processed by the core. The instruction converter may be implemented in software, hardware, firmware, or a combination thereof. The instruction converter may be on processor, off processor, or part on and part off processor.
Various components referred to above as processes, servers, or tools described herein may be a means for performing the functions described. Each component described herein includes software or hardware, or a combination of these. Each and all components may be implemented as software modules, hardware modules, special-purpose hardware (e.g., application specific hardware, ASICs, DSPs, etc.), embedded controllers, hardwired circuitry, hardware logic, etc. Software content (e.g., data, instructions, configuration) may be provided via an article of manufacture including a non-transitory, tangible computer or machine readable storage medium, which provides content that represents instructions that can be executed. The content may result in a computer performing various functions/operations described herein.
A computer readable non-transitory storage medium includes any mechanism that provides (i.e., stores and/or transmits) information in a form accessible by a computer (e.g., computing device, electronic system, etc.), such as recordable/non-recordable media (e.g., read only memory (ROM), random access memory (RAM), magnetic disk storage media, optical storage media, flash memory devices, etc.). The content may be directly executable (“object” or “executable” form), source code, or difference code (“delta” or “patch” code). A computer readable non-transitory storage medium may also include a storage or database from which content can be downloaded. Said computer readable medium may also include a device or product having content stored thereon at a time of sale or delivery. Thus, delivering a device with stored content, or offering content for download over a communication medium may be understood as providing an article of manufacture with such content described herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US11/67218 | 12/23/2011 | WO | 00 | 6/7/2013 |