The present invention relates generally to subcutaneously implantable cardiac cardioverters/defibrillators and monitors, and, more particularly, to subcutaneously implantable leads and device components that impel pharmacological agents using phoresis.
Implantable cardiac rhythm management systems have been used as an effective treatment for patients with serious arrhythmias. These systems typically include one or more leads and circuitry to sense signals from one or more interior and/or exterior surfaces of the heart. Such systems also include circuitry for generating electrical pulses that are applied to cardiac tissue at one or more interior and/or exterior surfaces of the heart. For example, leads extending into the patient's heart are connected to electrodes that contact the myocardium for sensing the heart's electrical signals and for delivering pulses to the heart in accordance with various therapies for treating arrhythmias.
Typical implantable cardioverter/defibrillators (ICDs) include one or more endocardial leads to which at least one defibrillation electrode is connected. Such ICDs are capable of delivering high-energy shocks to the heart, interrupting a ventricular tachyarrythmia or ventricular fibrillation, and allowing the heart to resume normal sinus rhythm. ICDs may also include pacing functionality.
Although ICDs are effective at preventing Sudden Cardiac Death (SCD), most people at risk of SCD are not provided with implantable defibrillators. The primary reasons for this unfortunate reality include the limited number of physicians qualified to perform transvenous lead/electrode implantation, a limited number of surgical facilities adequately equipped to accommodate such cardiac procedures, and a limited number of the at-risk patient population that can safely undergo the required endocardial or epicardial lead/electrode implant procedure. Subcutaneous ICDs are being developed to address these and other issues.
The present invention is directed to subcutaneous cardiac devices and components, and methods of using same to improve patient comfort, reduce morbidity, and improve surgical outcomes by incorporating pharmacological agents that are actively impelled into tissue using phoresis. According to one embodiment, a cardiac device has an implantable lead including a lead body, a subcutaneous electrode supported by the lead body, and a pharmacological agent provided on the lead and/or electrode. The pharmacological agent is impelled into subcutaneous non-intrathoracic tissue using phoresis. In another embodiment, an implantable cardioverter/defibrillator system includes a can to which an implantable lead is coupled. One or more pharmacological agents may be provided on the lead, electrode, can, or combination of these components and impelled phoretically into surrounding tissue.
An embodiment of the present invention is directed to impelling a plurality of pharmacological agents disposed on a lead and/or an electrode into tissue using phoresis. Pharmacological agents may be provided on one or more electrodes alone or in combination with pharmacological agents on the can and/or lead body, all of which are impelled into surrounding tissue using phoresis.
A method of implanting subcutaneous leads is directed to providing a lead including a lead body, a subcutaneous electrode, and a pharmacological agent, and delivering the pharmacological agent to subcutaneous non-intrathoracic tissue using phoresis. The method may include providing a sheath and inserting the lead into the sheath to deliver the lead into subcutaneous non-intrathoracic tissue.
The above summary of the present invention is not intended to describe each embodiment or every implementation of the present invention. Advantages and attainments, together with a more complete understanding of the invention, will become apparent and appreciated by referring to the following detailed description and claims taken in conjunction with the accompanying drawings.
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail below. It is to be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
In the following description of the illustrated embodiments, references are made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration various embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized, and structural and functional changes may be made without departing from the scope of the present invention.
A device employing an implantable lead implemented in accordance with the present invention may incorporate one or more of the features, structures, methods, or combinations thereof described herein below. For example, a subcutaneous cardiac monitor or stimulator may be implemented to include a lead and other components having one or more of the advantageous features and/or processes described below. It is intended that such a device or method need not include all of the features and functions described herein, but may be implemented to include selected features and functions that provide for unique structures and/or functionality.
In general terms, an implantable lead implemented in accordance with the present invention may be used with a subcutaneous cardiac monitoring and/or stimulation device. One such device is an implantable transthoracic cardiac sensing and/or stimulation (ITCS) device that may be implanted under the skin in the chest region of a patient. The ITCS device may, for example, be implanted subcutaneously such that all or selected elements of the device are positioned on the patient's front, back, side, or other body locations suitable for sensing cardiac activity and delivering cardiac stimulation therapy. It is understood that elements of the ITCS device may be located at several different body locations, such as in the chest, abdominal, or subclavian region with electrode elements respectively positioned at different regions near, around, in, or on the heart.
The primary housing (e.g., the active or non-active can) of the ITCS device, for example, may be configured for positioning outside of the rib cage at an intercostal or subcostal location, within the abdomen, or in the upper chest region (e.g., subclavian location, such as above the third rib). In one implementation, one or more electrodes may be located on the primary housing and/or at other locations about, but not in contact with, the heart, great vessel or coronary vasculature.
In another implementation, one or more leads incorporating electrodes may be located in direct contact with the heart, great vessel or coronary vasculature, such as via one or more leads implanted by use of conventional transvenous delivery approaches. In another implementation, for example, one or more subcutaneous electrode subsystems or electrode arrays may be used to sense cardiac activity and deliver cardiac stimulation energy in an ITCS device configuration employing an active can or a configuration employing a non-active can. Electrodes may be situated at anterior and/or posterior locations relative to the heart.
Referring now to
In the configuration shown in
In one configuration, the lead assembly 106 is generally flexible. In another configuration, the lead assembly 106 is constructed to be somewhat flexible, yet has an elastic, spring, or mechanical memory that retains a desired configuration after being shaped or manipulated by a clinician. For example, the lead assembly 106 may incorporate a gooseneck or braid system that may be distorted under manual force to take on a desired shape. In this manner, the lead assembly 106 may be shape-fit to accommodate the unique anatomical configuration of a given patient, and generally retains a customized shape after implantation. Shaping of the lead assembly 106 according to this configuration may occur prior to, and during, ITCS device implantation.
In accordance with a further configuration, the lead assembly 106 includes a rigid electrode support assembly, such as a rigid elongated structure that positionally stabilizes the subcutaneous electrode 104 with respect to the housing 102. In this configuration, the rigidity of the elongated structure maintains a desired spacing between the subcutaneous electrode 104 and the housing 102, and a desired orientation of the subcutaneous electrode 104/housing 102 relative to the patient's heart. The elongated structure may be formed from a structural plastic, composite or metallic material, and includes, or is covered by, a biocompatible material. Appropriate electrical isolation between the housing 102 and the subcutaneous electrode 104 is provided in cases where the elongated structure is formed from an electrically conductive material, such as metal.
In one configuration, the rigid electrode support assembly and the housing 102 define a unitary structure (i.e., a single housing/unit). The electronic components and electrode conductors/connectors are disposed within or on the unitary ITCS device housing/electrode support assembly. At least two electrodes are supported on the unitary structure near opposing ends of the housing/electrode support assembly. The unitary structure may have, for example, an arcuate or angled shape.
According to another configuration, the rigid electrode support assembly defines a physically separable unit relative to the housing 102. The rigid electrode support assembly includes mechanical and electrical couplings that facilitate mating engagement with corresponding mechanical and electrical couplings of the housing 102. For example, a header block arrangement may be configured to include both electrical and mechanical couplings that provide for mechanical and electrical connections between the rigid electrode support assembly and housing 102. The header block arrangement may be provided on the housing 102 or the rigid electrode support assembly, or both the housing 102 and the rigid electrode support assembly. Alternatively, a mechanical/electrical coupler may be used to establish mechanical and electrical connections between the rigid electrode support assembly and the housing 102. In such a configuration, a variety of different electrode support assemblies of varying shapes, sizes, and electrode configurations can be made available for physically and electrically connecting to a standard ITCS device.
It is noted that the electrodes and the lead assembly 106 may be configured to assume a variety of shapes. For example, the lead assembly 106 may have a wedge, chevron, flattened oval, or a ribbon shape, and the subcutaneous electrode 104 may include a number of spaced electrodes, such as an array or band of electrodes. Moreover, two or more subcutaneous electrodes 104 may be mounted to multiple electrode support assemblies 106 to achieve a desired spaced relationship amongst the subcutaneous electrodes 104. Accordingly, subcutaneous leads of the present invention may be shaped appropriately for specific electrodes or families of electrodes and electrode support assemblies.
Referring now to
Referring to
The housing 501 may resemble that of a conventional implantable ICD, and may be approximately 20-100 cc in volume, with a thickness of 0.4 to 2 cm and with a surface area on each face of approximately 30 to 100 cm2. As previously discussed, portions of the housing may be electrically isolated from tissue to optimally direct current flow. For example, portions of the housing 501 may be covered with a non-conductive, or otherwise electrically resistive, material to direct current flow. Suitable non-conductive material coatings include coatings formed from silicone rubber, polyurethane, polyvinylidene fluoride, or parylene, for example.
In addition, or alternatively, all or portions of the housing 501 may be treated to change the electrical conductivity characteristics thereof for purposes of optimally directing current flow. Various known techniques can be employed to modify the surface conductivity characteristics of the housing 501, such as by increasing or decreasing surface conductivity, to optimize current flow. Such techniques may include mechanically or chemically altering the surface of the housing 501 to achieve desired electrical conductivity characteristics.
In the configuration shown in
In this configuration, the first and the second electrode subsystems 508 and 509 may include any combination of electrodes used for sensing and/or electrical stimulation. In various configurations, the electrode subsystems 508, 509 may each include a single electrode or a combination of electrodes. The electrode or electrodes in the first and second electrode subsystems 508, 509 may include any combination of one or more coil electrodes, tip electrodes, ring electrodes, multi-element coils, spiral coils, spiral coils mounted on non-conductive backing, and screen patch electrodes, for example.
The lead 240, shown in
Still referring to
Two non-limiting examples of phoresis are electrophoresis and sonophoresis. Electrophoresis is generally understood as an electrochemical process in which colloidal particles and/or macromolecules with a net electric charge migrate under the influence of an electric potential. For purposes herein, electrophoresis is synonymous with ionophoresis, iontophoresis, and dielectrolysis.
Sonophoresis is generally understood as a sonochemical process in which colloidal particles and/or macromolecules migrate under the influence of pressure waves, such as continuous wave or burst-mode ultrasound. For purposes herein, sonophoresis is synonymous with sontophoresis. Phoresis based technologies such as, for example, electrophoresis and sonophoresis, may be used in accordance with the present invention to impel pharmacological agents into tissue.
A non-limiting, non-exhaustive list of suitable pharmacological agents 232 and 234 includes analgesics, anesthetics, antibiotics, antiseptics, steroids, anti-inflammatory drugs, agents that promote hemostasis, agents that provide vasoconstriction, collagen, and agents that increase the rate of healing. A non-exhaustive, non-limiting list of pharmacological activities includes: antisepsis, antibiosis, analgesia, anesthesia, vasoconstriction, and hemostasis.
Suitable analgesics or anesthetics may be, for example, aspirin, IBUPROFEN, BUPIVACAINE, LIDOCAINE, MAPRIVACAINE and PROCAINE. Suitable steroids may be, for example, DEXAMETHASONE and BETAMETHASONE. A suitable pharmacological agent that provides vasoconstriction may be, for example, EPINEPHRINE. Suitable antibiotics or antiseptics may be, for example, VANCOMYCIN and CEFALOZIN. A suitable pharmacological agent to increase the rate of healing may be, for example, stomach submucosa derived tissue, such as that disclosed in U.S. Pat. No. 6,099,567 and incorporated herein by reference, which may be impregnated with one or more pharmacological agents.
The arrangement 930 may partially or completely cover or coat the can 250. For example, the arrangement 930 may cover the entire first surface of the can 250, but only cover 25% of a second surface to provide a large uncoated area of the second surface to act as an active electrode for cardiac stimulation therapy. The second surface of the can 250 may be positioned relative to the heart to optimize energy delivery and directivity. The pharmacological delivery arrangements 930 and 950 may be placed by, for example, painting, spraying, dipping, vapor deposition, or other suitable approach. The pharmacological delivery arrangements 930, 950 may include any combination of pharmacological activities or agents such as, for example, pharmacological activities and agents described previously.
In another configuration, the can 250 may be equipped with a reservoir (seen as element 930 disposed on the can 250) within which a pharmacological agent or agents can be stored. The reservoir 930 may include a single chamber or multiple chambers for storing one or more pharmacological agents or other fluid useful for facilitating phoresis delivery of a pharmacological agent. The reservoir 930 of the can 250 may be fluidly connected to a surface of the can 250 in a configuration in which phoresis delivery of a pharmacological agent is implemented using the can 250. An exit port on the surface of the can 250, through which the pharmacological agent passes, may be treated or coated to enhance delivery of the pharmacological agent from the surface of the can 250.
Alternatively, or in addition, the reservoir 930 of the can 250 may be fluidly connected to the electrode 230 via a lumen of the lead 240. In this configuration, a pharmacological agent may be transported from the reservoir 930 of the can 250 to the electrode via the lumen to facilitate phoresis delivery of a pharmacological agent from the electrode 250. A micro-pump or other pressure generating arrangement may be employed in accordance with this configuration to facilitate transport of the pharmacological agent through the lumen of the lead 240.
During and/or after the implantation process, an external driver 314 may be attached to the system 312. The external driver 314 provides power and control of the phoretic impelling of the pharmacological agent during the implantation process. The external driver 314 may be incorporated into a dissection device, so that phoresis may be accomplished during the dissection and implantation of the system.
One approach to delivering pharmacological agents using external driver 314 employs the existing electrodes and wiring of the ITCS system for phoresis delivery. For example, the external driver 314 may use the can 250 as a ground, grounding the patient, and may use the electrode 230 to initiate an electric potential between the electrode 230 and the grounded tissue, and impelling the pharmacological agent from the delivery arrangement 950 using electrophoresis. In this approach, the external driver 314 may be simply an external power supply, such that no power is used from the implantable components for phoresis during or acutely after implantation.
In another embodiment, the external driver 314 may be grounded to the patient using a ground pad, such as ground pads used for electrosurgery. In this arrangement, both the lead 240, including electrode 230, and the can 250 may be used as potential sources for phoresis. The external driver 314 may include a power supply as well as driving electronics.
Referring now to
The PVDF layer 934 may have a conducting surface coating 936 that acts as a capacitor plate, storing electric charge to create an electric field across the PVDF layer 934. Illustrated in the side view of
Applying an electric field, such as by use of conducting surface coating 936 on the PVDF layer 934, creates an ultrasonic transducer. The PVDF layer 934 of delivery arrangement 930 may be used to generate an acoustic field that impels pharmacological agents using sonophoresis. The conducting surface coating 936 may also be useful as an electrode for driving the pharmacological agent 938 using electrophoresis.
An alternating current (AC) signal may be applied to the conducting surface coating 936 using wire 932. The AC signal creates an alternating electric field across the PVDF layer 934, causing the PVDF layer 934 to expand and contract, producing an ultrasonic field capable of driving the pharmacological agent 938 using sonophoresis. A direct current (DC) signal may additionally, or alternately, be applied to the conducting surface coating 936 using wire 932. The DC signal may create an electric field in the tissue capable of driving the pharmacological agent 938 using electrophoresis. Electrophoresis and sonophoresis may occur simultaneously, individually, or alternatingly as desired.
For example, it may be beneficial to phoretically impel an analgesic in coordination with a defibrillation therapy during the entire useful life of the system 312 (
Additional details of dissection devices for implantation of subcutaneous systems and implantable devices that may be employed or adapted to drive phoretic systems or provide phoresis are disclosed in commonly owned U.S. Patent Publication No. 2004/0204734; U.S. Patent Publication No. 2004/0204735; U.S. Pat. No. 7,529,592; and U.S. Pat. No. 7,566,318 which are hereby incorporated herein by reference.
In
Referring now to
The layers 810, 820, and 830 are configured such that the pharmacological agent in the third layer 830 is delivered first as the third layer 830 is impelled away and the pharmacological agent delivers its activity. After the third layer 830 is effectively removed, the second layer 820 is revealed. The pharmacological agent in the second layer 820 is delivered second as the second layer 820 is impelled away and the pharmacological agent delivers its activity. After the second layer 820 is effectively removed, the first layer 810 is revealed. The pharmacological agent in the first layer 810 is delivered last as the first layer 810 is impelled away and the pharmacological agent delivers its activity. The layers 810, 820, and 830 may, for example, be continuously or discretely applied at one or more locations along the length of the lead 240. One or more drugs may be disposed within each of the layers 810, 820 and 830.
Various modifications and additions can be made to the preferred embodiments discussed hereinabove without departing from the scope of the present invention. Accordingly, the scope of the present invention should not be limited by the particular embodiments described above, but should be defined only by the claims set forth below and equivalents thereof.
This application claims the benefit of Provisional Patent Application Ser. No. 60/462,272, filed on Apr. 11, 2003, to which priority is claimed pursuant to 35 U.S.C. §119(e) and which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3941122 | Jones | Mar 1976 | A |
4146029 | Ellinwood, Jr. | Mar 1979 | A |
4506680 | Stokes | Mar 1985 | A |
4562841 | Brockway et al. | Jan 1986 | A |
4819661 | Heil, Jr. et al. | Apr 1989 | A |
4819662 | Heil, Jr. et al. | Apr 1989 | A |
4917104 | Rebell | Apr 1990 | A |
4953551 | Mehra et al. | Sep 1990 | A |
5020544 | Dahl et al. | Jun 1991 | A |
5036849 | Hauck et al. | Aug 1991 | A |
5041107 | Heil, Jr. | Aug 1991 | A |
5090422 | Dahl et al. | Feb 1992 | A |
5133353 | Hauser | Jul 1992 | A |
5170784 | Ramon et al. | Dec 1992 | A |
5179945 | Van Hofwegen et al. | Jan 1993 | A |
5203348 | Dahl et al. | Apr 1993 | A |
5209229 | Gilli | May 1993 | A |
5230337 | Dahl et al. | Jul 1993 | A |
5261400 | Bardy | Nov 1993 | A |
5282785 | Shapland et al. | Feb 1994 | A |
5284136 | Hauck et al. | Feb 1994 | A |
5292338 | Bardy | Mar 1994 | A |
5300108 | Dahl et al. | Apr 1994 | A |
5301677 | Hsung | Apr 1994 | A |
5313953 | Yomtov et al. | May 1994 | A |
5314430 | Bardy | May 1994 | A |
5314459 | Swanson et al. | May 1994 | A |
5324324 | Vachon et al. | Jun 1994 | A |
5331966 | Bennett et al. | Jul 1994 | A |
5360442 | Dahl et al. | Nov 1994 | A |
5366496 | Dahl et al. | Nov 1994 | A |
5372606 | Lang et al. | Dec 1994 | A |
5376106 | Stahmann et al. | Dec 1994 | A |
5388578 | Yomtov et al. | Feb 1995 | A |
5391200 | KenKnight et al. | Feb 1995 | A |
5397342 | Heil, Jr. et al. | Mar 1995 | A |
5405362 | Kramer et al. | Apr 1995 | A |
5411031 | Yomtov | May 1995 | A |
5411525 | Swanson et al. | May 1995 | A |
5411539 | Neisz | May 1995 | A |
5439482 | Adams et al. | Aug 1995 | A |
5441518 | Adams et al. | Aug 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5468254 | Hahn et al. | Nov 1995 | A |
5531779 | Dahl et al. | Jul 1996 | A |
5545202 | Dahl et al. | Aug 1996 | A |
5603732 | Dahl et al. | Feb 1997 | A |
5620466 | Haefner et al. | Apr 1997 | A |
5628730 | Shapland et al. | May 1997 | A |
5634938 | Swanson et al. | Jun 1997 | A |
5641326 | Adams | Jun 1997 | A |
5662688 | Haefner et al. | Sep 1997 | A |
5683447 | Bush et al. | Nov 1997 | A |
5697953 | Kroll et al. | Dec 1997 | A |
5704365 | Albrecht et al. | Jan 1998 | A |
5724984 | Arnold et al. | Mar 1998 | A |
5749909 | Schroeppel et al. | May 1998 | A |
5788979 | Alt et al. | Aug 1998 | A |
5807306 | Shapland et al. | Sep 1998 | A |
5827326 | Kroll et al. | Oct 1998 | A |
5843017 | Yoon | Dec 1998 | A |
5895414 | Sanchez-Zambrano | Apr 1999 | A |
5916243 | KenKnight et al. | Jun 1999 | A |
5957956 | Kroll et al. | Sep 1999 | A |
5987746 | Williams | Nov 1999 | A |
5989208 | Nita | Nov 1999 | A |
5997497 | Nita et al. | Dec 1999 | A |
6044298 | Salo et al. | Mar 2000 | A |
6055454 | Heemels | Apr 2000 | A |
6099567 | Badylak et al. | Aug 2000 | A |
6134470 | Hartlaub | Oct 2000 | A |
6144879 | Gray | Nov 2000 | A |
6148230 | KenKnight | Nov 2000 | A |
6167305 | Cammilli et al. | Dec 2000 | A |
6168801 | Heil, Jr. et al. | Jan 2001 | B1 |
6178349 | Kieval | Jan 2001 | B1 |
6214017 | Stoddard et al. | Apr 2001 | B1 |
6280462 | Hauser et al. | Aug 2001 | B1 |
6282444 | Kroll et al. | Aug 2001 | B1 |
6295474 | Munshi | Sep 2001 | B1 |
6304786 | Heil et al. | Oct 2001 | B1 |
6309355 | Cain et al. | Oct 2001 | B1 |
6322532 | D'Sa et al. | Nov 2001 | B1 |
6360129 | Ley et al. | Mar 2002 | B1 |
6361531 | Hissong | Mar 2002 | B1 |
6361780 | Ley et al. | Mar 2002 | B1 |
6409675 | Turcott | Jun 2002 | B1 |
6413216 | Cain et al. | Jul 2002 | B1 |
6415174 | Bebehani et al. | Jul 2002 | B1 |
6416510 | Altman et al. | Jul 2002 | B1 |
6436068 | Bardy | Aug 2002 | B1 |
6438410 | Hsu et al. | Aug 2002 | B2 |
6475232 | Babbs et al. | Nov 2002 | B1 |
6478776 | Rosenman et al. | Nov 2002 | B1 |
6480733 | Turcott | Nov 2002 | B1 |
6491639 | Turcott | Dec 2002 | B1 |
6500121 | Slayton et al. | Dec 2002 | B1 |
6512940 | Brabec et al. | Jan 2003 | B1 |
6522915 | Ceballos et al. | Feb 2003 | B1 |
6524251 | Rabiner et al. | Feb 2003 | B2 |
6564106 | Guck et al. | May 2003 | B2 |
6584363 | Heil, Jr. et al. | Jun 2003 | B2 |
6607509 | Bobroff et al. | Aug 2003 | B2 |
6615083 | Kupper | Sep 2003 | B2 |
6622046 | Fraley et al. | Sep 2003 | B2 |
6695781 | Rabiner et al. | Feb 2004 | B2 |
6837888 | Ciarrocca et al. | Jan 2005 | B2 |
6958040 | Oliver et al. | Oct 2005 | B2 |
7190997 | Darvish et al. | Mar 2007 | B1 |
7204820 | Akahoshi | Apr 2007 | B2 |
20020035376 | Bardy et al. | Mar 2002 | A1 |
20020035377 | Bardy et al. | Mar 2002 | A1 |
20020035378 | Bardy et al. | Mar 2002 | A1 |
20020035379 | Bardy et al. | Mar 2002 | A1 |
20020035380 | Rissmann et al. | Mar 2002 | A1 |
20020035381 | Bardy et al. | Mar 2002 | A1 |
20020042629 | Bardy et al. | Apr 2002 | A1 |
20020042630 | Bardy et al. | Apr 2002 | A1 |
20020042634 | Bardy et al. | Apr 2002 | A1 |
20020049475 | Bardy et al. | Apr 2002 | A1 |
20020049476 | Bardy et al. | Apr 2002 | A1 |
20020052636 | Bardy et al. | May 2002 | A1 |
20020068958 | Bardy et al. | Jun 2002 | A1 |
20020072773 | Bardy et al. | Jun 2002 | A1 |
20020082658 | Heinrich et al. | Jun 2002 | A1 |
20020091414 | Bardy et al. | Jul 2002 | A1 |
20020095184 | Bardy et al. | Jul 2002 | A1 |
20020103510 | Bardy et al. | Aug 2002 | A1 |
20020107544 | Ostroff et al. | Aug 2002 | A1 |
20020107545 | Rissmann et al. | Aug 2002 | A1 |
20020107546 | Ostroff et al. | Aug 2002 | A1 |
20020107547 | Erlinger et al. | Aug 2002 | A1 |
20020107548 | Bardy et al. | Aug 2002 | A1 |
20020107549 | Bardy et al. | Aug 2002 | A1 |
20020107559 | Sanders et al. | Aug 2002 | A1 |
20020120299 | Ostroff et al. | Aug 2002 | A1 |
20020138123 | Casas-Bejar et al. | Sep 2002 | A1 |
20020193784 | McHale et al. | Dec 2002 | A1 |
20030004546 | Casey | Jan 2003 | A1 |
20030004552 | Plombon et al. | Jan 2003 | A1 |
20030023175 | Arzbaecher et al. | Jan 2003 | A1 |
20030032943 | Topaz | Feb 2003 | A1 |
20030036778 | Ostroff et al. | Feb 2003 | A1 |
20030040698 | Makin et al. | Feb 2003 | A1 |
20030045904 | Bardy et al. | Mar 2003 | A1 |
20030069609 | Thompson | Apr 2003 | A1 |
20030073949 | Giammarusti | Apr 2003 | A1 |
20030088278 | Bardy et al. | May 2003 | A1 |
20030088279 | Rissmann et al. | May 2003 | A1 |
20030088280 | Ostroff | May 2003 | A1 |
20030088281 | Ostroff et al. | May 2003 | A1 |
20030088282 | Ostroff | May 2003 | A1 |
20030088283 | Ostroff | May 2003 | A1 |
20030088286 | Ostroff et al. | May 2003 | A1 |
20030097153 | Bardy et al. | May 2003 | A1 |
20030212436 | Brown | Nov 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20040230274 A1 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
60462272 | Apr 2003 | US |