Abruna, H. D. et al., "Rectifying Interfaces Using Two-Layer Films of Electrochemically Polymerized Vinylpyridine and Vinylbipyridine Complexes of Ruthenium and Iron on Electrodes," J. Am. Chem. Soc., 103(1):1-5 (Jan. 14, 1981). |
Abstract from Korf, J. et al., "Monitoring of Glucose and Lactate Using Microdialysis: Applications in Neonates and Rat Brain", Developmental Neuroscience, vol. 15, No. 3-5, pp. 240-246 (1993). |
Aisenberg et al., "Blood glucose, level monitoring alarm system," Great Britain Patent GB 1394171, issued May 14, 1975, (Abstract only). |
Albery, W. J. et al., "Amperometric Enzyme Electrodes," Phil. Trans. R. Soc. Lond. B316:107-119 (1987). |
Albery, W. J. et al., "Amperometric enzyme electrodes. Part II. Conducting salts as electrode materials for the oxidation of glucose oxidase," J. Electroanal. Chem. Interfacial Electrochem., 194(2) (1 page--Abstract only) (1985). |
Alcock et al., "Continuous Analyte Monitoring to Aid Clinical Practice," IEEE Engineering in Medicine and Biology, pp 319-325 (Jun./Jul. 1994). |
Anderson, L. B. et al., "Thin-Layer Electrochemistry: Steady-State Methods of Studying Rate Processes," J. Electroanal. Chem., 10:295-395 (1965). |
Bartlett, P. N. et al., "Covalent Binding of Electron Relays to Glucose Oxidation," J. Chem. Soc. Chem. Commun., 1603-1604 (1987). |
Bartlett, P. N. et al., "Modification of glucose oxidase by tetrathiafulvalene," J. Chem. Soc., Chem. Commun., 16 (1 page--Abstract only) (1990). |
Bartlett, P. N. et al., "Strategies for the Development of Amperometric Enzyme Electrodes," Biosensors, 3:359-379 (1987/88). |
Bindra, D.S. et al., "Design and in Vitro Studies of a Needle-Type Glucose Sensor for Subcutaneous Monitoring", Anal. Chem., 63(17):1692-1696 (Sep. 1, 1991). |
Bobbioni-Harsch et al., "Lifespan of subcutaneous glucose sensors and their performances during dynamic glycaemia changes in rats," J. Biomed. Eng., vol. 15, pp. 457-463 (Nov. 1993). |
Brandt, J. et al., "Covalent attachment of proteins to polysaccharide carriers by means of benzoquinone," Biochim. Biophys. Acta, 386(1) (1 page Abstract only) (1975). |
Brownlee, M. et al., "A Glucose-Controlled Insulin-Delivery System: Semisynthetic Insulin Bound to Lectin", Science, 206(4423):1190-1191 (Dec. 7, 1979). |
Cass, A.E.G. et al., "Ferrocene-Mediated Enzyme Electrode for Amperometric Determination of Glucose", Anal. Chem., 56(4):667-671 (Apr. 1984). |
Cass, A.E.G. et al., "Ferricinum Ion As An Electron Acceptor for Oxido-Reductases," J. Electroanal. Chem., 190:117-127 (1985). |
Castner, J. F. et al., "Mass Transport and Reaction Kinetic Parameters Determined Electrochemically for Immobilized Glucose Oxidase," Biochemistry, 23(10):2203-2210 (1984). |
Cerami, "Monitor for continuous in vivo measurement of glucose concentration," United Sates Patent 4,436,094, issued Mar. 13, 1984, 2 pages (Abstract only). |
Claremont, D.J. et al., "Biosensors for Continuous In Vivo Glucose Monitoring", IEEE Engineering in Medicine and Biology Society 10th Annual International Conference, New Orleans, Louisiana, 3 pgs. (Nov. 4-7, 1988). |
Clark, L.C., Jr. et al., "Electrode Systems for Continuous Monitoring in Cardiovascular Surgery," Annals New York Academy of Sciences, pp. 29-45 (1962). |
Clark, L.C. et al., "Differential Anodic Enzyme Polarography for the Measurement of Glucose", Oxygen Transport to Tissue: Instrumentation, Methods, and Physiology, 127-132 (1973). |
Clark, L.C. et al., "Long-term Stability of Electroenzymatic Glucose Sensors Implanted in Mice," Trans. Am. Soc. Artif. Intern. Organs, XXXIV:259-265 (1988). |
Clarke, W. L., et al., "Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose," Diabetes Care, 10(5):622-628 (Sep.-Oct. 1987). |
Csoregi, E. et al., "Design, Characterization, and One-Point in Vivo Calibration of a Subcutaneously Implanted Glucose Electrode," Anal. Chem. 66(19):3131-3138 (Oct. 1, 1994). |
Csoregi, E. et al., "Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on "Wired" Glucose Oxidase," Anal. Chem. 67(7):1240-1244 (Apr. 1, 1995). |
Csoregi, E. et al., "On-Line Glucose Monitoring by Using Microdialysis Sampling and Amperometric Detection Based on "Wired" Glucose Oxidase in Carbon Paste," Mikrochim. Acta. 121:31-40 (1995). |
Davis, G., "Electrochemical Techniques for the Development of Amperometric Biosensors", Biosensors, 1:161-178 (1985). |
Degani, Y. et al., "Direct Electrical Communication between Chemically Modified Enzymes and Metal Electrodes. 1. Electron Transfer from Glucose Oxidase to Metal Electrodes via Electron Relays, Bound Covalently to the Enzyme,"J. Phys. Chem., 91(6):1285-1289 (1987). |
Degani, Y. et al., "Direct Electrical Communication between Chemically Modified Enzymes and Metal Electrodes. 2. Methods for Bonding Electron-Transfer Relays to Glucose Oxidase and D-Amino-Acid Oxidase," J. Am. Chem. Soc., 110(8):2615-2620 (1988). |
Degani, Y. et al., "Electrical Communication between Redox Centers of Glucose Oxidase and Electrodes via Electrostatically and Covalently Bound Redox Polymers," J. Am. Chem. Soc., 111:2357-2358 (1989). |
Denisevich, P. et al., "Unidirectional Current Flow and Charge State Trapping at Redox Polymer Interfaces on Bilayer Electrodes: Principles, Experimental Demonstration, and Theory," J. Am. Chem. Soc., 103(16):4727-4737 (1981). |
Dicks, J. M., "Ferrocene modified polypyrrole with immobilised glucose oxidase and its application in amperometric glucose microbiosensors," Ann. Biol. clin., 47:607-619 (1989). |
Ellis, C. D., "Selectivity and Directed Charge Transfer through an Electroactive Metallopolymer Film," J. Am. Chem. Soc., 103(25):7480-7483 (1981). |
Engstrom, R.C., "Electrochemical Pretreatment of Glassy Carbon Electrodes", Anal. Chem., 54(13):2310-2314 (Nov. 1982). |
Engstrom, R.C. et al., "Characterization of Electrochemically Pretreated Glassy Carbon Electrodes", Anal. Chem., 56(2):136-141 (Feb. 1984). |
Feldman, B.J. et al., "Electron Transfer Kinetics at Redox Polymer/Solution Interfaces Using Microelectrodes and Twin Electrode Thin Layer Cells", J. Electroanal. Chem., 194(1):63-81 (Oct. 10, 1985). |
Fischer, H. et al., "Intramolecular Electron Transfer Mediated by 4,4'-Bipyridine and Related Bridging Groups", J. Am. Chem. Soc., 98(18):5512-5517 (Sep. 1, 1976). |
Flentge, F. et al., "An Enzyme-Reactor for Electrochemical Monitoring of Choline and Acetylcholine: Applications in High-Performance Liquid Chromatography, Brain Tissue, Microdialysis and Cerebrospinal Fluid", Analytical Biochemistry, vol. 204, No. 2, pp. 305-310 (Aug. 1, 1992). |
Foulds, N.C. et al., "Enzyme Entrapment in Electrically Conducting Polymers," J. Chem. Soc., Faraday Trans 1., 82:1259-1264 (1986). |
Foulds, N.C. et al., "Immobilization of Glucose Oxidase in Ferrocene-Modified Pyrrole Polymers," Anal. Chem., 60(22):2473-2478 (Nov. 15, 1988). |
Franetzki, "Implantable, calibrateable measuring instrument for a body substance and a calibrating method," United States Patent 4,759,371, issued Jul. 26, 1988, 2 pages (Abstract only). |
Frew, J.E. et al., "Electron-Transfer Biosensors", Phil. Trans. R. Soc. Lond., B316:95-106 (1987). |
Gilli, "Apparatus and method employing plural electrode configurations for cardioversi on of atrial fibrillation in an arrhythmia control system," United States Patent 5,209,229, issued May 11, 1993, 2 pgs (Abstract only). |
Gorton, L. et al., "Selective detection in flow analysis based on the combination of immobilized enzymes and chemically modified electrodes," Analytica Chimica Acta., 250:203-248 (1991). |
Gregg, B. A. et al., "Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Biosensor Applications," Analytical Chemistry, 62(3):258-263 (Feb. 1, 1990). |
Gregg, B. A. et al., "Redox Polymer Films Containing Enzymes. 1. A Redox-Conducting Epoxy Cement: Synthesis, Characterization, and Electrocatalytic Oxidation of Hydroquinone," J. Phys. Chem., 95(15):5970-5975 (1991). |
Hale, P.D. et al., "A New Class of Amperometric Biosensor Incorporating a Polymeric Electron-Transfer Mediator," J. Am. Chem. Soc., 111(9):3482-3484 (1989). |
Harrison, D.J. et al., "Characterization of Perfluorosulfonic Acid Polymer Coated Enzyme Electrodes and a Miniaturized Integrated Potentiostat for Glucose Analysis in Whole Blood", Anal. Chem., 60(19):2002-2007 (Oct. 1, 1988). |
Hawkridge, F. M. et al., "Indirect Coulometric Titration of Biological Electron Transport Components," Analytical Chemistry, 45(7):1021-1027 (Jun. 1973). |
Heller, A., "Amperometric biosensors based on three-dimensional hydrogel-forming epoxy networks," Sensors and Actuators B, 13-14:180-183 (1993). |
Heller, A., "Electrical Wiring of Redox Enzymes," Acc. Chem. Res., 23(5):129-134 (1990). |
Heller, A., "Electrical Connection of Enzyme Redox Centers to Electrodes," J. Phys. Chem., 96(9):3579-3587 (1992). |
Ianniello, R.M. et al., "Differential Pulse Voltammetric Study of Direct Electron Transfer in Glucose Oxidase Chemically Modified Graphite Electrodes", Anal. Chem., 54:(7):1098-1101 (Jun. 1981). |
Ianniello, R.M. et al. "Immobilized Enzyme Chemically Modified Electrode as an Amperometric Sensor", Anal. Chem., 53(13):2090-2095 (Nov. 1981). |
Ikeda, T. et al., "Kinetics of Outer-Sphere Electron Transfers Between Metal Complexes in Solutions and Polymeric Films on Modified Electrodes", J. Am. Chem. Soc., 103(25):7422-7425 (Dec. 16, 1981). |
Ikeda, T. et al., "Glucose oxidase-immobilized benzoquinone-carbon paste electrode as a glucose sensor," Agric. Biol. Chem., 49(2) (1 page--Abstract only) (1985). |
Johnson, J.M. et al., "Potential-Dependent Enzymatic Activity in an Enzyme Thin-Layer Cell," Anal. Chem. 54:1377-1383 (1982). |
Johnson, K.W., "Reproducible Electrodeposition of Biomolecules for the Fabrication of Miniature Electroenzymatic Biosensors", Sensors and Actuators B Chemical, B5:85-89 (1991). |
Jonsson, G. et al., "An Amperometric Glucose Sensor Made by Modification of a Graphite Electrode Surface With Immobilized Glucose Oxidase and Adsorbed Mediator", Biosensors, 1:355-368 (1985). |
Josowicz, M. et al., "Electrochemical Pretreatment of Thin Film Platinum Electrodes", J. Electrochem. Soc., 135(1):112-115 (Jan. 1988). |
Katakis, I. et al., "L-.alpha.-Glycerophosphate and L-Lactate Electrodes Based on the Electrochemical "Wiring" of Oxidases," Analytical Chemistry, 64(9):1008-1013 (May 1, 1992). |
Katakis, I. et al., "Electrostatic Control of the Electron Transfer Enabling Binding of Recombinant Glucose Oxidase and Redox Polyectrolytes," J. Am. Chem. Soc., 116(8):3617-3618 (1994). |
Kenausis, G. et al., "`Wiring` of glucose oxidase and lactate oxidase within a hydrogel made with poly(vinyl pyridine) complexed with [Os(4,4'-dimethoxy-2,2'-bipyridine).sub.2 C1].sup.+/2+," J. Chem. Soc., Faraday Trans., 92(20):4131-4136 (1996). |
Klein, "Method and apparatus for the control and regulation of glycemia," United States Patent 4,206,755, issued Jun. 10, 1980, 2 pages (Abstract only). |
Klein, "Control and regulation device for glycemia," Great Britain Patent 1599241A, issued Sep. 30, 1981 (Abstract only). |
Koudelka, M. et al., "In-Vivo Behaviour of Hypodermically Implanted Microfabricated Glucose Sensors", Biosensors & Bioelectronics, 6(1):31-36 (1991). |
Kulys, J. et al., "Mediatorless peroxidase electrode and preparation of bienzyme sensors," Bioelectrochemistry and Bioenergetics, 24:305-311 (1990). |
Lager, W. et al., "Implantable Electrocatalytic Glucose Sensor," Horm. Metab. Res., 26:526-530 (Nov. 1994). |
Laurell, T., "A Continuous Glucose Monitoring System Based on Microdialysis", Journal of Med. Eng. & Tech., vol. 16, No. 5, pp. 187-193 (Sep./Oct. 1992). |
Lawton, "Implantable electrochemical sensor," United States Patent 4,016,866, issued Apr. 12, 1977, 2 pages (Abstract only). |
Lindner, E. et al. "Flexible (Kapton-Based) Microsensor Arrays of High Stability for Cardiovascular Applications", J. Chem. Soc.Faraday Trans., 89(2):361-367 (Jan. 21, 1993). |
Maidan, R. et al., "Elimination of Electrooxidizable Interferant-Produced Currents in Amperometric Biosensors," Analytical Chemistry, 64(23):2889-2896 (Dec. 1, 1992). |
Marko-Varga, G. et al., "Enzyme-Based Biosensor as a Selective Detection Unit in Column Liquid Chromatography", Journal of Chromatography A, vol. 660, pp. 153-167 (1994). |
Mastrototaro, J.J. et al., "An Electroenzymatic Glucose Sensor Fabricated on a Flexible Substrate", Sensors and Biosensors B Chemical, B5:139-144 (1991). |
McNeil, C. J. et al., "Thermostable Reduced Nicotinamide Adenine Dinucleotide Oxidase: Application to Amperometric Enzyme Assay," Anal. Chem., 61(1):25-29 (Jan. 1, 1989). |
Miyawaki, O. et al., "Electrochemical and Glucose Oxidase Coenzyme Activity of Flavin Adenine Dinculeotide Covalently Attached to Glassy Carbon at the Adenine Amino Group", Biochimica et Biophysica Acta, 838:60-68 (1985). |
Moatti-Sirat, D. et al., "Towards continuous glucose monitoring: in vivo evaluation of a miniaturized glucose sensor implanted for several days in rat subcutaneous tissue," (1 page--Abstract only) Diabetologia 35(3):224-30 (Mar. 1992). |
Moatti-Sirat, D. et al., "Evaluating in vitro and in vivo the interference of ascorbate and acetaminophen on glucose detection by a needle-type glucose sensor," Biosensors & Bioelectronics, 7(5):345-352 (1992). |
Moatti-Sirat, D. et al., "Reduction of acetaminophen interference in glucose sensors by a composite Nafion membrane: demonstration in rats and man," (1 page--Abstract only) Diabetologia 37(6):610-6 (Jun. 1994). |
Nagy, G. et al., "A New Type of Enzyme Electrode: The Ascorbic Acid Eliminator Electrode," Life Sciences, 31(23):2611-2616 (1982). |
Nakamura, S. et al., "Effect of Periodate Oxidation on the Structure and Properties of Glucose Oxidase," Biochimica et Biophysica Acta., 445:294-308 (1976). |
Narazimhan, K. et al., "p-Benzoquinone activation of metal oxide electrodes for attachment of enzymes," Enzyme Microb. Technol., 7(6) (1 page--Abstract only) (1985). |
Ohara, T. J. et al., "Glucose Electrodes Based on Cross-Linked [Os(bpy).sub.2 CI].sup.+/2+ Complexed Poly(1-vinylimadazole) Films," Analytical Chemistry, 65(23):3512-3516 (Dec. 1, 1993). |
Ohara, T. J. et al., ""Wired" Enzyme Electrodes for Amperometric Determination of Glucose or Lactate in the Presence of Interfering Substances," Analytical Chemistry, 66(15):2451-2457 (Aug. 1, 1994). |
Ohara, T. J., "Osmium Bipyridyl Redox Polymers Used in Enzyme Electrodes," Platinum Metals Rev., 39(2):54-62 (Apr. 1995). |
Olievier, C. N. et al., "In vivo Measurement of Carbon Dioxide Tension with a Miniature Electrode," Pflugers Arch. 373:269-272 (1978). |
Paddock, R. et al., "Electrocatalytic reduction of hydrogen peroxide via direct electron transfer from pyrolytic graphite electrodes to irreversibly adsorbed cytochrome c peroxidase," J. Electroanal. Chem., 260:487-494 (1989). |
Palleschi, G. et al., "A Study of Interferences in Glucose Measurements in Blood by Hydrogen Peroxide Based Glucose Probes", Anal. Biochem., 159:114-121 (1986). |
Pankratov, I. et al., "Sol-gel derived renewable-surface biosensors," Journals of Electroanalytical Chemistry, 393:35-41 (1995). |
Pathak, C. P. et al., "Rapid Photopolymerization of Immunoprotective Gels in Contact with Cells and Tissue," J. Am. Chem. Soc., 114(21):8311-8312 (1992). |
Pickup, J. "Developing glucose sensors for in vivo use," TIBTECH, vol. 11, pp. 285-289 (Jul. 1993). |
Pickup, J. et al., "Potentially-implantable, amperometric glucose sensors with mediated electron transfer: improving the operating stability," Biosensors, 4(2), 109-19, (Abstract only) (1989). |
Pickup, J.C. et al., "In vivo molecular sensing in diabetes mellitus: an implantable glucose sensor with direct electron transfer," Diabetologia, 32(3):213-217 (1989). |
Pishko, M.V. et al., "Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels", Anal. Chem., 63(20):2268-2272 (Oct. 15, 1991). |
Poitout, V. et al., "In vitro and in vivo evaluation in dogs of a miniaturized glucose sensor," ASAIO Transactions, 37(3) (1 page--Abstract only) (Jul.-Sep. 1991). |
Poitout, V. et al., "Calibration in dogs of a subcutaneous miniaturized glucose sensor using a glucose meter for blood glucose determination," Biosensors & Bioelectronics, 7, pp. 587-592 (1992). |
Poitout, V. et al., "A glucose monitoring system for on line estimation in man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue and a wearable control unit," (1 page--Abstract only) Diabetologia 36(7):658-63 (Jul. 1993). |
Pollak, A. et al., "Enzyme Immobilization by Condensation Copolymerization into Cross-Linked Polyacrylamide Gels," J. Am. Chem. Soc., 102(20):6324-6336 (1980). |
Reach, G. et al., "Can Continuous Glucose Monitoring Be Used for the Treatment of Diabetes?" Analytical Chemistry, 64(6):381-386 (Mar. 15, 1992). |
Rebrin, K. et al., "Automated Feedback Control of Subcutaneous Glucose Concentration in Diabetic Dogs", Diabetologia, 32(8):573-576 (Aug. 1989). |
Sakakida, M. et al., "Ferrocene-mediate needle-type glucose sensor covered with newly designed biocompatible membrane," Sensors and Actuators B, 13-14:319-322 (1993). |
Samuels, G. J. et al., "An Electrode-Supported Oxidation Catalyst Based on Ruthenium (IV). pH "Encapsulation" in a Polymer Film," J. Am. Chem. Soc., 103(2):307-312 (1981). |
Sasso, S.V. et al., "Electropolymerized 1,2-Diaminobenzene as a Means to Prevent Interferences and Fouling and to Stabilize Immobilized Enzyme in Electrochemical Biosensors", Anal. Chem., 62(11):1111-1117 (Jun. 1, 1990). |
Scheller, F. et al., "Enzyme electrodes and their application," Phil. Trans. R. Soc. Lond., B 316:85-94 (1987). |
Schmehl, R.H. et al., "The Effect of Redox Site Concentration on the Rate of Mediated Oxidation of Solution Substrates by a Redox Copolymer Film", J. Electroanal. Chem., 152:97-109 (Aug. 25, 1983). |
Schmidt, F.J. et al., "Calibration of a Wearable Glucose Sensor", The International Journal of Artificial Organs, vol. 15, No. 1, pp. 55-61 (1992). |
Shichiri, M. et al., "Glycaemic Control in Pancreatetomized Dogs with a Wearable Artificial Endocrine Pancreas", Diabetologia, 24(3):179-184 (Mar. 1983). |
Sittampalam, G. et al., "Surface-Modified Electrochemical Detector for Liquid Chormatography", Anal. Chem., 55(9):1608-1610 (Aug. 1983). |
Soegijoko, S.et al., Horm. Metab. Res., Suppl. Ser., 12, pp. 165-169 (1982) (Abstract). |
Sprules, S. D. et al., "Evaluation of a New Disposable Screen-Printed Sensor Strip for the Measurement of NADH and Its Modification to Produce a Lactate Biosensor Employing Microliter Volumes," Electroanalysis, 8(6):539-543 (1996). |
Sternberg, F. et al., "Calibration Problems of Subcutaneous Glucosensors when Applied "In-Situ" in Man," Horm. metabl. Res, 26:524-525 (1994). |
Sternberg, R. et al., "Covalent Enzyme Coupling on Cellulose Acetate Membranes for Glucose Sensor Development," Analytical Chemistry, 60(24):2781-2786 (Dec. 15, 1988). |
Sternberg, R. et al., "Study and Development of Multilayer Needle-type Enzyme-based Glucose Microsensors," Biosensors, 4:27-40 (1988). |
Suekane, M., "Immobilization of glucose isomerase," Zeitschrift fur Allgemeine Mikrobiologie, 22(8):565-576 (1982). |
Tajima, S. et al., "Simultaneous Determination of Glucose and 1,5-Anydroglucitol", Chemical Abstracts, 111(25):394 111:228556g (Dec. 18, 1989). |
Tarasevich, M.R. "Bioelectrocatalysis", Comprehensive Treatise of Electrochemistry, 10 (Ch.4):231-295 (1985). |
Tatsuma, T. et al., "Enzyme Monolayer- and Bilayer-Modified Tin Oxide Electrodes for the Determination of Hydrogen Peroxide and Glucose," Anal. Chem., 61(21):2352-2355 (Nov. 1, 1989). |
Taylor, C. et al., "`Wiring` of glucose oxidase within a hydrogel made with polyvinyl imidazole complexed with [(Os-4,4'-dimethoxy-2,2'-bipyridine)C1].sup.+/2+," Journal of Electroanalytical Chemistry, 396:511-515 (1995). |
Trojanowicz, M. et al., "Enzyme Entrapped Polypyrrole Modified Electrode for Flow-Injection Determination of Glucose," Biosensors & Bioelectronics, 5:149-156 (1990). |
Turner, A.P.F. et al., "Diabetes Mellitus: Biosensors for Research and Management", Biosensors, 1:85-115 (1985). |
Turner, R. F. B. et al., "A Biocompatible Enzyme Electrode for Continuous in vivo Glucose Monitoring in Whole Blood," Sensors and Actuators, B1(1-6):561-564 (Jan. 1990). |
Tuzhi, P. et al., "Constant Potential Pretreatment of Carbon Fiber Electrodes for In Vivo Electrochemistry", Analytical Letters, 24(6):935-945 (1991). |
Umaha, M., "Protein-Modified Electrochemically Active Biomaterial Surface," U.S. Army Research Office Report, (12 pages) (Dec. 1988). |
Urban, G. et al., "Miniaturized Thin-Film Biosensors Using Covalently Immobilized Glucose Oxidase", Biosensors & Bioelectronics, 6(7):555-562 (1991). |
Vadgama et al., "Sensor devices," United States Patent 5,531,878, issued Jul. 2, 1996, 2 pages (Abstract only). |
Velho et al., "Strategies for calibrating a subcutaneous glucose sensor," Biomedica Biochimica Acta, vol. 48, Issue 11-12, pp. 957-964 (1989). |
Velho, G. et al., "In Vitro and In Vivo Stability of Electrode Potentials in Needle-Type Glucose Sensors", Diabetes, 38(2):164-171 (Feb. 1989). |
Von Woedtke, T. et al., "In Situ Calibration of Implanted Electrochemical Glucose Sensors", Biomed. Biochim. Acta, 48(11/12):943-952 (1989). |
Vreeke, M. et al., "Hydrogen Peroxide and .beta.-Nicotinamide Adenine Dinucleotide Sensing Amperometric Electrodes Based on Electrical Connection of Horseradish Peroxidase Redox Centers to Electrodes through a Three-Dimensional Electron Relaying Polymer Network," Analytical Chemistry, 64(24):3084-3090 (Dec. 15, 1992). |
Vreeke, M. S. et al., "Chapter 15: Hydrogen Peroxide Electrodes Based on Electrical Connection of Redox Centers of Various Peroxidases to Electrodes through a Three-Dimensional Electron-Relaying Polymer Network," Diagnostic Biosensor Polymers, 7 pgs. (Jul. 26, 1993). |
Wang, D. L. et al., "Miniaturized Flexible Amperometric Lactate Probe," Analytical Chemistry, 65(8):1069-1073 (Apr. 15, 1993). |
Wang, J. et al., "Activation of Glassy Carbon Electrodes by Alternating Current Electrochemical Treatment", Analytica Chimica Acta, 167:325-334 (Jan. 1985). |
Wang, J. et al., "Amperometric biosensing of organic peroxides with peroxidase-modified electrodes," Analytica Chimica Acta. 254:81-88 (1991). |
Wang, J. et al., "Screen-Printable Sol-Gel Enzyme-Containing Carbon Inks," Analytical Chemistry, 68(15):2705-2708 (Aug. 1, 1996). |
Wang, J. et al., "Sol-Gel-Derived Metal-Dispersed Carbon Composite Amperometric Biosensors," Electroanalysis, 9(1):52-55 (1997). |
Williams, D.L. et al., "Electrochemical-Enzymatic Analysis of Blood Glucose and Lactate", Anal. Chem., 42(1):118-121 (Jan. 1970). |
Wilson, G. S. et al., "Progress toward the Development of an Implantable Sensor for Glucose," Clinical Chemistry, 38(9):1613-1617 (1992). |
Yabuki, S. et al., "Electro-conductive Enzyme Membrane," J. Chem. Soc. Commun, 945-946 (1989). |
Yang, L. et al., "Determination of Oxidase Enzyme Substrates Using Cross-Flow Thin-Layer Amperometry," Electroanalysis, 8(8-9):716-721 (1996). |
Yao, S.J. et al., "The Interference of Ascorbate and Urea in Low-Potential Electrochemical Glucose Sensing", Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 12(2):487-489 (Nov. 1-4, 1990). |
Yao, T. et al., "A Chemically-Modified Enzyme Membrane Electrode As An Amperometric Glucose Sensor," Analytica Chimica Acta., 148:27-33 (1983). |
Ye, L. et al., "High Current Density "Wired" Quinoprotein Glucose Dehydrogenase Electrode," Anal. Chem., 65(3):238-241 (Feb. 1, 1993). |
Yildiz, A. et al., "Evaluation of an Improved Thin-Layer Electrode," Analytical Chemistry, 40(70):1018-1024 (Jun. 1968). |
Zamzow, K. et al., New Wearable Continuous Blood Glucose Monitor (BGM) and Artificial Pancreas (AP), Diabetes, 39:5A(20) (May 1990). |
Zhang, Y. et al., "Application of cell culture toxicity tests to the development of implantable biosensors," Biosensors & Bioelectronics, 6:653-661 (1991). |
Zhang, Y. et al., "Elimination of the Acetaminophen Interference in an Implantable Glucose Sensor," Anal. Chem. 66:1183-1188 (1994). |