Subcutaneous vascular assemblies for improving blood flow and related devices and methods

Information

  • Patent Grant
  • 10925710
  • Patent Number
    10,925,710
  • Date Filed
    Friday, March 23, 2018
    6 years ago
  • Date Issued
    Tuesday, February 23, 2021
    3 years ago
Abstract
Medical devices and related method for improving blood flow to regions of a patient are described herein. Some medical devices may include a first graft portion, a second graft portion, and a catheter portion disposed between the first graft portion and the second graft portion. The medical device may be implanted into a patient to establish a non-natural flow path.
Description
TECHNICAL FIELD

The present disclosure relates generally to the field of medical devices. More particularly, some embodiments relate to medical assemblies and devices for improving blood flow to regions of a patient's body.





BRIEF DESCRIPTION OF THE DRAWINGS

The written disclosure herein describes illustrative embodiments that are non-limiting and non-exhaustive. Reference is made to certain of such illustrative embodiments that are depicted in the figures, in which:



FIG. 1 is an exploded perspective view of a medical device.



FIG. 2 is an assembled perspective view of the medical device of FIG. 1.



FIG. 3 is a cross-sectional view of a graft of the medical device of FIG. 1 through plane 3-3 of FIG. 1.



FIG. 4 is a cross-sectional view of a graft of the medical device of FIG. 1 through plane 4-4 of FIG. 1.



FIG. 5 is a perspective view of a portion of the medical device of FIG. 1.



FIG. 6 is a cross-sectional side view of a portion of the medical device of FIG. 1.



FIG. 7 is a posterior view of a leg of a patient into which the medical device of FIG. 1 has been implanted.



FIG. 8 is a perspective view of a portion of a medical device according to another embodiment.



FIG. 9 is a perspective view of a medical device, according to another embodiment.



FIG. 10 is a perspective view of a medical device, according to another embodiment.



FIG. 11A is a cross-sectional side view of the medical device of FIG. 10.



FIG. 11B is a cross-sectional side view of a medical device, according to another embodiment.



FIG. 12 provides a side view of a portion of a medical device according to another embodiment in which a collapsed collar is disposed around a periphery of a graft portion.



FIG. 13 provides a side view of the portion of the medical device of FIG. 12, with the collar in an uncollapsed configuration.



FIG. 14 provides a cross-sectional side view of the portion of the medical device of FIGS. 12 and 13 that is partially disposed within the vasculature of a patient.





DETAILED DESCRIPTION

Many individuals suffer from insufficient blood flow to regions (e.g., peripheral regions) of their body. For example, some individuals suffering from peripheral artery disease experience narrowing of one or more peripheral arteries (e.g., a superficial femoral artery) to their leg(s) or arm(s). Such narrowing of the arteries may reduce blood flow to one or more peripheral regions. Insufficient blood flow to the extremities of the body can lead to critical limb ischemia, gangrene, and/or amputation. Diabetes is known to increase the risk of peripheral artery disease.


Insufficient blood flow to peripheral regions of a body may result from other causes as well. For example, in addition to atherosclerosis in peripheral arteries, blood flow to a peripheral region may be impeded by some other blockage. In other cases, a portion of an artery may be punctured or weakened, thereby rendering the artery (or a portion of the artery) unsuitable for providing long-term blood flow to a peripheral region.


Embodiments described herein may be used to form a non-natural flow path that improves blood flow to regions of a patient. For example, in some embodiments, a medical device that includes a first graft portion, a second graft portion, and a catheter portion that is coupled to and disposed between the first graft portion and the second graft portion may be inserted into a patient such that the first graft portion is attached to vasculature at a first location that is above the knee of a patient and the second graft portion is attached to vasculature at a second location that is below the knee of the patient. The new flow path that is established between the first location and the second location may improve blood flow to a region (e.g., the lower leg or feet) of the patient.


The components described herein may additionally or alternatively be used to establish other non-natural flow paths within a patient. In some embodiments, both ends of the non-natural flow path are attached to vasculature of the patient. In other embodiments, only one end of the non-natural flow path is attached to vasculature of the patient. In some embodiments, the non-natural flow path is disposed within the torso region of the patient. In other embodiments, the non-natural flow path is disposed below the waist. In some embodiments, the non-natural flow path extends from above the waist to below the waist. In some embodiments, the non-natural flow path traverses the knee (i.e., connects the upper leg with the lower leg). In some embodiments, one end of the non-natural flow path empties directly into a chamber of the heart. Other suitable locations for non-natural flow paths formed by medical devices described herein are possible and within the scope of this disclosure.


The components of the embodiments as generally described and illustrated in the figures herein can be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of various embodiments, as represented in the figures, is not intended to limit the scope of the present disclosure, but is merely representative of various embodiments. While various aspects of the embodiments are presented in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.


The phrase “coupled to” is broad enough to refer to any suitable coupling or other form of interaction between two or more entities. Thus, two components may be coupled to each other even though they are not in direct contact with each other. For example, two components may be coupled to one another through an intermediate component. The phrase “attached to” refers to interaction between two or more entities which are in direct contact with each other and/or are separated from each other only by a fastener of any suitable variety (e.g., an adhesive).


As used herein, the term “crush force” refers to the magnitude of a two-dimensional force (e.g., pinch force) that is applied perpendicular to the longitudinal axis of a tube that causes deformation of the tube from an unconstrained state to a constrained state in which the distance between opposite sides of the tube is three quarters of the distance between opposite sides of the tube when the tube is unconstrained. As used herein, the term “hoop force” refers to the magnitude of a force that is uniformly applied around a circumference of a tube to compress the tube to three quarters of its initial diameter. A “medial” portion of a graft is a portion of the graft that is oriented toward the catheter portion of the medical device. The “lateral” portion of a graft is a portion of the graft that is oriented away from the catheter portion of the medical device. In other words, the medial portion of a graft is positioned closer to the catheter portion than is the lateral portion of the graft when the medical device is in a fully assembled configuration. A “porous tube” is considered to be porous even if the porous tubular structure is coated, disposed between, or embedded within a non-porous polymer. For example, a tubular wire structure that includes openings between adjacent elements of wire is porous even if the tubular wire structure is coated, disposed between, or embedded within a non-porous polymer.



FIGS. 1-6 provide alternative views of a medical device 100 (or a portion thereof) for improving blood flow to a region of a patient, such as a lower leg, a foot, an arm, or a hand. More specifically, FIG. 1 provides an exploded perspective view of the medical device 100. FIG. 2 provides an assembled perspective view of the medical device 100. FIG. 3 provides a cross-sectional view of the medical device 100 through plane 3-3 of FIG. 1. FIG. 4 provides a cross-sectional view of a portion of the medical device 100 through plane 4-4 of FIG. 1. FIG. 5 provides a close-up perspective view of a portion of the medical device 100. And FIG. 6 provides a close-up cross-sectional view of the portion of the medical device 100 shown in FIG. 4.


As shown in FIGS. 1-6, the medical device 100 includes first graft portion 110, a second graft portion 120, and a catheter portion 130. The first graft portion 110 may be attached to the catheter portion 130 via a first connector 140, and the second graft portion 120 may be attached to the catheter portion 130 via a second connector 150. Stated differently, the catheter portion 130 may be coupled to and disposed between both the first graft portion 110 and the second graft portion 120. When coupled together, the first graft portion 110, the second graft portion 120, and the catheter portion 130 may together form a lumen 105 that extends across an entirety of the medical device 100. Stated differently, the lumen 105 may extend through the first graft portion 110, the catheter portion 130, and the second graft portion 120.


In some embodiments, the first graft portion 110 and the second graft portion 120 are of the same composition. In other words, in some embodiments, the first graft portion 110 and the second graft portion 120 are made from the same materials. In other embodiments, the first graft portion 110 and the second graft portion 120 differ in composition. In other words, in some embodiments, the first graft portion 110 and the second graft portion 120 may be made, at least in part, from different materials. In some embodiments, the first graft portion 110 and/or the second graft portion 120 are made from relatively flexible materials. The first graft portion 110 and/or the second graft portion 120 may be formed of material that is suitable for anastomosis to a vein or artery of a patient.


In some embodiments, the first graft portion 110 and the second graft portion 120 are the same length, while in other embodiments, the first graft portion 110 and the second graft portion 120 are of different lengths. In some embodiments, the length of the first graft portion 110 and/or the second graft portion 120 is determined by (1) the desired location for placement in the patient and/or (2) the particular anatomy of the patient. For example, the first graft portion 110 and the second graft portion 120 may have lengths that facilitate the bypass of a narrowed, obstructed, and/or damaged portion of an artery or vein.


In some embodiments, the first graft portion 110 and/or the second graft portion 120 comprise multiple layers, as shown in the cross-sectional view of the first graft portion 110 provided in FIG. 3.


For example, in the depicted embodiment, the first graft portion 110 comprises an inner (i.e., luminal) layer 112. The inner layer 112 may be formed from a polymer, such as porous PTFE. More specifically, the inner layer 112 may be formed from expanded PTFE or fibrous PTFE. In embodiments that use fibrous PTFE, the fibrous PTFE may be formed by rotation of a spinneret (i.e., rotational spun PTFE) and/or by subjecting a solution or dispersion comprising PTFE to an electric field (i.e., electrospun PTFE). In some embodiments, the inner layer 112 is configured to permit tissue ingrowth. In some embodiments, the inner layer 112 provides an antithrombic surface and/or an anti-inflammatory surface.


The first graft portion 110 may also include an outer (i.e., abluminal) layer 118. Like the inner layer 112, the outer layer 118 may be formed from a polymer, such as porous PTFE. More specifically, the outer layer 118 may be formed from expanded PTFE or fibrous PTFE. In embodiments that use fibrous PTFE, the fibrous PTFE may be formed by rotation of a spinneret (i.e., rotational spun PTFE) and/or by subjecting a solution or dispersion comprising PTFE to an electric field (i.e., electrospun PTFE). In some embodiments, the outer layer 118 is configured to permit tissue ingrowth. In some embodiments, the outer layer 118 provides an antithrombic surface and/or an anti-inflammatory surface.


In some embodiments, the outer layer 118 is identical in composition to the inner layer 112. In other embodiments, the outer layer 118 and the inner layer 112 differ in composition. In some embodiments, the first graft portion 110 includes fibrous (e.g., rotational spun or electrospun) fluorinated ethylene propylene (FEP).


In some embodiments, the first graft portion 110 includes an intervening layer 116 that is disposed between the inner layer 112 and the outer layer 118. For example, in some embodiments, the intervening layer 116 comprises one or more of silicone, FEP, and polyether block amide (e.g., PEBAX). In some embodiments, the intervening layer 116 is a silicone layer that allows for resealing of the first graft portion 110 after puncture. In other words, in some embodiments, at least a portion of the graft portion 110 may be pierced by a needle or other sharp object. Once the needle or other sharp object is retracted from the graft portion 110, the intervening layer 116 may reseal about the aperture formed by the inserted needle or sharp object, thereby preventing the leakage of blood or other fluid across a wall of the first graft portion 110. Such resealability may permit early cannulation of the first graft portion 110 (e.g., cannulation within one week of implantation).


In some embodiments, one or more layers of the first graft portion 110 may comprise a cell impermeable layer, meaning a layer that is impermeable to migration of at least certain body cells across the layer. For example, the intervening layer 116 (including embodiments wherein the intervening layer comprises silicone) may comprise a cell impermeable layer. In other embodiments a cell impermeable layer may be disposed as an outside layer, an inside layer, or at any point between an outside and an inside layer. Further, cell impermeable layers may be comprised of various materials such as silicone, FEP, or other materials.


In some embodiments, as shown in FIG. 3, the first graft portion 110 may include a porous tube 114 that is partially or completely disposed between the inner layer 112 and the outer layer 118. Stated differently, the porous tube 114 may be disposed between or embedded within one or more layers of polymer. In some embodiments, the porous tube 114 is embedded within the intervening layer 116. The porous tube 114 may strengthen or reinforce the first graft portion 110. For example, in some embodiments, the porous tube 114 is designed to increase the crush force of the first graft portion 110.


In some embodiments, the porous tube 114 comprises and/or consists of a metal alloy. For example, in some embodiments, the porous tube 114 comprises and/or consists of a nickel-titanium alloy, such as nitinol. In some embodiments, the porous tube is formed by winding (e.g., helically wound nitinol) or braiding (e.g., braided nitinol). In other embodiments, the porous tube is formed by laser-cutting (e.g., laser-cut nitinol).



FIG. 4 provides a cross-sectional side view of the first graft portion 110. As shown in FIG. 4, the porous tube 114—in some embodiments—extends across only a portion of the length of the first graft portion 110. For example, in some embodiments, the porous tube 114 extends across only a medial portion 162 of the first graft portion 110, but does not extend to a lateral portion 164 of the first graft portion 110. Stated differently, the first graft portion 110 may include a medial portion 162 and a lateral portion 164, wherein the medial portion 162 comprises the porous tube 114 and the lateral portion 164 is devoid of the porous tube 114. The medial portion 162 of the first graft portion 110 may have a crush force that is greater than a crush force for the lateral portion 164. In other words, the porous tube 114 may provide additional structural support for the medial portion 162, thereby increasing the crush force of the medial portion 162 relative to the lateral portion 164. The lateral portion 164 may be designed to facilitate anastomosis to vasculature of a patient.


In some embodiments, the crush force and/or hoop force of the porous tube 114 itself may vary across its length. For example, in some embodiments, the porous tube 114 may have a lower crush force and/or hoop force at a lateral end than at a medial end. More specifically, in some embodiments in which the porous tube 114 is a nickel-titanium (e.g., nitinol) braid, the density of the braiding may be less within a lateral portion of the porous tube 114 than within a medial portion of the porous tube 114, thereby causing the lateral end of the porous tube 114 to have a lower crush force and/or hoop force than a medial end of the porous tube 114.


In some embodiments, the first graft portion 110 lacks a porous tube. In some instances, for example, the first graft portion 110 may be a commercially known vascular graft, such as a tri-layer vascular graft having an abluminal layer of expanded PTFE, a luminal layer of expanded PTFE that has been coated with heparin, and an intervening elastomeric layer. Other commercially available grafts may alternatively be used. For example, in some embodiments, the first graft portion 110 may be selected by the practitioner based on its flexibility, tensile strength, stretchiness, size, and/or resistance to kinking, and/or the practitioner's experience with the graft portion 110.


The disclosure set forth above in connection with the first graft portion 110 may apply to the second graft portion 120. Stated differently, the second graft portion 120 may have any of the features discussed above in connection with the first graft portion 110.


In some embodiments, the length(s) of the first graft portion 110 and/or the second graft portion 120 are altered prior to implantation of the medical device 100 into a patient. In some embodiments, the length of the first graft portion 110 and/or the second graft portion 120, when implanted within the patient, is between 2 cm and 40 cm, such as between 2 cm and 10 cm, between 5 cm and 15 cm, between 10 cm and 20 cm, between 15 cm and 25 cm, between 20 cm and 30 cm, between 25 cm and 35 cm, or between 30 cm and 40 cm.


As noted above, the catheter portion 130 of the medical device 100 may be coupled to and disposed between the first graft portion 110 and the second graft portion 120. The catheter portion 130 of the medical device 100 may differ in composition from the first graft portion 110 and the second graft portion 120. In some embodiments, the catheter portion 130 has a crush force that is greater than both the crush force of the first graft portion 110 and the crush force of the second graft portion 120. The high crush force of the catheter portion 130 may prevent or reduce the risk of collapse of the catheter portion 130. In some embodiments, the catheter portion 130 has a hoop force that is greater than both the hoop force of the first graft portion 110 and the hoop force of the second graft portion 120. Due to the relatively high crush force and/or hoop force of the catheter portion 130, the catheter portion 130 may be suited for positioning within a patient where strength and/or crush resistance is warranted. For example, the catheter portion 130 may be designed to be positioned adjacent bones or ligaments that might cause the collapse of lumens that are formed from weaker material. In some embodiments, the catheter portion 130 is positioned adjacent relatively sharp anatomy or in locations in which there is significant movement. In some embodiments, the catheter portion 130 is designed to traverse a relatively sharp bend without kinking. The catheter portion 130 may additionally or alternatively be designed to be positioned at a relatively exposed location that is likely to be subjected to compression forces with some frequency. In short, the catheter portion 130 may be positioned within a patient at a location where strength is warranted and/or along the portion of the flow path that is most likely to fail or necessitate replacement.


In some embodiments, the catheter portion 130 is between 2 cm and 60 cm in length. For example, in some embodiments, the catheter portion is between 10 cm and 50 cm in length, and/or between 15 and 40 cm in length.


In some embodiments, the catheter portion 130 is reinforced by metal or a metal alloy. For example, in some embodiments, the catheter portion 130 includes a porous tube 132 that is made from metal or metal alloy. In some embodiments, the porous tube 132 is made from or comprises a nickel-titanium alloy, such as nitinol. In some embodiments, the porous tube 132 is formed by winding (e.g., wound nitinol) or braiding (e.g., braided nitinol). In other embodiments, the porous tube 132 is formed by laser-cutting (e.g., laser-cut nitinol).


In some embodiments, the porous tube 132 of the catheter portion 130 is disposed within or between one or more polymers. For example, in some embodiments, the porous tube is embedded within silicone, FEP, or polyether block amide. In other embodiments, the porous tube 132 is not embedded within a single layer. For example, in some embodiments, the porous tube 132 is disposed between—but not embedded withing separate polymeric layers. In some instances, the porous tube 132 is luminal of a layer comprising silicone, FEP, or polyether block amide. In other embodiments, the porous tube 132 is abluminal of a layer comprising silicone, FEP, or polyether block amide.


In some embodiments, the catheter portion 130 may comprise at least one layer that is cell impermeable meaning it is impermeable to migration of at least certain body cells across the layer. A cell impermeable layer may comprise silicone, FEP, or other materials. In certain applications, a catheter portion 130 having a cell impermeable layer may be used in connection one or more graft portions (such as first graft portion 110 and/or second graft portion 120) which may comprise cell impermeable layers.


In some embodiments, the catheter portion 130 has a smooth and nonporous exterior surface. The exterior surface may prevent tissue ingrowth, thereby enabling replacement of the catheter portion 130, such as described in greater detail below.


As noted above, connectors, such as the first connector 140 and the second connector 150, may be used to couple the catheter portion 130 to the first graft portion 110 and the second graft portion 120. For instance, the first connector 140 may be used to couple the catheter portion 130 to the first graft portion 110. The second connector 150 may be used to couple the catheter portion 130 to the second graft portion 120. Stated differently, when the medical device 100 is fully assembled and implanted within a patient, the first graft portion 110 may be attached to the catheter portion 130 via a first connector 140 and the second graft portion 120 may be attached to the catheter portion 130 via a second connector 150.


In some embodiments, one or both of the connectors 140, 150 may include an elongate tube 142, 152 and a clamp 148, 158. In some embodiments, the elongate tubes 142, 152 are rigid or substantially rigid structures that are resistant to compression. In some embodiments, the elongate tubes 142, 152 comprise a metal or a metal alloy. In some embodiments, the elongate tubes 142, 152 are configured such that a first portion 143, 153 of the elongate tube 142, 152 may be disposed within an inner diameter of the catheter portion 130 while a second portion 145, 155 of the elongate tube 142, 152 may be disposed within an inner diameter of the first graft portion 110 or the second graft portion 120. Stated differently, each elongate tube 142, 152 may be partially disposed within both the catheter portion 130 and either the first graft portion 110 or the second graft portion 120.


In some embodiments, the first portions 143, 153 of the elongate tubes 142, 152 include one or more protrusions 144, 154 that frictionally engage with the interior diameter of the catheter portion 130. In some embodiments, any attempt to remove the catheter portion 130 from the elongate tube 142, 152 may cause the catheter portion 130 to “neck down” or become narrower in diameter, thereby causing the catheter portion 130 to more tightly engage with the elongate tube 142, 152.


In some embodiments, the second portions 145, 155 of the elongate tubes 142, 152 include one or more protrusions 146, 156 that frictionally engage with the interior diameter of the first graft portion 110 or the second graft portion 120.


In some embodiments, the elongate tubes 142, 152 of connectors 140, 150 include a flange 147, 157. The flange 147, 157 may be designed to separate the catheter portion 130 from either the first graft portion 110 or the second graft portion 120. Stated differently, the flange 147, 157 may be disposed adjacent to and between the catheter portion 130 and either the first graft portion 110 or the second graft portion 120.


The clamps 148, 158 may be designed to provide a compressive force to the first graft portion 110 and/or the second graft portion 120, thereby securing the first graft portion 110 and/or the second graft portion 120 between the elongate tube 142, 152 and the clamps 148, 158. In some embodiments, the clamps 148, 158 are clam-shell clamps that include two separate portions that are hingedly connected to one another. Stated differently, opposite portions of the clamps 148, 158 may be rotated relative to each other to provide a compressive force around the first graft portion 110 or the second graft portion 120. In some embodiments, the opposite portions of clamps 148, 158 lock together as they are rotated toward one another. For example, in some embodiments, teeth 149, 159 on the opposite portions of the clamps 148, 158 interlock with one another as the clamps 148, 158 are secured over the first graft portion 110 or the second graft portion 120.


In other embodiments, the connectors 140, 150 may couple the first graft portion 110 and/or the second graft portion 120 to the catheter portion 130 in some other way. For example, in some embodiments, the connectors may lack clam-shell clamps.


While the embodiment depicted in FIGS. 1-6 includes a single catheter portion 130 and two graft portions (i.e., the first graft portion 110 and the second graft portion 120), other embodiments may include a different number of catheter portions and/or graft portions. For example, in some embodiments, additional connectors may be used to couple two separate catheter portions to one another. In some embodiments, the graft portions may be branched. In other embodiments, only one graft portion is used. The connectors may be used to mix and match any suitable tubular elements to one another to create a non-natural flow path within a patient. In some embodiments, the flow path may be formed from a plurality of catheters. The connectors provide customizability during a medical procedure, thereby allowing a practitioner to connect any suitable tubular element to any other suitable tubular element, thereby establishing a non-natural flow path.


Some embodiments relate to a kit for establishing a non-natural flow path within a patient. The kit may include, inter alia, the following components: a catheter 130, a first connector 140 for coupling a first graft 110 to the catheter 130, and a second connector 150 for coupling a second graft 120 to the catheter 130. In some embodiments, the kit further includes instructions for implanting the catheter 130, the first graft 110, and the second graft 120 into a patient such that the first graft is coupled to the catheter 130 via the first connector 140 and the second graft 120 is coupled to the catheter 130 via the second connector 150. In some embodiments, the instructions specify that (1) the first graft 110 is to be attached to vasculature of a patient at a location that is above the knee of the patient and (2) the second graft 120 is to be attached to vasculature of the patient at a location that is below the knee of the patient. In some embodiments, the kit further includes a cutting device (e.g., scissors) that is configured for shortening (e.g., cutting) the first graft 110, the second graft 120, and/or the catheter 130.


In some circumstances, the kit may be used with any suitable graft(s). For example, the practitioner may select a first graft 110 and/or a second graft 120 from any suitable graft, such as any of the numerous commercially available grafts. The graft(s) may be selected based on the characteristics desired by the practitioner. For example, the graft(s) may be selected based on their flexibility, tensile strength, stretchiness, size, or resistance to kinking. In other embodiments, the kit includes one or both of the first graft 110 and the second graft 120, wherein the first graft 110 and/or the second graft 120 are coupled to the catheter 130.


The medical device 100, the kits, and/or related components described above may be used to establish a non-natural pathway, such as a pathway that bypasses an occluded, partially occluded, or damaged portion of the vasculature.


For example, in some embodiments, a practitioner may obtain the components of the medical device 100 described above. The practitioner may then implant the medical device 100 into a patient such that (1) the first graft portion 110 is attached to vasculature of the patient at a first location, (2) the second graft portion 120 is attached to vasculature of the patient at a second location that differs from the first location, and (3) the catheter portion 130 is coupled to and disposed between both the first graft portion 110 and the second graft portion 120. A medical device 100 that has been implanted into a leg 12 of a patient 10 is depicted in FIG. 7. The medical device 100 is implanted such that the first graft 110 is attached to the femoral artery 14 above the knee 16 of the patient 10, while the second graft 120 is attached to the femoral artery 14 below the knee 16 of the patient 10, thereby bypassing a damaged portion of the femoral artery 14. In other embodiments, the medical device 100 is implanted at other locations within the patient 10.


In some embodiments, the first graft portion 110 and the second graft portion 120 are coupled to the catheter portion 130 prior to implantation. Stated differently, the assembled medical device 100 may be inserted into the patient 10 (either percutaneously or through an “open” surgical procedure) and then attached to the vasculature of the patient 10 via anastomosis at the lateral ends of the first graft portion 110 and the second graft portion 120.


In some embodiments, one or more components of the medical device 100 are implanted into the patient 10 before the medical device 100 is fully assembled. For example, in some embodiments, the catheter portion 130 is first implanted (e.g., subcutaneously) into the patient 10. Then one or more of the first graft portion 110 and the second graft portion 120 are attached to the catheter portion 130. In some embodiments, the first graft portion 110 may be attached to the catheter portion 130 by partially inserting the elongate tube 142 of the connector 140 into the catheter portion 130. The catheter portion 130 may be secured to the elongate tube 142 of the connector 140 via a friction fit. The elongate tube 142 of the connector 140 may then be partially inserted into a medial portion of the first graft portion 110. The first graft portion 110 may be secured via placement of the clamp 148. For example, opposite portions of a clam-shell clamp 148 may be rotated toward one another to provide a compressive force around the first graft portion 110. The opposite portions of the clamp 148 may lock together, thereby securing the first graft portion 110 to the catheter portion 130. The second graft portion 120 may be attached to the catheter portion 130 in an analogous manner.


In some embodiments, one or both of the first graft portion 110 and the second graft portion 120 are shortened prior to (1) attachment of the first graft portion 110 to the catheter portion 130 and/or (2) attachment of one or both of the first graft portion 110 and the second graft portion 120 to the vasculature of the patient 10. For example, in some embodiments, a medial portion of the first graft portion 110 is removed to shorten the first graft portion 110 prior to coupling of the first graft portion 110 to the catheter portion 130. In some embodiments, removal of the medial portion may require cutting through the porous tube 114, thereby forming exposed ends (e.g., sharp ends) at the newly formed lateral end of the porous tube 114. The exposed ends of the porous tube 114 may be positioned adjacent the flange 147 of the elongate tube 142. In this manner, the flange 147 may protect the patient 10 and/or other components of the medical device 100 from the exposed ends. The flange 147 may also protect the patient 10 from exposed ends of the catheter portion 130. The flange 157 may operate in an analogous manner.


In some embodiments, a lateral portion of the first graft portion 110 is removed to shorten the first graft portion 110 prior to attachment of the first graft portion 110 to the vasculature of the patient 10. The removal of a lateral portion of the first graft portion 110 may be done before or after the first graft portion 110 has been coupled to the catheter portion 130. In some embodiments, the catheter portion 130 is shortened prior to or during implantation into the patient 10, thereby enabling the practitioner to select the desired length of the catheter portion 130.


In some embodiments, the medical device 100 is implanted without using a deployment device. Stated differently, the medical device 100 may be inserted into the patient 10 without passing through a tubular structure. In other embodiments, the medical device 100 (or components thereof) are implanted through a tubular structure.


When implanted within the patient 10, the first graft portion 110, the second graft portion 120, and the catheter portion 130 may together form the lumen 105 that extends from the first location to the second location. In some embodiments, the surface defining the lumen 105 includes one or more discontinuities. In other embodiments, the lumen is defined by a smooth continuous surface that extends across the first graft portion 110, the second graft portion 120, and the catheter portion 130. Such a smooth and continuous luminal surface may reduce the extent of blood turbulence and clotting (i.e., reduce the extent of thrombus formation).


In some embodiments, the first location and the second location are separated from one another by a distance of more than 5 cm, 10 cm, 15 cm, 20 cm, and/or 30 cm. In some embodiments, the first location is above a knee 16 of the patient 10, while the second location is below the knee 16 of the patient 10. In some embodiments, the first location is the femoral artery 14 and the second location is the popliteal artery. Stated differently, the medical device 100 may be used in a femoropopliteal bypass procedure. In some embodiments, the first location is a first femoral artery that provides blood to a first leg of the patient and the second location is a second femoral artery that provides blood to a second leg of the patient.


In some embodiments, both the first location and the second location are positioned at arteries. Stated differently, the medical device 100 may be used to establish a non-natural flow path between a first portion of an artery and a second portion of an artery. (The first portion of an artery and the second portion of the artery may be different portions of the same artery or reside on different arteries.) In some embodiments, the first location is positioned at an artery and the second location is positioned at a vein. Stated differently, the medical device 100 may be used to establish a non-natural flow path between an artery and a vein. In some embodiments, both the first location and the second location are positioned at a vein. In other words, the medical device 100 may be used to establish a non-natural flow path between a first portion of a vein and a second portion of a vein. (The first portion of a vein and a second portion of a vein may be different portions of the same vein or reside on different veins.)


In some embodiments, the patient is selected for implantation based on a diagnosis of an occluded, partially occluded, or damaged blood vessel. Stated differently, the medical device 100 may be implanted into an individual to bypass an occluded, partially occluded, or damaged blood vessel, thereby establishing a non-natural flow path to improve the flow of blood to a region (e.g., a peripheral region) of the patient's body.


In some embodiments, the catheter portion 130 of the medical device 100 may be removed from the patient 10 without removing the first graft portion 110 and/or the second graft portion 120.


For example, in some embodiments, the practitioner may make an incision in a patient 10 to provide access to at least a portion of the medical device 100 which had been previously implanted into the patient 10. In some embodiments, the catheter portion 130 of the medical device 100 may be made from material that is resistant to tissue ingrowth, while one or both of the first graft portion 110 and the second graft portion 120 permit tissue ingrowth. Stated differently the tissue of the patient 10 may be intimately connected with the first graft portion 110 and the second graft portion 120, but less intimately associated with the catheter portion 130. In some instances, at the time of the removal procedure, the medical device 100 had been implanted into the patient 10 for at least one week, one month, and/or one year. Once the practitioner has established access with at least a portion of the medical device 100, the catheter portion 130 may then be uncoupled from the first graft portion 110 and the second graft portion 120. For example, in some embodiments, the connectors 140, 150 may be unlocked and/or released, thereby allowing the first graft portion 110 and the second graft portion 120 to be uncoupled from the elongate tubes 142, 152 of the connectors 140, 150. Once uncoupled from the first graft portion 110 and the second graft portion 120, the catheter portion 130 may then be removed from the patient 10. A second catheter portion (not shown) may then be coupled to the first graft portion 110 and the second graft portion 120 while the first graft portion 110 and the second graft portion 120 remain attached to vasculature of the patient 10. Such attachment may be accomplished via any suitable connector, such as the connectors 140, 150 described herein. In this manner, the catheter portion 130 of the medical device 100 may be replaced without removing the first graft portion 110 and the second graft portion 120 from the patient 10.



FIG. 8 depicts an embodiment of a medical device 200 that resembles the medical device 100 described above in certain respects. Accordingly, like features are designated with like reference numerals, with the leading digits incremented to “2.” For example, the embodiment depicted in FIG. 8 includes a catheter portion 230 that may, in some respects, resemble the catheter portion 130 of FIGS. 1-7. Relevant disclosure set forth above regarding similarly identified features thus may not be repeated hereafter. Moreover, specific features of the medical device 100 and related components shown in FIGS. 1-7 may not be shown or identified by a reference numeral in the drawings or specifically discussed in the written description that follows. However, such features may clearly be the same, or substantially the same, as features depicted in other embodiments and/or described with respect to such embodiments. Accordingly, the relevant descriptions of such features apply equally to the features of the medical device 200 and related components depicted in FIG. 8. Any suitable combination of the features, and variations of the same, described with respect to the medical device 100 and related components illustrated in FIGS. 1-7 can be employed with the medical device 200 and related components of FIG. 8, and vice versa. This pattern of disclosure applies equally to further embodiments depicted in subsequent figures and described hereafter, wherein the leading digits may be further incremented.



FIG. 8 provides a perspective view of a portion of a medical device 200. The view provided in FIG. 8 shows the attachment of a first graft portion 210 to the catheter portion 230. The medical device 200 is identical to the medical device 100 except that the first graft portion 210 further includes beading 219 disposed around an outer surface (e.g., a circumference) of the first graft portion 210 and/or the second graft portion (not shown). In some embodiments, the beading 219 is helical in shape. In some embodiments, the helical beading 219 comprises or consists of PTFE. The beading 219 may reduce the propensity of the first graft portion 210 for kinking. In other words, the beading 219 may lessen the likelihood that the first graft portion 210 will become kinked.



FIG. 9 depicts another embodiment of a medical device 300. The medical device 300 is generally analogous to the medical devices 100, 200 discussed above, except that the medical device 300 includes one or more tapers 311, 321. For example, in some embodiments, the first graft portion 310 includes a taper 311 such that a lateral portion of the first graft portion 310 is narrower (e.g., has a smaller circumference) than a medial portion of the first graft portion 310. The taper 311 of the first graft portion 310 may be designed to facilitate anastomosis to vasculature at a particular location within a patient. Stated differently, the taper 311 may be selected such that the diameter of a lateral end of the first graft portion 310 closely matches the diameter of vasculature of the patient to which the first graft portion 310 is to be attached. In some embodiments, the first graft portion 310 may taper such that the inner diameter of the first graft portion 310 narrows from the medial end to the lateral end by between 1.5 mm and 5 mm, such as between 2 mm and 4 mm. For example, the first graft portion 110 may taper from an inner diameter of between 6.5 mm and 9 mm at a medial end to an inner diameter at a lateral end that is between 2 and 4 mm smaller. In embodiments in which the second graft portion 320 includes a taper 321, the taper 321 may have any of the features or characteristics discussed above in connection with the taper 311. In other embodiments, one of the first graft portion 310 and the second graft portion 320 includes a taper, but the other does not.



FIGS. 10-11A depict another embodiment of a medical device 400. The medical device 400 is generally analogous to the medical devices 100, 200, 300 discussed above. However, the medical device 400 differs from the medical devices 100, 200, 300 in that the medical device 400 lacks connectors.


In the embodiment depicted in FIGS. 10-11A, the medical device 400 includes a first graft portion 410, a second graft portion 420, and a catheter portion 430. The first graft portion 410 and the second graft portion 420 are formed from a single tubular structure 401. In other words, in addition to forming the first graft portion 410 and the second graft portion 420, the single tubular structure 401 extends through and is a component of the catheter portion 430. The remaining component of the catheter portion 430—tubular structure 434—may be analogous or identical in composition and structure to the catheter portions (e.g., catheter portions 130, 230) discussed above.


The inner surface of a lumen 405 formed by the first graft portion 410, the second graft portion 420, and the catheter portion 430 has a smooth continuous surface that extends across the first graft portion 410, the second graft portion 420, and the catheter portion 430. Such a smooth and continuous luminal surface may reduce the extent of blood turbulence and clotting.



FIG. 11B provides a cross-sectional side view of a medical device 400′ according to another embodiment. The medical device 400′ is generally analogous to the medical device 400 discussed above in connection with FIGS. 10 and 11A. The medical device 400′ includes a first graft portion 410′, a second graft portion 420′, and a catheter portion 430′. In the depicted embodiment, the first graft portion includes 410′ includes a portion of a tubular structure 401′ that extends through the medical device 400′, a portion of a porous PTFE layer 407′, and an intervening layer 415′. The second graft portion 420′ may likewise include a portion of the tubular structure 401′, a portion of a porous PTFE layer 407′, and an intervening layer 425′. The catheter portion 430′ includes a portion of the tubular structure 401′, the tubular structure 434, and a portion of the porous PTFE layer 423′. In some embodiments, the tubular structure 401′ is analogous in composition and/or structure to the first graft portions (e.g., first graft portions 110 and 120) discussed above in other embodiments.


In some embodiments, the porous PTFE layer 407′ and/or the tubular structure 401′ is formed from expanded PTFE. In other embodiments, the porous PTFE layer 407′ and/or the tubular structure 401′ is formed from fibrous PTFE, such as electrospun or rotational spun PTFE. The porous PTFE layer(s) 407′ and/or 401′ can reduce thrombus formation and/or promote tissue incorporation (while eliciting little or no inflammation). (In some embodiments, the porous PTFE layer 407′ and/or the tubular structure 401′ may be replaced with a silicone layer. The silicone may be applied via a spray or could be formed as an extruded tube. The silicone layer may be configured for contact with blood.)


In some embodiments, each of the intervening layers 415′ and 425′ comprises or consists of fluorinated ethylene propylene (FEP). In other embodiments, no intervening layers are used. For example, in some embodiments, the porous PTFE layer 407′ may be thicker adjacent the lateral ends of the medical device 400′ than in a medial region of the medical device 400′. In such embodiments, a single porous PTFE layer may occupy the regions identified in FIG. 11B with reference numbers 407′, 415′, and 425′.


In some embodiments, the medical device 400′ may have a constant inner diameter (e.g., a diameter defined by the tubular structure 401′. In other or further embodiments, the medical device 400′ may have a constant outer diameter (e.g., a diameter defined by the porous PTFE layer 407′. The constant diameter(s) of the inner and/or outer layers may improve biocompatibility and reduce thrombus formation of the medical device 400′, facilitate placement of the medical device 400′, and/or decrease fluid turbulence through the lumen 405′ of the medical device 400′.



FIGS. 12-14 provide distinct configurations of an alternative graft portion 510 for a medical device. The graft portion 510 may be used in a manner analogous to the first graft portions and second graft portions described above. In the depicted embodiment, the graft portion 510 includes a porous tube 514 that extends along substantially the entire length of the graft portion 510. The porous tube 514 may increase the crush force and/or hoop force of the graft portion 510 relative to embodiments that lacks the porous tube 514.


The graft portion 510 may additionally or alternatively include a collar 570 that is disposed around a periphery of the remainder of the graft portion 510. In some embodiments, the collar 570 is configured to transition between a compact state (FIG. 12) in which the collar 570 adopts a low-profile configuration to a deployed state (FIGS. 13 and 14) in which the collar 570 extends outward from the exterior surface of the remainder of the graft portion 510. To attach the graft portion 510 to the vasculature 18 of the patient, the lateral end of the graft portion 510 may initially be inserted into the vasculature 18 (e.g., an artery or vein) of the patient while the collar 570 is in a compact state (e.g., as shown in FIG. 12). Once the graft portion 510 has been partially inserted into the vasculature 18 of the patient, the collar 570 may transition to the deployed state as shown in FIG. 13.


In some embodiments, the porous tube 514 of the graft portion 510 is expandable such that the graft portion 510 is configured to transition from a relatively compact state within a deployment device to an expanded state when deployed through the deployment device. In some instances, the collar 570 may be deployed before the entire graft portion 510 is deployed to facilitate positioning of the graft portion 510. For example, the expanded collar 570 may be brought into contact with a wall of the vasculature 18 of the patient before the entire graft portion 510 is expanded and is thus more easily displaceable. The collar 570 may be any suitable shape. For example, in the depicted embodiment, the collar 570 is a relatively thin, ring-shaped sheet of material.


In some embodiments, the collar 570, when unconstrained, is angled relative to the remainder of the graft portion 510. For example, the collar 570 may form an acute angle (θ) with the remainder of the graft portion 510. In some embodiments, the acute angle θ is between 15° and 75°, between 30° and 60°, and/or between 35° and 55°. The angled relationship between the collar 570 and the remainder of the graft portion 510 may facilitate positioning of the collar 570 to function as a seal. For example, as shown in FIG. 14, the deployed collar 570 may function as a seal, thereby preventing or reducing the leakage of blood from the opening in the vasculature 18 into which the graft portion 510 has been inserted. The collar 570 may also prevent or reduce the risk of withdrawal of the graft portion 510 from the vasculature 18. Stated differently, the collar 570 may serve as a stop that prevents withdrawal of the graft portion 510 from the vasculature 18. In other embodiments, one or more graft portions of the medical device is attached to vasculature via other methods (e.g., traditional anastomosis). In some embodiments, one or more graft portions are attached via sutures. In some embodiments, one or more graft portions are attached via suture-less fasteners, such as staples.


Any methods disclosed herein include one or more steps or actions for performing the described method. The method steps and/or actions may be interchanged with one another. In other words, unless a specific order of steps or actions is required for proper operation of the embodiment, the order and/or use of specific steps and/or actions may be modified. Moreover, sub-routines or only a portion of a method described herein may be a separate method within the scope of this disclosure. Stated otherwise, some methods may include only a portion of the steps described in a more detailed method.


Reference throughout this specification to “an embodiment” or “the embodiment” means that a particular feature, structure, or characteristic described in connection with that embodiment is included in at least one embodiment. Thus, the quoted phrases, or variations thereof, as recited throughout this specification are not necessarily all referring to the same embodiment.


Similarly, it should be appreciated by one of skill in the art with the benefit of this disclosure that in the above description of embodiments, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure. This method of disclosure, however, is not to be interpreted as reflecting an intention that any claim requires more features than those expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment. Thus, the claims following this Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment. This disclosure includes all permutations of the independent claims with their dependent claims.


Recitation in the claims of the term “first” with respect to a feature or element does not necessarily imply the existence of a second or additional such feature or element. It will be apparent to those having skill in the art that changes may be made to the details of the above-described embodiments without departing from the underlying principles of the present disclosure.

Claims
  • 1. A method for improving blood flow to a lower leg of a patient, the method comprising: obtaining a medical device, the medical device comprising: a first graft portion;a second graft portion; anda catheter portion that differs in composition from the first graft portion and the second graft portion,wherein the catheter portion has a crush force that is greater than both a crush force of the first graft portion and a crush force of the second graft portion; andimplanting the medical device into the patient such that: the first graft portion is attached to vasculature at a first location that is above a knee of the patient;the second graft portion is attached to vasculature at a second location that is below the knee of the patient; andthe catheter portion is coupled to and disposed between both the first graft portion and the second graft portion;wherein one or both of the first draft portion and the second draft portion comprise an inner layer of polymeric material, an outer layer of polymeric material, and a porous tube disposed between the inner layer of polymeric material and the outer layer or polymeric material, the porous tube comprising a metal alloy, andwherein the first graft portion, the second graft portion, and the catheter portion, when implanted into the patient, together form a lumen that extends from the first location that is above the knee of the patient to the second location that is below the knee of the patient.
  • 2. The method of claim 1, wherein, when the medical device is implanted into the patient, the first graft portion differs in length from the second graft portion.
  • 3. The method of claim 1, wherein implanting the medical device into the patient comprises shortening one or both of the first graft portion and the second graft portion prior to attachment of one or both of the first graft portion and the second graft portion to the vasculature.
  • 4. The method of claim 1, wherein the one or both of the first graft portion and the second graft portion further comprise a silicone layer disposed between the inner layer and the outer layer.
  • 5. The method of claim 4, wherein the one or both of the first graft portion and the second graft portion comprise a medial portion and a lateral portion, wherein the medial portion comprises the porous tube and the lateral portion is devoid of the porous tube.
  • 6. The method of claim 5, wherein the medial portion has a crush force that is greater than a crush force of the lateral portion.
  • 7. The method of claim 1, wherein the outer layer comprises fibrous PTFE.
  • 8. The method of claim 1, wherein the medical device further comprises beading disposed around a circumference of one or both of the first graft portion and the second graft portion.
  • 9. The method of claim 1, wherein: the medical device further comprises a first connector and a second connector, and
  • 10. The method of claim 9, wherein the first graft portion and the second graft portion are coupled to the catheter prior to implantation of the medical device.
  • 11. The method of claim 1, wherein the lumen is defined by a smooth continuous surface, wherein the smooth continuous surface extends across the first graft portion, the second graft portion, and the catheter portion.
  • 12. The method of claim 1, wherein at least a portion of the medical device comprises a cell impermeable layer.
RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 62/476,124, filed on Mar. 24, 2017 and titled, “SUBCUTANEOUS VASCULAR ASSEMBLIES FOR IMPROVING BLOOD FLOW AND RELATED DEVICES AND METHODS,” and U.S. Provisional Application No. 62/476,151, filed on Mar. 24, 2017 and titled, “SUBCUTANEOUS VASCULAR ASSEMBLIES FOR IMPROVING BLOOD FLOW AND RELATED DEVICES AND METHODS,” both of which are hereby incorporated by reference in their entireties.

US Referenced Citations (272)
Number Name Date Kind
3357432 Sparks Dec 1967 A
3435823 Edwards Apr 1969 A
3490438 Lavender et al. Jan 1970 A
3683926 Suzuki Aug 1972 A
3814137 Martinez Jun 1974 A
3818511 Goldberg et al. Jun 1974 A
3826257 Buselmeier Jul 1974 A
3853126 Schulte Dec 1974 A
3882862 Berend May 1975 A
3998222 Shihata Dec 1976 A
4076023 Martinez Feb 1978 A
4133312 Burd Jan 1979 A
4184489 Burd Jan 1980 A
4214586 Mericle Jul 1980 A
4318401 Zimmernan Mar 1982 A
4366819 Kaster Jan 1983 A
4427219 Madej Jan 1984 A
4441215 Kaster Apr 1984 A
4447237 Frisch et al. May 1984 A
4496349 Cosentino Jan 1985 A
4496350 Cosentino Jan 1985 A
4503568 Madras Mar 1985 A
4550447 Seiler, Jr. Nov 1985 A
4619641 Schanzer Oct 1986 A
4655771 Wallersten Apr 1987 A
4723948 Clark et al. Feb 1988 A
4734094 Jacob et al. Mar 1988 A
4753236 Healy Jun 1988 A
4771777 Horzewski et al. Sep 1988 A
4772268 Bates Sep 1988 A
4786345 Wood Nov 1988 A
4790826 Elftman Dec 1988 A
4822341 Colone Apr 1989 A
4848343 Wallsten et al. Jul 1989 A
4850999 Planck Jul 1989 A
4877661 House et al. Oct 1989 A
4898591 Jang et al. Feb 1990 A
4898669 Tesio Feb 1990 A
4917087 Walsh et al. Apr 1990 A
4919127 Pell Apr 1990 A
4929236 Sampson May 1990 A
4955899 Della Corna et al. Sep 1990 A
5026513 House et al. Jun 1991 A
5041098 Loiterman et al. Aug 1991 A
5042161 Hodge Aug 1991 A
5053023 Martin Oct 1991 A
5061275 Wallsten et al. Oct 1991 A
5061276 Tu et al. Oct 1991 A
5064435 Porter Nov 1991 A
5104402 Melbin Apr 1992 A
5171227 Twardowski et al. Dec 1992 A
5171305 Schickling et al. Dec 1992 A
5192289 Jessen Mar 1993 A
5192310 Herweck et al. Mar 1993 A
5197976 Herweck et al. Mar 1993 A
5282860 Matsuno et al. Feb 1994 A
5330500 Song Jul 1994 A
5336616 Livesey et al. Aug 1994 A
5399168 Wadsworth Mar 1995 A
5405320 Twardowski et al. Apr 1995 A
5405339 Kohnen et al. Apr 1995 A
5454790 Dubrul Oct 1995 A
5474268 Yu Dec 1995 A
5474563 Myler et al. Dec 1995 A
5476451 Ensminger et al. Dec 1995 A
5496294 Hergenrother et al. Mar 1996 A
5509897 Twardowski et al. Apr 1996 A
5558641 Glantz et al. Sep 1996 A
5562617 Finch, Jr. et al. Oct 1996 A
5562618 Cai et al. Oct 1996 A
5591226 Trerotola et al. Jan 1997 A
5607463 Schwartz et al. Mar 1997 A
5624413 Markel et al. Apr 1997 A
5637088 Wenner et al. Jun 1997 A
5637102 Tolkoff et al. Jun 1997 A
5645532 Horgan Jul 1997 A
5647855 Trooskin Jul 1997 A
5669637 Chitty et al. Sep 1997 A
5669881 Dunshee Sep 1997 A
5674272 Bush et al. Oct 1997 A
5676346 Leinsing Oct 1997 A
5743894 Swisher Apr 1998 A
5749880 Banas et al. May 1998 A
5755773 Schuster May 1998 A
5755775 Trerotola et al. May 1998 A
5792104 Speckman et al. Aug 1998 A
5797879 Decampli Aug 1998 A
5800512 Lentz et al. Sep 1998 A
5800514 Nunez et al. Sep 1998 A
5800522 Campbell Sep 1998 A
5810870 Myers et al. Sep 1998 A
5830224 Cohn et al. Nov 1998 A
5840240 Stenoien et al. Nov 1998 A
5866217 Stenoien et al. Feb 1999 A
5904967 Ezaki et al. May 1999 A
5931829 Burbank et al. Aug 1999 A
5931865 Silverman et al. Aug 1999 A
5957974 Thompson et al. Sep 1999 A
5997562 Zadno-Azizi Dec 1999 A
6001125 Golds et al. Dec 1999 A
6019788 Butters et al. Feb 2000 A
6036724 Lentz et al. Mar 2000 A
6102884 Squitieri Aug 2000 A
6156016 Maginot Dec 2000 A
6167765 Weitzel Jan 2001 B1
6171295 Garabedian Jan 2001 B1
6231085 Olson May 2001 B1
6245098 Feeser Jun 2001 B1
6255396 Ding et al. Jul 2001 B1
6261255 Mullis et al. Jul 2001 B1
6261257 Uflacker et al. Jul 2001 B1
6280466 Kugler et al. Aug 2001 B1
6308992 Mitsui et al. Oct 2001 B1
6309411 Lashinski et al. Oct 2001 B1
6319279 Shannon et al. Nov 2001 B1
6338724 Dossa Jan 2002 B1
6398764 Finch, Jr. et al. Jun 2002 B1
6402767 Nash et al. Jun 2002 B1
6428571 Lentz et al. Aug 2002 B1
6436132 Patel et al. Aug 2002 B1
6582409 Squitieri Jun 2003 B1
6585762 Stanish Jul 2003 B1
6610004 Viole et al. Aug 2003 B2
6689096 Loubens et al. Feb 2004 B1
6689157 Madrid et al. Feb 2004 B2
6692461 Wantink Feb 2004 B2
6699233 Slanda et al. Mar 2004 B2
6702748 Nita et al. Mar 2004 B1
6702781 Reifart et al. Mar 2004 B1
6706025 Engelson et al. Mar 2004 B2
6719781 Kim Apr 2004 B1
6719783 Lentz et al. Apr 2004 B2
6730096 Basta May 2004 B2
6733459 Atsumi May 2004 B1
6740273 Lee May 2004 B2
6749574 O'Keefe Jun 2004 B2
6752826 Holloway et al. Jun 2004 B2
6758836 Zawacki Jul 2004 B2
6858019 McGuckin, Jr. et al. Feb 2005 B2
6926735 Henderson Aug 2005 B2
6976952 Maini et al. Dec 2005 B1
6981987 Huxel et al. Jan 2006 B2
7011645 McGuckin, Jr. et al. Mar 2006 B2
7025741 Cull Apr 2006 B2
7036599 Matteucci May 2006 B2
7101356 Miller Sep 2006 B2
7131959 Blatter Nov 2006 B2
7211074 Sansoucy May 2007 B2
7244271 Lenz et al. Jul 2007 B2
7244272 Dubson et al. Jul 2007 B2
7252649 Sherry Aug 2007 B2
7297158 Jensen Nov 2007 B2
7399296 Poole et al. Jul 2008 B2
7438699 Pecor et al. Oct 2008 B2
7452374 Hain et al. Nov 2008 B2
7507229 Hewitt et al. Mar 2009 B2
7588551 Gertner Sep 2009 B2
7708722 Glenn May 2010 B2
7722665 Anwar et al. May 2010 B2
RE41448 Squitieri Jul 2010 E
7762977 Porter et al. Jul 2010 B2
7789908 Sowinski et al. Sep 2010 B2
7828833 Haverkost et al. Nov 2010 B2
7833214 Wilson et al. Nov 2010 B2
7846139 Zinn et al. Dec 2010 B2
7850675 Bell et al. Dec 2010 B2
7850705 Bachinski et al. Dec 2010 B2
7922757 McGuckin Apr 2011 B2
7972314 Bizup et al. Jul 2011 B2
8079973 Herrig et al. Dec 2011 B2
8092435 Beling et al. Jan 2012 B2
8097311 Wang et al. Jan 2012 B2
8313524 Edwin et al. Nov 2012 B2
8512312 Sage Aug 2013 B2
8690815 Porter et al. Apr 2014 B2
20010053930 Kugler et al. Dec 2001 A1
20020049403 Alanis Apr 2002 A1
20020055766 Wallace et al. May 2002 A1
20020055771 Sandock May 2002 A1
20020099432 Yee Jul 2002 A1
20020151761 Viole et al. Oct 2002 A1
20030100859 Henderson et al. May 2003 A1
20030135258 Andreas et al. Jul 2003 A1
20030135261 Kugler et al. Jul 2003 A1
20030139806 Haverkost et al. Jul 2003 A1
20030181969 Kugler et al. Sep 2003 A1
20030212385 Brenner et al. Nov 2003 A1
20030212431 Brady et al. Nov 2003 A1
20030229365 Whayne et al. Dec 2003 A1
20040024442 Sowinkski et al. Feb 2004 A1
20040073282 Stanish Apr 2004 A1
20040078071 Escamilla et al. Apr 2004 A1
20040099395 Wang et al. May 2004 A1
20040147866 Blatter et al. Jul 2004 A1
20040193242 Lentz et al. Sep 2004 A1
20040215337 Hain et al. Oct 2004 A1
20040236412 Brar Nov 2004 A1
20050004553 Douk Jan 2005 A1
20050137614 Porter et al. Jun 2005 A1
20050192559 Michels et al. Sep 2005 A1
20050192604 Carson et al. Sep 2005 A1
20050203457 Smego Sep 2005 A1
20050209581 Butts et al. Sep 2005 A1
20050215938 Khan et al. Sep 2005 A1
20060004392 Amarant Jan 2006 A1
20060058867 Thistle et al. Mar 2006 A1
20060064159 Porter et al. Mar 2006 A1
20060081260 Eells et al. Apr 2006 A1
20060118236 House et al. Jun 2006 A1
20070078412 McGuckin, Jr. et al. Apr 2007 A1
20070078416 Eliasen Apr 2007 A1
20070078438 Okada Apr 2007 A1
20070088336 Dalton Apr 2007 A1
20070123811 Squitieri May 2007 A1
20070135775 Edoga et al. Jun 2007 A1
20070142850 Fowler Jun 2007 A1
20070161958 Glenn Jul 2007 A1
20070167901 Herrig et al. Jul 2007 A1
20070168019 Amplatz et al. Jul 2007 A1
20070173868 Bachinski et al. Jul 2007 A1
20070191779 Shubayev et al. Aug 2007 A1
20070197856 Gellman et al. Aug 2007 A1
20070213838 Hengelmolen Sep 2007 A1
20070219510 Zinn et al. Sep 2007 A1
20070233018 Bizup et al. Oct 2007 A1
20070249986 Smego Oct 2007 A1
20070249987 Gertner Oct 2007 A1
20070265584 Hickman et al. Nov 2007 A1
20070293823 Sherry Dec 2007 A1
20070293829 Conlon et al. Dec 2007 A1
20080009781 Anwar et al. Jan 2008 A1
20080027534 Edwin et al. Jan 2008 A1
20080132924 McGuckin Jun 2008 A1
20080167595 Porter et al. Jul 2008 A1
20080195125 Hoffman Aug 2008 A1
20080221469 Shevchuk Sep 2008 A1
20080306580 Jenson et al. Dec 2008 A1
20090076587 Cully et al. Mar 2009 A1
20090099649 Chobotov et al. Apr 2009 A1
20090137944 Haarala et al. May 2009 A1
20090179422 Werth Jul 2009 A1
20090227932 Herrig Sep 2009 A1
20090234267 Ross Sep 2009 A1
20090318895 Lachner Dec 2009 A1
20100160847 Braido et al. Jun 2010 A1
20100161040 Braido et al. Jun 2010 A1
20100198079 Ross Aug 2010 A1
20100268188 Hanson Oct 2010 A1
20100268196 Hastings et al. Oct 2010 A1
20110015723 Batiste et al. Jan 2011 A1
20110034886 Elbe et al. Feb 2011 A1
20110054312 Bell et al. Mar 2011 A1
20110112482 Redd May 2011 A1
20110208218 Ball Aug 2011 A1
20110257609 Bizup et al. Oct 2011 A1
20110264080 Lim et al. Oct 2011 A1
20110295181 Dann et al. Dec 2011 A1
20120059305 Akingba Mar 2012 A1
20120065652 Cully et al. Mar 2012 A1
20120078202 Beling et al. Mar 2012 A1
20120143141 Verkaik et al. Jun 2012 A1
20130060268 Herrig Mar 2013 A1
20130282108 Houston Oct 2013 A1
20130338559 Franano et al. Dec 2013 A1
20140018721 Gage et al. Jan 2014 A1
20140276215 Nelson Sep 2014 A1
20140288638 Knight et al. Sep 2014 A1
20150051532 Tomko et al. Feb 2015 A1
20150094744 Aghayev et al. Apr 2015 A1
20160129177 Herrig May 2016 A1
20180078745 Gray et al. Mar 2018 A1
20200178969 Hall et al. Jun 2020 A1
Foreign Referenced Citations (33)
Number Date Country
1418910 Dec 1995 DE
29515546 Mar 1997 DE
102008055587 Aug 2009 DE
0540834 May 1993 EP
1797831 Jun 2007 EP
5714358 Jan 1982 JP
62112567 May 1987 JP
04507050 Dec 1992 JP
05212107 Aug 1993 JP
06105798 Apr 1994 JP
0984871 Mar 1997 JP
09264468 Jul 1997 JP
2003501223 Jan 2003 JP
2008511414 Apr 2008 JP
198403036 Aug 1984 WO
1990085509 Aug 1990 WO
199519200 Jul 1995 WO
199624399 Aug 1996 WO
1998034676 Aug 1998 WO
2000027299 May 2000 WO
200076577 Dec 2000 WO
200105447 Jan 2001 WO
200105463 Jan 2001 WO
2001005463 Jan 2001 WO
2001028456 Apr 2001 WO
2004032991 Apr 2004 WO
2004112880 Dec 2004 WO
2006026687 Sep 2006 WO
2009059371 May 2009 WO
2010059102 May 2010 WO
2011060386 May 2011 WO
2011153302 Dec 2011 WO
2015127254 Aug 2015 WO
Non-Patent Literature Citations (45)
Entry
Office Action dated Nov. 29, 2019 for U.S. Appl. No. 15/934,152.
Office Action dated Apr. 16, 2020 for U.S. Appl. No. 15/868,313.
Office Action dated Apr. 17, 2020 for U.S. Appl. No. 15/934,152.
Notice of Allowance dated Sep. 24, 2019 for U.S. Appl. No. 15/807,983.
European Search Report dated Jun. 8, 2005 for EP05006233.0.
European Search Report dated Dec. 3, 2013 for EP05793066.1.
International Preliminary Report dated Mar. 12, 2014 for PCT/US2012/053967.
International Search Report and Written Opinion dated Jan. 28, 2015 for PCT/US2014/049547.
International Search Report and Written Opinion dated Feb. 19, 2018 for PCT/US2017/060848.
International Search Report and Written Opinion dated Mar. 15, 2013 for PCT/US2012/053967.
International Search Report and Written Opinion dated May 3, 2013 for PCT/US2012/053967.
International Search Report and Written Opinion dated May 6, 1998 for PCT/US1998/001939.
International Search Report and Written Opinion dated Jun. 3, 2009 for PCT/US2009/035923.
International Search Report and Written Opinion dated Jun. 20, 2007 for PCT/US2006/044564.
International Search Report and Written Opinion dated Jul. 17, 2018 for PCT/US2018/023956.
Notice of Allowance dated Mar. 15, 2010 for U.S. Appl. No. 11/216,536.
Notice of Allowance dated Oct. 4, 2013 for U.S. Appl. No. 12/831,092.
Office Action dated Jan. 9, 2018 for U.S. Appl. No. 14/450,468.
Office Action dated Feb. 6, 2013 for U.S. Appl. No. 12/831,092.
Office Action dated Feb. 21, 2017 for U.S. Appl. No. 14/192,567.
Office Action dated Mar. 15, 2018 for U.S. Appl. No. 14/332,091.
Office Action dated May 5, 2010 for U.S. Appl. No. 10/962,200.
Office Action dated Jun. 9, 2016 for U.S. Appl. No. 14/192,567.
Office Action dated Jun. 15, 2017 for U.S. Appl. No. 14/192,567.
Office Action dated Aug. 7, 2017 for U.S. Appl. No. 14/450,468.
Office Action dated Aug. 12, 2010 for U.S. Appl. No. 10/962,200.
Office Action dated Aug. 15, 2016 for U.S. Appl. No. 14/332,091.
Office Action dated Sep. 20, 2012 for U.S. Appl. No. 12/831,092.
Office Action dated Oct. 27, 2015 for U.S. Appl. No. 14/192,567.
Office Action dated Nov. 26, 2007 for U.S. Appl. No. 10/962,200.
Office Action dated Dec. 5, 2017 for U.S. Appl. No. 14/995,270.
Office Action dated Dec. 20, 2017 for U.S. Appl. No. 14/192,567.
Office Action dated Dec. 30, 2016 for U.S. Appl. No. 14/450,468.
Clinical Reveiw of MTI, Onxy Liquid Embolization System, available at http://www.fda.gov/ohrms/dockets/ac/03/briefing/3975b1-02-clinical-review.pdf. accessed Aug. 29, 2005.
Gore Hybrid Product Brochure—Optimal Outflow wtih Expanded Treatment Options, ,Jan. 2013.
Besarab, et al.,Measuring the Adequacy of Hemodialysis Access, Current Opinion in Nephrology and Hypertension, Rapid Science Publishers ISSN ,1996 ,1062-4821.
Coulson MD, et al.,Modification of Venous End of Dialysis Grafts: An Attempt to Reduce Neointimal Hyperplasia, Dialysis & Transplantation, vol. 29 No. 1 ,Jan. 10-18, 2000 .
Coulson MD, PHD, et al.,A Combination of the Elephant Trunk Anastomosis Technique and Vascular Clips for Dialysis Grafts, Surgical Rounds ,Nov. 1999 ,596-608.
Kanterman, et al.,Dialysis Access Grafts: Anatomic Location of Venous Stenosis and Results of Angioplasty, Interventional Radiology, vol. 195 No. 1, 195 ,Apr. 1995 ,135-139.
Kumpe, et al.,Angioplasty/Thrombolytic Treatment of Failing and Failed Hemodialysis Access Sites: Comparison with Surgical Treatment, Progress in Cardiovascular Diseases, vol. XXXIV No. 4 ,Jan./Feb. 1992 ,263-278.
Lin, et al.,Contemporary Vascular Access Surgery for Chronic Haemodialysis, They Royal College of Surgeons of Edinburgh, J.R. Coll, Surg, Edinb., 41 ,Jun. 1996 ,164-169.
Peterson, et al.,Subclavian Venous Stenosis: A Complication of Subclavian Dialysis, The Journal of American Medical Association, vol. 252 No. 24 ,Dec. 28, 1994 ,3404-3406.
Raju M.D., et al.,Techniques for Insertion and Management of Complications, PTFE Grafts for Hemodialysis Access, Ann. Surg., vol. 206 No. 5 ,Nov. 1987 ,666-673.
Sharafuddin, et al.,Percutaneous Balloon-Assisted Aspiration Thrombectomy of clotted ahemodialysis Access Grafts, Journal of Vascular and Interventional Radiology, vol. 7 No. 2 ,Mar.-Apr. 1996 ,177-183.
Office Action dated Aug. 18, 2020 for U.S. Appl. No. 15/934,152.
Related Publications (1)
Number Date Country
20180271637 A1 Sep 2018 US
Provisional Applications (2)
Number Date Country
62476124 Mar 2017 US
62476151 Mar 2017 US