SUBDUEDLY COLORED, INFRARED REFLECTING PLASTIC COMPOUND

Abstract
The invention relates to subduedly colored (brown, gray, black, green), infrared reflecting PMMA compounds which can be applied to other plastic compounds as an IR barrier layer
Description
FIELD OF THE INVENTION

The invention relates to opaquely colored, infrared-reflective poly(meth)acrylate molding compositions which can be applied as IR-barrier layer to further plastics moldings.


PRIOR ART

Because PMMA has very good properties, the corresponding molding compositions are, inter alia, processed to give coextruded layers, or processed as outer layers of in-mould-coated parts. These layers serve as outer layer inter alia of foils, of sheets, of profiles and of pipes, of which the main component or backing layer is composed to some extent of other plastics. These plastics, e.g. PVC, polystyrene, polycarbonate, ABS and ASA, have further important properties, such as impact resistance and/or low price.


Examples of applications for these coextrudates or in-mould-coated articles are construction applications, such as drainpipes and window frames; automobile applications, such as roof modules, external and internal protective coverings (panels), spoilers and mirror housings; household and sports applications, e.g. protective coverings on tools, external panels for boats and ski foils.


It is known that opaquely colored poly(meth)acrylate (PMMA) molding compositions can be used for weathering-protection of plastics moldings composed of, for example, polyvinyl chloride (PVC).


The coated plastics molding is then provided with a colorant, such as TiO2, which reflects the IR radiation at the boundary layer of the two plastics moldings and


thus prevents excessive heating of the article.


DE 27 19 170 (Dynamit Nobel) describes a process for protection of PVC layers from the effects of sunlight via a layer which has been durably applied to the PVC layer and which has been equipped not only with UV stabilizers but also with IR reflectors. The IR reflectors used comprise bleaching chromate, molybdate red, molybdate orange, chromium oxide green, antimony sulfide, cadmium sulfoselenide, cadmium sulfide, anthraquinone black pigment, anthraquinone dark blue pigment, monoazo pigment or phthalocyanines. Some of these pigments are no longer approved. A PMMA not specified in any further detail is described as material for the outer layer. DE 26 05 325 (Dynamit Nobel) likewise describes a process for protection of PVC surfaces, and the protective layer applied is colored sufficiently opaquely to achieve maximum reflectance in the IR region and minimum permeability in the UV region. The objective is achieved via the use of at least one IR-reflective black pigment or IR-reflective color pigment. For the darker color pigments, no predominantly IR-absorptive pigments are used. The pigment used in the examples comprises titanium dioxide or anthraquinone black in combination with a UV absorber.


WO 00/24817 (Ferro) describes corundum-hematite structures into which oxides of aluminum, of antimony, of bismuth, of boron, of chromium, of cobalt, of


gallium, of indium, of iron, of lanthanum, of lithium, of magnesium, of manganese, of molybdenum, of neodymium, of nickel, of niobium, of silicon, or of tin have been bound.


OBJECT

The desire for dark-colored plastic moldings for outdoor applications requires solution of some problems:


the plastics molding must be weather-resistant—irrespective of the coloring


there must be good and durable adhesion between outer layer and plastics molding to be coated


heating of the plastics moldings via direct sunlight may not exceed a permissible extent. The amount of heating may not become so great that the article expands unacceptably and temperatures above the glass transition temperature of the molding are reached. By way of example, this can cause irreversible warping of a window frame and prevent its subsequent opening


the color pigments used must themselves likewise be weathering-resistant, and also toxicologically non-hazardous and inexpensive.


Further objects achieved by the inventive formulation are:


the colored molding compositions are to have good processibility


the formulation is to be stable at the processing temperatures.


ACHIEVEMENT OF OBJECT

If various infrared-reflective, inorganic color pigments are used in a PMMA molding composition, these molding compositions can be used to produce dark-colored plastics moldings, and other plastics moldings can be coated with the abovementioned PMMA molding compositions, these having a markedly lower heating rate on insolation than moldings which are composed of conventionally dark-colored PMMA or have been coated


with the same.


It has now been found that use of pigments of the following classes


















CAS Number
C.I. Name
C.I. Number
Chemical name









68186-85-6
C.I. Pigment
C.I. 77377
Cobalt titanite




Green 50

green spinel



1308-38-9
C.I. Pigment
C.I. 77288
Chromium oxide




Green 17



109414-04-2
C.I. Pigment

Chromium iron




Brown 29

oxide



68187-09-7
C.I. Pigment
C.I. 77501
Iron chromite




Brown 35

brown spinel



71631-15-7
C.I. Pigment
C.I. 77504
Nickel iron




Black 30

chromite black






spinel







C.I. nomenclature according to Colour Index, The Society of Dyers and Colourists (SDC)







in PMMA molding compositions permits preparation of opaquely dark-colored molding compositions without excessive heating in sunlight of the plastics moldings equipped therewith or of moldings produced with these materials. The property “dark” can be defined via the L* value according to DIN 6174 (01/1979): Farbmetrische Bestimmung von Farbabständen bei Körperfarben nach der CieLab-formel [Colourimetric determination of colour differences for mass tone colours by the CieLab formula]. The CieLab L* value for the opaquely dark-colored molding compositions is below 51, preferably below 41 and very particularly preferably below 31.


The amounts of the pigments or of their mixtures incorporated into the molding compositions are from 0.05 to 5.0% by weight, preferably from 0.075 to 3.0% by weight and very particularly preferably from 0.1 to 2% by weight.


Further colorants which are suitable for coloring of PMMA molding compositions may be used additionally to


vary the colour. These colorants may be either IR-reflective—e.g. titanium dioxide—or else non-IR-reflective. The proportion of these additional colorants may be from 0 to 3.0%, preferably from 0 to 2.5% by weight and particularly preferably from 0 to 2.0% by weight, based on the molding composition.


Dark colour shades are


brown


gray


green and


black


and mixed shades are also possible.







EXAMPLES

The molding composition Plexiglas® 7N is used as PMMA component. It is available commercially from Röhm GmbH & Co. KG.


The molding compositions of the present invention comprise poly(meth)acrylates. The expression (meth)acrylates encompasses methacrylates and acrylates and also mixtures of the two.


Poly(meth)acrylates are known to the person skilled in the art. These polymers are generally obtained via free-radical polymerization of mixtures which comprise (meth)acrylates.


These monomers are well known. Among these monomers are, inter alia, (meth)acrylates which derive from saturated alcohols, e.g. methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)-acrylate, tert-butyl (meth)acrylate, pentyl (meth)acrylate and 2-ethylhexyl (meth)acrylate; (meth) acrylates which derive from unsaturated alcohols, e.g. oleyl (meth)acrylate, 2-propynyl (meth)acrylate, allyl (meth)acrylate, vinyl (meth)acrylate; aryl (meth)acrylates, such as benzyl (meth)acrylate or phenyl (meth)acrylate, where each of the aryl radicals may be unsubstituted or have up to four substituents; cycloalkyl (meth)acrylates, such as 3-vinylcyclohexyl (meth)acrylate, bornyl (meth)acrylate; hydroxyalkyl (meth)acrylates, such as 3-hydroxypropyl (meth)acrylate, 3,4-dihydroxybutyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)-acrylate; glycol di(meth)acrylates, such as 1,4-butanediol di(meth)acrylate, (meth)acrylates of ether alcohols, such as tetrahydrofurfuryl (meth)acrylate, vinyloxyethoxyethyl (meth)acrylate; amides and nitriles of (meth)acrylic acid, such as N-(3-dimethylaminopropyl)(meth)acrylamide, N-(diethylphosphono)(meth)acrylamide, 1-methacryloylamido-2-methyl-2-propanol; sulfur-containing methacrylates, such as ethylsulfinylethyl (meth)acrylate, 4-thiocyanatobutyl (meth)acrylate, ethylsulfonylethyl (meth)acrylate, thiocyanatomethyl (meth)acrylate, methylsulfinylmethyl (meth)acrylate, bis((meth)acryloyloxyethyl) sulfide; multifunctional (meth)acrylates, such as trimethyloylpropane tri(meth)acrylate.


The formulations to be polymerized may also comprise, alongside the (meth)acrylates set out above, further unsaturated monomers copolymerizable with the abovementioned (meth)acrylates. The amount generally used of these compounds is from 0 to 50% by weight, preferably from 0 to 40% by weight and particularly preferably from 0 to 20% by weight, based on the weight of the monomers, and the comonomers here may be used individually or in the form of a mixture.


Among these are, inter alia, 1-alkenes, such as 1-hexene, 1-heptene; branched alkenes, such as vinylcyclohexane, 3,3-dimethyl-1-propene, 3-methyl-1-diisobutylene, 4-methyl-1-pentene;


acrylonitrile; vinyl esters, such as vinyl acetate; styrene, substituted styrenes having one alkyl substituent in the side chain, e.g. α-methyl styrene and α-ethylstyrene, substituted styrenes having one alkyl substituent on the ring, e.g. vinyltoluene and p-methylstyrene, halogenated styrenes, such as monochlorostyrenes, dichlorostyrenes, tribromostyrenes, and tetrabromostyrenes;


heterocyclic vinyl compounds, such as 2-vinylpyridine, 3-vinylpyridine, 2-methyl-5-vinylpyridine, 3-ethyl-4-vinylpyridine, 2,3-dimethyl-5-vinylpyridine, vinylpyrimidine, vinylpiperidine, 9-vinylcarbazole, 3-vinylcarbazole, 4-vinylcarbazole, 1-vinylimidazole, 2-methyl-1-vinylimidazole, N-vinylpyrrolidone, 2-vinylpyrrolidone, N-vinylpyrrolidine, 3-vinylpyrrolidine, N-vinylcaprolactam, N-vinylbutyrolactam, vinyloxolane, vinylfuran, vinylthiophene, vinylthiolane, vinylthiazoles, and hydrogenated vinylthiazoles, vinyloxazoles and hydrogenated vinyloxazoles;


vinyl and isoprenyl ethers;


maleic acid derivatives, such as maleic anhydride, methylmaieic anhydride, maleimide, methylmaleimide; and dienes, such as divinyibenzene.


The polymerization is generally initiated by known free-radical initiators. Examples of preferred initiators are the azo initiators well known to persons skilled in the art, e.g. AIBN and 1,1-azobis (cyclohexanecarbonitrile), and also peroxy compounds, such as methyl ethyl ketone peroxide, acetylacetone peroxide, dilauryl peroxide, tert-butyl per-2-ethylhexanoate, ketone peroxide, methyl isobutyl ketone peroxide, cyclohexanone peroxide, dibenzoyl peroxide, tert-butyl peroxybenzoate, tert-butylperoxy isopropyl carbonate, 2,5-bis(2-ethylhexanoylperoxy)-2,5-dimethylhexane, tert-butylperoxy 2-ethylhexanoate, tert-butylperoxy 3,5,5-trimethylhexanoate, dicumyl peroxide, 1,1-bis(tert-butylperoxy)cyclohexane, 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane, cumyl hydroperoxide, tert-butyl hydroperoxide, bis(4-tert-butyl-cyclohexyl) peroxydicarbonate, mixtures of two or more of the abovementioned compounds with one another, and also mixtures of the abovement ioned compounds with compounds not mentioned which can likewise form free radicals.


The amount often used of these compounds is from 0.1 to 10% by weight, preferably from 0.5 to 3% by weight, based on the total weight of the monomers.


Preferred poly(meth)acrylates are obtainable via polymerization of mixtures which comprise at least 20% by weight, in particular at least 60% by weight and particularly preferably at least 80% by weight, of methyl methacrylate, based in each case on the total weight of the monomers to be polymerized.


Use may be made here of various poly(meth)acrylates which differ, for example, in molecular weight or in monomer formulation.


The molding compositions may moreover comprise further polymers in order to modify properties. Among these are, inter alia, polyacrylonitriles, polystyrenes, polyethers, polyesters, polycarbonates and polyvinyl chlorides. These polymers may be used individually or in the form of a mixture, and it is also possible here to add, to the molding compositions, copolymers which are derivable from the abovementioned polymers. Among these are, in particular, styrene-acrylonitriie polymers (SANs), the amount of which added to the molding compositions is preferably up to 45% by weight.


Particularly preferred styrene-acrylonitriie polymers may be obtained via polymerization of mixtures composed of


from 70 to 92% by weight of styrene


from 8 to 30% by weight of acrylonitrile


from 0 to 22% by weight of further comonomers, based in each case on the total weight of the monomers to be polymerized.


In particular embodiments, the proportion of the poly(meth)acrylates is at least 20% by weight, preferably at least 60% by weight and particularly preferably at least 80% by weight.


Particularly preferred molding compositions of this type are available commercially with the trade mark PLEXIGLAS® from Rohm GmbH & Co. KG.


The weight-average molecular weight Mw of the homo- and/or copolymers to be used according to the invention as matrix polymers can vary widely, the molecular weight usually being matched to the intended use and the method of processing of the molding composition. However, it is generally in the range from 20 000 to 1 000 000 g/mol, preferably from 50 000 to 500 000 g/mol and particularly preferably from 80 000to 300 000 g/mol, with no intended resultant restriction.


The following substances were used as colorants:


Cromophtal Brown 5R, Ciba Specialty Chemicals


Sandoplast Red Violet R, Clariant


Thermoplast Blue 684, BASF


Ultramarine Blue 31, Nubiola


Bayferrox 180 M, Bayer


Bayferrox 645 T, Bayer


Microlith Green GA, Ciba speciality Chemicals


Pigment black FW1, Degussa


PK 24-10204, Ferro


PK 10456, Ferro


Titanium dioxide CL 2220, Kronos


Coloring of molding compositions:


3 Colorants and molding compositions were homogenized by roll-milling. The formulations for the individual examples have been documented in Annex 1. A Plexiglas® GS White 003 sheet (40 mm*21 mm) of thickness 3 mm was also used (see testing of molding compositions). 1.5% of titanium dioxide Cl 2220 is present as colorant, IR-reflective pigment in the cast sheet composed of PMMA.


PLEXIGLAS® 7N provides the residual amounts to give 100% by weight.


Annex 1: Formulations for examples





















Comp.
Comp.
Comp.
Comp.
Inv.
Inv.
Inv.
Inv.


Formulation
Ex. 1
Ex. 2
Ex. 3
Ex. 4
Ex. 1
Ex. 2
Ex. 3
Ex. 4







Chromophtal Brown 5R
0.90%









Sandoplast Red Violet R
0.17%


Thermoplast Blue 684
0.10%


Ultramarine Blue 31

0.65%


Bayferrox 180 M

0.33%


Bayferrox 645 T

0.18%


Microlith Green GA

0.10%


Pigment black FW1


1.00%


Thermoplast Black X70



0.60%


Printex 140 V



0.09%


PK 24-10204




1%
0.80%
0.60%


PK 10456







1%





PLEXIGLAS ® 7N to 100% by weight






Testing of molding compositions:


A press was used to produce pressed plagues of thickness 0.5 mm from the colored molding compositions. The corresponding test specimens were tested by the following methods:


Heating behavior: The specimen of diameter 50 mm and thickness 0.5 mm was placed on a Rohacell® cube of edge length 50 mm. A thermocouple of diameter of 0.5 mm was fixed under the centre of the specimen with Tesa® film. A Plexiglas® GS White 003sheet (40 mm*21 mm) had been impressed into the Rohacell®. The specimen with thermocouple was secured onto this using double-sided-adhesive Tesa® Fotostrip. The specimen was irradiated using a 60 W incandescent lamp regulated with 220 V (AC voltage stabilizer). Vertical distance between lower edge of glass bulb and specimen 50 mm. The temperature was read off after 20 minutes of irradiation. Heating was measured by a method based on the standard ASTM D4803-97.


Light reflectance: Spectra measured on Perkin Elmer Lambda 19. For this, the specimens were measured with and sometimes without the Plexiglas GS White 003sheet of thickness 3 mm.


The results for heating behavior of the test specimens can be seen in Table 2.















Temperature after irradiation. Measurement



using NiCr—Ni thermocouple of diameter



0.5 mm with Testo 950 Indicator














L* value
a* value
b* value
D65/10;
D65/10;
D65/10;



D65/10;
D65/10;
D65/10;
reflection;
reflection;
reflection;



reflection;
reflection;
reflection;
heating; CieLab
heating; CieLab
heating; CieLab


SPECIMEN
heating; CieLab
heating; CieLab
heating; CieLab
[° C./20 min]
[° C.]
[° C.]
















Comparison 1 (brown,
30.1
3.3
4.1
31.0
55.0
24.0


organic, IR-transparent)


Comparison 2 (brown,
28.2
3.4
1.9
35.1
57.3
22.2


inorganic, IR-absorbent)


Inventive example 1
28.3
4.5
2.2
29.4
53.3
23.9


(brown)


Inventive example 2
27.2
3.9
1.8
32.3
56.0
23.7


(brown)


Inventive example 3
27.7
4.0
1.9
31.7
55.6
23.9


(brown)


Comparison 3 (black,
24.3
0.0
−0.8
43.8
67.7
23.9


inorganic, IR-absorbent)


Comparison 4 (black,
24.0
−0.1
−0.9
42.8
66.8
24.0


inorganic, IR-absorbent)


Example 4 (black)
26.1
1.3
0.6
37.4
61.4
24.0














The reflectance spectra can be seen in Table 3 (brown colours with Plexiglas GS White 003 sheet of thickness 3 mm), Table 4 (black colours with Plexiglas GS White 003 sheet of thickness 3 mm), and Table 5 (brown colours without Plexiglas GS White 003 sheet of thickness 3 mm).


The examples clearly reveal the improvements achieved via the invention described here:


Table 2 shows that the heating rate for the inventive brown pressed plaques (inventive Examples 1, 2, 3) is better than comparison 2 (brown pressed plaques produced using an inorganically IR-absorbent colorant) and comparable with comparison 1 (colorant used here being IR-transparent—IR reflection taking place at the white Plexiglas GS sheet). From the inventive black pressed plaques (inventive Example 4), it can also be seen that the heating rate here is clearly better (lower) than for comparisons 3 and 4.


Table 3 and 4 clearly show that, based on the respective shade, the inventive pressed plaques clearly reflect IR light (wavelength >700 mm) better than the comparisons. Comparison 1 is an exception here—however, the reflection here takes place at the white Plexiglas® GS sheet.


Table 5 clearly shows that even without the underlying Plexiglas® GS sheet, the inventive brown pressed plaques clearly reflect the IR light better than the comparisons.

Claims
  • 1. A method of preparing a dark-colored molding composition comprising polymerizing a formulation comprising: (a) a methyl (meth)acrylate monomer; and(b) one or more IR-reflective inorganic pigments,wherein the dark-colored molding composition exhibits a heating rate increase of less than 50° C./20 min irradiation.
  • 2. The method of preparing the dark-colored molding composition according to claim 1, wherein the dark-colored molding composition exhibits a heating rate increase of less than 45° C./20 min irradiation.
  • 3. The method of preparing the dark-colored molding composition according to claim 1, wherein the dark-colored molding composition produced exhibits a heating rate increase of less than 40° C./20 min irradiation.
  • 4. The method of preparing the dark-colored molding composition according to claim 1, wherein the dark-colored molding composition further comprises: (c) up to 45% by weight of a mixture comprising: (i) from 70 to 92% by weight of styrene;(ii) from 8 to 30% by weight of acrylonitrile; and(iii) optionally from 0 to 22% by weight of one or more monomers and/or inorganic pigments.
  • 5. A method of producing a dark-colored plastic molding comprising coating a plastic molding with one or more layers of the dark-colored molding composition according to claim 1.
  • 6. The method of producing the dark-colored plastic molding according to claim 5, whereby said coating is achieved by utilizing conventional application methods.
  • 7. A method of producing a second dark-colored plastic molding comprising coating a second plastic molding with one or more layers of the dark-colored plastic molding according to claim 6, whereby said coating of said second plastic molding is achieved by utilizing conventional application methods.
  • 8. An IR-reflective molding composition comprising: (a) from 95 to 99.5% by weight polymethyl (meth)acrvlate; and(b) from 5 to 0.5% by weight of one or more IR-reflective pigments.
  • 9. An IR-reflective molding composition comprising: (a) from 90 to 40% by weight polymethyl (meth)acrylate; and(b) from 0 to 45% by weight of a mixture comprising: (i) from 70 to 72% by weight polystyrene;(ii) from 8 to 30% by weight polyacrylonitrile;(iii) optionally from 0 to 22% by weight of one or more copolymers; and(iv) from 0.5 to 5% by weight of one or more IR-reflective pigments.
Priority Claims (1)
Number Date Country Kind
10 2004 058 083.9 Dec 2004 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP05/11408 10/25/2005 WO 00 6/1/2007