This application is the U.S. National Stage of International Application No. PCT/EP2015/001345, filed Jul. 2, 2015, which designated the United States and has been published as International Publication No. WO 2016/005039 and which claims the priority of German Patent Application, Serial No. 10 2014 010 287.4, filed Jul. 11, 2014, pursuant to 35 U.S.C. 119(a)-(d).
The present invention relates to a subframe for a front region or a rear region of a motor vehicle with two longitudinal members which are spaced apart from each other in vehicle transverse direction and are connected with each other by at least one cross member, wherein the subframe has a stiffening structure for increasing the torsion stiffness into which a charging module for contactless energy transfer is integrated.
In vehicle construction such subframes serve for fastening the superstructure-side connection points of a wheel suspension. Additionally an internal combustion engine, a transmission and/or a steering can be fastened, mostly on the subframe of the front region of the vehicle. The subframe itself is usually elastically connected to the vehicle body by means of rubber bearings. The stiffening structure can be configured as a shear resistant plate or as strut assembly, preferably of cross-type construction. The shear resistant plate can only increase the stiffness of the subframe while the strut assembly is capable to additionally absorb forces.
The patent document DE 10 2012 023 363 A1 describes a generic subframe of a front or rear region of a motor vehicle with two longitudinal members, which are spaced apart from each other in vehicle transverse direction and are connected with each other via at least one cross member, wherein the subframe has a stiffening structure for increasing torsion stiffness and wherein a charging module for contactless energy transfer can be integrated into the stiffening structure. The charging module has a shielding plate and a coil unit, wherein a decoupling element (internal decoupling) is arranged between the shielding plate and the coil unit.
A disadvantage is that the decoupling element between the shielding plate and the coil has to be configured with a very large area in order to ensure the effective decoupling of the coil unit on one hand and on the other hand to reliably support its weight. This places relatively high demands on manufacturability.
It is therefore an object of the invention to provide a subframe for a motor vehicle, which can be produced more easily.
The object is solved by the features of the independent patent claim.
A subframe of a front region or a rear region of a motor vehicle has two longitudinal members, which are spaced apart from each other in vehicle transverse direction and are connected with each other via at least one cross member, wherein the subframe has a stiffening structure for increasing the torsion stiffness, with a charging module for contactless energy transfer being integrated in the stiffening structure, and wherein the charging module is connected with the stiffening structure exclusively via decoupling bearings.
Because the charging module is connected with the stiffening structure exclusively via decoupling bearings the charging module can be constructed comparatively easily while still being effectively decoupled from the torsion of the stiffening structure by the decoupling bearings. The charging module is to be understood as a vehicle-side part of a system for contactless energy transfer as exemplarily disclosed in the patent documents DE 10 2010 0452 395 A1 and EP 0 253 345 B1. Hereby the electrical energy is transferred (inductively) from a preferably stationary arranged transmitter to the charging module mounted on the vehicle for further use. For increasing efficiency the charging module and the transmitter have to be positioned as close to each other as possible. Therefore is desirable to position the (plate shaped) charging module low on the vehicle. The stiffening structure can be configured as a shear resistant plate or as a strut assembly, preferably of cross type construction (so called strut cross). As a result of the shear resistant plate only the stiffness of the subframe can be increased, while the strut assembly is additionally capable of absorbing forces. The longitudinal members of the subframe are preferably arranged mirror symmetrical and can be connected either directly or indirectly, for example via a cast joint, with the at least one cross member to form an open or closed frame construction.
In a preferred embodiment the decoupling bearings are configured as rubber-metal-sleeve bearings. The stable outer metal sleeve ensures a tight fit in the stiffening structure or the bearing module, while the inner sleeve for receiving a connection element is vibration decoupled by an elastic intermediate layer.
In a preferred embodiment the charging module has a shielding plate and a coil unit, wherein the coil unit is arranged geodetically below the shielding plate. For a better functioning of the coil unit a shielding against the surrounding ferromagnetic components (for example longitudinal member, cross member and stiffening structure) is required. For this purpose the oil unit is partially encased by a shielding plate, which is preferably made of aluminum, i.e., in such a manner that the shielding plate is situated between the ferromagnetic components and the coil unit. The coil unit is at least partially permeated during operation by a magnetic alternating field of the (geo-stationary) transmitter, whereby a voltage is induced. An appropriate power electronics converts this voltage and transmits it to the onboard network of the motor vehicle.
In a preferred embodiment the shielding plate is connected with the stiffening structure via the decoupling bearings. The shielding plate is comparatively stable and as such can thus best support the charging module on the stiffening structure.
In a preferred embodiment the decoupling bearings are joined with the stiffening structure and hold the charging module via connection elements. The connection elements can for example be screw-thread combinations. The stiffening structure holds the decoupling bearings preferably by a press fit.
In a preferred embodiment the decoupling bearings are pressed into corresponding receptacles of the stiffening structure. Particularly preferably the receptacles are configured as metal sleeves that are fastened in the stiffening structure by material bonding with the decoupling bearings being pressed into the metal sleeves.
In a preferred embodiment the decoupling bearings are joined with the charging module and are supported on the stiffening structure via connection elements. The connection elements can for example be screw-thread combinations. The charging module holds the decoupling bearings by a press fit.
In a motor vehicle with a subframe according to the invention the charging module is connected with an electrical energy storage. In a preferred embodiment the energy storage is configured as a traction battery. When the motor vehicle is moved over a geo-stationary transmitter on the road the coil unit of the charging module in the stiffening structure of the subframe receives the magnetic alternating field transmitted by the transmitter and a voltage is induced. The power electronics transfers the voltage to the traction battery, which is thereby charged. For propulsion of the motor vehicle the voltage can later be withdrawn again from the traction battery in order to drive an E-machine.
Further details and advantages of the invention will become apparent from the following description of a preferred exemplary embodiment with reference to the drawings.
Herein it is shown in:
According to
Number | Date | Country | Kind |
---|---|---|---|
10 2014 010 287 | Jul 2014 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/001345 | 7/2/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/005039 | 1/14/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5390754 | Masuyama | Feb 1995 | A |
6059058 | Dower | May 2000 | A |
7520355 | Chaney | Apr 2009 | B2 |
9120506 | Isakiewitsch | Sep 2015 | B2 |
9321323 | Schindler et al. | Apr 2016 | B2 |
9434230 | Schmitt et al. | Sep 2016 | B2 |
9434416 | Isakiewitsch et al. | Sep 2016 | B2 |
9446653 | Schindler et al. | Sep 2016 | B2 |
Number | Date | Country |
---|---|---|
40 11 962 | Oct 1990 | DE |
10 2009 029 883 | Dec 2010 | DE |
10 2010 042 395 | Apr 2012 | DE |
10 2012 023 363 | Jun 2014 | DE |
0 253 345 | Oct 1992 | EP |
2 968 065 | Jun 2012 | FR |
WO 2012157333 | Nov 2012 | JP |
2012 257443 | Dec 2012 | JP |
2012 267443 | Dec 2012 | JP |
WO 2012157333 | Nov 2012 | WO |
Entry |
---|
International Search Report issued by the European Patent Office in International Application PCT/EP2015/001345. |
Number | Date | Country | |
---|---|---|---|
20170166066 A1 | Jun 2017 | US |