The present application is related to U.S. patent application Ser. No. 11/855,071, filed Sep. 13, 2007, now U.S. Pat. No. 8,061,413, titled HEAT EXCHANGER, co-pending U.S. patent application Ser. No. 12/938,761, filed Nov. 3, 2010, titled VAPORIZATION CHAMBERS AND ASSOCIATED METHODS, and co-pending U.S. patent application Ser. No. 12/938,826, filed Nov. 3, 2010, titled HEAT EXCHANGER AND RELATED METHODS. The disclosure of each of the foregoing applications is hereby incorporated herein by reference in its entirety. The present application is also related to U.S. patent application Ser. No. 12/603,948, filed Oct. 22, 2009, now U.S. Pat. No. 8,555,672 titled COMPLETE LIQUEFACTION METHODS AND APPARATUS, and co-pending U.S. patent application Ser. No. 12/604,194, filed Oct. 22, 2009, now U.S. Pat. No. 8,899,074, titled METHODS OF NATURAL GAS LIQUEFACTION PLANTS UTILIZING MULTIPLE AND VARYING GAS STREAMS.
The present invention relates generally to systems for vaporization and sublimation and methods associated with the use thereof. More specifically, embodiments of the invention relate to a first heat exchanger configured to vaporize a fluid including solid particles therein and a second heat exchanger configured to sublimate the solid particles. Embodiments of the invention additionally relate to methods of heat transfer between fluids, the sublimation of solid particles within a fluid, and the conveyance of fluids.
The production of liquefied natural gas is a refrigeration process that reduces the mostly methane (CH4) gas to a liquid state. However, natural gas consists of a variety of gases in addition to methane. One of the gases contained in natural gas is carbon dioxide (CO2). Carbon dioxide is found in quantities around 1% in most of the natural gas infrastructure found in the United States, and in many places around the world the carbon content is much higher.
Carbon dioxide can cause problems in the process of natural gas liquefaction, as carbon dioxide has a freezing temperature that is higher than the liquefaction temperature of methane. The high freezing temperature of carbon dioxide relative to methane will result in solid carbon dioxide crystal formation as the natural gas cools. This problem makes it necessary to remove the carbon dioxide from the natural gas prior to the liquefaction process in traditional plants. The filtration equipment to separate the carbon dioxide from the natural gas prior to the liquefaction process may be large, may require significant amounts of energy to operate, and may be very expensive.
Small-scale liquefaction systems have been developed and are becoming very popular. In most cases, these small plants are simply using a scaled down version of existing liquefaction and carbon dioxide separation processes. The Idaho National Laboratory has developed an innovative small-scale liquefaction plant that eliminates the need for expensive, equipment intensive, pre-cleanup of the carbon dioxide. The carbon dioxide is processed with the natural gas stream, and during the liquefaction step the carbon dioxide is converted to a crystalline solid. The liquid/solid slurry is then transferred to a separation device that directs a clean liquid out of an overflow, and a carbon dioxide concentrated slurry out of an underflow.
The underflow slurry is then processed through a heat exchanger to sublime the carbon dioxide back into a gas. In theory this is a very simple step. However, the interaction between the solid carbon dioxide and liquid natural gas produces conditions that are very difficult to address with standard heat exchangers. In the liquid slurry, carbon dioxide is in a pure or almost pure sub-cooled state and is not soluble in the liquid. The carbon dioxide is heavy enough to quickly settle to the bottom of most flow regimes. As the settling occurs, piping and ports of the heat exchanger can become plugged as the quantity of carbon dioxide builds. In addition to collecting in undesirable locations, the carbon dioxide has a tendency to clump together making it even more difficult to flush through the system.
The ability to sublime the carbon dioxide back into a gas is contingent on getting the solids past the liquid phase of the gas and into a warmer section of a device without collecting and clumping into a plug. As the liquid natural gas is heated, it will remain at approximately a constant temperature of about −230° F. (at 50 psig) until all the liquid has passed from a two-phase gas to a single-phase gas. The solid carbon dioxide will not begin to sublime back into a gas until the surrounding gas temperatures have reached approximately −80° F. While the solid carbon dioxide is easily transported in the liquid methane, the ability to transport the solid carbon dioxide crystals to warmer parts of the heat exchanger is substantially diminished as liquid natural gas vaporizes. At a temperature when the moving, vaporized natural gas is the only way to transport the solid carbon dioxide crystals, the crystals may begin to clump together due to the tumbling interaction with each other, leading to the aforementioned plugging.
In addition to clumping, as the crystals reach warmer areas of the heat exchanger they begin to melt or sublime. If melting occurs, the surfaces of the crystals becomes sticky causing the crystals to have a tendency to stick to the walls of the heat exchanger, reducing the effectiveness of the heat exchanger and creating localized fouling. The localized fouling areas may cause the heat exchanger to become occluded and eventually plug if fluid velocities cannot dislodge the fouling.
In view of the shortcomings in the art, it would be advantageous to provide a system and associated methods that would enable the effective and efficient sublimation of solid particles found within a slurry. Additionally, it would be desirable for a system and associated methods to be able to effectively and efficiently warm and vaporize slurries of fluids containing solid particles.
In accordance with one embodiment of the invention, a method for vaporizing and sublimating a fluid including solid particles is provided. The method includes feeding a slurry comprising solid particles suspended in a first fluid to a first heat exchanger, vaporizing the first fluid in the first heat exchanger to form a first gas, feeding the first gas and the solid particles to a second heat exchanger, and sublimating the solid particles in the second heat exchanger to form a second gas.
In accordance with another embodiment of the invention, a method is provided for continuously vaporizing a slurry of liquid methane and solid carbon dioxide particles. The method includes feeding the slurry of liquid methane and solid carbon dioxide particles to a first heat exchanger, vaporizing the liquid methane in the first heat exchanger to form a mixture of solid carbon dioxide particles and gaseous methane, feeding the mixture of solid carbon dioxide particles and gaseous methane to a second heat exchanger, and sublimating the solid carbon dioxide particles in the second heat exchanger.
In accordance with a further embodiment of the invention, a system for vaporizing and sublimating a fluid including solid particles is provided. The system includes a first heat exchanger configured to receive the fluid including solid particles and to vaporize the fluid and a second heat exchanger configured to receive the vaporized fluid and solid particles and to sublimate the solid particles.
While the specification concludes with claims particularly pointing out and distinctly claiming that which is regarded as the present invention, advantages of this invention may be more readily ascertained from the following detailed description when read in conjunction with the accompanying drawings in which:
Some of the illustrations presented herein are not meant to be actual views of any particular material, device, or system, but are merely idealized representations that are employed to describe the present invention. Additionally, elements common between figures may retain the same numerical designation.
The term “fluid” as used herein means any substance that may be caused to flow through a conduit and includes but is not limited to gases, two-phase gases, liquids, gels, plasmas, slurries, solid particles, and any combination thereof.
As shown in
The vaporization chamber 102 may be configured to vaporize the first fluid in the slurry 112 without altering the physical state of the solid particles within the slurry 112. One embodiment of such a vaporization chamber is described in detail in previously referenced U.S. patent application Ser. No. 12/938,761, titled “Vaporization Chamber and Associated Methods,” filed Nov. 3, 2010. Briefly, the vaporization chamber 102 may include a first chamber 140 surrounding a second chamber, which may also be characterized as a mixer 120. The second fluid 118 enters the first chamber 140 of the vaporization chamber 102 and envelops the mixer 120. Heat may be transferred from the second fluid 118 to the mixer 120 heating an outer surface of the mixer 120. The second fluid 118 also enters the mixer 120 and mixes with the slurry 112, as shown in broken lines, within the vaporization chamber 102. In some embodiments, the mixer 120 may comprise a plurality of ports (not shown) that allow the second fluid 118 to enter the mixer 120 and promotes mixing of the second fluid 118 and the slurry 112. In additional embodiments, a wall of the mixer 120 may comprise a porous material that allows a portion of the second fluid 118 to enter the mixer 120 through the porous wall. In some embodiments, another portion of the second fluid 118′ may exit the first chamber 140 of the vaporization chamber 102 and be directed to the sublimation chamber 104. Alternatively, in some embodiments, the portion of the second fluid 118′ may be directed to the sublimation chamber 104 before entering the vaporization chamber 102, as shown in broken lines.
As shown in
The sublimation chamber 104 may be configured to sublimate the solid particles in the first gas and the solid particles 114 without allowing the particles to melt and stick together, fouling the system 100. One example of such a sublimation chamber 104 is described in detail in previously referenced U.S. patent application Ser. No. 12/938,826, titled “Heat Exchanger and Related Methods,” filed Nov. 3, 2010. Briefly, the sublimation chamber 104 may include a first portion 134 and a second portion 136. The first gas and the solid particles 114 may be fed into the first portion 134 of the sublimation chamber 104, and the portion of the second fluid 118′ may be fed into the second portion 136 of the sublimation chamber 104. A cone-shaped member 138 may separate the second portion 136 from the first portion 134. At an apex of the cone-shaped member 138 is an opening or a nozzle 132 for directing the portion the second fluid 118′ from the second portion 136 to the first portion 134 of the sublimation chamber 104. The nozzle 132 may comprise, for example, a changeable orifice or valve which that may be sized to achieve a column of the second fluid 118″ having a desired velocity extending through the first portion 134 of the sublimation chamber 104.
Particles from the first gas and the solid particles 114 may be entrained and suspended within the column of the second fluid 118″. As the particles are suspended in the column of the second fluid 118″, the column of the second fluid 118″ heats the particles and causes the particles to sublimate, forming the second gas. The cone-shaped member 138 helps direct the solid particles into the column of the second fluid 118″.
The system 100 may be controlled using at least one valve and at least one temperature sensor. For example, as shown in
In one embodiment, the system 100 may be used as part of a liquefaction process for natural gas. For example, the present invention may be used in conjunction with an apparatus for the liquefaction of natural gas and methods relating to the same, such as is described in U.S. Pat. No. 6,962,061 to Wilding et al., hereinafter referred to as the “'061” patent, the disclosure of which is incorporated herein in its entirety by reference. The methods of liquefaction of natural gas disclosed in the '061 patent include cooling at least a portion of a mass of natural gas to form a slurry that comprises at least liquid natural gas and solid carbon dioxide. The slurry is flowed into a hydrocyclone (i.e., the separator 108 as shown in
In this embodiment of the invention, the slurry 112 comprises a continuous flow of liquid natural gas and solid carbon dioxide particles as might be produced in a method according to the '061 patent, as it is conveyed into the vaporization chamber 102. As the slurry 112 enters the mixer 120 within the vaporization chamber 102, the second fluid 118, which comprises a continuous flow of heated gas in this example (such as heated natural gas or heated methane), enters the vaporization chamber 102. The second fluid 118 heats the outside of mixer 120 and also enters the mixer 120, as desired. The heat from the second fluid 118 causes the liquid natural gas in the slurry 112 to vaporize. The temperature and pressure within the vaporization chamber 102 may be controlled such that the liquid natural gas in the slurry 112 vaporizes but that the solid carbon dioxide particles do not melt or sublimate. The second fluid 118 and the slurry 112 may be fed to the vaporization chamber 102 in about equal ratios. For example, in one embodiment, the mass flow rate of the second fluid 118 to the vaporization chamber 102 may be about one (1.0) to about one and a half (1.5) times greater than the mass flow rate of the slurry 112 to the vaporization chamber 102. In one embodiment, the mass flow rate of the second fluid 118 to the vaporization chamber 102 is about one and three tenths (1.3) times greater than the mass flow rate of the slurry 112 to the vaporization chamber 102.
As the slurry 112 is conveyed through the vaporization chamber 102, the initial heat energy provided by the second fluid 118 may be used to facilitate a phase change of the liquid methane of the slurry 112 to gaseous methane. As this transition occurs, the temperature of the slurry 112 may remain at about −230° F. (this temperature may vary depending upon the pressure of the fluid) until all of the liquid methane of the slurry 112 is converted to gaseous methane. At this point, the solid carbon dioxide particles of the slurry 112 may now be suspended in the combined gaseous methane from the slurry 112 and second fluid 118, which exits the vaporization chamber 102 as a first gas and the solid particles 114. The temperature of the first gas and solid particles, determined by the second temperature sensor 128, may be controlled via the first valve 122 and the second valve 124 so that the temperature at the second temperature sensor 128 is higher than the vaporization temperature of the methane but colder than the sublimation temperature of the solid carbon dioxide particles. This ensures that the solid carbon dioxide particles do not begin to melt and become sticky within the vaporization chamber 102, preventing fouling of the vaporization chamber 102.
The first gas and the solid particles 114 comprising the vaporized methane and solid carbon dioxide particles are then continuously fed to the sublimation chamber 104. As the first gas and solid particles 114 enter the first portion 134 of the sublimation chamber 104, the portion of the second fluid 118′, which again comprises a continuous flow of heated gas in this example (such as heated natural gas or heated methane), enters the second portion 136 of the sublimation chamber 104. The vaporized methane from the first gas and solid particles 114 exits the sublimation chamber 104 as part of the exit gas 116 while the solid carbon dioxide particles gather in the cone-shaped member 138. The portion of the second fluid 118′ enters the first portion 134 of the sublimation chamber 104 through the nozzle 132 at about −80° F. (this temperature may vary depending upon the pressure of the fluid environment) forming the column of the second fluid 118″. The particles of carbon dioxide are funneled into the column of the second fluid 118″ by the cone-shaped member 138 where the carbon dioxide particles are suspended as they change phase from solid to vapor. All of the carbon dioxide particles may be converted to gaseous carbon dioxide. Once the gaseous carbon dioxide is formed, the gaseous carbon dioxide mixes with the gaseous methane from the first gas and the solid particles 114 and the second fluid 118, 118′ and exits the sublimation chamber as the exit gas 116.
Stream of exit gas 116 may be monitored to maintain a temperature at the third temperature sensor 130 that may be higher than the sublimation temperature of the solid carbon dioxide. However, it may be desirable to not overheat the exit stream 116, as the exit stream 116 may be reused as a refrigerant when cooling the natural gas to form the liquid natural gas according to the abovementioned U.S. Pat. No. 6,962,061. In one embodiment, the temperature of the exit stream 116 may be maintained at about twenty degrees higher than the sublimation temperature of the solid carbon dioxide. For example, the exit stream 116 may be kept at about −40° F. and about 250 psia. By maintaining the exit stream 116 at about twenty degrees higher than the sublimation temperature of the solid carbon dioxide, all of the solid carbon dioxide in the exit stream 116 will be vaporized while still producing a cold stream for reuse in another heat exchanger.
In one example, the slurry 112 may enter the vaporization chamber 102 at about 245 psia and about −219° F. at a mass flow rate of about 710 lbm/hr. The second fluid may enter the vaporization chamber 102 at about 250 psia and about 300° F. at a mass flow rate of about 950 lbm/hr. The combined vaporized slurry, including the first fluid and the vaporized particles, and the second fluid may exit the system as the exit stream 116 at about −41° F. and about 250 psia.
By using a separate vaporization chamber 102 and sublimation chamber 104 to form the exit gas 116, the process conditions (i.e., pressure and temperature) for each of the vaporization chamber 102 and the sublimation chamber 104 may be optimized for gasifying the liquid and solid components of the slurry 112. By splitting the gasifying process of the slurry 112 into a vaporization chamber 102 and a sublimation chamber 104, the solid particles may be continuously sublimated without fouling the vaporization chamber 102. The system 100, therefore, provides a continuous method of transforming the slurry 112 into the exit gas 116, which may be easily disposed of.
In light of the above disclosure it will be appreciated that the apparatus and methods depicted and described herein enable the effective and efficient conveyance and sublimation of solid particles within a fluid. The invention may further be useful for a variety of applications other than the specific examples provided. For example, the described system and methods may be useful for the effective and efficient mixing, heating, cooling, and/or conveyance of fluids containing solids where there is a temperature difference between the vaporization temperature of the fluid and the sublimation temperature of the solid.
While the invention may be susceptible to various modifications and alternative forms, specific embodiments of which have been shown by way of example in the drawings and have been described in detail herein, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention includes all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the following appended claims and their legal equivalents.
This invention was made with government support under Contract Number DE-AC07-05ID14517 awarded by the United States Department of Energy. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
1222801 | Rosenbaum | Apr 1917 | A |
2037679 | Dana | Apr 1936 | A |
2037714 | Gaines, Jr. | Apr 1936 | A |
2040059 | Mesinger | May 1936 | A |
2093805 | de Baufre | Sep 1937 | A |
2157103 | Zenner | May 1939 | A |
2209534 | Moore | Jul 1940 | A |
2379286 | Dodson | Jun 1945 | A |
2494120 | Ferro, Jr. | Oct 1950 | A |
2669941 | Stafford | Feb 1954 | A |
2701641 | Krijgsman | Feb 1955 | A |
2830769 | Work | Apr 1958 | A |
2858020 | Bek | Oct 1958 | A |
2900797 | Kurata et al. | Aug 1959 | A |
2937503 | Swearingen et al. | May 1960 | A |
3132016 | Kurata | May 1964 | A |
3168136 | Ammon | Feb 1965 | A |
3182461 | Johanson | May 1965 | A |
3193468 | Sprague | Jul 1965 | A |
3213631 | Kniel | Oct 1965 | A |
3218816 | Grenier | Nov 1965 | A |
3236057 | Hadi Hashemi-Tafreshi | Feb 1966 | A |
3254496 | Roche et al. | Jun 1966 | A |
3283521 | Harmens | Nov 1966 | A |
3289756 | Jaeger | Dec 1966 | A |
3292380 | Bucklin | Dec 1966 | A |
3310843 | Mancuso | Mar 1967 | A |
3312073 | Jackson et al. | Apr 1967 | A |
3315475 | Harmens | Apr 1967 | A |
3323315 | Carr | Jun 1967 | A |
3326453 | Kun | Oct 1967 | A |
3349020 | Crownover et al. | Jan 1968 | A |
3362173 | Ludwog | Jan 1968 | A |
3376709 | Dickey et al. | Apr 1968 | A |
3406496 | Betteridge et al. | Oct 1968 | A |
3407052 | Huntress et al. | Oct 1968 | A |
3416324 | Swearingen | Dec 1968 | A |
3422887 | Berkeley | Jan 1969 | A |
3448587 | Goard et al. | Jun 1969 | A |
3487652 | McKay | Jan 1970 | A |
3503220 | Desai | Mar 1970 | A |
3516262 | Bernstein | Jun 1970 | A |
3548606 | Kuerston | Dec 1970 | A |
3596473 | Streich | Aug 1971 | A |
3608323 | Salama | Sep 1971 | A |
3616652 | Engel | Nov 1971 | A |
3628340 | Meisler et al. | Dec 1971 | A |
3667234 | DeLizasoain | Jun 1972 | A |
3677019 | Olszewski | Jul 1972 | A |
3690114 | Swearingen et al. | Sep 1972 | A |
3724225 | Mancini et al. | Apr 1973 | A |
3724226 | Pachaly | Apr 1973 | A |
3735600 | Dowdell et al. | May 1973 | A |
3846993 | Bates | Nov 1974 | A |
3886885 | Becker et al. | Jun 1975 | A |
3897226 | Doherty | Jul 1975 | A |
4001116 | Selcukoglu | Jan 1977 | A |
4004430 | Solomon et al. | Jan 1977 | A |
4007601 | Webbon | Feb 1977 | A |
4022597 | Bacon | May 1977 | A |
4025315 | Mazelli | May 1977 | A |
4032337 | Boyer | Jun 1977 | A |
4120911 | Davidson | Oct 1978 | A |
4128410 | Bacon | Dec 1978 | A |
4148723 | Mozley | Apr 1979 | A |
4161107 | Chemychev et al. | Jul 1979 | A |
4183369 | Thomas | Jan 1980 | A |
4187689 | Selcukoglu et al. | Feb 1980 | A |
4294274 | LeRoy | Oct 1981 | A |
4318723 | Holmes et al. | Mar 1982 | A |
4334902 | Paradowski | Jun 1982 | A |
4359871 | Strass | Nov 1982 | A |
4370150 | Fenstermaker | Jan 1983 | A |
4453956 | Fabbri et al. | Jun 1984 | A |
4456459 | Brundige | Jun 1984 | A |
4479533 | Persson et al. | Oct 1984 | A |
4479536 | Lameris | Oct 1984 | A |
4522636 | Markbreiter et al. | Jun 1985 | A |
4528006 | Vitovec et al. | Jul 1985 | A |
4561496 | Kehrer | Dec 1985 | A |
4609390 | Wilson | Sep 1986 | A |
4611655 | Molignoni | Sep 1986 | A |
4645522 | Dobrotwir | Feb 1987 | A |
4654522 | Gornick et al. | Mar 1987 | A |
4783272 | Patterson | Nov 1988 | A |
4798242 | Kito et al. | Jan 1989 | A |
4822393 | Markbreiter et al. | Apr 1989 | A |
4846862 | Cook | Jul 1989 | A |
4869313 | Fredley | Sep 1989 | A |
4970867 | Herron et al. | Nov 1990 | A |
4993485 | Gorman | Feb 1991 | A |
4994097 | Brouwers | Feb 1991 | A |
5003782 | Kucerija | Apr 1991 | A |
5032143 | Ritakallio | Jul 1991 | A |
5036671 | Nelson et al. | Aug 1991 | A |
5062270 | Haut et al. | Nov 1991 | A |
5074758 | McIntyre | Dec 1991 | A |
5174796 | Davis et al. | Dec 1992 | A |
5218832 | Woolley | Jun 1993 | A |
5252613 | Chang et al. | Oct 1993 | A |
5291736 | Paradowski | Mar 1994 | A |
5325673 | Durr et al. | Jul 1994 | A |
5327730 | Myers et al. | Jul 1994 | A |
5375422 | Butts | Dec 1994 | A |
5379832 | Dempsey | Jan 1995 | A |
5386699 | Myers et al. | Feb 1995 | A |
5390499 | Rhoades et al. | Feb 1995 | A |
5419392 | Maruyama | May 1995 | A |
5450728 | Vora et al. | Sep 1995 | A |
5473900 | Low | Dec 1995 | A |
5489725 | Minkkinen et al. | Feb 1996 | A |
5505048 | Ha et al. | Apr 1996 | A |
5505232 | Barclay | Apr 1996 | A |
5511382 | Denis et al. | Apr 1996 | A |
5537827 | Low et al. | Jul 1996 | A |
5551256 | Schmidt | Sep 1996 | A |
5600969 | Low | Feb 1997 | A |
5615561 | Houshmand et al. | Apr 1997 | A |
5615738 | Cameron et al. | Apr 1997 | A |
5655388 | Bonaquist et al. | Aug 1997 | A |
5669234 | Houser et al. | Sep 1997 | A |
5704227 | Krabbendam | Jan 1998 | A |
5718126 | Capron et al. | Feb 1998 | A |
5755114 | Foglietta | May 1998 | A |
5755280 | Da Costa et al. | May 1998 | A |
5799505 | Bonaquist et al. | Sep 1998 | A |
5819555 | Engdahl | Oct 1998 | A |
5836173 | Lynch et al. | Nov 1998 | A |
5916260 | Dubar | Jun 1999 | A |
5950453 | Bowen et al. | Sep 1999 | A |
5956971 | Cole et al. | Sep 1999 | A |
5983665 | Howard et al. | Nov 1999 | A |
6023944 | Blundell | Feb 2000 | A |
6041620 | Olszewski et al. | Mar 2000 | A |
6085546 | Johnston | Jul 2000 | A |
6085547 | Johnston | Jul 2000 | A |
6105390 | Bingham et al. | Aug 2000 | A |
6131395 | Greene et al. | Oct 2000 | A |
6131407 | Wissolik | Oct 2000 | A |
6138473 | Boyer-Vidal | Oct 2000 | A |
6138746 | Livolsi et al. | Oct 2000 | A |
6196021 | Wissolik | Mar 2001 | B1 |
6200536 | Tonkovich et al. | Mar 2001 | B1 |
6212891 | Minta et al. | Apr 2001 | B1 |
6220052 | Tate, Jr. et al. | Apr 2001 | B1 |
6220053 | Hass et al. | Apr 2001 | B1 |
6250244 | Dubar et al. | Jun 2001 | B1 |
6295833 | Hoffart et al. | Oct 2001 | B1 |
6301927 | Reddy | Oct 2001 | B1 |
6354105 | Lee et al. | Mar 2002 | B1 |
6367286 | Price | Apr 2002 | B1 |
6370910 | Grootjans et al. | Apr 2002 | B1 |
6372019 | Alferov et al. | Apr 2002 | B1 |
6375906 | Edlund et al. | Apr 2002 | B1 |
6378330 | Minta et al. | Apr 2002 | B1 |
6382310 | Smith | May 2002 | B1 |
6389844 | Klein Nagel Voort | May 2002 | B1 |
6390114 | Haandrikman et al. | May 2002 | B1 |
6397936 | Crowley et al. | Jun 2002 | B1 |
6400896 | Longardner | Jun 2002 | B1 |
6410087 | Wilde et al. | Jun 2002 | B1 |
6412302 | Foglietta | Jul 2002 | B1 |
6425263 | Bingham et al. | Jul 2002 | B1 |
6427464 | Beaverson et al. | Aug 2002 | B1 |
6441263 | O'Rear et al. | Aug 2002 | B1 |
6442969 | Rojey et al. | Sep 2002 | B1 |
6446465 | Dubar | Sep 2002 | B1 |
6484533 | Allam et al. | Nov 2002 | B1 |
6581409 | Wilding et al. | Jun 2003 | B2 |
6581510 | Koch et al. | Jun 2003 | B2 |
6694774 | Rashad et al. | Feb 2004 | B1 |
6742358 | Wilkinson et al. | Jun 2004 | B2 |
6767388 | Lecomte et al. | Jul 2004 | B2 |
6793712 | Qualls | Sep 2004 | B2 |
6962060 | Petrowski et al. | Nov 2005 | B2 |
6962061 | Wilding et al. | Nov 2005 | B2 |
7078011 | Morrow | Jul 2006 | B2 |
7219512 | Wilding et al. | May 2007 | B1 |
7228714 | Howard | Jun 2007 | B2 |
7231784 | Howard et al. | Jun 2007 | B2 |
7288231 | Tonkovich et al. | Oct 2007 | B2 |
7325415 | Amin et al. | Feb 2008 | B2 |
7469556 | Howard | Dec 2008 | B2 |
7575624 | Cartwright et al. | Aug 2009 | B2 |
7591150 | Turner et al. | Sep 2009 | B2 |
7591648 | Mosiewicz | Sep 2009 | B2 |
7594414 | Wilding et al. | Sep 2009 | B2 |
7765920 | Keller | Aug 2010 | B2 |
8245727 | Mooney et al. | Aug 2012 | B2 |
8250883 | Migliore et al. | Aug 2012 | B2 |
20030196452 | Wilding et al. | Oct 2003 | A1 |
20040083888 | Qualls | May 2004 | A1 |
20040105812 | Tonkovich et al. | Jun 2004 | A1 |
20040148962 | Rashad et al. | Aug 2004 | A1 |
20040177646 | Wilkinson et al. | Sep 2004 | A1 |
20050144979 | Zollinger et al. | Jul 2005 | A1 |
20050183452 | Hahn et al. | Aug 2005 | A1 |
20050220704 | Morrow et al. | Oct 2005 | A1 |
20050279132 | Eaton et al. | Dec 2005 | A1 |
20060053806 | Tassel | Mar 2006 | A1 |
20060213222 | Whitesell | Sep 2006 | A1 |
20060218939 | Turner et al. | Oct 2006 | A1 |
20070017250 | Turner | Jan 2007 | A1 |
20070107465 | Turner et al. | May 2007 | A1 |
20070137246 | McKellar et al. | Jun 2007 | A1 |
20070193303 | Hawrysz et al. | Aug 2007 | A1 |
20080156035 | Aspelund et al. | Jul 2008 | A1 |
20080264076 | Price et al. | Oct 2008 | A1 |
20090071634 | Turner et al. | Mar 2009 | A1 |
20090217701 | Minta et al. | Sep 2009 | A1 |
20090248174 | Taha et al. | Oct 2009 | A1 |
20090277217 | Ransbarger et al. | Nov 2009 | A1 |
20100018248 | Fieler et al. | Jan 2010 | A1 |
20100088920 | LaRou | Apr 2010 | A1 |
20100186446 | Turner et al. | Jul 2010 | A1 |
20100223950 | Malsam | Sep 2010 | A1 |
20100313597 | Bridgwood | Dec 2010 | A1 |
20110196159 | De Munck et al. | Aug 2011 | A1 |
20120103428 | Turner et al. | May 2012 | A1 |
20120103561 | Turner et al. | May 2012 | A1 |
20130340475 | Turner et al. | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
101539362 | Sep 2009 | CN |
0 676 599 | Oct 1995 | EP |
1 205 721 | May 2002 | EP |
2805034 | Aug 2001 | FR |
1135871 | Dec 1968 | GB |
58-159830 | Sep 1983 | JP |
11200817 | Jul 1999 | JP |
2002071861 | Mar 2002 | JP |
8800936 | Feb 1988 | WO |
9859206 | Dec 1998 | WO |
9859205 | Dec 1998 | WO |
0144735 | Jun 2001 | WO |
03062725 | Jul 2003 | WO |
03064947 | Aug 2003 | WO |
2005114076 | Dec 2005 | WO |
2010023238 | Mar 2010 | WO |
Entry |
---|
Search Report for PCT/US2006/041039 dated Aug. 8, 2007. |
Search Report for PCT/US2007/084677 dated Jul. 1, 2008. |
International Preliminary Report for PCT/US08/68938 dated Mar. 16, 2010. |
Search Report for PCT/US2010/045340 dated Oct. 13, 2010. |
Search Report for PCT/US2010/045332 dated Oct. 18, 2010. |
Search Report for PCT/US2008/051012 dated May 20, 2008. |
Search Report for PCT/US2010/045321 dated Oct. 1, 2010. |
International Preliminary Examination Report for PCT/US2002/20924 dated Jun. 17, 2003. |
Search Report for PCT/US1998/027232, dated Jul. 7, 1999. |
A National Vision of America's Transition to a Hydrogen Economy-To 2030 and Beyond, Based on the results of the National Hydrogen Vision Meeting Washington, DC Nov. 15-16, 2001, United States Department of Energy. |
Curtin University of Technology, LNG Microcell Progress Update, May 2002, Curtin/Corelab. |
Generation of Hydrogen and Transportation and Transmission of Energy Generated on the U.S. Outer Continental Shelf to Onshore, (Minerals Management Service), May 2006. |
Holmes et al., “Ryan/Holmes Cryogenic Acid Gas/Hydrocarbon Separations Provide Economic Benefits for LNG Production,” 7th International Conference on Liquefied Natural Gas; Jakarta, Indonesia; May 1983; Institute of Gas Technology, Session II, vol. 1, P. |
Hydrogen as an Energy Carrier and its Production by Nuclear Power, IAEA-TECDOC-1085, International Atomic Energy Agency, May 1999. |
“Hydrogen Infrastructure Delivery, Reliability R&D Needs,” Science Applications International Corporation, Prepared for U.S. Department of Energy, NETL Natural Gas & Infrastructure Reliability Program, 2007, <www.netl.doe.gov/technologies/oil-gas/publications/td/Final%20White%20Paper%020072604.pdf>. |
International Search Report for PCT/US02/20924, dated 17 Sep. 2002 (4 pages). |
Mott Corporation, “Porous metal solutions,” Jun. 2007, 16 pages. |
Porous Metal Design Guidebook, Metal Powder Industries Federation, Princeton, NJ, <<http://www.mpif.org/designcenter/porous.pdf>>, Jun. 2007, 25 pages. |
The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs, National Academy of Engineering and Board on Energy and Environmental Systems, 2004, The National Academies Press, <http://books.nap.edu/ books/0309091632/html/index.html>. |
The Hydrogen Initiative, Panel on Public Affairs, American Physical Society, Mar. 2004, <http://www.aps.org/public—affairs/popa/reports/index.cfm>. |
PCT International Preliminary Report on Patentability and Written Opinion for PCT/US2006/041039 dated Apr. 9, 2009, 7 pages. |
PCT International Preliminary Report on Patentability and Written Opinion for PCT/US2007/084677 dated May 28, 2009, 7 pages. |
PCT International Search Report and Written Opinion for PCT/US08/68938 dated Oct. 10, 2008, 8 pages. |
PCT International Preliminary Report on Patentability and Written Opinion for PCT/US2008/051012 dated Aug. 27, 2009, 7 pages. |
U.S. Appl. No. 12/603,948, filed Oct. 22, 2009, titled, “Complete Liquefaction Methods and Apparatus,” by Turner et al. |
U.S. Appl. No. 12/604,139, filed Oct. 22, 2009, titled, “Natural Gas Liquefaction Core Modules, Plants Including Same and Related Methods,” by Wilding et al. |
U.S. Appl. No. 12/604,194, filed Oct. 22, 2009, titled, “Methods of Natural Gas Liquefaction and Natural Gas Liquefaction Plants Utilizing Multiple and Varying Gas Streams,” by Wilding et al. |
PCT International Preliminary Report on Patentability and Written Opinion for PCT/US2010/045321 dated Oct. 1, 2010, 6 pages. |
PCT International Preliminary Report on Patentability and Written Opinion for PCT/US2010/045332 dated Oct. 18, 2010, 11 pages. |
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US2011/059042, dated Mar. 16, 2012, 9 pages. |
Bodner Research Web, “Phase Diagrams,” http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch14/phase.php. |
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US2013/044967, dated Nov. 12, 2013 10 pages. |
Relations between height, pressure, density and temperature, http://www.aerostudents.com/files/aerodynamicsA/relationsPressure Height.pdf. |
Office Action for Chinese Patent Application No. 201180051616.6, Issued May 11, 2015, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20120103012 A1 | May 2012 | US |