This disclosure relates generally to motion stabilization of floating maritime structures, and more particularly to methods and systems for stabilizing environmentally-induced motion of a maritime structure using one or more submerged containers.
The term “maritime structure” may be used to describe any structure that floats on or is submerged in a maritime environment. For example, a floating maritime structure typically includes, but is not limited to, vessels, barges, ships, floating support platforms, floating docks, etc. Floating maritime structures (hereinafter referred to simply as floating structures) exhibit motion when external environmental forces such as wind, waves, and currents, are exerted upon them. Submerged maritime structures (hereinafter referred to simply as submerged structures) are generally susceptible to environmental forces caused by underwater currents. The external environmental forces induce floating/submerged structure motions (i.e., surge, sway, heave, roll, pitch, and yaw) that may be detrimental to the crew, payload, structure, and operations of the structure. The induced motions of the floating/submerged structure may also move the structure to unwanted positions. Because of this, many methods exist for positioning maritime structures and damping out the environmentally-induced motions of such structures.
Existing methods that provide some form of motion stabilization for floating structures include heave plates, sea anchors or drogues, and conventional ship anchors. Heave plates are large, flat plates designed to add motion damping to a floating structure and are typically tuned to the structure. Heave plates provide damping through viscous losses of the plate through the fluid. The viscous losses must be accounted for during the full cycle of motion of the heave plate thereby typically requiring the heave plate to be very large, heavy, and only useful for long periods of motion. Also, heave plates can only be used to address vertical motions, such as heave, pitch, and roll.
Sea anchors and drogues are typically some sort of parachute that is dragged behind a moving vessel near a water surface. These devices provide a damping force to resist horizontal motions (i.e., surge, sway, yaw) of the moving vessel. Typically, sea anchors and drogues are used as a positioning device to maintain a specific heading of the moving vessel relative to the waves to prevent broadsiding of the waves on the vessel and to prevent drift during high winds. These devices are used on smaller vessels and are not usually used on large floating structures.
Conventional ship anchors are made to drag, embed, and rest upon the sea floor using their shape to engage the sea floor and their massive weight to hold position. These anchors do not provide a damping or motion stabilizing force and are only used for positioning of a vessel. These devices are limited by the depth of the water at deployment and by their size. Other anchor options include fixed mooring points. However, these must be pre-existing at a desired location, are expensive, and may not be physically feasible in many deep-water applications.
Accordingly, it is an object of the present disclosure to describe methods and systems for stabilizing environmentally-induced motion of a maritime structure.
Other objects and advantages of the methods and systems described herein will become more obvious hereinafter in the specification and drawings.
In accordance with methods and systems described herein, a motion stabilizing system includes at least one stabilizer adapted to be coupled to a structure floating in a water environment. Each stabilizer includes a tension member, an open-ended container having a set of holes, and at least one one-way valve associated with the holes. For each stabilizer, the tension member has a first end and a second end with the first end adapted to be coupled to a portion of the structure and the second end being disposed in the water environment. For each stabilizer, the container is coupled to the tension member and is suspended in the water environment. For each stabilizer, the one-way valves are operable to seal the holes when the portion of the structure moves away from the container and operable to unseal the holes when the portion of the structure moves towards the container.
Other objects, features and advantages of the methods and systems described in the present disclosure will become apparent upon reference to the following description of the preferred embodiments and to the drawings, wherein corresponding reference characters indicate corresponding parts throughout the several views of the drawings and wherein:
Referring now to the drawings and more particularly to
Floating structure 100 may be any structure designed to float at the surface 202 of a water environment 200. In some embodiments, floating structure 100 is designed to be relatively stationary at a location on surface 202 as is the case for a wind turbine's floating support platform, floating docks, and some barge applications. In addition to remaining stationary at a location, some types of floating structures require stabilization in the face of environmentally-induced motions. As will be explained further herein, submerged container system 10 provides at-location motion stabilization for floating structure 100 experiencing environmentally-induced motion caused by one or more of waves, wind, and currents acting on the structure and/or any elements coupled to the structure.
System 10 is one or more motion stabilizers coupled to floating structure 100. In the illustrated embodiment, system 10 is a single motion stabilizer. In other embodiments and as will be described later herein, the submerged container system of the present disclosure has multiple motion stabilizers coupled to a floating structure at the water's surface. The essential features of each motion stabilizer in accordance with the present disclosure remains the same regardless of the number of motion stabilizers utilized. When multiple motion stabilizers are used, they may be configured in the same way or different ways without departing from the scope of the present disclosure.
Submerged container system 10 includes an open-ended container 20 and a tension member 30 coupled on one end 32 to floating structure 100 and on the other end(s) 34 to container 20 such that container is submerged and suspended in water 200 (i.e., not contacting the sea floor) throughout the system's operation. Container 20 has an open end (indicated by dashed line 22) such that the internal volume of container 20 fills with water 200 when submerged therein. Tension member 30 is coupled to container 20 such that open end 22 faces towards the water's surface 202, i.e., open end 22 is approximately parallel to surface 202 or is at an angle relative to surface 202 that is less than 90°. Tension member 30 may be configured to have one or more ends 34 for coupling to a corresponding number of points on container 20 without departing form the scope of the present disclosure. Tension member 30 is any elongate member (e.g., metal or composite cable, wire, chain, line, rope, etc.) that is substantially inelastic such that the deployed length of tension member 30 does not significantly change during system operations.
Container 20 includes walls 24 (e.g., side wall and, in some embodiments, bottom walls) such that an internal volume defined by walls 24 fills with water 200 when container 20 is submerged in water 200. Walls 24 have a set of holes 26 passing there through. The shape and size of holes 26 are not limitations of the systems and methods described herein. A container's holes 26 may be the same size/shape or different sizes/shapes without departing from the scope of the present disclosure.
Cooperating with each of holes 26 is a one-way valve (“V”) 28 that, in operation of system 10, either seals/closes its corresponding hole 26 or unseals/opens its corresponding hole 26. In some embodiments, each hole 26 may have a dedicated valve 28 associated therewith. In some embodiments, one valve 28 may be used to control the sealing/unsealing of more than one of holes 26. In all cases, when holes 26 are sealed/closed, the internal volume of container 20 is only in fluid communication with water 200 via its open end 22. When holes 26 are unsealed/opened, the internal volume of container 20 is in fluid communication with water 200 via open end 22 and the unsealed/opened holes 26.
Referring additionally now to
In the scenario illustrated in
When motion 300 is halted owing to resistance tension force FT, floating structure 100 experiences motion 400 back towards container 20 as illustrated in
Container 20 and its holes/valves 26/28 may be configured in a variety of ways without departing form the scope of the present disclosure. Several non-limiting examples of suitable containers are illustrated in
The above-described conical and truncated conical containers may vary in radius, height, and slant angle to optimize the container for each application. For example, a flatter and wider cone will generate a larger resistive force when the floating structure moves away from the container and will move downward more slowly when the floating structure moves towards it. This type of configuration may be suitable for larger, slower moving floating structures. Extra holes/valves may be added to remove resistance to the downward motion of the container. Containers having a narrower conical shape will generate a lower resistive force as less water is captured in the container, but will move downward more quickly as the narrower conical shape presents less resistance to the container's downward motion. This type of configuration may be suitable for smaller, faster moving floating structures. Maximizing the internal volume of a container maximizes the resistance force when the floating structure moves away the container, while minimizing the cross-sectional area of the container facing the sea floor and making the container more streamlined minimizes the container's sinking resistance when the floating structure moves towards the container. A conical container may also be modified to different shapes including variation in slant angle along the height of the container. Still further, a container may have fins added to its outer edges for increased stability as it moves upward or downward through the water.
Containers 20 contemplated by the present disclosure include a variety of constant or fixed-shape containers as shown by way of example in
An embodiment of a collapsible conical container 20 for use in the presently disclosed system is illustrated in
In another embodiment of a collapsible container illustrated in
As mentioned above, the present disclosure contemplates using one or more of the above-described container-based motion stabilizers. The use of multiple motion stabilizers provides for motion stabilization at multiple positions of a maritime structure in order adapt to different types of environmentally-induced motions (e.g., roll, pitch, etc.) acting on different parts of the structure. For example,
The presently disclosed submerged container system may be used with a variety of maritime structures regardless of their size, shape, or configuration. For example, a substantially rectangular floating structure 100 is illustrated in a plan view thereof as it floats on water surface 202 in
As described earlier herein, valves 28 may be configured to passively open/close to respectively unseal/seal their respective holes 26 based on movement of the floating structure relative to the tethered container(s). However, the submerged container system may also use actively controlled valves. For example and as illustrated in
The advantages of the systems and methods described herein are numerous. The submerged container system provides a resistive and stabilizing force to the motion of a maritime structure. A large resistive force is created when the structure moves away from the system's submerged container(s). When the structure moves back towards the system's submerged container(s), the container(s) are configured to sink in the water in order to maintain a relatively constant force in a container's tension member that is much less than the previously created resistive force. Through this mechanism, the system's container(s) provide a 180° resistance to environmentally-induced heave, pitch, and roll experienced by the structure. Some configurations of the containers may be collapsible to facilitate transportation, storage, deployment, and retrieval. The systems and methods described herein do not require any contact or coupling to a sea floor and, therefore, are not encumbered with the complexities and costs associated with motion damping systems that rely on attachments to a sea floor.
Although the methods and systems presented herein have been described for specific embodiments thereof, there are numerous variations and modifications that will be readily apparent to those skilled in the art in light of the above teachings. For example, in some embodiments, one or more weights may be coupled to the “bottom” (i.e., in opposition to a container's open end) of a container to maintain a container's orientation (e.g., container's open end is perpendicular to its tension member) and/or to enhance a container's ability to sink through the water when its tethered structure undergoes the above-described downward motion 400 (
Pursuant to 35 U.S.C. § 119, the benefit of priority from provisional application 63/473,713, with a filing date of Jun. 17, 2022, is claimed for this non-provisional application.
Number | Date | Country | |
---|---|---|---|
63473713 | Jun 2022 | US |