The invention is directed toward underwater hyperfiltration systems.
There have been several proposals to operate reverse osmosis modules underwater. See for example: U.S. Pat. No. 7,600,567, U.S. Pat. No. 5,366,635, U.S. Pat. No. 3,456,802, US20070151916, US20100237016 and GB2068774. With submerged systems, the hydrostatic head pressure associated with submersion provides a major component of the energy required to overcome osmotic pressure for “reverse osmosis” separation. In the case the system is used to produce permeate for off-shore applications, (e.g. enhanced oil recovery) locating the reverse osmosis system in the sea rather than on a ship or platform also reduces the foot print required for off shore water purification. Another advantage of submerged systems is that bio-growth is less active at greater depths due to reduced light and lower water temperatures. However, because of their depth submerged systems are more difficult to maintain, clean, descale and service. To limit these operating issues, more extensive pretreatment can be used, but at both increased cost and complexity of the system.
The invention includes a water purification system including a plurality of spiral wound hyperfiltration membrane modules each connected in a parallel flow arrangement to a common feed manifold and a common permeate manifold. Each module includes at least one feed spacer sheet and one membrane envelop wound about a permeate collection tube having a plurality of openings along its length that are in fluid communication with the membrane envelop, and further includes an end cap secured to an end of the module. A manifold junction is reversibly connected to the end cap of each module and provides a sealed fluid communication between the feed spacer sheets and permeate collection tubes of each module to the feed manifold and permeate manifold, respectively. The modules and manifolds are submerged under water. The system further includes a first pump in fluid communication with the feed manifold and adapted to drive feed flow (sea water) through the feed spacer sheets of each module and a second pump in fluid communication with the permeate manifold and adapted to withdraw permeate from the permeate collection tube of each module. The pumps may be located above or below water. Methods for operating the system that avoid fouling are also described.
The figures are not to scale and include idealized views to facilitate description. Where possible, like numerals have been used throughout the figures and written description to designate the same or similar features.
The present invention includes a plurality of spiral wound modules (“elements”) suitable for use in reverse osmosis (RO) and nanofiltration (NF). RO membranes used to form envelops are relatively impermeable to virtually all dissolved salts and typically reject more than about 95% of salts having monovalent ions such as sodium chloride. RO membranes also typically reject more than about 95% of inorganic molecules as well as organic molecules with molecular weights greater than approximately 100 Daltons. NF membranes are more permeable than RO membranes and typically reject less than about 95% of salts having monovalent ions while rejecting more than about 50% (and often more than 90%) of salts having divalent ions—depending upon the species of divalent ion. NF membranes also typically reject particles in the nanometer range as well as organic molecules having molecular weights greater than approximately 200 to 500 Daltons. For purposes of this description, the term “hyperfiltration” encompasses both reverse osmosis (RO) and nanofiltration (NF).
A representative spiral wound filtration module is generally shown in
During module fabrication, permeate spacer sheets (12) may be attached about the circumference of the permeate collection tube (8) with membrane leaf packets interleaved there between. The back sides (36) of adjacently positioned membrane leaves (10, 10′) are sealed about portions of their periphery (16, 18, 20) to enclose the permeate spacer sheet (12) to form a membrane envelope (4). Suitable techniques for attaching the permeate spacer sheet to the permeate collection tube are described in U.S. Pat. No. 553,862. The membrane envelope(s) (4) and feed spacer(s) (6) are wound or “rolled” concentrically about the permeate collection tube (8) to form two opposing scroll faces at opposing ends (30, 32) and the resulting spiral bundle is held in place, such as by tape or other means. The scroll faces may then be trimmed and a sealant may optionally be applied at the junction between the scroll faces and permeate collection tube (8) as described in U.S. Pat. No. 7,951,295. Modules of the present invention preferably include a non-porous cylindrical shell (38) that is integral with the module. Long glass fibers may be wound about the partially constructed module and resin (e.g. liquid epoxy) applied and hardened. In some applications, it may be sufficient to apply tape about the circumference of the wound module, as described in U.S. Pat. No. 812,588. A non-porous shell (38) may also be applied by other methods (e.g. wrapping hot melt, injection molding, or use of shrink tubing). At least one end and preferably both ends of module are fitted with an anti-telescoping device or “end cap” (56) (shown in
Materials for constructing various components of spiral wound modules are well known in the art. Suitable sealants for sealing membrane envelopes include urethanes, epoxies, silicones, acrylates, hot melt adhesives and UV curable adhesives. While less common, other sealing means may also be used such as application of heat, pressure, ultrasonic welding and tape. Permeate collection tubes (8) are typically made from plastic materials such as acrylonitrile-butadiene-styrene, polyvinyl chloride, polysulfone, poly (phenylene oxide), polystyrene, polypropylene, polyethylene or the like. Tricot polyester materials are commonly used as permeate spacers (12). Additional permeate spacers are described in US 2010/0006504. However, permeate channels (12′) may be formed by any structure that maintains the surfaces of membrane envelope apart. Representative feed spacers (6) include polyethylene, polyester, and polypropylene mesh materials such as those commercially available under the trade name VEXAR™ from Conwed Plastics. Preferred feed spacers (6) are described in U.S. Pat. No. 6,881,336. To assist in submerged operation with minimal pretreatment of natural waters, the feed channel (6′) preferably has a thickness of at least 1 mm, preferably at least 1.5 mm, or even more preferably at least 2 mm.
The membrane sheet (10) is not particularly limited and a wide variety of materials may be used, e.g. cellulose acetate materials, polysulfone, polyether sulfone, polyamides, polyvinylidene fluoride, etc. A preferred membrane sheet includes FilmTec Corporation's FT-30™ type membranes, i.e. a flat sheet composite membrane comprising a backing layer (back side) of a nonwoven backing web (e.g. a non-woven fabric such as polyester fiber fabric available from Awa Paper Company), a middle layer comprising a porous support having a typical thickness of about 25-125 μm and top discriminating layer (front side) comprising a thin film polyamide layer having a thickness typically less than about 1 micron, e.g. from 0.01 micron to 1 micron but more commonly from about 0.01 to 0.1 μm. The backing layer is not particularly limited but preferably comprises a non-woven fabric or fibrous web mat including fibers which may be orientated. Alternatively, a woven fabric such as sail cloth may be used. Representative examples are described in U.S. Pat. No. 214,994, U.S. Pat. No. 4,795,559, U.S. Pat. No. 5,435,957, U.S. Pat. No. 5,919,026, U.S. Pat. No. 6,156,680, US 2008/0295951 and U.S. Pat. No. 7,048,855. The porous support is typically a polymeric material having pore sizes which are of sufficient size to permit essentially unrestricted passage of permeate but not large enough so as to interfere with the bridging over of a thin film polyamide layer formed thereon. For example, the pore size of the support preferably ranges from about 0.001 to 0.5 μm. Non-limiting examples of porous supports include those made of: polysulfone, polyether sulfone, polyimide, polyamide, polyetherimide, polyacrylonitrile, poly(methyl methacrylate), polyethylene, polypropylene, and various halogenated polymers such as polyvinylidene fluoride. The discriminating layer is preferably formed by an interfacial polycondensation reaction between a polyfunctional amine monomer and a polyfunctional acyl halide monomer upon the surface of the microporous polymer layer as described in U.S. Pat. No. 277,344 and U.S. Pat. No. 6,878,278.
The present water filtration system utilizes the hydrostatic head pressure associated with submersion under water to provide a major component of the energy required to overcome osmotic pressure for “reverse osmosis” separation. As a consequence, operating at very low permeate recoveries is economical viable. For instance, the present submerged system may operate with permeate recovery of less than 20% without providing energy to pressurize the remaining 80% of feed water not produced as permeate. In a preferred embodiment, the subject submerged system is operated with a recovery of less than 15%, less than 10%, or even less than 5%. At such low recoveries, the increase in osmotic strength along the length of a hyperfiltration module is much less than traditional non-submerged operation. As a result, the absolute change in net driving pressure along the length of the module is also much less. As a consequence, high permeability modules are preferred in the present invention. In particular, spiral wound hyperfiltration modules that include membrane sheets with average A-values greater than 5 L/m2 hr/bar, more preferably greater than 10 L/m2 hr/bar, or even greater than 15 L/m2 hr/bar, when measured at 35000 ppm NaCl, 20 L/m2 hr, and pH 8.2 are preferred. One way to produce modules with this high of water permeability is to treat commercial brackish water reverse osmosis modules (e.g. FilmTec™ XLE) for a prolonged time with chlorine, such as by methods described in U.S. Pat. No. 5,876,602. Membrane sheet also preferably have an average B-value for NaCl of less than 20 L/m2 hr (e.g. from 1 and 20 L/m2 hr) when measured under the same conditions.
Arrows shown in
While modules are available in a variety of sizes, one common industrial RO module configuration is available with a standard 8 inch (20.3 cm) diameter and 40 inches (101.6 cm) length. For a typical 8 inch diameter module, 26 to 30 individual membrane envelopes are wound around the permeate collection tube (i.e. for permeate collection tubes having an outer diameter of from about 1.5 to 1.9 inches (3.8 cm-4.8 cm)). Less conventional modules may also be used, including those described in US 2011/023206 and WO 2012/058038.
In conventional RO operations, a plurality of modules is housed in series within a common pressurized vessel. Feed water flows through successive feed channels of modules from one end of the vessel to the opposite end. In the present invention, the modules are not located within a common pressure vessel. Moreover, each module is preferably connected in a parallel manner to a common feed manifold, and pressure vessels are preferably entirely avoided.
In
As mentioned, the water purification system preferably includes two pumps—a first pump connected to the feed manifold and a second pump connected to the permeate manifold. The first pump preferably operates with a relatively low pressure differential and causes convective flow into the feed manifold and through the feed channels of modules. Preferably, the pump causes a pressure drop of less than 1 bar (ΔP<1 bar). The pump may be a centrifugal-type pump. The second pump connected to the permeate manifold operates with relatively higher pressure difference (ΔP>1 bar) and provides suction to cause permeation through the membrane sheets. It may also serve to raise permeate to the surface. It is noted that a high-pressure pump may be required for driving permeate produced at depth up to the surface. In other cases, permeate may be used for injection in sub-sea formations without being raised to the surface. In one embodiment, multiple pumps are powered from a common motor.
Many bodies of water contain small particles that can foul the membrane or feed channel within a module. As a consequence, feed water is preferably pretreated to remove particular matter prior to being treated by the hyperfiltration modules. Pretreatment is preferably accomplished using a pretreatment filter assembly that is back-washable, so that reversing of fluid flow can effectively remove accumulated particles. In one embodiment, a flow reversal causes a filter to flex or change shape and assist in the removal of accumulated particles and debris from the surface. Examples of such flexible filters include bag or sock type filter and with loosely suspended porous sheet, or a plurality of porous hollow fibers. To limit flow loss in the pretreatment filter, the pretreatment filter assembly preferably has a 90% cutoff greater than 0.01 mm, and even more preferably between 0.02 and 0.2 mm. The pretreatment filter assembly may be an asymmetric sheet, with smaller holes facing the surrounding untreated water and larger holes facing the treated water. Preferably, feed channels of the hyperfiltration modules may have a thickness that exceeds five times, and more preferably ten times, the prefilter's 90% cutoff.
It is preferred that the pump supplying feed flow to the feed manifold and hyperfiltration modules is also used to create flow through the pretreatment filter assembly. The pretreatment filter assembly may be attached to one end of individual hyperfiltration modules. Alternatively it may be connected to an inlet feed manifold so that it pre-treats the water for a plurality of hyperfiltration modules. In some embodiments, an enclosure surrounds the hyperfiltration modules and isolates the modules from particulates in the water body. It is preferred that pressures inside and outside the enclosure can be maintained similar, even within 0.1 bar. The walls of such an enclosure may itself be a permeable material that acts as a pre-filter. Alternatively, the enclosure may be fluidly connected to a pre-filter having high surface area. In a preferred embodiment, the volume of the particulate filtration device exceeds that of downstream hyperfiltration modules.
Fouling of the feed channels of hyperfiltration modules may also be mitigated by switching the direction of feed flow through the channels. Preferably, the water purification system is sufficient to intermittently allow the direction of flow through the feed manifold and parallel hyperfiltration modules to be reversed. The pump direction may be reversed. Alternatively, opposite flow direction may be accomplished with valves (80) that re-direct feed water. A computer within the system controls the time for switching the flow direction. The system may be operated to provide a greater volumetric flow rate immediately following a flow reversal. A greater flow rate through the feed channels may also be provided in one direction compared to the opposite direction. Preferably, the pump providing flow through the feed channels and feed manifold is also sufficient to allow the direction of flow through a particulate filtration device to reverse. The pump may provide a higher flow rate for back-flushing the particulate filtration device.
The needs of the hyperfiltration modules and pretreatment filter system are different, as the former may require sustained operation at high velocity to loosen and carry away foulants, while the latter may need only short bursts of flow at low velocity to slough particles. In one embodiment, the duration of back-flushing the pretreatment filter is less than the duration of reverse flow through the hyperfiltration modules. For use with short durations, either back-flushing of the particulate filter or reverse flow through the hyperfiltration modules may be performed with raw feed.
Another aspect of this invention is to avoid fouling by operating the hyperfiltration modules at higher cross flow rates than are conventionally used. For instance, module manufacturers' guidelines typically limit the maximum flow rate of concentrate from a system. For an 8-inch diameter Dow module within a shell, the recommended maximum feed flow rate for a system is 17 m3/hr. Normalized to the modules' scroll face area, this corresponds to an average face velocity for feed from the module (immediately downstream of the scroll face) of less than 15 cm/sec. However, in some embodiments, the average face velocity of the concentrate solution immediately downstream of modules in the present invention exceeds, at least intermittently, 20 cm/sec, 25 cm/sec, or even exceeds 30 cm/sec. In one manner of operation, the face velocity exceeds this value during an intermittent cleaning, following a flow reversal.
The embodiments illustrated in
The described water purification system may be applied in several situations. The body of water may be fresh water or saline. The system may be suspended from floats (including a ship), it may be neutrally buoyant, or it may be resting of on a submerged surface (e.g. ocean floor). The depth preferably corresponds to a gauge pressure of at least 200 kPa and less than 8000 kPa, but in other cases it may exceed 10000 kPa. Water may be used for activity below the water's surface (e.g. injection in to formations) or it may be transported to above the surface (e.g. drinking water).
In a preferred embodiment, the water purification system comprises only hyperfiltration modules joined to a common feed manifold in parallel, i.e. none of the modules are arranged in series. However, it is within the scope of the invention for two or more modules to be arranged in series with their feed channels connected. In this case, a seal between the modules must isolate their feed channels from the surrounding water. Another seal may join the two permeate tubes, effectively creating a single, longer module. Swartz describes an applicable embodiment including an inner (permeate) and outer (feed) seal, at least one of which advantageously is a sliding seal. (U.S. Pat. No. 5,851,267)
Many embodiments of the invention have been described and in some instances certain embodiments, selections, ranges, constituents, or other features have been characterized as being “preferred.” Such designations of “preferred” features should in no way be interpreted as an essential or critical aspect of the invention. The entire content of each of the aforementioned patents and patent applications are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/013986 | 1/20/2016 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62114609 | Feb 2015 | US |