Information
-
Patent Grant
-
6379025
-
Patent Number
6,379,025
-
Date Filed
Friday, March 31, 200024 years ago
-
Date Issued
Tuesday, April 30, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
- O'Shea; Sandra
- Negron; Ismael
Agents
-
CPC
-
US Classifications
Field of Search
US
- 362 96
- 362 101
- 362 145
- 362 158
- 362 267
- 362 310
- 362 364
- 362 387
- 362 293
- 362 35
-
International Classifications
-
-
Disclaimer
Terminal disclaimer
Abstract
An underwater lighting fixture adapted for installation in a lamp receiving recess in the wall of a swimming pool. The fixture includes a lamp housing having a pair of reflector-mounted incandescent lamps mounted therein. A plate having a pair of apertures is mounted in the housing with the apertures mounted in alignment with the lamps. A pair of secondary reflectors are mounted to face the plate apertures and are provided with light-transmitting portals. A color wheel having dichroic filter segments is mounted so that identically colored pairs of segments pass the portals when the color wheel is driven by a motor. A synchronization circuit is responsive to an alternating-current source of power applied to the lighting fixture.
Description
FIELD OF THE INVENTION
The present invention relates generally to the field of illumination, and, more particularly, to a submersible color light. Although the present invention is subject to a wide range of applications, it is especially suited for use in a pool lighting system, and will be particularly described in that context.
BACKGROUND OF THE INVENTION
Pool lights illuminate the water at night for the safety of swimmers and for aesthetic purposes. The illumination emanates from underwater lights affixed to the wall of the pool. As used herein, a pool is used generically to refer to a container for holding water or other liquids. Examples of such containers are recreational swimming pools, spas, and aquariums.
To enhance the aesthetics, some current underwater pool lights use a transparent color filter or shade affixed to the front of the lens of the pool light to filter the light emanating from the lens of the pool light and thus add color to the pool. The color filters come in a variety of colors but only one of these color filters can be affixed to the pool light at a given time. Thus, the color of the pool stays at that particular color that the color filter passes. In order to change the color of the pool, the color filter must be removed from the pool light and a different color filter installed across the lens of the pool light.
As a alternative to these fixed colored filters, a system has been devised whereby a rotating wheel having filters of several colors is provided, such as the system disclosed in U.S. Pat. No. 6,002,216 and incorporated herein by reference. In this arrangement, white light is provided from a single source to at least one fiber optic lens through an optical fiber. Colored light is emitted from each fiber optic lens by passing white light through the color filter wheel which is selectively rotated by a motor in the illuminator. The color of light emitted by multiple illuminators is synchronized by independent circuitry within each illuminator that responds to digital signals in the form of manually interrupted supply current.
However, fiber optic underwater illumination systems have several limitations that lead to the need for the present invention. The first is that their performance is relative to the skill of the installer. Only a well-trained technician is capable of installing a fiber optic system that can adequately illuminate a swimming pool. The availability of qualified training is limited thus the availability of trained installers is limited. Rushed fiber termination or fiber termination performed by an untrained installer can result in more than a 30% decrease in fiber optic system performance and can ultimately result in a costly failure of the total fiber optic system.
The second disadvantage of underwater fiber optic illumination is the limited amount of light delivered to the pool. This results from the light attenuation over distance that is inherent in the fibers' composition and the inefficiencies of focusing available light into the optical fiber at the light source.
A further drawback of fiber optic underwater illumination is in the possibility of retrofitting the millions of existing pools having traditional submersible incandescent lighting fixtures. The feasibility of installing adequately sized fiber optic cable in the existing conduits is limited. These conduits are commonly ½ inch in diameter and are rarely over one inch in diameter. The minimum conduit diameter to carry a single fiber optic cable capable of delivering minimally acceptable light to a pool is one inch and the recommended size is 1½ inches.
An additional limitation of fiber optic systems is the additional cost of the materials and professional installation.
The alternative to colored fiber optic systems, providing colored lenses to submersible incandescent lighting fixtures, can be troublesome as well. These fixtures can be supplied with a colored glass lens to deliver that specific color to the pool. These colored glass lenses are typically limited to how richly they can color the light because the darker (or richer) the lens color, the more light in the form of heat that is trapped in the lens and the fixture. As the lens becomes too hot by absorbing too much light it can break due to thermal expansion or due to the differences in thermal expansion on the hot interior surface of the glass and the cool exterior surface that is in contact with the water. Further, as a result less light is emitted and it may be insufficient to illuminate the pool.
As an alternative to glass lenses, snap on or twist lock plastic colored lenses can be installed over an existing clear glass lens for a considerably simpler method to changing the color of the pool lighting. This method still requires physically lying or kneeling on the edge of the pool an reaching below the water to remove the existing plastic lens and then reaching again into the water to install the next colored plastic lens. Economical transparent colored plastics are also inefficient light transmitters reducing the amount of colored light reaching the pool.
A need therefore exists for pool lights that can easily replace existing self-contained, incandescent lighting fixtures, but having synchronized color wheels without the additional cost of installing fiber optic cables and other drawbacks associated with fiber optic underwater illumination systems. Further, a need exists for colored lenses to be used with incandescent fixtures that do not trap excessive amounts of light and heat.
SUMMARY OF THE INVENTION
The present invention, which tends to address these needs, resides in a pool lighting system. The pool lighting system described herein provides advantages over known pool lighting systems in that it is less difficult and less costly to install than existing pool lighting systems that can provide a variety of synchronized colors to the pool water and can be easily retrofitted to existing incandescent lighting systems.
According to the present invention, each lighting fixture of the pool lighting system comprises a color wheel and an incandescent lamp, wherein the lighting fixture places the color wheel at a predetermined position after a predetermined time subsequent to an alternating-current (AC) source of power being applied to the lighting fixture.
Further, according to the present invention, an underwater lighting fixture includes a lamp housing which is adapted to be installed in a lamp receiving recess in the wall of a swimming pool. The housing has an interior cavity, an open mouth defined by a rim, and a rear opening. A plate is mounted within the housing and is transverse to a longitudinal axis of the housing. The plate has a pair of diametrically opposed openings. A pair of incandescent lamps are positioned at each of the plate openings on one side of the plate and each lamp is provided with a reflector directed toward its plate opening. Secondary reflectors are positioned on the other side of the plate so that the reflectors have mouths at one end which are directed toward the plate openings. Each secondary reflector has a portal at its other end which is directed toward the mouth of the housing. A color wheel which is mounted for rotation in the housing about the longitudinal axis of the housing. The color wheel has a plurality of radial dichroic filter segments which are arranged so that identically colored segments are diametrically opposed on the wheel. The wheel is driven by a motor to sequentially position successive filter segments over each reflector portal. A transparent cover is sealed to the open mouth of the housing and an electrical supply conduit extends through a fluid seal in the rear housing opening.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is an elevational view of a submersible lighting fixture mounted in a pool wall;
FIG. 2
is a cross-sectional view, the plane of the section being indicated by the line
2
—
2
in
FIG. 1
;
FIG. 2
a
is a cross-sectional view, the plane of the section being indicated by the line
2
a
—
2
a
in
FIG. 2
;
FIG. 3
is a perspective view of a submersible lighting fixture shown with its transparent cover removed;
FIG. 4
is a fragmentary perspective view of the submersible lighting fixture shown with its transparent cover and color wheel removed;
FIG. 5
is a back plan view of the color wheel of the submersible lighting fixture;
FIG. 6
is a detail of the submersible lighting fixture illustrating the alignment of a sensor and a magnet disposed therein;
FIG. 6
a
is a detail of the engagement between a worm gear and a ring gear in the present lighting fixture;
FIG. 6
b
is a detail of the engagement between a conventional worm gear and a ring gear; and
FIG. 7
is an electrical schematic of a synchronizer circuit of the lighting fixture.
DETAILED DESCRIPTION OF THE INVENTION
As shown in the drawings, and with particular reference to
FIGS. 1 and 2
, the present invention is embodied in a submersible incandescent lighting fixture
10
comprising a housing
12
having an open mouth
15
and defining a cavity
15
a
with a rear opening
15
b
. A component tray
14
is mounted on the housing
12
. The lighting fixture
10
is adapted to be mounted in a recess
11
in a wall
13
of a pool. A power cord
16
extends from the housing.
12
through the opening
15
b
and is sealed by a grommet
15
c
to provide power to the lighting fixture
10
.
Referring to
FIG. 2
, to provide light to a pool, the lighting fixture
10
further comprises two lamps
18
with integral dichroic-coated glass reflectors
19
having axial grooves
19
a
therein and two secondary reflectors
20
mounted to a copper plate
22
, the plate
22
being mounted to the housing
12
and having a pair of diametrically opposed openings
22
a
and
22
b
. The secondary reflectors
20
extend through two circular passages
24
provided in the tray
14
. The secondary reflectors
20
are provided with circular portals
23
to allow the passage of light emanating from the lamps
18
. The portals
23
are relatively small in area compared to the openings
22
a
and
22
b
and bottom openings
20
a
and
20
b
in the secondary reflectors
20
are relatively large in area compared to the openings
22
a
and
22
b.
The contact areas between the lamps
18
, a copper plate retainer
25
, the copper plate
22
, and the metal housing
12
allow heat generated by the lamps
18
to be efficiently transferred to the housing
12
and dissipated into the pool water. Thus, the lighting fixture operates at a cooler temperature and the life of its components, including the lamps
18
, is increased.
Referring to
FIG. 4
, the tray
14
is further provided with a center post
26
and a sensor guide
28
. Affixed to the tray
14
is a printed circuit board
30
, a driver mechanism
32
, and a sensor
34
extending from the circuit board
30
and disposed within the sensor guide
28
. Referring now to
FIGS. 3-6
, a color wheel
36
is mounted on center post
26
. The color wheel
36
comprises a ring gear
38
, a magnet
40
, and three pairs of dichroic glass filters
42
,
44
and
46
, as best shown in FIG.
5
. The color wheel
36
is disposed in front of the lamps
18
so that light emitted by the lamps
18
when energized, passes through the color wheel
36
. Dichroic filters are used, as opposed to colored glass or other types of filters, because they allow the greatest amount of light to pass through, reducing the amount of light absorbed as heat and providing more intense colors. Except for the magnet
40
and filters
42
,
44
and
46
, all of the components of the color wheel
36
are made from a transparent, colorless material so as not to interfere with the emission of light from the lighting fixture
10
. The driver mechanism
32
is comprised of a stepper motor
48
and a worm gear
50
that rotate the color wheel
36
through a connection to the ring gear
38
, a best shown by FIG.
3
and FIG.
5
. Such a connection eliminates the need for a shaft connecting the color wheel
36
to the stepper motor
48
, as in U.S. Pat. 6,002,216. Such a shaft would require tedious realignment each time a burned-out lamp needed to be replaced. The use of the worm gear
50
and ring gear
38
allow the entire color wheel drive train to be contained in front of the lamps
Referring now to
FIGS. 6
a
and
6
b
, a conventional worm gear
50
′ and ring gear
38
′ engagement is shown in
FIG. 6
b
. In this arrangement, it is necessary for the worm gear
50
′ to be precisely aligned to a line
50
a
′ being parallel to a line
38
a
′ being tangent to the ring gear
38
′ at the point of engagement. In this conventional design, if the worm
50
′ is angularly misaligned, a tooth
50
b
′ of the worm gear
50
′ may be unable to freely move within the space between teeth
38
b
′ of the ring gear
38
′. The present invention, in order to solve this problem of gear binding, provides the worm gear
50
with a slightly undercut tooth
50
b
, as shown in
FIG. 6
a
. As will be appreciated by one of skill in the art, this undercut tooth
50
b
allows for a certain amount of angular misalignment, φ, between the longitudinal center-line
50
a
of the worm gear
50
and a line
38
a
being tangent to the ring gear
38
at the point of engagement, without any binding occurring.
Referring again to
FIGS. 3-6
, as the color wheel
36
is rotated, the pairs of filters
42
,
44
and
46
pass sequentially in front of the lamps
18
, filtering the light emanating from the lamps
18
. The filtered light is transmitted to the pool through a lens or transparent cover
60
mounted to the front of the housing.
The pairs of filters
42
,
44
and
46
allow the passage of a specific wavelength of light: green, blue and red/magenta, respectively. A pair of openings
51
are also provided on the color wheel
36
to allow for the passage of white light. When a combination of two adjacent filters of different colors, or a filter and an opening
51
, are simultaneously positioned over a single lamp
18
, the light emitted from the lighting fixture
10
has the appearance of being a mixture between the two colors being passed through, the particular hue being determined by the relative proportions of light passing through each filter or opening
51
. For example, the blue filter
44
and red/magenta filter
46
could be combined to produce light at nearly any hue of purple. The filters
42
,
44
and
46
are sequentially arranged in spectral order, with green
42
isolated from red/magenta
46
. Thus, rotation of the color wheel
36
gives the appearance of a subtle, nearly indistinguishable transition from one hue to the next.
It should be noted that the portals
23
provided between the lamps
18
and the color wheel
36
serve a variety of purposes. The portals
23
limit the light that is emitted to the area with the greatest flux density (the primary focus spot), minimizing the size of the dichroic filters
42
,
44
and
46
and the color wheel
36
and thus reducing the cost and overall size of the lighting fixture
10
. Additionally, it is necessary to mask the light emitted so that it does not pass through unintended adjacent filters. As will be appreciated by one of ordinary skill in the art, dichroic filters require light to strike them in a generally perpendicular fashion in order to produce predictable results. The farther in either direction from perpendicular that light strikes a dichroic filter, the greater the variance from the desired hue will the light be that passes through. Thus, the small size of the portals
23
is necessary to prevent scattered light from striking the dichroic filters at shallow angles and tainting the desired hue.
In the present embodiment the lamps
18
utilized are 75-watt, 12-volt lamps having integral reflectors. The lamps
18
are selected to have optimal characteristics, such that a sufficient amount of light can be generated but the lamps still have an acceptable life and efficiency. The filters
42
,
44
and
46
and the openings
51
are arranged with bilateral symmetry on the wheel
36
, such that the same filter/opening combination and proportion appears in front of each lamp
18
at any given moment.
To further enhance the efficiency of the lighting fixture
10
, the use of secondary reflectors
20
allows much of the light that does not directly pass from one of the lamps
18
through the corresponding portal
23
to be reflected back into the primary reflector
19
and finally out through the portal
23
. Thus, the secondary reflectors
20
take otherwise wasted light that is outside the primary focus spot and reflect it back to the primary reflectors
19
where it is then reflected forward to the useable primary focus spot.
Referring now to
FIG. 6
, the color wheel
36
is shown rotated such that the magnet
40
is aligned with the sensor
34
. This alignment provides a magnetic indexing point, such that the sensor
34
is responsive to the position of the color wheel
36
and provides a reference position pulse indicating the color wheel is at a predetermined position when the magnet
40
passes over the sensor
34
. The sensor
34
is a readily available magnetic field detector that generates a reference position pulse when in close proximity to the magnetic field generated by magnet
40
.
Referring again to
FIG. 2
, the lighting fixture
10
is provided with an integral transformer
52
that converts alternating current line voltage into power suitable for the circuit board
30
and the stepper motor
48
. The integral transformer
52
allows the lighting fixture
10
to easily replace existing 120 volt light fixtures with little effort and it avoids many of the problems associated with connecting a plurality of low voltage lighting devices to a single transformer, including the risk of overloading the transformer. Additionally, the integral transformer
52
allows the use of 12-volt lamps, since present technology limits viable, bright, compact, long-life lamps with integral reflectors to low voltage. A thermally conductive resin
54
secures the transformer
52
to the housing
12
and transfers thermal energy therebetween which is eventually dissipated by the housing
12
into the pool water.
The interior of the cavity
15
a
is sealed from fluid by the lens or transparent cover
60
and a sealing grommet
62
. The grommet
62
is seated in a peripheral lip
64
of the housing
12
and is covered by a trim seal ring
66
. The seal ring
66
has a plurality of depending hooks
68
which are pivotally connected to the ring
66
and which receive an annular tensioning wire
70
. The wire is tensioned by a tensioning bolt (not shown) which, upon tightening, draws the hooks into contact with the lip
64
to compress the grommet
62
. The sealed housing
12
is retained in the recess
11
by a screw
72
located at the top of the housing
12
, as mounted in the recess
11
, and by a tab
74
located at the bottom of the housing
12
. The interior of the recess is flooded with water for cooling purposes by providing a plurality of openings
76
in the seal ring
66
. The colored or white light admitted through the color wheel is further dispersed by a lens texture
60
a
molded into the cover
60
.
A synchronization circuit is provided on the circuit board
30
. The circuit operates in a way that allows multiple light fixtures
10
to be synchronized without the need for additional wiring between units.
In the present invention, the synchronization circuit uses the 60 Hz alternating current supply voltage to generate a master pulse. Thus, the same master pulse is generated by every lighting fixture that is connected to the same power source. Accordingly, there are no slave units and no need for wiring from a master unit to slave unit in order to transmit the master reference signal to each slave unit.
The synchronization circuits are controlled by timed interruptions in the alternating current supply voltage. Each power interruption is used as a reference point by the synchronization circuits allowing all of the color wheels to be synchronized and the same accent color from each of the light fixtures to be provided to the pool water.
The synchronization circuit of each light fixture synchronizes the color wheel by controlling the driver mechanism to place the color wheel at a predetermined position subsequent to the alternating-current source of power being interrupted in a predetermined sequence. This assures that the color wheels are synchronized.
After a predetermined time, the synchronization circuits begin stepping the motors that rotate the color wheel. If the power to the light fixtures is applied at the same instant, then each color wheel will begin stepping at the exact same time and the wheels will step at the same rate, being determined by the sine waves of the alternating-current source of power. Thus, the color wheels remain synchronized.
Referring to
FIG. 7
, which is an electrical scheme of the present embodiment of a synchronizer circuit
100
according to the present invention, the synchronizer circuit
100
includes a power supply circuit
120
, a filter
140
, a control circuit
160
, an index point sensing circuit
180
, and a low-impedance output driver circuit
200
.
A parts list for the synchronizer circuit
100
follows:
|
Reference
Part Value
Part Number
Manufacturer
|
|
C1
47 μF / 35 V
ECE-B1VFS470
Panasonic
|
C2
100 μF / 16 V
ECE-A1CFS101
Panasonic
|
C3
220 μF / 10 V
ECE-A1AFS221
Panasonic
|
C4
1 nF
ECU-V1H102KBM
Panasonic
|
D1,D2,D5,D6
—
DL4002
Microsemi
|
D3
—
DL4148
Microsemi
|
D4
—
SMB5817MS
Microsemi
|
L1
330 μH
5800-331
J.W. Miller
|
R1
2.2 Ω
—
—
|
R2,R3,R7
68 kΩ
ERJ-6GEYJ683
Panasonic
|
R4
4.7 kΩ
ERJ-6GEYJ472
Panasonic
|
R5,R6
22 Ω
—
—
|
U1
—
LM2574N-005
Motorola
|
U2,U6
—
TPS2813D
Texas Instruments
|
U3
—
A3144LU
Allegro
|
U4
—
PIC12C508-04I/P
Microchip
|
U5
—
MC33164P-3
Motorola
|
|
The power supply circuit
120
receives the alternating current supply voltage from the integral transformer
52
and provides a regulated 5 volt output
122
. In this particular embodiment, power supply
120
comprises a bridge rectifier including diodes D
1
, D
2
, D
5
, and D
6
, capacitor C
1
, and resistor R
1
. The rectified signal is provided to a step-down voltage regulator
126
that, in conjunction with diode D
4
, inductor L
1
and capacitor C
2
, regulates the output voltage to 5 V and filters unwanted frequency components of the regulated 5 V output
122
. When the alternating current supply voltage is not applied to the transformer, the output
122
goes to 0 volts. An uninterrupted 5 volt output
128
is also provided which continues to supply power for approximately 4 seconds, depending upon the load, after the alternating current supply voltage is interrupted. This power is stored in capacitor C
3
and when the supply power is interrupted the capacitor C
3
provides a limited supply of current at the output
128
. Diode D
3
is provided to prevent capacitor D
3
from being discharged by the power supply circuit
120
.
The filter
140
prevents unwanted high-frequency components of the alternating current supply voltage applied to it from passing to the control circuit
160
. The filter
140
comprises resistor R
2
and capacitor C
4
in a low-pass filter configuration. In addition, resistors R
2
and R
3
arranged in a voltage divider configuration reduce the voltage of the alternating current supply voltage passed to the control circuit
160
.
The index point sensing circuit
180
comprises the magnetic sensor
34
and resistor R
7
. When the magnetic index point
40
on the color wheel
36
is aligned with the sensor
34
, the sensor
34
outputs a logical “0” to input GP
2
of the microcontroller
170
; otherwise GP
2
remains at 5 V, or logical “1”. One of skill in the art will appreciate that resistor R
7
is required for the present application of sensor
34
because sensor
34
has an open collector output. To this end, the resistor would normally connect the open collector output of sensor
34
to a positive 5 V supply to pull the output up. However, to prevent the sensor
34
from drawing power from microcontroller
170
when the alternating current supply voltage is interrupted, node GP
1
on the microcontroller
170
is programmed to provide 5 V to the resistor R
7
only when supply voltage is present.
The control circuit
160
comprises a reset circuit
162
and a microcontroller
170
. Reset circuit
162
provides a reset signal on its output that assists in resetting the microcontroller
170
when the alternating current supply voltage is initially applied to the light fixture
10
. Reset circuit
162
comprises undervoltage sensor U
5
and resistor R
4
.
The low-impedance output driver circuit
200
comprises two dual high-speed MOSFET drivers U
2
and U
6
. The outputs of U
2
and U
6
are coupled to two coils, A and B, of the stepper motor
48
and provide sufficient current, in response to outputs from the microcontroller
170
, for driving the motor
48
. Power is provided to U
2
and U
6
from the 5 volt output
122
.
Coupled to the reset circuit
162
, the filter
140
, and the driver circuit
200
is the microcontroller
170
. The microcontroller
170
receives the reset signal provided by the reset circuit
162
, the alternating current supply voltage filtered by the filter
140
, and an index signal from the index point sensing circuit
180
. In response to these inputs, the microcontroller
170
provides control signals at outputs GP
4
and GP
5
in the form of a grey code to driver circuit
200
. The alternating current provided by filter
140
provides an input signal
190
for the microcontroller
170
. The microcontroller
170
is preprogrammed to provide control signals according to the following scheme.
In the initial state of the synchronizer circuit
100
there is no alternating current applied from the transformer
52
and no current stored in capacitor C
3
. When power is applied, the microcontroller
170
is placed in “state 0” and no control signals are provided to the driver circuit
200
, and thus the color wheel
36
remains stationary. To control the input signal
190
, a user must interrupt power provided to the transformer
52
. However, power must be reapplied within 4 seconds or capacitor C
3
will completely discharge, bringing the 5 volt output
128
to 0 volts and causing the reset circuit
162
to return the microcontroller
170
to “state 0.” From “state 0,” when input signal
190
is sequentially interrupted and reengaged (within 4 seconds), the microcontroller
70
is advanced to “state 1.”
Once placed in “state 1” the microcontroller
70
generates cycling outputs at GP
4
and GP
5
causing the driver circuit
200
to step the stepper motor
48
very quickly (“fast stepping”) until the microcontroller
170
receives a logical “0” input from the sensing circuit
180
. This positive input is caused by the alignment of the index point
40
with the magnetic sensor
34
. Once they are aligned, the controller waits for a predetermined period of time, t, and then the microcontroller
170
advances to “state 2.” This predetermined period of time, t, allows any other lighting fixtures that are being synchronized using the same power source to become aligned, so that all of the lighting fixtures. The predetermined time, t, is selected in this embodiment to be twenty-one seconds, the time required for a full revolution of the color wheel during fast stepping of the motor
48
, twenty seconds, plus an additional second to account for the possibility of error. This is the longest possible time it should take to return the color wheel to alignment of the index point
40
with the sensor
34
.
In “state 2” the microcontroller generates slowly cycling outputs at GP
4
and GP
5
causing the driver circuit
200
to step the stepper motor
48
slowly (slow stepping), resulting in the color wheel
38
to rotate its color filters
42
,
44
and
46
slowly past the lamps
18
, which will allow a user time to view each hue produced and make a selection. This slow stepping continues indefinitely until the input signal
190
is interrupted. From “state 2,” when the input signal
190
is sequentially interrupted and reengaged (within 4 seconds), the microcontroller
170
returns to “state 0,” and the color wheel
38
stops rotating. In this way, a user can choose a desired hue of light and cause the light fixture to halt.
The following table summarizes the control scheme described above:
|
State
Output
Wait for
and then
|
|
0
none (stopped)
“off” then “on”
go to “state 1”
|
1
fast stepping to
a predetermined
go to “state 2”
|
index point and then
period of time from
|
stop
last “on”
|
2
slow stepping
“off” then “on”
go to “state 0”
|
|
As mentioned above, if at any time the power to transformer
52
is interrupted for longer than 4 seconds, the 5 volt output
128
will go to 0 volts and when reengaged, the microcontroller
170
will be reset to “state 0”. Thus, a user may select a position for the color wheels of one or more lighting fixtures that produces a desired hue of light and then turn off the lights at the source. When the source power is restored, the color wheels will remain stationary and the light will remain the chosen hue. Likewise, an unintentional interruption of source power, such a s a power outage, will not cause the selected hue to change.
It should be appreciated that multiple light fixtures will step at precisley the same rate as long as they are connected to the same source of power. This is because the microcontroller
170
generates output signals at GP
4
and GP
5
that step a grey code to the driver circuit
200
once for every N sine wave transition of the alternating current supply voltage. N is a number determined by the microcontroller
170
depending upon how qucikly the stepper motor
48
must be advanced. For fast stepping N=1, which causes the color wheel
36
to make one full rotation every twenty seconds. For slow stepping N=6, causing the color wheel
36
to make one full rotation in 120 seconds.
Further, when synchronizing multiple light fixtures, one fixture may become misaligned with respect to the others if it its power is independently interrupted for some reason or if there is mechanical slippage. For this reason, a master reference pulse is generated by the microcontroller
170
by counting the number of alternating current transitions (120 transitions per second for a 60 Hz supply) after current is initially applied and generating a pulse every 120 seconds or 14,400 transitions, which is the normal (slow stepping) full rotation period. To correct the synchronization, the master reference pulse is compared to an index pulse received from the sensor
34
. The index pulse is generated every time the output of the sensor
34
is a logical “0”, indicating that the magnetic index point
40
is aligned with the sensor
34
.
If the master reference pulse is generated before the index pluse, then the microcontroller
170
determines that the color wheel
36
is lagging behind and the microcontroller
170
then begins to cause the motor to begin fast stepping until the index pluse is received from the sensor
34
. Since the fast stepping is 6 times faster than the slow stepping, the lag time will then be reduced by a factor of 6 for every complete rotation of the color wheel
36
.
If the index pulse is received before the master reference pulse is generated, then the microcontroller
170
determines that the color wheel
36
is ahead in its rotation and the microcontroller causes the color wheel
36
to stop rotating until the master reference pulse is generated. When the color wheel
36
resumes its rotation, it will be correctly aligned with the master reference pulse.
It should also be appreciated that, to conserve power, the sensor
34
and the driver circuit
200
are supplied power by 5 volt output
122
, instead of output
128
, so that when no power is being supplied by transformer
54
to power supply circuit
120
, the sensor
34
and the driver circuit
200
do not unnecessarily draw power from the capacitor C
3
and exhaust the limited supply of current from the capacitor C
3
too quickly.
Claims
- 1. An underwater lighting fixture adapted for installation in a lamp receiving recess in the wall of a swimming pool, said lighting fixture comprising:a lamp housing having an interior cavity, an open mouth defined by a rim and having a rear opening; a plate mounted within said housing and being transverse to a longitudinal axis of said housing, said plate defining first and second openings; first and second incandescent lamps having first and second reflectors, respectively positioned at said first and second openings on a first side of said plate so that said reflectors are directed toward said open mouth; a color wheel within said housing and mounted for rotation about said longitudinal axis, said color wheel having a plurality of dichroic radial filter segments, a driver mechanism for rotating said wheel, said color wheel sequentially positioning successive filter segments to each opening of said plate upon rotation of said wheel; a transparent cover sealing the open mouth of said housing; a grommet between said cover and said rim to provide a fluid-tight seal to said cavity; an electrical supply conduit extending through said rear opening and into said interior cavity; and means providing a fluid seal between said supply conduit and said rear opening; and a power transformer integral to the lighting fixture; wherein there are a plurality of pairs of diametrically opposed said filter segments, wherein each of said pairs is differently colored with respect to each other pair, wherein adjacently positioned pairs are green and blue, and blue and magenta, respectively, and wherein a segment space is provided between the green and magenta segments to provide a diametrically opposed uncolored segment.
- 2. An underwater lighting fixture according to claim 1 wherein said color wheel has a periphery defined by a plurality of gear teeth and said driver mechanism includes a worm gear meshing with said teeth.
- 3. An underwater lighting fixture according to claim 1 wherein said first and second openings are substantially diametrically opposed.
- 4. An underwater lighting fixture adapted for installation in a lamp receiving recess in the wall of a swimming pool, said lighting fixture comprising:a lamp housing having an interior cavity, an open mouth defined by a rim and having a rear opening; a plate mounted within said housing and being transverse to a longitudinal axis of said housing, said plate defining first and second openings, said first and second openings being substantially diametrically opposed; first and second incandescent lamps having first and second reflectors, respectively positioned at said first and second openings on a first side of said plate so that said reflectors are directed toward said open mouth; a color wheel within said housing and mounted for rotation about said longitudinal axis, said color wheel having a plurality of dichroic radial filter segments, a driver mechanism for rotating said wheel, said color wheel sequentially positioning successive filter segments to each opening of said plate upon rotation of said wheel; a transparent cover scaling the open mouth of said housing; a grommet between said cover and said rim to provide a fluid-tight seal to said cavity; an electrical supply conduit extending through said rear opening and into said interior cavity; and means providing a fluid seal between said supply conduit and said rear opening; and a power transformer integral to the lighting fixture.
- 5. An underwater lighting fixture according to claim 4 wherein each of said first and second reflectors have a multiplicity of axial extending grooves therein.
- 6. An underwater lighting fixture according to claim 4 wherein each said secondary reflector has a relatively small portal positioned adjacent said color wheel and a relatively large opening positioned on said second side of said plate, said relatively large opening being greater in area than the opening in the plate, and said relatively small portal being less in area than the opening in the plate.
- 7. An underwater lighting fixture according to claim 4 wherein said portals are circular and wherein radii defining the edge of each segment inscribe diameters of each portal.
- 8. An underwater lighting fixture according to claim 4 wherein said plate is copper.
- 9. A plurality of submersible lighting fixtures powered by a single alternating-current source of power, each of said lighting fixtures comprising:a sealed housing having at least one incandescent lamp therein; a color wheel for filtering light from said lamp; a driver mechanism for rotating the color wheel; and a synchronization circuit, responsive to an alternating-current source of power applied to the lighting fixture, for controlling the driver mechanism to place the color wheel at a predetermined position after a predetermined time subsequent to the alternating-current source of power being applied to the lighting fixture, wherein the color wheel of each lighting fixture of said plurality of lighting fixtures is synchronized to all other color wheels.
- 10. In a pool lighting system including a plurality of lighting fixtures each powered by a common alternating-current power source, each lighting fixture comprising:at least one incandescent lamp; an electric transformer powering the at least one lamp; a color wheel disposed in front of the at least one lamp, the color wheel including a plurality of color filters; a magnet, affixed to the color wheel, for generating a magnetic field; a motor for rotating the color wheel a full revolution in a predetermined period, wherein the plurality of color filters pass sequentially in front of the at least one lamp; a sensor, affixed to a non-rotating portion of the lighting fixture, for generating a reference position pulse each time the sensor senses the magnetic field as the magnet rotates with the color wheel; an interruptible source of alternating current, common to each of the plurality of lighting fixtures; and a control circuit, responsive to the interruptible source of alternating current and the reference position pulse, for controlling the motor to cause the reference position pulse to be generated at a predetermined time after the interruptible source of alternating current is applied to the control circuit, whereby the color wheel of each of the plurality of lighting fixtures are synchronized.
- 11. The plurality of submersible lighting fixtures according to claim 9, wherein said synchronization circuit initiates rotation of the color wheel after the wheel is synchronized with all other color wheel, and wherein said synchronization circuit stops the rotation of the color upon the interruption and re-application of the alternating-current source of power within a predetermined period of time.
US Referenced Citations (4)