The invention relates to a submersible power plant for generating electrical power. The power plant comprises a structure and a vehicle comprising at least one wing. The vehicle is arranged to be secured to the structure by means of at least one tether. The vehicle is arranged to move in a predetermined trajectory by means of a fluid stream passing the wing. The power plant comprises at least a first turbine, a second turbine and a third turbine being arranged to be attached to the wing of the vehicle. The first turbine is connected to a first generator, the second turbine is connected to a second generator and the third turbine is connected to a third generator.
Submersible plants for generating electrical power are known in the art, see for instance EP 1816345. In EPO 1816345 the submersible plant is attached to a structure and moves along a trajectory and is powered by tidal currents. In EP 1816345 the submersible plant is steered along the predetermined trajectory by use of a control system which controls the submersible power plant using control surfaces.
Control surfaces requires a number of moving parts and associated control and power systems which are susceptible to wear and may therefore require frequent servicing. This increases the cost of servicing the submersible power plant as well as reduces the time the power plant can generate power.
It is therefore desirable to provide an improved submersible power plant.
One object of the present invention is to provide an inventive submersible power plant where the previously mentioned problems are partly avoided. This object is achieved by the features below. Another object of the present invention is to provide a method for steering a submersible power plant comprising a flying wing. This object is achieved by the features below.
The invention relates to a submersible power plant for generating electrical power. The power plant comprises a structure and a vehicle comprising at least one wing. The vehicle is arranged to be secured to the structure by means of at least one tether. The vehicle is arranged to move in a predetermined trajectory by means of a fluid stream passing the wing. The power plant comprises at least a first turbine, a second turbine and a third turbine being arranged to be attached to the wing of the vehicle. The first turbine is connected to a first generator, the second turbine is connected to a second generator, and the third turbine is connected to a third generator. At least one of the first turbine, the second turbine and the third turbine is attached to the vehicle on a top surface of the wing, and at least one of the first turbine, the second turbine and the third turbine is attached to a bottom surface of the wing. Said first generator, second generator and third generator are arranged to be able to produce different fluid dynamics pressures exerted on the respective first, second and third turbines by means of torque control. An advantage of the invention is that by using torque control, it is possible to apply different counter-torques to the different turbines, i.e. to the first turbine, the second turbine and the third turbine, so that they may rotate at different rotation speeds. The turbines are thus torque-controlled. The torque-control of the generators/motors, and subsequently, the turbines, makes it possible to induce a controllable drag force on the wing. Since the turbines are located at different distances from the centre of the wing, their combined drag is directional in both yaw and pitch. With intelligent control these turbines can affect the movement of the wing and so partially or completely replace control surfaces. An intelligent control system managing the torque of the turbines acts on information regarding the orientation and location of the wing. The torque-control of the generators/motors can be created by servo drivers with break functionality commonly available in industry.
Different counter-torques applied to the respective first, second and third turbines causes a translational and/or rotational force to be exerted on the vehicle by means of that different fluid dynamic pressures are exerted on said first turbine, the second turbine and the third turbine by the fluid, causing the vehicle to pitch and/or yaw. Different pressure can be exerted on one or more of the turbines. This effect removes the need for additional control surfaces such as a rudder. Removing a moving part such as a rudder together with servos controlling the rudder increases the ruggedness of the power plant. A submersible power plant may alternatively use front and rear struts to give the tether an attachment point far below the wing. This reduces pitch instability and the influence of hydrostatic unbalance. This is a system involving several parts and a number of couplings and is therefore relatively complex to design and manufacture and which may increase the cost of the submersible plant.
In the present invention struts are no longer necessary which further reduces the complexity of the power plant. The present invention also makes it possible to move the tether coupling into the wing or into a coupling arrangement mounted close to the wing.
Further, by using at least three turbines, each turbine can be made smaller than when only one turbine is used. This leads to that controlling each turbine and generator combination is made easier due to the reduced power of each turbine and generator. This means that the power control electronics are easier to design. Having smaller turbines also simplifies cooling of the generators and their power control electronics and may lead to reduced total weight and a more distributed mechanical load, facilitating the structural design.
A further advantage of being able to apply different counter-torques to different turbines in order to control pitch and/or yaw is that it is possible to dynamically control pitch and/or yaw depending on the position of the vehicle on its predetermined trajectory. This makes it possible to optimize the power output of each generator as well as the steering of the vehicle.
The at least first, second and third turbines may have a turbine function for generating electrical power and a thruster function for propelling the vehicle forward or backward. The thruster function is produced by that at least one of the first, second and third generators are run by that power is applied to the generator making it run either forward or in reverse.
An advantage with being able to use the turbines as motors, for example by running the respective generators in a forward direction is that it is easier to start the power plant's motion along the predetermined trajectory whereupon the function is switched to generating electrical power. It is also possible to run the vehicle to the surface when maintenance is required. An advantage with this is that the vehicle could be run from the surface down to operating depth after installation or maintenance. Another advantage with the thruster function is that the need for additional systems for rescue in case of malfunction, reaching the surface for service or buoyancy control of the submersible power plant is reduced. This can now be achieved by using the turbines as engines. This operation works with three or more turbines operational.
The power plant may comprise an odd number of turbines greater than three, where one more turbine is attached to the vehicle to a top surface of the wing than is attached to the vehicle on a bottom surface of the vehicle. The power plant may comprise an odd number of turbines greater than three, where one less turbine is attached to the vehicle to a top surface of the wing than is attached to the vehicle on a bottom surface of the vehicle. The power plant may comprise at least one turbine which has a larger rotor diameter than the remaining turbines.
The power plant may comprise an even number of turbines greater than two, where an equal number of turbines are attached to the vehicle to a top surface of the wing and to the vehicle on a bottom surface of the wing. The power plant may comprise an even number of turbines greater than two, where more turbines are attached to the vehicle to a top surface of the wing than to the vehicle on a bottom surface of the wing or where more turbines are attached to the vehicle to a bottom surface of the wing than to the vehicle on a top surface of the vehicle.
By having more than three turbines and generators, the power generation is made more redundant in that power generation and the thruster function may continue even though one turbine and generator malfunctions.
When one turbine is not attached to the bottom surface of the wing at the centre of mass of the wing, the tether is attached to the vehicle by being attached to a coupling in the wing of the vehicle. By not having any struts to which the tether is attached it is now possible to attach the tether directly to the wing of the vehicle. This makes installation and maintenance of the power plant easier as it is no longer required to lift the vehicle to a height above water which is equal to the extension of the struts below the wing. The extension may be in the order of the width of the wing. The present invention allows for that the vehicle is lifted just a short distance above the water surface such that the coupling between the vehicle and the tether is near or at the water surface. It could also be possible to lift the vehicle such that it rests on the water surface and that a diver can decouple the tether from the wing of the vehicle.
When one turbine is attached to the bottom surface of the wing at the centre of mass of the wing, the tether may be attached to the vehicle by being attached to a coupling in a nacelle to said turbine is connected. This allows for a different configuration of the turbines while still being able to take advantage of not having struts.
The power plant may comprise at least one fixed passive control surface. In order for the vehicle to properly straighten out after turning and not drifting sideways or in any other way misalign in comparison to the direction of travel of the vehicle, the vehicle of the power plant may have a passive control surface. The passive control surface may be in the shape of a fin extending on either the top or bottom side of the wing or on both sides. The passive control surface may also be part of a fastening component which attaches at least one of the turbine and generator to the wing. The fastening component may be raised from the wing and/or extended forward or rearward such that it takes the proper shape for it to function as a passive control surface. The passive control surface can be the combination of a fin and fastening components which attaches the turbine and generator to the wing.
The invention also relates to a method for steering a submersible power plant. The submersible power plant comprises a structure and a vehicle comprising at least one wing. The vehicle is arranged to be secured to the structure by means of at least one tether. The vehicle is arranged to move in a predetermined trajectory by means of a fluid stream passing the wing. The power plant comprises at least a first turbine, a second turbine and a third turbine being arranged to be attached to the wing of the vehicle. At least one of the first, second and third turbine is attached to the vehicle on a top surface of the wing. The first turbine is connected to a first generator, the second turbine is connected to a second generator and the third turbine is connected to a third generator. Said first generator, second generator and third generator are arranged to be able to produce different counter-torques to the respective first, second and third turbines. The method comprises applying a first counter-torque by the first generator to the first turbine to set a first rotation speed to the first turbine, applying a second counter-torque by the second generator to the second turbine to set a second rotation speed to the second turbine, applying a third counter-torque by the third generator to the third turbine to set a third rotation speed to the third turbine.
An advantage with the method of the invention is the ability to extract different amounts of power by applying different counter-torques to the different turbines, i.e. the first turbine, the second turbine and the third turbine, such that they may rotate at different rotation speeds. This causes a translational and/or rotational force to be exerted on the vehicle by means of that different fluid dynamic pressures are exerted on said first turbine, the second turbine and the third turbine by the fluid, causing the vehicle to pitch and/or yaw. This removes the need for additional control surfaces such as a rudder.
Generally, by applying a greater counter-torque to one turbine this turbine will shift the axis around which the vehicle will turn. For instance, to yaw port, a turbine on the port side of the centre of mass of the wing will have a greater power exerted from it than a turbine on a starboard side of the centre of mass of the wing.
The method may also comprise controlling the pitch of the vehicle by applying a counter-torque to the one or more turbines connected to the vehicle on a top surface of the wing by their corresponding generators, the total of which is different from the total counter-torque applied to the one or more turbines connected to the vehicle on a bottom surface of the wing by their corresponding generators.
The method may also comprise controlling the yaw of the vehicle by applying a counter-torque to the one or more turbines connected to the vehicle on a first side of the centre of mass of the wing by their corresponding generators, the total of which is different from the total counter-torque applied to the one or more turbines connected to the vehicle on a second side of the centre of mass of the wing by their corresponding generators.
By adjusting the counter-torque of the turbines attached to the top surface of the wing and the bottom surface of the wing while at the same time adjusting the counter-torque of the turbines attached to a first side of the centre of mass of the wing and a second side of the centre of mass of the wing, it is possible to produce manoeuvres combining both pitch and yaw. The method can of course be applied to any number of turbines.
In the drawings, like features have the same reference numbers.
Said first generator 12, second generator 13 and third generator 14 are arranged to be able to produce different counter-torques to the respective first turbine 6, second turbine 8 and third turbine 10 in order to steer the submersible plant in any desired direction.
The vehicle 3 further comprises a passive control surface 20. In
Reference signs mentioned in the claims should not be seen as limiting the extent of the matter protected by the claims, and their sole function is to make the claims easier to understand.
As will be realised, the invention is capable of modification in various obvious respects, all without departing from the scope of the appended claims. Accordingly, the drawings and the description thereto are to be regarded as illustrative in nature, and not restrictive. The above configurations described may be extended to any number of turbines. It is also possible to have vehicles having two or more additional turbines on either surface of the wing than on the opposite side of the wing, for instance a vehicle having four turbines on the upper side of the vehicle and two turbines on the lower side of the wing.
The distance between the turbines may be varied in order to optimize both energy output and manoeuvrability. It is not necessary to have the same distance between all turbines on one side of the wing. It is further not necessary to have the same distance between the turbines on both sides of the wing when there are an equal number of turbines on both sides of the wing.
This application is a U.S. National Stage patent application of PCT/SE2013/050625, filed on May 30, 2013, the entire contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SE2013/050625 | 5/30/2013 | WO | 00 |