This disclosure relates in general to an electrical submersible pump assembly mounted in a subsea flow line jumper having a diverter valve that diverts well fluid flowing into the jumper past the pump and into the discharge flow line in the event the pump is not operating.
Offshore hydrocarbon production wells may be located in water thousands of feet deep. Some wells have inadequate internal pressure to cause the well fluid to flow to the sea floor and from the sea floor to a floating production vessel at the surface. Though not extensively used yet, various proposals exist to install booster pumps at the sea floor to boost the pressure of the well fluid.
Flowline jumpers are commonly employed to connect various sea floor production units to each other. A flowline juniper is a pipe having connectors on its ends for connection to inlets and outlets of the production units. It is known to install a flowline jumper by lowering it from a vessel on a lift line and using a remote operated vehicle (ROY) to make up the connections. Flowline jumpers may have U-shaped expansion joints with the connectors on downward extending legs for stabbing into receptacles of the production units. Generally, a flowline jumper is simply a communication pipe and contains no additional features for enhancing production.
U.S. Pat. No. 7,565,932 discloses placing an electrical submersible pump (ESP) within the flow line jumper to boost the pressure of the well fluid flowing from a subsea production tree to a manifold. The '932 patent does not discuss what occurs when the ESP is shut down, for whatever reason.
In this disclosure, a submersible pump assembly is mounted within a chamber of a flow line assembly between a well fluid source and subsea production equipment. The submersible pump assembly comprises a motor and a pump having an intake downstream from the motor and a discharge leading to the production equipment and sealed from the chamber. A bypass valve is mounted within the chamber to the discharge of the pump, the bypass valve having a bypass port. While the pump is not operating, the bypass port is open for flowing well fluid from the well fluid source into the chamber, past the pump, into the bypass port, and out the chamber to the production equipment. While the pump is operating, the bypass port is closed for flowing well fluid from the well fluid source into the chamber and into the intake of the pump, which discharges the well fluid. out of the chamber at an increased pressure into the production equipment.
Preferably, closing the bypass port occurs in response to the occurrence of discharge pressure of the pump greater than pressure within chamber exterior of the pump. Opening the bypass port occurs in response to a spring biasing the bypass port open. Thus, in the preferred embodiment, opening and closing the bypass port is a function of discharge pressure of the pump.
Preferably, while the pump is not operating, a check valve prevents reverse flow through the bypass port into the chamber. A check valve is particularly used with first and second of the flow line assemblies, each having one of the chambers containing one of the submersible pump assemblies and one of the bypass valves. The discharges of the pumps are parallel. While the pump of the first flow line assembly is operating and the pump of the second flow line assembly is not, the check valve of the second flow line assembly blocks reverse flow of well fluid through the bypass port into the chamber of the second flow line assembly.
Normally, the chamber containing the submersible well pump assembly is oriented horizontally. The chamber is typically part of a flow line jumper between a subsea tree and a manifold.
The bypass valve isolates the discharge. of the pump from the bypass port while the bypass port is open. The isolation avoids any back flow through the pump While the bypass valve is in the bypass position.
Referring to
A flow line jumper 27 connects tree ii to manifold 15. Flow line jumper 27 has a length sized for the spacing between tree 11 and manifold 15. Flow line jumper 27 has an upstream end or inlet 29 and a downstream end or outlet 31. Connectors 33 connect jumper inlet 29 to tree outlet 13 and jumper outlet 31 to manifold inlet 17. Jumper inlet 29 and outlet 31 are illustrated to have legs that thee downward for connection to the upward facing tree outlet 13 and manifold inlet 17; however, they could be oriented horizontally.
Flow line jumper 27 includes an elongated horizontal chamber 25 that contains an electrical submersible pump (ESP) 37. ESP 37 boosts the pressure of the well fluid flowing from tree 11 and delivers the fluid at an elevated pressure to manifold 15. ESP 37 has an electrical motor 39 that is typically a three-phase AC motor. Motor 39 is filled with a dielectric lubricant for lubricating and cooling. A seal section 41 connects to motor 39 for sealing the lubricant within motor 39 and reducing a pressure difference between well fluid pressure in chamber 35 and the lubricant pressure. An optional gas separator (not shown) may be connected to the end of seal section 41 opposite motor 39.
A rotary pump 43 driven by motor 39 connects to seal section 41. Pump 43 may be a centrifugal pump having a large number of stages, each stage having an impeller and diffuser. Alternately, pump 43 may be another type, such as a progressing cavity pump, which has a helical rotor that rotates inside a helical bore of an elastomeric stator. Pump 43 has an intake 45 that is in fluid communication with well fluid flowing into chamber 35 from tree 11. Pump 43 has a discharge 47 that is isolated from the well fluid pressure within chamber 35 on the exterior of ESP 37.
A bypass valve 49 connects pump discharge 47 sealingly to a downstream bulkhead 51 of chamber 35. Well fluid flowing through bypass valve 49 flows through bulkhead 51 and out jumper outlet 31. Bypass valve 49 has one or more bypass ports 53 that when open are in fluid communication with the well fluid flowing into chamber 35 from tree 11. When closed, bypass ports 53 isolate the well fluid flowing out of pump discharge 47 from the well fluid within chamber 35 on the exterior of ESP 37.
Referring to
As illustrated in
As illustrated in
Bypass valve 49 may have a variety of components and configurations. Referring to
While in the flow through position shown in
In operation, well fluid flows from tree 11 into chamber 35 at a positive pressure. While pump 43 is operating, the well fluid flows past motor 39 into pump intake 45. Pump 43 increases the pressure of the well fluid relative to the pressure at jumper inlet 29. At pump discharge 47, the elevated pressure acts against valve element 63, compressing spring 71 and pushing upstream end 65 away from its seated position, sealing against seal surface 67. As shown by the arrows in
If the discharge pressure of pump 43 drops sufficiently relative to the pressure within chamber 35 exterior of pump 43, coil spring 71 forces valve element 63 back to the bypass position of
The discharge pressure of pump 43 would drop to the same as the pressure at pump intake 45 if motor 39 is tamed off for whatever reason. Also, the discharge pressure of pump 43 may drop substantially to the pressure at pump intake 45 in the event the incoming well fluid contains a large gas bubble, causing pump 43 to gas lock. In either event, the well fluid flowing into jumper inlet 2.9 continues to flow through jumper 27 and to manifold 15. If a gas lock occurs, bypassing ESP 37 with the flowing well fluid allows ESP 37 to restart, possibly with no damage or at least less damage to ESP 37 than otherwise. A separate bypass line on the exterior of jumper 27, along with valves and control equipment, is not required. The bypass of ESP 37 occurs automatically in response to the discharge pressure of pump 43.
In
In the event the ESP 83 in one of the jumpers, for example jumper 77, is not operating while the other s operating, the bypass valve 85 in jumper 79 would be in the flow through position of
While the disclosure has been shown in only two of its forms, it should be apparent to those skilled in the art that it is not so limited but is susceptible to various changes without departing from the scope of the disclosure.