1. Field of the Invention
The present invention relates generally to medical methods for the treatment of gynecological disorders. More particularly, the invention relates to a method for the selective ablation of submucosal fibroids for the treatment of menorrhagia.
Treatment of dysfunctional uterine bleeding remains an unmet clinical need. Fibroids are benign tumors of the uterine myometria (muscle) and are the most common tumor of the female pelvis. Fibroid tumors affect up to 30% of women of childbearing age and can cause significant symptoms such as discomfort, pelvic pain, menorrhagia, pressure, anemia, compression, infertility, and miscarriage. Fibroids may be located in the myometrium (intramural), adjacent the endometrium (submucosal), or in the outer layer of the uterus (subserosal).
Current treatments for fibroids include either or both pharmacological therapies and surgical interventions. Pharmacological treatments include the administration of medications such as NSAIDS, estrogen-progesterone combinations, and GnRH analogues. All medications are relatively ineffective and are palliative rather than curative. Surgical interventions include hysterectomy (surgical removal of the uterus) and myomectomy. Surgical myomectomy, in which fibroids are removed, is an open surgical procedure requiring laparotomy and general anesthesia. Often these surgical procedures are associated with the typical surgical risks and complications along with significant blood loss and can only remove a portion of the culprit tissue.
To overcome at least some of the problems associated with open surgical procedures, laparoscopic myomectomy was pioneered in the early 1990's. However, laparoscopic myomectomy remains technically challenging, requiring laparoscopic suturing, limiting its performance to only the most skilled of laparoscopic gynecologists. Other minimally invasive treatments for uterine fibroids include hysteroscopy and myolysis.
Hysteroscopy is the process by which a thin fiber optic camera is used to image inside the uterus and an attachment may be used to destroy tissue. Hysteroscopic resection is a surgical technique that uses a variety of devices (loops, roller balls, bipolar electrodes) to ablate or resect uterine tissue. The procedure requires the filling of the uterus with fluid for better viewing, and thus has potential side effects of fluid overload. Hysteroscopic ablation is limited by its visualization technique and thus, only appropriate for fibroids which are submucosal and/or protrude into the uterine cavity.
Myolysis was first performed in the 1980's using lasers or radio frequency (RF) energy to coagulate tissue, denature proteins, and necrose myometrium using laparoscopic visualization. Laparoscopic myolysis can be an alternative to myomectomy, as the fibroids are coagulated and then undergo coagulative necrosis resulting in a dramatic decrease in size. As with all laparoscopic techniques, myolysis treatment is limited by the fact that it can only allow for visualization of subserosal fibroids.
As an improvement over both hysteroscopy and needle myolysis, needle-based radiofrequency ablation under direct ultrasonic visualization has been proposed. Such procedures are described, for example in commonly-owned published PCT application PCT/US2007/066235, filed on Apr. 9, 2007, which claimed priority from application Ser. No. 11/564,164, filed on Nov. 28, 2006, and application Ser. No. 11/409,496, filed on Apr. 20, 2006, the full disclosures of which are incorporated herein by reference. In these applications, the identification and treatment of all fibroids in the uterine wall of a patient are described. An instrument including an ultrasonic transducer and an advanceable needle are introduced into the patient's uterus via a transvaginal approach. The ultrasonic transducer is used to identify fibroids, and the fibroids are sequentially treated by advancing the needles into the fibroid, applying radiofrequency energy, and optionally confirming that the entire volume of the fibroid has been treated.
While effective and valuable for many patients, the methods described in the above listed applications can be relatively long, particularly in patients having two or more fibroids. Moreover, for many patients, a primary if not sole complaint is excessive uterine bleeding, referred to as menorrhagia. In those patients, the menorrhagia is believed to be caused primarily by submucosal fibroids, and other fibroids, including intramural fibroids and subserosal fibroids are often asymptomatic.
For these reasons, it would be desirable to provide improved methods and protocols for treating fibroids in patients suffering from menorrhagia. In particular, it would be desirable to provide treatments which are effective for treating menorrhagia but which are office-based, less painful, relatively short and can avoid treating asymptomatic fibroids or otherwise overtreating the patient. At least some of these objectives will be met by the inventions described hereinbelow.
2. Brief Description of the Background Art
The commonly-owned applications referenced above have been published as U.S. 2007/0249936; U.S. 2007/0249939; and WO 2007/24265. It is noted that the methods described hereinafter may be performed using the apparatus described in these commonly-owned published applications, the full disclosures of which are incorporated herein by reference.
The present invention provides methods for ablating fibroids in women suffering from menorrhagia as a principal symptom and complaint. Menorrhagia is defined as excessive uterine bleeding occurring during menstruation. The bleeding commences at the expected time during the menstrual cycle, but is heavier than usual and often lasts longer than normal. Menorrhagia may be caused by a variety of disorders, including hormone imbalance, endometriosis, cancer, and, of particular interest to the present invention, the presence of uterine fibroids.
Uterine fibroids fall into several classifications, including submucosal (located at the uterine wall), intramural (located within the myometrium of the uterine wall), subserosal (located on or near the outside wall of the uterus), intracavitary fibroids (located almost or entirely within the uterine cavity), and pedunculated (located entirely outside of the uterine cavity and its walls). Of these, the submucosal fibroids are principally responsible for excessive uterine bleeding and menorrhagia. The intramural and subserosal myomas may cause other symptoms and problems, such as severe cramping, compression of adjacent organs, and the like, but are usually not responsible for excessive bleeding.
Thus, in accordance with the principles of the present invention, patients whose principal complaint is menorrhagia or excessive uterine bleeding may be treated by distinguishing between submucosal fibroids and all other fibroids (including intramural, subserosal, and intracavitary fibroids) and treating only the submucosal fibroids. In some cases, it may be possible to further selectively treat only those submucosal fibroids which have been determined to be responsible for the excessive bleeding, but in most cases it will be desirable to selectively treat all submucosal fibroids, and usually no other fibroids.
Patients suffering from menorrhagia or excessive uterine bleeding as a principal disorder or complaint will be those experiencing such excessive bleeding but who are generally free from other complaints associated with fibroids, such as cramping, compression of adjacent organs, and the like. For those patients suffering only from menorrhagia, the treatment protocols of the present invention may be shortened relative to protocols where all fibroids are treated, such as is suggested in the commonly-owned prior patent applications identified above.
Thus, the present invention provides methods for treating menorrhagia. The methods comprise providing a visualization and ablation instrument including a shaft having a distal end, an imaging transducer near the distal end of the shaft, and an energy delivery element near the distal end of the shaft. Exemplary devices suitable for use in the methods of the present invention are described in each of the commonly owned applications described and incorporated herein by reference above. The distal end of the shaft is advanced into the patient's uterus, and fibroids are visualized with the imaging transducer while the distal end of the shaft remains in the uterus. Submucosal fibroids are visualized and distinguished from all other fibroids, including at least intramural fibroids and subserosal fibroids, and the identified submucosal fibroids are selectively treated by delivering energy from the energy delivery element to the submucosal fibroid(s) while not targeting the other fibroid(s), if any.
Referring to
An ultrasound system controller 500, embodying features of the present invention, as shown in
The visualization system is shown to be internal, i.e., utilizing an imaging sensor, such as an ultrasonic transducer, which is positionable within the uterus or other body cavity adjacent to the fibroid. Alternatively, external imaging from the patient's skin or from another body cavity could also be performed to assist in positioning the treatment element.
A radio frequency energy generator 400 includes an enclosure 410, embodying features of the present invention, is shown in
As described above, the energy ablation source is radiofrequency energy. It will be appreciated that a wide variety of other sources could also be utilized, including optical or laser energy, microwave energy, thermal energy (more specifically cooling, cryoablation, or vapor), and the like.
Referring now to
As shown in
Once the first submucosal fibroid SMF 1 has been treated, the probe of system 200 may be further manipulated so that the distal end 202 is brought adjacent to the second submucosal fibroid SMF 2, as shown in
Once all of the submucosal fibroids have been treated, as shown in
While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.
The present application claims the benefit of U.S. provisional patent application No. 61/048,637 (Attorney Docket No. 025676-001200US) filed on Apr. 29, 2008, the full disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61048637 | Apr 2008 | US |