1. Technical Field
Embodiments of the subject matter disclosed herein generally relate to methods and systems and, more particularly, to mechanisms and techniques for removing and/or replacing a section of a subsea control module.
2. Discussion of the Background
Subsea oil and gas exploration becomes more challenging as the exploration depth increases. Complex devices are disposed on the ocean floor for extracting the oil and for the safety of the oil equipment and the environment. These devices have to withstand, among other things, high pressures (from 3,000 to 60,000 psi (200 to 4000 bar) or more) and highly corrosive conditions. Although precautions are taken when building these devices, component parts of these devices wear out with time and need to be replaced.
As these parts are disposed on the ocean floor (sometimes more than 2000 m below sea level) and sometimes are provided inside larger components, access to them may be problematic. For example,
In typical configurations, the lower BOP stack 10 may be rigidly affixed atop the subsea wellhead 12 and may include (among other devices) a plurality of ram-type blowout preventers 26 useful in controlling the well as it is drilled and completed. The flexible riser provides a conduit through which drilling tools and fluids may be deployed to and retrieved from the subsea wellbore. Ordinarily, the LMRP 16 may include (among other things) one or more ram-type blowout preventers 28 at its distal end, an annular blowout preventer 30 at its upper end, and a MUX pod (in reality two, which are referred to in the industry as blue and yellow pods) 32.
When desired, the ram-type blowout preventers of the LMRP 16 and the lower BOP stack 10 may be closed and the LMRP 16 may be detached from the lower BOP stack 10 and retrieved to the surface, leaving the lower BOP stack 10 atop the wellhead. Thus, for example, it may be necessary to retrieve the LMRP 16 from the wellhead stack in times of inclement weather or when work on a particular wellhead is to be temporarily stopped.
Also, when a part of the LMRP 16 fails, the entire LMRP 16 may need to be raised on the ship 20 for repairs and/or maintenance. One such part that may require maintenance from time to time is the MUX pod 32. A conventional MUX pod system 40, is shown in
The MUX pod 40 is fixedly attached to a frame (not shown) of the LMRP and may include hydraulically activated valves 50 (called in the art sub plate mounted (SPM) valves) and solenoid valves 52 that are fluidly connected to the hydraulically activated valves 50. The solenoid valves 52 are provided in an electronic section 54 and are designed to be actuated by sending an electrical signal from an electronic control board (not shown). Each solenoid valve 52 is configured to activate a corresponding hydraulically activated valve 50. The MUX pod 40 may include pressure sensors 56 also mounted in the electronic section 54. The hydraulically activated valves 50 are provided in a hydraulic section 58 and are fixedly attached to the MUX pod 40 (i.e., a ROV vehicle cannot remove them when the same is disposed on the seafloor).
In typical subsea blowout preventer installations, multiplex (“MUX”) cables (electrical) and/or lines (hydraulic) transport control signals (via the MUX pod and the pod wedge) to the LMRP 16 and lower BOP stack 10 devices so specified tasks may be controlled from the surface. Once the control signals are received, subsea control valves are activated and (in most cases) high-pressure hydraulic lines are directed to perform the specified tasks. Thus, a multiplexed electrical or hydraulic signal may operate a plurality of “low-pressure” valves to actuate larger valves to communicate the high-pressure hydraulic lines with the various operating devices of the wellhead stack.
A bridge between the LMRP 16 and the lower BOP stack 10 is formed that matches the multiple functions from the LMRP 16 to the lower BOP stack 10, e.g., fluidly connects the SMP valves 50 from the MUX pod provided on the LMRP to dedicated components on the BOP stack or the LMRP. The MUX pod system is used in addition to choke and kill line connections (not shown) or lines that ensure pressure supply to, for example, the shearing function of the BOPs.
The bridge is shown in
Examples of communication lines bridged between LMRPs and lower BOP stacks through feed-thru components include, but are not limited to, hydraulic choke lines, hydraulic kill lines, hydraulic multiplex control lines, electrical multiplex control lines, electrical power lines, hydraulic power lines, mechanical power lines, mechanical control lines, electrical control lines, and sensor lines. In certain embodiments, subsea wellhead stack feed-thru components include at least one MUX pod connection whereby a plurality of hydraulic control signals are grouped together and transmitted between the LMRP 16 and the lower BOP stack 10 in a single mono-block feed-thru component as shown, for example, in
In conventional MUX pods, when one or more of the solenoid valves 52 or any of the various other instruments and components require service or replacement, which happens from time to time, the whole MUX pod 40 has to be brought to the surface. However, as the MUX pod 40 is bolted to the LMRP, it is necessary that the entire LMRP be brought to the surface for repair. This operation is disrupting for the functioning of the well as the drilling or oil extraction has to be stopped, which involves production losses. In addition, the size and weight of the MUX pod 40 and the LMRP are large (sometimes in the range of tens to hundreds of tons), which makes the entire retrieval process not only time consuming but dangerous.
An approach to limit the disruption of oil extraction has been presented in U.S. Pat. No. 7,216,714 to G. Reynolds, the entire disclosure of which is incorporated here by reference. U.S. Pat. No. 7,216,714 uses a control module 60 (shown in
However, this process is still cumbersome as both the hydraulically activated valve and the solenoid valve need to be removed and brought to the surface. Once there, the control module 60 has to be disassembled and only the failed part replaced with a new part. However, the weight and size of the control module may be significant, thus imposing considerable power requirements on the ROV vehicle. Another disadvantage of the existing devices is that most of the time there is no need to bring to the surface the SPM valves as these valves are more reliable than the electro-hydraulic valves. Accordingly, it would be desirable to provide systems and methods that are faster and simpler than the afore-described approaches.
According to one exemplary embodiment, there is a subsea device that is configured to control a subsea well. The subsea device includes a frame; a blowout preventer connected to the frame and configured to close a bore that fluidly communicates with the subsea well; a pressure supply line connected to the frame and configured to provide a fluid under pressure; a control module connected to the frame and configured to receive the fluid from the pressure supply line and to distribute the fluid to control various functions of the subsea device, the control module including a fixed part and a removable section; the fixed part having a first base connected to a valve manifold that houses a hydraulic activated valve; and the removable section being configured to detachably attach to the fixed part and including a second base connected to an electrically activated valve. The hydraulic activated valve of the fixed part is configured to be actuated by the electrically activated valve of the removable section when the removable section is mated to the fixed part. The first base has a flat first surface and the second base has a flat second surface facing the flat first surface, and all functional connections between the fixed part and the removable section are provided between the flat first surface and the flat second surface.
According to another exemplary embodiment, there is a control module configured to control various elements of a subsea device to be attached to a subsea well. The control module includes a fixed part attached to a frame of the subsea device, the fixed part having a first base connected to a valve manifold that houses a hydraulic activated valve, and a removable section being configured to detachably attach to the fixed part and including a second base connected to an electrically activated valve. The hydraulic activated valve of the fixed part is configured to be actuated by the electrically activated valve when the removable section is mated to the fixed part. The first base has a flat first surface and the second base has a flat second surface facing the flat first surface. All functional connections between the fixed part and the removable section are provided between the flat first surface and the flat second surface.
According to still another exemplary embodiment, there is a control module configured to control various elements of a subsea device to be attached to a subsea well. The control module includes a fixed part attached to the subsea device, the fixed part having a first base connected to a valve manifold that houses a hydraulic activated valve; and a removable section being configured to detachably attach to the fixed part and including a second base connected to an electrically activated valve. The first base has a flat first surface and the second base has a flat second surface facing the flat first surface, and all functional connections between the fixed part and the removable section are provided between the flat first surface and the flat second surface.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate one or more embodiments and, together with the description, explain these embodiments. In the drawings:
The following description of the exemplary embodiments refers to the accompanying drawings. The same reference numbers in different drawings identify the same or similar elements. The following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims. The following embodiments are discussed, for simplicity, with regard to the terminology and structure of a BOP stack. However, the embodiments to be discussed next are not limited to BOP stacks, but may be applied to other elements, e.g., LMRP, that are located in difficult to reach locations.
Reference throughout the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with an embodiment is included in at least one embodiment of the subject matter disclosed. Thus, the appearance of the phrases “in one embodiment” or “in an embodiment” in various places throughout the specification is not necessarily referring to the same embodiment. Further, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
According to an exemplary embodiment, a subsea structure is operated by providing a first predetermined number of functions. These functions are achieved by actuating hydraulically activated valves (SPM valves). A hydraulically activated valve is controlled by a pilot valve, which may be an electrically activated valve. A fixed part of a control module is configured to include the hydraulically activated valves while a removable section is configured to include the electrically activated valves. The fixed part is fixedly attached to the subsea structure while the removable section is detachably attached to the fixed part. Since the electrically activated valves are more likely to fail in comparison to the hydraulically activated valves, given their service history, the separation of the two types of valves may offer the operator of the subsea structure the possibility to remove with a ROV only the electrically activated valves (the removable section) and not the hydraulically activated valves (the fixed part).
In this way, the size and weight of the part that has to be removed from the subsea structure is smaller, which consequently simplifies the replacement process. In addition, one or more embodiments to be discussed later have the advantage that the control module discussed above is capable of augmenting the number of functions already provided by a dedicated MUX pod. As was discussed previously, a MUX pod may be a standard piece of equipment for an LMRP. The MUX pod has a dedicated number of functions that are customized for each user. After being deployed on the subsea structure, the MUX pod ability to increase the provided number of functions is limited because of the connection between the BOP stack and the LMRP (see FIG. 3). Thus, the above discussed control module is also capable of extending the number of functions to be implemented at the subsea structure.
The structure of the control module is discussed now in more details. According to an exemplary embodiment,
According to an exemplary embodiment, when new functions need to be added to the BOP stack 80 and the MUX pod 88 has no available port to control the new functions, a new control module 94 (see
A SPM valve 106 is hydraulically activated, e.g., it needs a supply of a fluid under pressure to open or close the valve. In other words, the SPM valve controls the flow of a fluid under pressure there through by receiving the supply of a hydraulic fluid under pressure at a gate of the SPM valve. The supply of fluid under pressure is provided by a corresponding pilot valve 108, which is better seen in
In one exemplary embodiment, the removable section 110 may include a connecting device 112 (see
The removable section 110 may also include a fitting 116 (as shown in
In this way, the pilot valves 108 and the associated electronics may be separated from the SPM valves 106 and thus, in case of failure of a pilot valve or an electronic component, only these elements are retrieved and not the SPM valves. For this reason, the weight and size of the removed part is considerable less than the weight and size of the entire unit, which makes the replacement more feasible.
According to an exemplary embodiment, a schematic diagram of the fixed part 100 and the removable section 110 is shown in
SPM valve 106 is activated by receiving the fluid under high pressure at gate 106g. This fluid is controlled by pilot valve 108 provided in the removable section 110. Pilot valve 108 may have a similar structure as the SPM valve 106 except that an electrical gate 108a is used to activate the valve. The pilot valve 108 may receive the fluid under pressure from the same conduit 132 used by the SPM valve 106 or another hydraulic source. Thus, connections 134a and 134b are implemented on the fixed part 100 and the removable section 110, respectively, for bringing the fluid under pressure to the pilot valve 108. Similar or different connections 136a and 136b are used for providing the fluid under pressure from the pilot valve 108 to the SPM valve 106 when a corresponding electrical signal is received at gate 108a. Thus, when the pilot valve 108 is activated, the fluid from conduit 132 flows via the pilot valve 108 to the gate 106g to activate the SPM valve 106. After the SPM valve gate 106g is activated, fluid from conduit 132 flows via SPM valve 106 to outlet 138 and to the desired function to be controlled.
It is noted in this exemplary embodiment that the fluid under pressure entering conduit 132 may be provided either directly from MUX pod 60 along a conduit or from another source, e.g., hot line 144. The fluid may be regulated internally at the MUX pod 60. The hot line 144 may be connected to accumulators or to a conduit that communicates with the ship (not shown) manning the operation of the LMRP.
Similar to the fixed part 100, the removable section 110 may include more than one pilot valve 108. The removable section 110 also includes an electronic part 118 that is electrically connected to the pilot valves for transmitting various commands to them. The electronic part 118 may be connected to power supply lines 140a and 140b that are connected to the MUX pod 60 via the fixed part 100. In addition, the electronic part 118 may include one or more lines 142 (e.g., RS 485 cables) for transmitting various commands from the MUX pod 60 to the corresponding solenoid valves 108 via the fixed part 100. Corresponding wet-mateable electric connectors 145 (e.g., connectors configured to mate/de-mate subsea) may be mounted on the fixed part 100 and the removable section 110 for transmitting the electric power and the commands from one module to the other. Multiple fixed parts 100 and corresponding removable sections 110 may be used on the same subsea structure.
If more than one pilot valve 108 is provided on the removable section 110, the same supply line 146 may be used to supply the fluid under pressure to each of the pilot valve 108. However, each pilot valve 148 would have its own output 150 fluidly communicating with a corresponding SPM valve 152. In other words, for a control module (fixed part 100 and removable section 110) having 8 functions, there are 8+1 inlet hydraulic ports, one corresponding to conduit 146 and the others corresponding to outlet ports 150. In one application, the conduit 146 may be connected to another source of fluid under pressure instead of the MUX pod 60 or conduit 144. The removable section 110 may include other elements than those shown in the figures. For example, the removable section 110 may include one or more filtration devices, pressure sensing devices, etc. Similarly, the fixed part may include other devices, e.g., pressure regulators.
If the fixed part 100 and the removable section 110 are disposed on the BOP stack, then the power supply and the communication supply may stay the same, e.g., from MUX pod 60, but the hydraulic supply may provided by a hot line that provides the fluid under high pressure for operating the BOPs of the BOP stack.
According to an exemplary embodiment,
The pressure values illustrated in
According to an exemplary embodiment illustrated in
According to an exemplary embodiment illustrated in
A compensator 196 may be added to the removable section 110 for negating a differential pressure between an ambient subsea pressure (e.g., pressure generated at the ocean floor by the water above) and a pressure inside cavity 124 (when the cavity 124 is filled with a non-conducting fluid, e.g., a dielectric fluid). In this way, the removable section 110 may be located on the ocean floor without endangering the integrity of the electronic components provided inside cavity 124, e.g., power and communication part 118. In this respect, it is noted that some of the electronic components may trap inside air at atmospheric pressure and exposing these components to the high pressure undersea might cause damage.
According to an exemplary embodiment, the same is true for the removable section 110. More specifically, all connections parts 136b, locking device 190, guide 114, and electrical connector 123 may be provided on a base 111. In one application, these elements may be provided on a single flat surface 111a of the base 111. The electronic section 118 may be placed in the cavity 124 and the electronic section is configured to receive electrical signals through electrical connector 123 and transmit electrical signals to appropriate pilot valves 108.
While the above discussed exemplary embodiments had the removable section 110 configured to have a mechanism such that the ROV can connect to the mechanism and remove the removable section,
This exemplary embodiment differs from other embodiments discussed above in that an electrical bulkhead connector 206 is provided on the removable section 110 to be connected to, for example, the MUX pod (not shown in this figure) without passing through the fixed part 100. An advantage of this exemplary removable section 110 is as discussed next. Assuming that at least a pilot valve 108 is faulty, the entire control module 208 needs to be brought to the surface for maintenance. The control module 208 may have a weight of approximately 800 kg while the removable section 110 may have a weight of approximately 200 kg. However, because only the removable section 110 needs to be handled as the pilot valve 108 is provided in the removable section 110, a crane for removing the removable section 110 may be smaller and/or the effort and human involvement in manipulating the removable section 110 may be reduced.
According to an exemplary embodiment, illustrated in
The disclosed exemplary embodiments provide a system and a method for assembling a control module. It should be understood that this description is not intended to limit the invention. On the contrary, the exemplary embodiments are intended to cover alternatives, modifications and equivalents, which are included in the spirit and scope of the invention as defined by the appended claims. Further, in the detailed description of the exemplary embodiments, numerous specific details are set forth in order to provide a comprehensive understanding of the claimed invention. However, one skilled in the art would understand that various embodiments may be practiced without such specific details.
Although the features and elements of the present exemplary embodiments are described in the embodiments in particular combinations, each feature or element can be used alone without the other features and elements of the embodiments or in various combinations with or without other features and elements disclosed herein.
This written description uses examples of the subject matter disclosed to enable any person skilled in the art to practice the same, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the subject matter is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims.
This application claims priority and benefit from Provisional Patent Application No. 61/329,883, filed Apr. 30, 2010, for “Subsea Control Module with Removable Section and Method”, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61329883 | Apr 2010 | US |