The invention will be further described in more detail in the following detailed description by reference to the appended drawings in which
Referring first to
Referring then to
The present invention distinguishes itself significantly from the known solution in how the subsea docking unit is locked to the subsea docking station 1 and the associated locking device 3 which will be described in more detail below.
The subsea docking unit 2 which typically contains electronics for a control or measuring device and possibly also for communication, is preferably designed to have a substantially cylindrical shape having a spherical first end 13 in order to optimize the weight-strength relationship and for allowing a smooth entry of the subsea docking unit into the funnel shaped subsea docking station 1 and for reducing potential damage to the coating of the canister B.
On one side of the subsea docking unit 2 there is provided a rotation orientation detail 101, preferably a orientation guide for interacting with a corresponding slot 102, preferably of Y-shape, thereby allowing correct orientation of the subsea docking unit 2 when entering it into the subsea docking station 1, similar to the prior art docking station of
On the second end 14 of the subsea docking unit 2, typically the top of the subsea docking unit when mounted in a subsea docking station in its normal position, there is provided a subsea docking unit locking mechanism 3 comprising movable parts which enables locking of the subsea docking unit 2 inside the subsea docking station 1. The subsea docking unit 2 locking mechanism 3 comprises movable parts which are designed to lock into a corresponding subsea docking station locking brim 6. The locking mechanism 3 of the subsea docking unit 2 comprises a set of arm structures 5, an example embodiment of which is illustrated on
A third arm of the arm structure can be oriented so as to stop against a part of the canister when arm structure is in or near the extreme position which allows the canister to be lifted out of the docking station 1. This stopping function limits the pivotal movement of the three-armed structure. When stopped in this manner the three-armed structure is at one of its extreme positions.
The arm structures 4 can be actuated and moved between two extreme positions, a first locked position and a second unlocked position. The arm structures 4 can be locked and unlocked using an actuator means 3, 4 where an example embodiment is illustrated on
The leg structure 4 preferably has a leg protruding detail 31 at or near an extreme end of one or more legs 32 of the leg structure as illustrated on
In the centre of the leg structure 4 a threaded spindle, shaft or rod-like structure 3 is arranged. The spindle 3 is possibly divided by a flexible joint 12 otherwise known per se, typically with an encapsulation of a flexible material such as for example a rubber, and the spindle 3 is preferably provided with a first paddle handle 10 at one end, and is removably attached to the subsea docking unit 2 at the other end. The tripod 4 can thus be actuated by rotating the spindle 3. The spindle 3 comprises a thread arrangement, preferably a trapeze thread arrangement, for engaging a corresponding thread arrangement on a center hole defined by in a centre of the leg structure 4. A leg structure 4 in the form of a tripod may thus be rotatably mounted, aligned with a longitudinal centre axis of the subsea docking unit, but can be freely rotated around this axis and moved along this axis within the limits given by the threaded shaft or spindle. By rotating the shaft or spindle 3, the tripod is moved towards or away from the subsea docking unit. This causes an arm of the three-armed structure to be pressed towards the centre axis of the subsea docking unit and to grab the locking brim 6.
Preferably, the tripod 4 has legs evenly arranged around a centre axis, said tripod centre axis being parallel with a longitudinal centre axis of the canister B and the docking station 1 when mounted in their locked positions. With an even distribution of the legs of the tripod around an axis an even distribution of load forces around the periphery of the docking station 1 is ensured, which is advantageous from with regard to stability and a ruggedness of the docking unit 2 and the docking station 1, and also with regard to the locking mechanism itself.
Further preferably the actuator means comprises a three-legged structure such as a tripod, however other similarly symmetrically designed actuator means can be used, for example a four or five legged structure, provided the legs are arranged so as to each be able to push or pull a corresponding arm of a three-armed structure into a corresponding locking brim 6.
The operation of mounting the subsea docking unit 2 to the subsea docking station 1 is illustrated in more detail in the drawing sequence of
As stated above, the tripod 4 is normally initially free to rotate. By rotation of the threaded rod, there will normally be sufficient friction between the rod and the tripod to cause such rotation. To avoid such rotation, there is arranged a pair of metal bars, a first bar on one side of the at least one tripod leg and a second bar on the opposite side of said one tripod leg in order to present a hindrance or obstacle to such rotation. Preferably, the pair of metal bars are mounted on an external surface of the subsea docking unit, next to a portion of the tripod leg which is directed radially, outwardly from a common center cross of the tripod legs. The threaded shaft or spindle 3 passes through a center hole in this tripod cross. After placement and locking of the subsea docking unit in position in the subsea docking station 1 the pair of metal bars is preferably coupled at one by mounting a second paddle handle 9.
A good design principle and often a requirement of such equipment is that it should be provided with an override release mechanism or, in other words an emergency release mechanism. This mechanism is to be used when there are movable parts or systems that will not operate as designed and provides a highly desirable redundancy for parts that can be expected to stay on the seabed for a typical design life of 30 years. The key requirement is to be able to unlock the subsea docking unit using an alternative manner without causing damage to the stationary parts.
The pair of metal bars 23, 24 hindering the rotation of the tripod, and the associated second paddle handle 9 can be arranged so as to enable a new type of emergency release mechanism in this invention, as also illustrated in more detail in the sequence of
The three-armed structure and the tripod legs are not made very wide, in order to optimize weight and cost of the subsea docking unit. The sector within which the tripod could be rotated freely, disregarding the second paddle handle 9 is typically about 30 degrees. By rotating the tripod 4 in a somewhat more limited manner, say about 10 degrees in either direction, this will cause the tripod legs to slide off the arms of the three-armed structure, thereby freeing the locked arms of the three-armed structures from the locked position in which they are maintained in place. By enabling such a rotation of the tripod, the subsea docking unit 2 will be free to be retrieved without having to rotate the first paddle handle. In order to enable such a function, the second paddle handle 9 is designed to be capable of being broken off the subsea docking unit By a manipulation device on an ROV, it could for example be designed to break off by use of 80% of the capacity of an ROV manipulation arm. Thus, an ROV can break off the second paddle handle 9, operate the manipulation arm on the first paddle handle to cause a rotation of the tripod, thus releasing the subsea docking unit from its locked position.
By manufacturing the various parts of the locking mechanisms to tight tolerances it is enabled that the subsea docking unit may be forced and pressed into the subsea docking station by a constant force when the locking mechanism is locked. This may be achieved by an undercut on the tolerances of the locking mechanism. This way the force generated by the locking mechanism can be designed to be larger than the resulting forces of the typical G-forces or vibrations which may be expected. As a result of the forces acting and the properties (elasticity modules), an arm of the three-armed structure will always be in contact with the brim 6 of the subsea docking station 1, thus ensuring that the connector 8 is fully engaged and avoiding a hammering of the materials in any of the shock loads or vibration scenarios that can be expected.
Preferably, the parts of the locking mechanism, the subsea docking unit Body and the subsea docking station which can, by shock, vibration and fatigue analysis, be expected to be subjected to high stress is made from grade 5 titanium, or materials of similar strength/weight ratio levels. The remaining parts are preferably made from a grade 2 titanium, or a material of similar properties, thereby achieving a reduced total weight of the total structure.
The emergency release mechanism, the tolerance requirements and the operation of the system require low friction surfaces. After careful analysis of a number of possible materials, it was found that the friction surfaces of contact between the locking unit and locking station are preferably are coated with Xylan®. Xylan® has a number of desirable properties. It yields a coating with very little variation in thickness when applied, it has an extremely low friction and it is approved as a corrosion protector for carbon steel wellhead caps. It also has a very good compatibility with titanium and can be applied without damaging the oxide layer, thus providing the titanium with the special corrosion resistant property. Hence, by using Xylan® coatings on selected or most surfaces of the components, i.e. the docking unit or docking station of the present invention, it is possible to obtain low friction when inserting the subsea docking unit into the funnel, when operating the looking mechanism and when using the emergency release mechanism.
A field qualification test of a prototype of an example embodiment of the present invention has yielded very successful results. Operators of ROVs have confirmed that the present invention yields easy operations and has a very robust design. No possibilities for wrong installation of subsea docking units have been experienced this far.
Although the invention is primarily directed at applications in which a docking station is fixedly mounted as part of a subsea installation, the docking station could just as well be a part of a mobile subsea unit while still being able to interact with a docking unit according to the invention having the same advantages as described above.
In summary, the present invention provides a docking unit and an associated docking station for allocating said docking unit which enables placement of removable electronics as part of a subsea installation in a manner which in operation can withstand more severe chocks and stronger vibrations than present solutions. Further this result is obtained with in a solution which enables fast, easily reproducible mounting and removal of a docking unit including electronics for a subsea installation.
Typical applications include all types of control and measuring instrumentation modules, for example a subsea mounted multiphase fluid flow metering device, however a person skilled in the art will appreciate that the present invention may be applicable to other types of subsea installations requiring removable electronics.
| Number | Date | Country | Kind |
|---|---|---|---|
| 2006 1860 | Apr 2006 | NO | national |