1. Field of the Disclosure
Many situations involve conveying fluids between two or more points. In some instances, the area available to install piping or other conduits for such fluids is limited. The present disclosure addresses the need to convey fluids in situations where space is limited. The present disclosure addresses the need for simplified structures that can be built at lower costs and that can be tested prior to placement.
2. Description of the Related Art
A system for conveying fluids at a subsea location includes a module having, a flow line formed of plurality of linear sections. At least two of the sections have a geometrically parallel arrangement. The module includes an inlet supplying fluid to the flow line and an outlet receiving fluid from the flow line. In some embodiments, the flow line communicates fluid between the inlet and the outlet in a hydraulically serial fashion.
It should be understood that examples of certain features of the disclosure have been summarized rather broadly in order that the detailed description thereof that follows may be better understood, and in order that the contributions to the art may be appreciated. There are, of course, additional features of the disclosure that will be described hereinafter and which will in some cases form the subject of the claims appended thereto.
For detailed understanding of the present disclosure, references should be made to the following detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings, in which like elements have been given like numerals and wherein:
One non-limiting environment where the advantages of the present disclosure may be of particular value involves a subsea production system that includes a high-integrity pressure protection system (HIPPS). A HIPPS is designed to prevent over-pressurization of flow lines downstream of a high pressure source. In an overpressure condition, the HIPPS isolates the high pressure source before the overpressure condition damages vulnerable downstream equipment. Conventionally, a “fortified” section consisting of pipes that connect the HIPPS to a subsea production system. The distance the fluid flows in the fortified section is selected to provide enough time to detect an overpressure condition in order for the HIPPS to react appropriately. Conventional HIPPS may have limited space for flow lines. Moreover, such HIPPS employ complex designs and often require a significant amount of testing after placement.
Referring to
In one embodiment, the module 10 may include a flow line 12, an inlet 14, and an outlet 16. Optionally, a frame 18 may be used to house the flow line 12. The inlet 14 can connect to and receive fluids from a HIPPS (not shown) and the outlet can connect and flow fluid to a subsea production system (not shown). The frame 18 may include axially spaced-apart plates or any other structure suitable for supporting the flow line 12. In the embodiment shown, the flow line 12 includes a plurality of linear segments 20 that are interconnected by joints 22. The linear segments 20 are arranged to convey fluids in a hydraulically serial fashion from the inlet 14 to the outlet 16. It should be noted that a plurality of the linear segments 20 are arranged in a geometrically parallel fashion; i.e., side by side. Thus, at least a portion of each of the parallel segments lie along a common distance. It should be understood that while the linear segments 20 are geometrically parallel, they convey fluid in only a serial fashion. That is, there are no manifolds or other devices that split fluid flow.
Referring to
The fluid enters via the inlet 14 (
Referring now to
Use of modules in accordance with the present disclosure has still further advantages vis-à-vis conventional structures or flowlines. For instance, the module 10 may use qualified API flanges, which may minimize or eliminate field welding of pipe joints. In some instances, the module 10 may be constructed to minimize or eliminate the need for several pipeline end terminations and jumpers in the fortified zone. That is, instead of installing potentially dozens of subsea structures, a single subsea structure containing the fortified zone module may be installed. It will be appreciated that these features can simplify installation and reduce construction time and associated risk. Moreover, it should also be appreciated that systems and methods of the present disclosure may simplify factory acceptance tests and system integration tests thus reducing costs.
It is emphasized that the
From the above, it should be appreciated that what has been described includes a system for conveying fluids at a subsea location; i.e., below the water's surface. The system may include a high-integrity pressure protection system (HIPPS) supplying fluid; a module connected to the HIPPS and receiving the fluids into a flow line formed of plurality of linear sections, wherein at least two linear sections are geometrically parallel, the flow line being shaped to reverse flow in the module a plurality of times; an outlet connected to the flow line; and a subsea production system connected to the module via the outlet and receiving the fluids from the flow line. The flow line communicates fluid between the inlet and the outlet in a hydraulically serial fashion. The flow line includes a plurality of bends reversing the flow of fluids in adjacent linear sections. The system may include a plurality of stacks of linear sections.
From the above, it should be also appreciated that what has been described includes a method for conveying fluids at a subsea location. The method may include positioning a module at a subsea location, the module having a flow line for flowing fluids in a serial fashion from a single inlet to a single outlet, the flow line being shaped to reverse flow of the fluids a plurality of times along each plane of a plurality of planes; flowing fluids from a high-integrity pressure protection system (HIPPS) to a subsea production system via the module; and flowing fluids from a high-integrity pressure protection system (HIPPS) to a subsea production system via the module. The method may also include assembling the module at a land facility before positioning the module at the subsea location and/or testing pressure integrity of the module at a land facility before positioning the module at the subsea location.
From the above, it should be further appreciated that what has been described includes a system for conveying fluids at a subsea location. The system may include a module having a flow line flowing fluids in a serial fashion from a single inlet to a single outlet, the flow line being shaped to reverse flow of the fluids a plurality of times along each plane of a plurality of planes. The plurality of planes may be geometrically parallel to one another. The flow line may include a plurality of stacks of linear sections, wherein each stack is aligned with at least one plane of the plurality of planes. The flow line may include a plurality of U-shaped bends, each U-shaped bend flowing fluids from one of: (i) between linear sections of one stack, and (ii) between stacks of linear sections. The system may include a frame to which all of the stacks of linear sections are connected. The module may define a volume and the fluid line flows fluid along a plurality of non-parallel planes in the volume. The system may also include a high-integrity pressure protection system connected to the module and a subsea host connected to the module.
It is emphasized that the present disclosure is susceptible to embodiments of different forms. There embodiments shown in the drawings and described in detail above are presented with the understanding that the present disclosure is to be considered an exemplification of the principles of the disclosure, and is not intended to limit the disclosure to that illustrated and described above. Thus, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims the benefit of U.S. Provisional Application No. 62/184,602 filed on Jun. 25, 2015, the entirety of which is incorporated by reference herein. The present disclosure generally relates to systems and methods for conveying fluids.
Number | Name | Date | Kind |
---|---|---|---|
1510860 | Peck | Oct 1924 | A |
1710811 | Dewald | Apr 1929 | A |
1787448 | Holton | Jan 1931 | A |
5839383 | Stenning | Nov 1998 | A |
8051875 | Edwards | Nov 2011 | B2 |
8235628 | Lamison | Aug 2012 | B2 |
20040031614 | Kleinhans | Feb 2004 | A1 |
20090211263 | Coyle | Aug 2009 | A1 |
20100252227 | Sten-Halvorsen | Oct 2010 | A1 |
20110240157 | Jones | Oct 2011 | A1 |
20120000667 | MOgedal | Jan 2012 | A1 |
20160076334 | Maher | Mar 2016 | A1 |
20160222761 | Cain | Aug 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20160376875 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
62184602 | Jun 2015 | US |