Not applicable.
1. Field of the Invention
The present disclosure relates generally to containment and disposal methods and systems in the marine hydrocarbon exploration, production, drilling and completion fields. More particularly, the disclosure relates to the field of subsea hydrocarbon containment. Still more specifically, the disclosure relates to suspended subsea hydrocarbon containment utilizing a modular containment apparatus and method. Embodiments of systems, methods, and apparatus disclosed herein may be fully or partially deployed before, during, and/or after a subsea leak has occurred, and may be used in any marine environment which contains equipment that is leaking or for which a leak is imminent or suspected to occur, particularly subsea regardless of water depth.
2. Background of the Technology
Conventional practice for containment and disposal methods and systems in the marine hydrocarbon exploration, production, drilling and completion fields, such as booms and skimmer vessels, may not be adequate for all circumstances. For example, booms and skimmer vessels are not designed to gather hydrocarbon fluids discharged from deep and ultra-deep subsea hydrocarbon production facilities. Industry experience with open-containment measures involving the capture of hydrocarbon flow in open water without latching or sealing has occurred in shallow water and involves relatively low fluid volumes. Prior open-containment efforts have not needed to address the fluid properties produced by the combination of the hydrocarbons, deep-ocean pressures and cold seawater that contribute to the formation of hydrocarbon gas hydrates.
Accordingly, there is a need in the art for mobile offshore containment apparatus and methods of use. Such apparatus would be particularly well-received if they were deployable from an offshore surface vessel, to a position suspended above a hydrocarbon breach, particularly at a substantial subsea depth. The need further includes a hydrocarbon containment apparatus, of a generally open construction, that can funnel a relatively large volume of discharged hydrocarbon fluids, regardless of the source of the breach.
These and other needs in the art are addressed in one embodiment by a subsea hydrocarbon containment apparatus. In an embodiment, the containment apparatus comprises a containment housing. In addition, the containment apparatus comprises a diverter plate mounted to the containment housing. The containment housing is configured to receive direct hydrocarbon fluids from a subsea hydrocarbon source and direct the hydrocarbon fluids to the diverter plate.
These and other needs in the art are addressed in another embodiment by a subsea hydrocarbon containment apparatus. In an embodiment, the containment apparatus comprises a lower housing including a peripheral wall defining an open inlet end configured to receive hydrocarbons from a subsea hydrocarbon source and an open outlet end configured to transfer hydrocarbons. In addition, the containment apparatus comprises an upper housing mounted to the lower housing. The upper housing including a peripheral wall defining an open inlet end configured to receive hydrocarbons from the outlet end of the lower housing. The upper housing includes a wellhead diverter plate mounted at an exit aperture of the upper housing. Further, the containment apparatus comprises a pressure control assembly mounted to the subsea wellhead diverter plate and configured to receive hydrocarbons from the exit aperture.
These and other needs in the art are addressed in another embodiment by a method of containing a subsea hydrocarbon source. In an embodiment, the method comprises deploying a fully assembled subsea containment apparatus from a surface vessel. The containment apparatus comprising a lower housing, an upper housing stacked onto the lower housing, a wellhead diverter plate mounted on the upper housing, and a pressure control assembly mounted to the wellhead hydrate diverter plate. In addition, the method comprises lowering the containment apparatus subsea with a pipestring coupled to the pressure control assembly. Further, the method comprises maneuvering the deployed containment apparatus to a position suspended above the hydrocarbon source. Still further, the method comprises purging the pressure control assembly from the surface to flush water from the pipestring. Moreover, the method comprises siphoning hydrocarbons from the containment components to the surface vessel.
Embodiments described herein comprise a combination of features and advantages intended to address various shortcomings associated with certain prior devices, systems, and methods. The various characteristics described above, as well as other features, will be readily apparent to those skilled in the art upon reading the following detailed description, and by referring to the accompanying drawings. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the invention, as claimed.
For a detailed description of the preferred embodiments of the invention, reference will now be made to the accompanying drawings in which:
The following discussion is directed to various exemplary embodiments, examples of which are illustrated in the accompanying drawings. However, one skilled in the art will understand that the examples disclosed herein have broad application, and that the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to suggest that the scope of the disclosure, including the claims, is limited to that embodiment. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention and it is to be understood that other embodiments may be utilized and that changes may be made without departing from the scope of the invention. The following description is, therefore, merely exemplary. In addition, it should be readily apparent to one of ordinary skill in the art that the apparatus and methods depicted in the drawings are generalized schematic illustrations and that other components or steps can be added or existing components or steps can be removed or modified.
Certain terms are used throughout the following description and claims to refer to particular features or components. As one skilled in the art will appreciate, different persons may refer to the same feature or component by different names. This document does not intend to distinguish between components or features that differ in name but not function. The drawing figures are not necessarily to scale. Certain features and components herein may be shown exaggerated in scale or in somewhat schematic form and some details of conventional elements may not be shown in interest of clarity and conciseness. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . . ” Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection, or through an indirect connection via other devices, components, and connections. In addition, as used herein, the terms “axial” and “axially” generally mean along or parallel to a central axis (e.g., central axis of a body or a port), while the terms “radial” and “radially” generally mean perpendicular to the central axis. For instance, an axial distance refers to a distance measured along or parallel to the central axis, and a radial distance means a distance measured perpendicular to the central axis. In addition, as used herein, the phrases “subsea source” and “subsea hydrocarbon source” include, but are not limited to: 1) drilling and production sources and equipment such as subsea wellheads, subsea blowout preventers (BOPs), other subsea risers, subsea trees, subsea manifolds, subsea piping and pipelines, subsea storage facilities, and the like, whether producing, transporting and/or storing gas, liquids, or combination thereof, including both organic and inorganic materials; 2) subsea containment sources and equipment of all types, including leaking or damaged subsea BOPs, risers, manifolds, tanks, and the like; and 3) subsea leaks or seeps, e.g. breaches, that can occur in the seabed floor.
Referring now to
As previously described, containment apparatus 100 is preferably deployed subsea, away from a hydrocarbon breach, and once at depth, moved quickly into position above source 13 to initiate the containment of hydrocarbons discharged from source 13. Containment apparatus 100 facilitates the capture of a relatively large volume of hydrocarbons while limiting the amount of seawater captured, thereby offering the potential to reduce the likelihood of hydrocarbon gas hydrate formations therein. In particular, containment apparatus 100 is preferably sized to have a containment volume of at least 1,000 cubic feet. It should be appreciated that containment apparatus 100 can be used to contain any type of subsea hydrocarbon source. In this embodiment, the total wet weight of containment apparatus 100 is less than 60 kips.
Referring now to
Referring now to
Although wall 112 and lower housing 110 are rectangular in this embodiment, other shapes are contemplated as being within the scope of this disclosure. For example, the lower housing (e.g., lower housing 110) can be in the shape of an ellipse, circle, square, or other suitable shape. It will be appreciated that the rectangular shape depicted herein can be a function of the availability of containment hardware and equipment on short notice as well as its ability to be easily transported on existing transport equipment.
In this embodiment, lower housing 110 also includes an inner peripheral reinforcing band 108 extending horizontally along the inside of wall 112 and an outer peripheral reinforcing band 109 extending horizontally along the outside of wall 112. Vertically spaced bands 108, 109 are securely attached to wall 112 and provide rigidity and strength to lower housing 110. In this embodiment, inner reinforcing band 108 is positioned adjacent lower end 114 of housing 110 and outer reinforcing band 109 is positioned adjacent upper end 116 of lower housing 110. Further rigidity and strength are provided by a support structure comprising a pair of laterally spaced horizontal cross beams 118 mounted to a pair of laterally spaced vertical wall beams 119. Vertical wall beams 119 are attached to the outside of wall 112 and cross-beams 118 extend across outlet opening 117 between the upper ends of wall beams 119. Although beams 119 are depicted on the outside of wall 112 in this embodiment, in other embodiments, the vertical beams (e.g., beams 119) are disposed along the inside of the peripheral wall (e.g., wall 112). Beams 118, 119 and bands 108, 109 can attached to wall 112 by any suitable means including, without limitation, a welded connection, a bolted connection, or the like. In an exemplary embodiment, lower housing 110 is about 20 feet long, about 16 feet wide, and the two cross beams 118 span the 16 foot width and are laterally spaced about 10 feet apart.
As best shown in
Referring now to
Although wall 122 and upper housing 120 are rectangular in this embodiment, other shapes are contemplated as being within the scope of this disclosure. For example, the upper housing (e.g., upper housing 120) can be in the shape of an ellipse, circle, square, or other suitable shape. It will be appreciated that the rectangular shape depicted herein can be a function of the availability of containment hardware and equipment on short notice as well as its ability to be easily transported on existing transport equipment. In embodiments described herein, lower housing 110 and upper housing 120 are preferably of similar shapes to ensure a seamless coupling of housings 110, 120 via sliding receipt of upper end 116 of lower housing 110 into opening 125 of upper housing 120.
As best shown in
As best shown in
As best shown in FIGS. 3 and 6-8, upper housing 120 also include a plurality of padeyes 111 positioned at base end 124. In particular, padeyes 111 of upper housing 120 are positioned to be in vertical alignment with padeyes 111 of lower housing 120 upon assembly of containment apparatus 100. As shown in
As best shown in
Referring now to
The lower end of low pressure housing 142 is mounted within vertical conduit 134. Connection of low pressure housing 142 to vertical conduit 134 can be by ring latches or the like to provide a fluid tight fit therebetween. Low pressure housing 142 also includes a deep swallow support plate and rotary table assembly 149 and a plurality of circumferentially spaced ports 143 extending radially therethrough. Each port 143 is fitted with a valve assembly 143a including a valve that controls the flow of fluids through the corresponding port 143. In this embodiment, the valves in assemblies 143a are ball valves. As will be described in more detail below, assemblies 143a and ports 143 enable the injection of fluids (e.g., hydrate inhibiting chemicals) into apparatus 100 and the sampling or production of fluids from apparatus 100.
In this embodiment, high pressure housing 144 is formed of wellhead housing 145 without flow-by. Connection of high pressure housing 144 to low pressure housing 142 can be by threading, ring latches, or the like to provide a fluid tight fit therebetween. A stop plate 147 is mounted on the upper end of high pressure housing 144 as shown.
Running tool 146 is connected to the high pressure housing 144, and lengths of drill pipe 148 are coupled thereto using an external wellhead connector to reach an overall length suitable to deploy containment apparatus 100 to a subsea depth at which containment is needed. For example, drill pipe 148 can be added to deploy containment apparatus 100 to a subsea depth of about 4,000 feet or more. It is to be understood that the depth given is by way of example only and that any depth can be obtained by adding lengths of drill pipe 148.
Assembly of containment apparatus 100, whether on-site or off-site, includes multiple steps such as positioning one of the moonpool carts in the forward port corner of the moonpool (or identify where on the boat deck to stack the boxes); attaching sling 300 to lower housing 110 via shackles 113; picking up lower housing 110 with sling 300 and landing lower housing 110 on the staged cart so that the 16′ width is port to starboard and the 20′ length is forward to aft; connecting a tie down to each of four upper padeyes 111 on lower housing 110 and then tying them off on the cart (or boat deck); removing sling 300 from lower housing 110; inspecting the top of lower housing 110 to ensure no damage; attaching tag lines to bottom padeyes 121 on upper housing 120 to assist in alignment operations; picking up upper housing 120 using shackles 123 and sling 300; ensuring that the upper and lower housing 110, 120 are aligned (e.g., by aligning markings on the upper and lower housings 110, 120 and inserting alignment member along the inner corner of wall 121 in lower opening 125); landing upper housing 120 onto lower housing 110; visually verifying that upper housing 120 is fully landed onto lower housing 110 and cross beams 118 on both sides; securing upper housing 120 to lower housing 110 with turnbuckles 310; and installing a shackle on one end of each turnbuckle 310 to assist with any fabrication tolerances between the aligned padeyes 111 of housings 110, 120; and sufficiently tightening turnbuckles 310 to ensure turnbuckles 310 do not back-off in service. Assembly also includes installing one or more ROV hot stab receptacles 139 in the top of upper housing 120 and ports 131 for injected chemicals or receiving fluids from housing 120; ensuring that ROV hot stab receptacle 139 and associated isolation valve are secured and undamaged; confirming that the isolation valve associated with receptacle 139 is closed; releasing the crane from upper housing 120, without removing sling 300; and transporting the cart supporting the assembled containment apparatus 100 to the edge of the aft moon pool.
Running tool staging prior to deployment of apparatus 100 includes making up the housing running tool 146; making up the crossover sub to drill pipe 148; removing the stop plate from housing running tool 146; and racking back the housing running tool 146. The stop plate and cap screws can be kept on hand for re-installation after make-up to housing. To initiate deployment, the running tool 146 is picked up by the rig at the surface and run without having to wait to thread all the parts together.
Referring now to
The assembled containment apparatus 100 is lowered subsea through the moonpool of a surface vessel in step 510. Drill pipe 148, e.g. extraction piping, is added and coupled to the pressure control assembly 140 in step 520 until containment apparatus 100 is deployed to depth. Moving now to step 530, and as shown in
Next, in step 540, the pressure control assembly 140 and upper housing 120 are purged by pumping a fluid, such as a hydrate inhibiting chemical, heated water, nitrogen gas, or combinations thereof, from the surface through pipe 148, assembly 140, and housing 120 to reduce the potential for hydrate formation therein. During or after purging pressure control assembly 140 and upper housing 120, containment apparatus 100 is maneuvered from the staging area to an operable containment position suspended above a hydrocarbon breach in step 550 and as shown in
During hydrocarbon capture and collection operations, hydrate inhibiting chemicals/additives are preferably injected into upper housing 120 via one or more injection ports (e.g., ports 143, ports 131, hot stab receptacle 139, or combinations thereof) in step 562. The method further includes injecting chemicals into upper housing 120 and lower housing 110 via ports 143 and/or hot stab receptacle 139 in step 564. The method concludes at step 580 with containment of hydrocarbons from the hydrocarbon breach. Although hydrate inhibiting chemicals are preferably injected in steps 562, 564, these steps can be skipped.
Deployment of containment apparatus 100 includes certain steps of, for example, making-up a housing running tool 146 that is racked back in to upper housing 120; securing the housing running tool 146 with the stop plate 147 and two cap screws; and using draw works, raising the assembly from the rotary and removing the LP housing support plate; running the housing assembly through the rotary; making up ball valve assemblies to the adapter; ensuring use of upper elevation of outlets to allow as much room as possible for retainer sleeve; orienting valves such that the valve stem is on top of the assembly; mounting valve handles such that the open handle position for open is parallel to the main pipe (e.g., 4″ pipe) coming outward; ensuring that ball valves are closed; making up NPT blind plugs as necessary to blank off remaining outlet ports not used by valve assemblies; raising the housing assembly above the top of containment apparatus; landing the first stand in rotary slips; installing a back up clamp on the pipe; transporting the cart until the center of the containment apparatus is under the well center; lowering the housing assembly into the diverter interface to an elevation where the pipe centralizer fins are fully engaged into the ID of the diverter; attaching to the latch ring support ring swivel lift eyes to raise it up onto the adapter; removing the snap ring ‘belt buckle’ ferry head cap screw to allow snap ring to expand; ensuring that the diverter snap ring is opened using the provided bolts; landing the housing assembly into the upper housing/hydrate diverter interface; removing the bolts for snap ring to close around the adapter landing ring; re-installing the split ring belt buckle and ferry head cap screws to secure snap ring in closed position; lowering the latch ring support ring over the split ring and securing; removing the swivel lift eyes from the latch ring support ring; releasing the lower housing sea fastening from the cart; raising the drill pipe to clear lower housing 110 from the cart; and moving the cart out of the moon pool and spread beams to past the containment apparatus.
As previously described, in operation, containment apparatus 100 is suspended from the bottom of the drill pipe 148 (or a riser string), and positioned over source 13 (e.g., a leaking well, leaking subsea equipment, or seep) to facilitate capture and containment of the discharged hydrocarbons. With containment apparatus 100 positioned over source 13, the discharged hydrocarbons flow into containment apparatus 100 through opening 115 at the base end 114 and accumulate within containment apparatus 100, in both lower housing 110 and upper housing 120. The drill pipe 148 is then purged from the surface to displace water out of the drill pipe 148 and upper housing 120, such that the drill pipe 148 becomes pressurized and no flow is allowed into pipe 148 from upper housing 120. Upon opening a surface valve in the topside collection piping, pressure control assembly 140 and drill pipe 148 siphon mostly hydrocarbons up the drill pipe 148 to a hydrocarbon collector assembly, such as a ship, or other known collection facility at the surface.
In general, containment apparatus 100 can be made as large as possible while still being deployable from an offshore vessel, for example a drill ship, mobile offshore drilling unit (MODU), or the like. It will be appreciated that more than two stacked housing components (e.g., housings 110, 120) can be utilized, with the number of housing components proportionally increasing the volume of hydrocarbons “funneled” subsea from a breach. The large housing components offer the potential to allow for most of the hydrocarbons to be gathered and keep the seawater out of the riser to prevent hydrates from forming.
While this assembly was built from existing equipment that comprised a hydrate diverter and high pressure/low pressure housing components, the design intent of each can be integrated into a purpose built assembly that would not necessarily mandate these components be prefabricated as initially defined herein, but designed as purpose-built components to minimize weight, size, leak paths and offshore handling, while maintaining similar functional attributes.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all sub-ranges subsumed therein. For example, a range of “less than 10” can include any and all sub-ranges between (and including) the minimum value of zero and the maximum value of 10, that is, any and all sub-ranges having a minimum value of equal to or greater than zero and a maximum value of equal to or less than 10, e.g., 1 to 5. In certain cases, the numerical values as stated for the parameter can take on negative values. In this case, the example value of range stated as “less than 10” can assume values as defined earlier plus negative values, e.g. −1, −1.2, −1.89, −2, −2.5, −3, −10, −20, −30, etc.
While preferred embodiments have been shown and described, modifications thereof can be made by one skilled in the art without departing from the scope or teachings herein. The embodiments described herein are exemplary only and are not limiting. Many variations and modifications of the systems, apparatus, and processes described herein are possible and are within the scope of the invention. For example, the relative dimensions of various parts, the materials from which the various parts are made, and other parameters can be varied. Accordingly, the scope of protection is not limited to the embodiments described herein, but is only limited by the claims that follow, the scope of which shall include all equivalents of the subject matter of the claims. Unless expressly stated otherwise, the steps in a method claim may be performed in any order. The recitation of identifiers such as (a), (b), (c) or (1), (2), (3) before steps in a method claim are not intended to and do not specify a particular order to the steps, but rather are used to simplify subsequent reference to such steps.
This application claims domestic priority benefit under 35 U.S.C. §119(e) of U.S. provisional patent application Ser. No. 61/479,128 filed Apr. 26, 2011, and entitled “Subsea Hydrocarbon Containment Apparatus,” which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1859606 | Sievern et al. | May 1932 | A |
4309127 | Jacobs | Jan 1982 | A |
4318442 | Lunde et al. | Mar 1982 | A |
4358218 | Graham | Nov 1982 | A |
4382716 | Miller | May 1983 | A |
4395157 | Cunningham | Jul 1983 | A |
4416565 | Ostlund | Nov 1983 | A |
4447247 | Naess | May 1984 | A |
4449850 | Cessou et al. | May 1984 | A |
4456071 | Milgram | Jun 1984 | A |
4531860 | Barnett | Jul 1985 | A |
4568220 | Hickey | Feb 1986 | A |
4619762 | Delacour et al. | Oct 1986 | A |
4643612 | Bergeron | Feb 1987 | A |
5213444 | Henning | May 1993 | A |
8173012 | Che | May 2012 | B1 |
8186443 | Wolinsky | May 2012 | B2 |
8444344 | Oesterberg et al. | May 2013 | B2 |
20050025574 | Lazes | Feb 2005 | A1 |
20110274493 | Cutts | Nov 2011 | A1 |
20120085276 | Openshaw et al. | Apr 2012 | A1 |
20120087729 | Oesterberg et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
WO 2012007357 | Jan 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20120328373 A1 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
61479128 | Apr 2011 | US |