This invention relates to a subsea platform transporter. In another aspect, the invention concerns a subsea platform transporter having a subsea system mounted to a subsea platform. In another aspect, the invention concerns a system for transporting a fully integrated and onshore tested subsea system to a sea floor location. In another aspect, the invention concerns a system for transporting a subsea drilling rig to the sea floor.
Offshore oil and natural gas platform systems rely upon above sea platforms that support drilling and/or processing equipment to extract resources from subsea wells. The above sea platforms are mounted through a system of supports that extend from the offshore platform to the sea floor. Often times the supports are adjustable to account for changing sea and/or weather conditions. The supports position the above platform above a surface of the sea and include drilling systems, transport systems, support systems, such as electrical power generation, and crew accommodation systems. In addition to above sea platforms, many offshore platform systems include subsea platforms that support various systems at or near the sea floor.
Subsea platforms include subsea systems that support the above sea platforms with extraction, storage, and transport of resources such as oil and natural gas. Sub-systems are transported to a particular site, submerged, integrated to form one or more subsea systems, and tested. Current technology limits that transport and positioning of each sub-system to about 500 metric tons (MT). Therefore, the installation of a subsea platform may be a lengthy process depending upon the size, weight, and number of sub-systems. More specifically, a subsea system may require multiple support ships to transport and position each sub-system as well as a lengthy construction and testing phase prior to being ready to support the above sea platform.
In one embodiment of the present invention, a subsea platform transporter includes a plurality of pontoon members, a plurality of column members interconnecting select adjacent ones of the plurality of pontoon members forming a support frame having an inner platform receiving area, one or more buoyancy members mechanically linked to at least one of the plurality of pontoon members and the plurality of column members, and one or more platform retaining members mounted to one or more of the plurality of pontoon members and the plurality of column members about the inner platform receiving area. The one or more platform retaining members is configured and disposed to selectively retain and release a subsea platform supported by the subsea platform transporter.
In another embodiment of the present invention, a subsea platform transporter system includes a subsea platform transporter having a plurality of pontoon members, a plurality of column members interconnecting select adjacent ones of the plurality of pontoon members forming a support frame having an inner platform receiving area, one or more buoyancy members mechanically linked to at least one of the plurality of pontoon members and the plurality of column members, and one or more platform retaining members mounted to one or more of the plurality of pontoon members and the plurality of column members about the inner platform receiving area. The subsea platform transporter system also includes a subsea platform including a fully integrated subsea system mounted within the inner platform receiving area through the plurality of platform retaining members.
In accordance with yet another embodiment of the present invention, a method of transporting and submerging a fully integrated and tested subsea system includes assembling a plurality of sub-systems on a platform to form a fully integrated subsea system on shore, testing the fully integrated subsea system on shore, towing the fully integrated subsea system across a body of water to a location above the sea floor, and depositing the fully integrated subsea system on the sea floor.
The invention, together with further advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying figures by way of example and not by way of limitation, in which:
Reference will now be made in detail to embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. Each example is provided by way of explanation of the invention, not as a limitation of the invention. It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope of the invention. For instance, features illustrated or described as part of one embodiment can be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention cover such modifications and variations that come within the scope of the appended claims and their equivalents.
A subsea platform transport system (SPTS), in accordance with an exemplary embodiment, is indicated generally at 2, in
SPT 4 also includes a first plurality of buoyancy members 40 extending between first and second column members 20 and 21, a second plurality of buoyancy members 41 extending between second and third column members 21 and 22, a third plurality of buoyancy members 42 extending between third and fourth column members 22 and 23, and a fourth plurality of buoyancy members 43 extending between fourth and first column members 23 and 20. Each of the plurality of buoyancy members 40-43 includes one or more valves (not shown) that selectively control the ingress of sea water to adjust buoyancy of SPT 4. SPT 4 is further shown to include a plurality of platform retaining members, three of which are indicated at 50, 51 and 52 and which may take the form of hydraulic latches that extend about a periphery of inner platform receiving area 27. Platform retaining members may take on other forms including electrical latches, pneumatic latches and the like. Also, it should be understood that the particular arrangement and connection of buoyancy members 40, 41, 42, and 43 may vary.
In further accordance with the exemplary embodiment shown, SPT 4 includes a plurality of thrusters 60-67. Two of the plurality of thrusters 60-67 is mounted to respective ones of column members 20-23. Thrusters 60-67 are selectively activated to maneuver SPT 4 into a desired position, as will be detailed more fully below. SPT 4 further may include a first drag appendage 70 mounted to first pontoon member 8, a second drag appendage 71 mounted to second pontoon member 9, a third drag appendage 72 mounted to third pontoon member 10 and a fourth drag appendage 73 mounted to fourth pontoon member 11. Each drag appendage 70-73 includes an open upper end, such as shown at 78, with respect to first drag appendage 70. Drag appendages 70-73 may be stationary or selectively deployable to control ascent of SPT 4 from the sea floor to the sea surface. A controller 84 provides a support vessel based operator with functionality to control buoyancy members 40-43, platform retaining members 50-52, column members 20-23, and/or drag appendages 70-73. Controller 84 is coupled to SPT 4 through an umbilical cable 86.
In still further accordance with an exemplary embodiment, SPT 4 supports and delivers a subsea platform 100 to a desired location on the sea floor. Subsea platform 100 supports a plurality of undersea sub-systems 104 that are connected to form a fully integrated subsea system 108. The term “fully integrated” should be understood to mean that the system is in an operable condition needing only final connections to undersea components. The system is constructed and may be fully tested on shore, delivered to a desired location, and submerged as a functional system as will be detailed more fully below.
After fully integrated subsea system 108 is assembled, and subsea platform 100 secured to SPT 4, subsea platform transporter system (SPTS) 2 is towed out to sea, as shown in
After resting upon support members 142-145, platform retaining members 50-52 are released, or hydraulically unlatched, by a signal passing from controller 84. Once released, SPT 4 begins to ascend toward the sea surface, as shown in
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
This application is a non-provisional application which claims benefit under 35 USC §119(e) to U.S. Provisional Application Ser. No. 61/902,409 filed Nov. 11, 2013, entitled “SUBSEA PLATFORM TRANSPORTER (SPT)” which is incorporated herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
6652192 | Xu et al. | Nov 2003 | B1 |
7516795 | Lopes Euphemio et al. | Apr 2009 | B2 |
20020092455 | Kellogg et al. | Jul 2002 | A1 |
20090114139 | Zou | May 2009 | A1 |
20110100280 | Leverette | May 2011 | A1 |
20120063850 | Collins | Mar 2012 | A1 |
20120234117 | Oswald | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
2014130320 | Aug 2014 | WO |
Entry |
---|
International Search Report Dated Feb. 24, 2015. PCT/US2014/065022. |
Number | Date | Country | |
---|---|---|---|
20150132066 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
61902409 | Nov 2013 | US |