Exemplary embodiments described herein pertain to a system and method for extracting hydrocarbons from a subsea well. Specifically, embodiments described herein relate to the use of subsea equipment to separate and discharge non-sales fluid (e.g., water) and associated solids at the seabed.
This section is intended to introduce various aspects of the art, which may be associated with exemplary embodiments of the present technological advancement. This discussion is believed to assist in providing a framework to facilitate a better understanding of particular aspects of the present technological advancement. Accordingly, it should be understood that this section should be read in this light, and not necessarily as admissions of prior art.
A subsea production system utilizing any combination of equipment (trees, manifolds, jumpers, flow lines or pipelines, etc.) produces hydrocarbon sales fluids (oil or gas) from a subsea well or a plurality of wells. Non-sales fluids (primarily water, but may also include sand fines) are produced along with the sales fluids. A report on worldwide nominal water and oil production showed for every barrel of oil approximately four barrels of water are produced. The produced water may be transported to the host via production flow line with the oil or gas, or costly disposal wells are required to dispose of the produced water (as shown as
While this document describes the discharge of non-sales fluids at the seabed, this is not necessarily a current industry practice. Furthermore, implementation of such discharge may require compliance with regulations governing produced water disposal and discharge of sand, and such regulations could prohibit such discharge in certain regions of the world.
A system, including: a subsea separation system that separates sales and non-sales fluids, wherein the subsea separation system includes a fluid polishing system; a subsea seal-less pump that boosts production fluid pressure; and a water quality monitoring system, including an oil-in-water sensor and a solids-in-water sensor, that monitors a fluid discharged from the subsea separation system.
The system can further include a subsea gas compression system that transports gas to a topside or shore based hydrocarbon facility.
The system can further include a subsea chemical storage unit.
The system can further include a communication system that includes a fiber-optic communication cable between the top-side or shore based hydrocarbon facility and subsea equipment.
The system can further include an all-electric control system that operates the subsea separation system including a water polishing and a water discharge system, pumps, compressors, electrical equipment, HIPPS, subsea trees and manifolds.
The system can further include an optic-based pressure, temperature, flow, vibration, and production fluid phase sensors that make optical measurements and communicates with topside/shore based electronic components via the fiber-optic communications cable.
The system can further include a processor that receives measurements from optic-based pressure, temperature, flow, vibration, and production fluid phase sensors and uses the measurements in a feedback or feed-forward control process to control performance of the subsea separation system.
A method, including: separating, with a subsea separation system that includes a fluid polishing system, sales fluid and non-sales fluid; monitoring, with a water quality monitoring system that includes an oil-in-water sensor and a solids-in-water sensor, a fluid discharged from the subsea separation system; using a subsea seal-less pump to boost production fluid pressure; and discharging appropriate quality polished water at the seabed.
The method can further include using a subsea gas compression system to transport gas to a topside or shore based hydrocarbon facility.
The method can further include controlling subsea equipment with an all-electric control system.
The method can further include using a fiber optics communication system to communicate between topside equipment and subsea equipment.
The method can further include measuring variables using optic based sensors.
The method can further include receiving measurements from optic-based pressure, temperature, flow, vibration, and production fluid phase sensors and optimizing performance of the subsea separation system by using the measurements in a feedback or feed-forward control process.
While the present disclosure is susceptible to various modifications and alternative forms, specific example embodiments thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific example embodiments is not intended to limit the disclosure to the particular forms disclosed herein, but on the contrary, this disclosure is to cover all modifications and equivalents as defined by the appended claims. It should also be understood that the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating principles of exemplary embodiments of the present invention. Moreover, certain dimensions may be exaggerated to help visually convey such principles.
Exemplary embodiments are described herein. However, to the extent that the following description is specific to a particular embodiment, this is intended to be for exemplary purposes only and simply provides a description of the exemplary embodiments. Accordingly, the invention is not limited to the specific embodiments described below, but rather, it includes all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.
The present technological advancement can provide a subsea produced non-sales fluid handling system that includes a combination of subsea equipment to separate and discharge water and associated solids in a cost-effective way—at the seabed. This system can reduce CAPEX and OPEX for subsea hydrocarbon resource development and production. The reduced CAPEX can be obtained by eliminating the water disposal wells, water disposal flow lines, as well as reducing the amount of topsides equipment necessary to handle the non-sales fluids. This system can also reduce or eliminate corrosion issues in production flow lines and pipelines and reduce hydrate inhibition requirements, which can significantly reduce OPEX. Oil and gas production volumes can also increase as larger gas flow lines and pipelines can be used with little-to-no liquid hold-up. In addition, slugging issues (varying or irregular flows of gas and liquids in pipelines) and back-pressure can be relieved from the wells, allowing them to flow more efficiently.
Non-limiting embodiments of the present technological advancement can result in the elimination of the water disposal well(s), water disposal flow line(s), and replacement of the large separate control/communication and power umbilicals with a single power and fiber optic communication cable. Additional benefits of the novel system include reduction in host size, equipment footprint, complexity, weight, and cost, improvements in reliability of the subsea control system and subsea pumps, and reduction or elimination of corrosion and hydrate inhibition requirements and other flow assurance issues.
The present technological advancement can include a subsea processing system including a gravity-based or compact separation system, with all ancillary components necessary to process (de-oil, polish, etc.) the non-sales fluids prior to discharge, a subsea dehydration system that prepares the gas for transport or first stage compression prior to transport to host facilities, a subsea produced water quality monitoring (PWQM) system including oil-in-water sensors and solids-in-water sensors to monitor the discharged fluids, a combination of subsea equipment (manifold, jumpers etc.) for gathering oil, gas and water stream to the separation system, and a combination of subsea equipment (valves, pipes, pumps) to be used to discharge non-sales fluids at the seabed.
Pumps may be required to enable the disposal of produced water at the seabed (to overcome the pressure difference if separator operating pressure is lower than the ambient pressure) or inject chemicals. The pumps for the processing and chemical injection systems could be seal-less (magnetic drive or canned motor) pumps. Such pumps provide higher reliability by eliminating the need for mechanical seals between the motor and pump shafts, and simplify the barrier fluid system.
The system shown in
Typically, a seal-less pump design can be achieved using a canned motor pump or a magnetic coupling. Such seal-less pumps are disused in A User's Engineering Review of Sealless Pump Design Limitations and Features, T Hernandez, Proceedings of the Eighth International Pump User's Symposium, 1991, pp. 129-146 (the entirety of which is hereby incorporated by reference). Further exemplary details of a seal-less pump can be found, for example, in U.S. Patent Publication 2015/0354574, the entirety of which is hereby incorporated by reference.
The system can also include subsea chemical storage 204 for treating production lines and/or injection lines, or as needed. Seabed chemical storage is a new technique, whereas chemicals have been previously stored and pumped from the host facility to its mixing point using umbilical tube(s). Seabed chemical storage and mixing can provide further CAPEX reduction through smaller topside equipment footprint and elimination of umbilical tube(s) used for chemical transport. Chemicals for water treatment can include chlorination, sulfate removal, and/or biocide dosing. Other chemicals used for subsea production systems include MeOH, corrosion inhibitors if needed, asphaltene inhibitor, scale inhibitor, etc. The non-sales fluid that is discharged can be treated to comply with environmental discharge standards, as applicable. The subsea chemical storage units 204 can store enough chemical for a given period and can be refilled periodically using a shuttle tank. Subsea storage of chemicals will eliminate the need for injection chemical umbilical tube(s).
Separator system 114 can include fluid polishing system 205. Any of the existing fluid polisying technologies can be used with the present technological advancement.
The present technological advancement can also include a subsea produced water quality monitoring (PWQM) system, which includes oil-in-water sensors, disposed at or near port 114a, and solids-in-water sensors, disposed at or near port 114a, to monitor the discharged fluids. Any existing sensors can be used along with the present technological advancement.
Furthermore, various subsea equipment can be outfitted with optically based sensors. These sensors can communicate with computer systems and/or control modules located topside or subsea via fiber optic cables.
Typically, all subsea production or processing equipment are provided with a subsea control module to control functionality of valves included on the subsea equipment, wherein the subsea control module is communicatively coupled to a topside master control station. All subsea equipment (trees, manifolds, pumps, etc.) can contain sensors for process variable (flow, temperature, pressure) measurements, wherein the sensors can be optically based.
In
The present technological advancement can use an all-electric control system (AC or DC power based) for operating subsea production and processing equipment (trees, manifolds, separator, dehydrator, pumps etc.). The use of all-electric control system will further simplify the umbilical by eliminating the need for hydraulic fluid tubes and can improve the reliability of subsea control system by eliminating complex components (such as directional control valves) in the conventional electro-hydraulic control systems. Further, fiber optic communications can be integrated within the control system to provide higher reliability (i.e. low noise) communications and increased bandwidth.
The combined power and communications cable 313 can provide electric power for a subsea all-electric control system (AC or DC power with transformer 305 as needed) with electronics and instrumentation that are configured for safe and efficient operation of all subsea equipment. The subsea all-electric control system can include a master control station that is topside with electrical cables and electrically operated actuators for valve operations subsea, and can be communicatively connected to all subsea sensors. Example sensors include pressure, temperature, vibration sensors, flow meters. Each of the sensors can use reliable optics-based measurement principle and communicate with topside or shore-based electronic components via a fiber-optic communications cable.
The present technological advancement can also include a monitoring, and process (separation, de-oiling, polishing, dehydration) and equipment (separators, dehydrators, compressors, chemical storage, seal-less pumps, and control system) performance optimization system. All sensors measurements can be used in a computer controlled feedback and/or feed-forward controlled mechanism using mechanical/process algorithms to optimize process and equipment performance. Such a computer can include control circuitry and/or one or more processors that are programmed to execute instructions stored in a computer readable memory in order to execute a method in accordance with the present technological advancement. For example, performance of subsea equipment can be optimized, such as pump operating point (combination of power consumption, output head and flow rate) and at a system level, water discharge pressure and/or rate can be optimized to get maximum hydrocarbon production rate.
The present technological advancement can be used in the management of hydrocarbons. As used herein, hydrocarbon management includes hydrocarbon extraction, hydrocarbon production, hydrocarbon exploration, identifying potential hydrocarbon resources, identifying well locations, determining well injection and/or extraction rates, identifying reservoir connectivity, acquiring, disposing of and/or abandoning hydrocarbon resources, reviewing prior hydrocarbon management decisions, and any other hydrocarbon-related acts or activities.
The present technological advancement can also be embodied as a method to extract hydrocarbons, an exemplary embodiment of which is shown in
The present techniques may be susceptible to various modifications and alternative forms, and the examples discussed above have been shown only by way of example. Indeed, the present techniques include all alternatives, modifications, and equivalents falling within the spirit and scope of the appended claims. While the present technological advancement has been explained via multiple examples, features from these examples may be combined as would be recognized by those of ordinary skill in the art. The present techniques are not intended to be limited to the particular examples disclosed herein.
The following references are hereby incorporated by reference in their entirety: U.S. patent publications 2015/0354574, 2016/0186759, 2015/0326094, 2015/0316072; 2015/0090124, 2013/0206423, 2010/0116726, 2009/0077835, 2005/0034869, and 2004/0256097; U.S. Pat. Nos. 8,534,364, 7,093,661, and 6,893,486; European patent publication EP894182; International patent publications WO2015103017 and WO1999035370; “Raw water reservoir injection moves to the seabed,” Offshore Magazine, Jan. 1, 2000; “Treating and Releasing Produced Water at the Ultra Deepwater Seabed,” 2012 Offshore Technology Conference, Daigle et al., and “Subsea Water Intake and Treatment—The Missing Link?”, SPE News Australasia, Eirik Dirdal, 17 Jan. 2014.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/428,849, filed Dec. 1, 2016, entitled “SUBSEA PRODUCED NON-SALES FLUID HANDLING SYSTEM AND METHOD,” the entirety of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62428849 | Dec 2016 | US |