1. Field of Invention
The present disclosure relates in general to a wellhead assembly for use in producing subterranean hydrocarbons. More specifically, the present disclosure relates to a wellhead assembly having high and lower pressure wellhead housings with sockets whose respective outer surfaces are generally cylindrical.
2. Description of Prior Art
Subsea wells typically include outer low pressure housing welded onto a conductor pipe, where the conductor pipe is installed to a first depth in the well, usually by driving or jetting the conductor pipe. A drill bit inserts through the installed conductor pipe for drilling the well deeper to a second depth so that high pressure housing can land within the low pressure housing. The high pressure housing usually has a length of pipe welded onto its lower end that extends into the wellbore past a lower end of the conductor pipe. The well is then drilled to its ultimate depth and completed, where completion includes landing a casing string in the high pressure housing that lines the wellbore, cementing between the casing string and wellbore wall, and landing production tubing within the casing. The aforementioned concentrically stacked tubulars exert a load onto the lower pressure housing that is transferred along an interface between the high and low pressure housings. Moreover, tilting the stacked tubulars generates a bending moment along the interface.
Disclosed herein a wellhead assembly, which in one embodiment includes an annular low pressure housing having a lower end set in a sea floor. In this example, an upper socket surface is formed along a portion of an inner surface of the low pressure housing; axially spaced apart from the upper socket surface is a lower socket surface formed along a portion of the inner surface of the low pressure housing. The wellhead assembly further includes an annular high pressure housing coaxially disposed within the low pressure housing, an upper socket surface formed along a portion of an outer surface of the high pressure housing that is in contact with the upper socket surface on the low pressure housing and that selectively exerts a load against the upper socket surface on the low pressure housing to define an upper loading interface. A lower socket surface is on the outer surface of the high pressure housing that is axially spaced apart from the upper socket surface on the high pressure housing and is in contact with the lower socket surface on the low pressure housing. The lower socket surface on the high pressure housing selectively exerts a load against the lower socket surface on the low pressure housing to define a lower loading interface. A latch assembly is coupled to the low pressure housing and the high pressure housing between the upper and lower loading interfaces. In an alternate example, the upper and lower loading interfaces project axially in a direction that is substantially parallel with an axis of the wellhead assembly. Optionally, the upper and lower loading interfaces are radially offset from one another. The wellhead assembly can alternatively further include a channel formed on an outer surface of the high pressure housing between the upper and lower loading interfaces and a passage axially formed through the high pressure housing having an end in communication with the channel and a lower end in communication with an annulus between the high and lower pressure housings on a side of the lower loading interface opposite the channel. Included with this example is a passage radially extending through the lower pressure housing and in communication with the channel. In an example embodiment the latch is made up of a C-ring set in a groove provided on an outer surface of the high pressure housing. The latch may include a profile on an inner surface of the low pressure housing. A downward facing shoulder can optionally be included on an outer surface of the high pressure housing that contacts an upward facing shoulder on an inner surface of the low pressure housing when the high pressure housing lands in the low pressure housing.
Also described herein is a wellhead assembly that includes a low pressure housing mounted in a sea floor having a high pressure housing landed within. The high pressure housing has upper and lower radially thinner portions and a radially thicker portion disposed between and adjacent to the upper and lower radially thinner portions. An upper loading surface is provided on an outer surface of the radially thicker portion that terminates at a location where the radially thicker portion transitions into the upper radially thinner portion. A lower loading surface is formed on the outer surface of the radially thicker portion that terminates at a location where the radially thicker portion transitions into the lower radially thinner portion. Upper and lower loading surfaces are included on an inner surface of the low pressure housing that respectively engage the upper and lower loading surfaces on the radially thicker portion. A latch is provided for engaging the low and high pressure housings disposed axially between the upper loading surface and lower loading surface on the high pressure housing. An optional channel can be included on an outer surface of the high pressure housing disposed between the upper loading surface and lower loading surface on the high pressure housing and a passage providing communication between the channel and an annulus between the low and high pressure housings and adjacent the location where the radially thicker portion transitions to the lower radially thinner portion. In an alternate example included is a production tree on an upper end of the high pressure housing. Optionally included is a casing hanger landed inside the high pressure housing and a tubing hanger landed inside the casing hanger.
Some of the features and benefits of the present invention having been stated, others will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:
While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
The method and system of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. The method and system of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout.
It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.
A lower socket surface 32 is shown formed on an outer periphery of the upper portion 18 and facing generally radially outward from an axis AX of the wellhead assembly 10; a lower end of the lower socket surface 32 terminates adjacent the transition 28. The low pressure housing 14 also includes a lower socket surface 34 that is formed on an inner circumferential surface of the low pressure housing 14. In the example of
Still referring to
Referring now to
Another advantage of the wellhead housing 10 disclosed herein is that in one embodiment, the socket surfaces 32, 34, 38, 40 each are generally vertical so that minimal forces are required to insert the high pressure housing 12 within low pressure housing 14. In one example of use, axial forces required to urge the high pressure housing 12 inside low pressure housing 14 were less than about 200,000 pounds force.
In one optional example, one of the socket surfaces can have a convex shape while an opposing or mating socket surface can still have a cylindrical or substantially vertical profile. Similarly, both the inner and outer socket surfaces may have convex shapes that deform when the high pressure housing 12 inserts and lands within the low pressure housing 14. In another optional embodiment, one of the socket team members can be in a separate housing where the housing is welded to the member holding the other socket surface.
The present invention described herein, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While a presently preferred embodiment of the invention has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present invention disclosed herein and the scope of the appended claims.