Substituted [1,2,4] Triazole Compounds

Abstract
The present invention relates to substituted [1,2,4]triazol compounds of the formula I
Description

The present invention relates to substituted [1,2,4]triazol compounds and the N-oxides and the salts thereof for combating phytopathogenic fungi, and to the use and methods for combating phytopathogenic fungi and to seeds coated with at least one such compound. The invention also relates to processes for preparing these compounds, intermediates, processes for preparing such intermediates, and to compositions comprising at least one compound I.


EP 0 126 430 A2 relates to a process for the preparation of 1-triazolylethylether derivatives. EP 0 113 640 A2 relates to 1-azolyl-2-aryl-3-fluoroalkan-2-ols as microbiocides. DE 3801233 relates to 1-phenoxyphenyl-2-triazolyl-ethanolethers as microbiocides. EP 0 275 955 A1 relates to 1-phenoxyphenyl-1-triazolylmethyl-carbinols as microbiocides. GB 2 130 584 A is directed to microbiocidal 1-carbonyl-1-phenoxyphenyl-2-azolylethanol-derivatives. WO 2013/010862 (PCT/EP2012/063526), WO 2013/010894 (PCT/EP2012/063635), WO 2013/010885 (PCT/EP2012/063620), WO 2013/024076 (PCT/EP2012/065835), WO 2013/024075 (PCT/EP2012/065834), WO 2013/024082 (PCT/EP2012/065850), WO 2013/024077 (PCT/EP2012/065836), WO 2013/024081 (PCT/EP2012/065848), WO 2013/024080 (PCT/EP2012/065847), PCT/EP2012/065852 (PCT/EP2012/065852) and EP 2559688 (EP 11177556.5) are directed to specific fungicidal substituted 2-[2-halogen-4-phenoxyphenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds. EP 0 077 479 A2 relates to phenoxyphenyl-azolylmethyl-ketons and -carbinols, processes for their preparation and their use as intermediates and as fungicides. EP 0 077 479 A2 does not contain any compound, wherein at the “inner phenyl” a substituent corresponding to the inventive R31 is present. EP 0 117 378 A1 is directed to 1-carbonyl-1-phenoxyphenyl-2-azolyl-ethynol derivatives and their use as microbiocides. WO 2010/146114 A1 relates to triazole compounds carrying a sulfur substituent and to precursors thereof. J. Agric. Food. Chem. 2009, 57, 4854-4860 relates to the synthesis and fungicidal evaluation of certain 2-arylphenyl ether-3-(1H-1,2,4-triazol-1-yl)propan-2-ol derivatives. EP 0 440 950 A2 is directed to halgenallyl-azolyl-derivatives of the formula




embedded image


wherein X1 and X2 are halogen and X3 is hydrogen or halogen. CN 101225074 A relates to compounds




embedded image


i.e. to phenoxyphenyl substituted triazole compounds, wherein the substituent corresponding to “R1” of the present invention is phenylalkenyl.


In many cases, in particular at low application rates, the fungicidal activity of the known fungicidal compounds is unsatisfactory. Based on this, it was an object of the present invention to provide compounds having improved activity and/or a broader activity spectrum against phytopathogenic harmful fungi.


Surprisingly, this object is achieved by the use of the inventive substituted [1,2,4]triazol compounds of formula I having favorable fungicidal activity against phytopathogenic fungi.


Accordingly, the present invention relates to the compounds of formula I:




embedded image


wherein


R1 is C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-C1-C6-alkyl, phenyl or phenyl-C1-C4-alkyl;


R2 is hydrogen, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-C1-C6-alkyl, phenyl, phenyl-C1-C4-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4-alkynyl


wherein the aliphatic moieties of R1 and/or R2 may carry one, two, three or up to the maximum possible number of identical or different groups R12a which independently of one another are selected from:


R12a halogen, OH, CN, nitro, C1-C4-alkoxy, C3-C8-cycloalkyl, C3-C8-halocycloalkyl and C1-C4-halogenalkoxy;


wherein the cycloalkyl and/or phenyl moieties of R1 and/or R2 may carry one, two, three, four, five or up to the maximum number of identical or different groups R12b which independently of one another are selected from:


R12b halogen, OH, CN, nitro, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C8-cycloalkyl, C3-C8-halocycloalkyl and C1-C4-halogenalkoxy


R31 is halogen;


R4 is independently selected from halogen, CN, NO2, OH, SH, C1-C6-alkyl, C1-C6-alkoxy, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyloxy, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C3-C6-cycloalkyl), N(C3-C6-cycloalkyl)2, S(O)p(C1-C4-alkyl), C(═O)(C1-C4-alkyl), C(═O)(OH), C(═O)(O—C1-C4-alkyl), C(═O)(NH(C1-C4-alkyl)), C(═O)(N(C1-C4-alkyl)2), C(═O)(NH(C3-C6-cycloalkyl)) and C(═O)—(N(C3-C6-cycloalkyl)2; wherein each of R4 is unsubstituted or further substituted by one, two, three or four R4a; wherein


R4a is independently selected from halogen, CN, NO2, OH, C1-C4-alkyl, C1-C4-haloalkyl, C3-C8-cycloalkyl, C3-C8-halocycloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;


p is 0, 1 or 2;


m is 0, 1, 2, 3, 4 or 5;


with the proviso that if m=1, R4 is not para-halogen;


with the proviso that if R31 is Cl and m=2, (R4)m is not 2,4-di-halogen, wherein each halogen is selected from Cl and F; and


with the proviso that if R31 is Cl and m=3, (R4)m is not 2,4,6-tri-halogen, wherein each halogen is selected from Cl and F;


and the N-oxides and the agriculturally acceptable salts thereof.


In a particular embodiment, the provisos are as follows:


with the proviso that if m=1, R4 is not para-halogen;


with the proviso that if R31 is Cl and m=2, (R4)m is not 2,4-di-halogen; and


with the proviso that if R31 is Cl and m=3, (R4)m is not 2,4,6-tri-halogen; According to a more particular embodiment, the provisos are as follows:


with the proviso that if m=1, R4 is not para-halogen;


with the proviso that if m=2, (R4)m is not 2,4-di-halogen; and


with the proviso that if m=3, (R4)m is not 2,4,6-tri-halogen.


The compounds according to the present invention structurally differ from those described in the abovementioned publications inter alia because of the specific substitution pattern of the inner phenyl ring carrying only halogen as ortho-R31 and no further substituents, in combination with the specific substituents in the outer phenyl.


The compounds I can be obtained by various routes in analogy to prior art processes known (cf. J. Agric. Food Chem. (2009) 57, 4854-4860; EP 0 275 955 A1; DE 40 03 180 A1; EP 0 113 640 A2; EP 0 126 430 A2) and by the synthesis routes shown in the following schemes and in the experimental part of this application.


In a first process, for example, phenoles II are reacted, in a first step, with derivatives IIIb, wherein X1 stands for I or Br, in particular Br (=bromo derivatives III), preferably in the presence of a base to result in compounds IVa.




embedded image


Thereafter, the resulting compounds IVa, in particular IV (wherein X1 is Br) are then transformed into Grignard reagents by the reaction with transmetallation reagents such as isopropylmagnesium halides and subsequently reacted with acetyl chloride preferably under anhydrous conditions and preferably in the presence of a catalyst such as CuCl, CuCl2, AlCl3, LiCl and mixtures thereof, in particular CuCl, to obtain acetophenones V.




embedded image


These compounds V can be halogenated e.g. with bromine preferably in an organic solvent such as diethyl ether, methyl tert.-butyl ether (MTBE), methanol or acetic acid. In the resulting compounds VI, “Hal” stands for “halogen” such as e.g. Br or Cl.




embedded image


Compounds VI can subsequently reacted with 1H-1,2,4-triazole preferably in the presence of a solvent such as tetrahydrofuran (THF), dimethylformamide (DMF), toluene, and in the presence of a base such as potassium carbonate, sodium hydroxide or sodium hydride to obtain compounds VII.




embedded image


These triazole keto compounds VII can be reacted with a Grignard reagent such as R1MgBr or an organolithium reagent R1Li preferably under anhydrous conditions to obtain compounds I wherein R2 is hydrogen, which compounds are of formula I.1. Optionally, a Lewis acid such as LaCl3x2 LiCl or MgBr2xOEt2 can be used. If appropriate, these compounds I.1 can subsequently be transformed e.g. with R2-LG, wherein LG represents a nucleophilically replaceable leaving group such as halogen, alkylsulfonyl, alkylsulfonyloxy and arylsulfonyloxy, preferably chloro, bromo or iodo, particularly preferably bromo, preferably in the presence of a base, such as for example, NaH in a suitable solvent such as THF, to form other compounds I.


A second process to obtain the inventive compounds is as follows:


In a first step, a halo derivative IIla, wherein X2 is halogen, in particular F, and X3 is halogen, in particular Br, is reacted with a transmetallation agent such as e.g. isopropylmagnesium bromide followed by an acyl chloride agent R1COCl (e.g. acetyl chloride) preferably under anhydrous conditions and optionally in the presence of a catalyst such as CuCl, CuCl2, AlCl3, LiCl and mixtures thereof, in particular CuCl, to obtain ketones VIII.




embedded image


Thereafter, ketones VIII are reacted with phenoles II preferably in the presence of a base to obtain compounds Va wherein R1 is as defined and preferably defined, respectively, herein.




embedded image


Compounds Va may also be obtained in analogy to the first process described for compounds V (preferred conditions for the process step, see above). This is illustrated as follows:




embedded image


Alternatively, compounds Va can be synthesized via a Friedel Crafts acylation as follows:




embedded image


Ethers IVb can be synthesized by nucleophilic substitution of X group in compound IIIc (Angewandte Chemie, International Edition, 45(35), 5803-5807; 2006, US 20070088015 A1, Journal of the American Chemical Society, 134(17), 7384-7391; 2012). Then, a Lewis acid catalyzed addition of an acid halide, preferably will lead to compounds Va (Journal of Chemical Research, Synopses, (8), 245; 1992, WO2010096777 A1).


Thereafter, intermediates Va are reacted with trimethylsulf(ox)onium halides, preferably iodide, preferably in the presence of a base such as sodium hydroxide.




embedded image


Thereafter, the epoxides IX are reacted with 1H-1,2,4-triazole preferably in the presence of a base such as potassium carbonate and preferably in the presence of an organic solvent such as DMF to obtain compounds I.1 (R2=hydrogen) which may be further derivatized as described above.


In a third process, the epoxide ring of intermediates IX is cleaved by reaction with alcohols R2OH preferably under acidic conditions.




embedded image


Thereafter, the resulting compounds X are reacted with halogenating agents or sulfonating agents such as PBr3, PCl3 mesyl chloride, tosyl chloride or thionyl chloride, to obtain compounds XI wherein LG is a nucleophilically replaceable leaving group such as halogen, alkylsulfonyl, alkylsulfonyloxy and arylsulfonyloxy, preferably chloro, bromo or iodo, particularly preferably bromo or alkylsulfonyl. Then compounds XI are reacted with 1H-1,2,4-triazole to obtain compounds I.




embedded image


Alternatively, compounds I can be prepared as follows:




embedded image


A halogenated compound XII, wherein X4═Br or I, is transformed to the boronic acid or ester XIII (R″═H, C1-C4-alkyl or R″ and R″ together form an optionally (C1-C4)-alkyl-substituted #-CH2—CH2-# bridge, such as #-C(CH3)2—C(CH3)2-#). For example, KOAc, Pd(dppf)Cl2 and dioxane can be used in this step. A reference for metallation, see Journal of the American Chemical Society (2011), 133(40), 15800-15802; Journal of Organic Chemistry, 77(15), 6624-6628; 2012; Bioorganic & Medicinal Chemistry, 19(7), 2428-2442; 2011; Pd-catalyzed reaction: WO 2013041497 A1, US 2011449853P; Angewandte Chemie, International Edition (2010), 49(52), 10202-10205.


Those boronic compounds XIII can be oxidized to the corresponding phenols XIV (see Journal of the American Chemical Society, 130(30), 9638-9639; 2008; US 20080286812 A1; Tetrahedron, 69(30), 6213-6218; 2013; Tetrahedron Letters, 52(23), 3005-3008; 2011; WO 2003072100 A1).




embedded image


So obtained phenols XIV can be coupled with substituted phenyl boronic acids to obtain the biphenyl ethers I (WO 2013014185 A1; Journal of Medicinal Chemistry, 55(21), 9120-9135; 2012; Journal of Medicinal Chemistry, 54(6), 1613-1625; 2011; Bioorganic & Medicinal Chemistry Letters, 15(1), 115-119; 2005; Bioorganic & Medicinal Chemistry Letters, 17(6), 1799-1802; 2007). E.g. Cu(OAc)2 in CH2Cl2/MeCN can be used.




embedded image


If individual inventive compounds cannot be directly obtained by the routes described above, they can be prepared by derivatization of other inventive compounds.


The N-oxides may be prepared from the inventive compounds according to conventional oxidation methods, e.g. by treating compounds I with an organic peracid such as metachloroperbenzoic acid (cf. WO 03/64572 or J. Med. Chem. 38(11), 1892-903, 1995); or with inorganic oxidizing agents such as hydrogen peroxide (cf. J. Heterocyc. Chem. 18(7), 1305-8, 1981) or oxone (cf. J. Am. Chem. Soc. 123(25), 5962-5973, 2001). The oxidation may lead to pure mono-N-oxides or to a mixture of different N-oxides, which can be separated by conventional methods such as chromatography.


If the synthesis yields mixtures of isomers, a separation is generally not necessarily required since in some cases the individual isomers can be interconverted during work-up for use or during application (e.g. under the action of light, acids or bases). Such conversions may also take place after use, e.g. in the treatment of plants in the treated plant, or in the harmful fungus to be controlled.


In the following, the intermediate compounds are further described. A skilled person will readily understand that the preferences for the substituents given herein in connection with compounds I apply for the intermediates accordingly. Thereby, the substituents in each case have independently of each other or more preferably in combination the meanings as defined herein.


Compounds of formula IVa and IV are partially new. Consequently, a further embodiment of the present invention are compounds of formula IVa and IV (see above), wherein the variables R31, R4 and m are as defined and preferably defined for formula I herein.


In specific embodiments of compounds IV and IVa according to the present invention, the varia-bles R31, R4 and m are as defined in Formulae I.A, I.B, I.C in combination with Table B below, wherein each line of lines B-1 to B-146 of Table B corresponds to one specific embodiment for R4 and m. Furthermore, the substituents are specific embodiments independently of each other or in any combination.


A further embodiment of the present invention is compounds of formulae Va and V (see above), wherein the variables R1, R31, R4 and m are as defined and preferably defined for formula I herein.


In specific embodiments of compounds Va and V according to the present invention, variables R1, R31, R4 and m are as defined in Tables 1a to 70a, Tables 1b to 70b and Tables 1c to 70c for compounds I, wherein the substituents are specific embodiments independently of each other or in any combination.


A further embodiment of the present invention is compounds of formula VI (see above), wherein variables R31, R4 and m are as defined and preferably defined for formula I herein, and wherein Hal stands for halogen, in particular Cl or Br. According to one preferred embodiment, Hal in compounds VI stands for Br.


In specific embodiments of compounds VI according to the present invention, the variables R31, R4 and m are as defined in Formulae I.A, I.B, I.C in combination with Table B below, wherein each line of lines B-1 to B-146 of Table B corresponds to one specific embodiment for R4 and m. Furthermore, the substituents are specific embodiments independently of each other or in any combination.


A further embodiment of the present invention is compounds of formula VII (see above), wherein the variables R31, R4 and m are as defined and preferably defined for formula I herein. In specific embodiments of compounds VII according to the present invention, the variables R31, R4 and m are as defined in Formulae I.A, I.B, I.C in combination with Table B below, wherein each line of lines B-1 to B-146 of Table B corresponds to one specific embodiment for R4 and m. Furthermore, the substituents are specific embodiments independently of each other or in any combination.


A further embodiment of the present invention is compounds of formula IX (see above), wherein the variables R1, R31, R4 and m are as defined and preferably defined for formula I herein. In specific embodiments of compounds IX according to the present invention, the variables R1, R31, R4 and m are as defined in Tables 1a to 70a, Tables 1b to 70b and Tables 1c to 70c for compounds I, wherein the substituents are specific embodiments independently of each other or in any combination.


A further embodiment of the present invention is compounds of formula X, wherein the variables R1, R2, R31, R4 and m are as defined and preferably defined for formula I herein. In specific embodiments of compounds X according to the present invention, the variables R1, R2, R31, R4 and m are as defined in Tables 1a to 70a, Tables 1b to 70b and Tables 1c to 70c for compounds I, wherein the substituents are specific embodiments independently of each other or in any combination.


A further embodiment of the present invention is compounds of formula XI, wherein the variables R1, R2, R31, R4 and m are as defined and preferably defined for formula I herein, and LG stands for a leaving group as defined above.


In specific embodiments of compounds XI according to the present invention, the variables R1, R2, R31, R4 and m are as defined in Tables 1a to 70a, Tables 1b to 70b and Tables 1c to 70c for compounds I, wherein the substituents are specific embodiments independently of each other or in any combination.


In the definitions of the variables given above, collective terms are used which are generally representative for the substituents in question. The term “Cn-Cm” indicates the number of carbon atoms possible in each case in the substituent or substituent moiety in question.


The term “halogen” refers to fluorine, chlorine, bromine and iodine.


The term “C1-C6-alkyl” refers to a straight-chained or branched saturated hydrocarbon group having 1 to 6 carbon atoms, e.g. methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, hexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1-ethyl-1-methylpropyl and 1-ethyl-2-methylpropyl. Likewise, the term “C1-C4-alkyl” refers to a straight-chained or branched alkyl group having 1 to 4 carbon atoms, such as methyl, ethyl, propyl(n-propyl), 1-methylethyl(iso-propoyl), butyl, 1-methylpropyl(sec.-butyl), 2-methylpropyl(iso-butyl), 1,1-dimethylethyl(tert.butyl). Likewise, the term “C2-C4-alkyl” refers to a straight-chained or branched alkyl group having 2 to 4 carbon atoms, such as ethyl, propyl(n-propyl), 1-methylethyl(iso-propoyl), butyl, 1-methylpropyl(sec.-butyl), 2-methylpropyl(iso-butyl), 1,1-dimethylethyl(tert.-butyl).


The term “C1-C6-haloalkyl” refers to an alkyl group having 1 or 6 carbon atoms as defined above, wherein some or all of the hydrogen atoms in these groups may be replaced by halogen atoms as mentioned above. Examples are “C1-C2-haloalkyl” groups such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl or pentafluoroethyl.


The term “C2-C6-alkenyl” refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 6 carbon atoms and a double bond in any position. Examples are “C2-C4-alkenyl” groups, such as ethenyl, 1-propenyl, 2-propenyl(allyl), 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl.


The term “C2-C6-alkynyl” refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 6 carbon atoms and containing at least one triple bond. Examples are “C2-C4-alkynyl” groups, such as ethynyl, prop-1-ynyl, prop-2-ynyl(propargyl), but-1-ynyl, but-2-ynyl, but-3-ynyl, 1-methyl-prop-2-ynyl.


The term “C3-C8-cycloalkyl” refers to monocyclic saturated hydrocarbon radicals having 3 to 8 carbon ring members, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl.


The term “C3-C8-cycloalkyl-C1-C4-alkyl” refers to alkyl having 1 to 4 carbon atoms (as defined above), wherein one hydrogen atom of the alkyl radical is replaced by a cycloalkyl radical having 3 to 8 carbon atoms (as defined above).


The term “C1-C6-alkoxy” refers to a straight-chain or branched alkyl group having 1 to 6 carbon atoms which is bonded via an oxygen, at any position in the alkyl group. Examples are “C1-C4-alkoxy” groups, such as methoxy, ethoxy, n-propoxy, 1-methylethoxy, butoxy, 1-methyl-propoxy, 2-methylpropoxy or 1,1-dimethylethoxy. Likewise, the term “C1-C4-alkoxy” refers to a straight-chain or branched alkyl group having 1 to 4 carbon atoms which is bonded via an oxygen, at any position in the alkyl group, examples are methoxy, ethoxy, n-propoxy, 1-methylethoxy, butoxy, 1-methyl-propoxy, 2-methylpropoxy or 1,1-dimethylethoxy.


The term “C1-C6-haloalkoxy” refers to a C1-C6-alkoxy radical as defined above, wherein some or all of the hydrogen atoms in these groups may be replaced by halogen atoms as mentioned above. Examples are “C1-C4-haloalkoxy” groups, such as OCH2F, OCHF2, OCF3, OCH2Cl, OCHCl2, OCCl3, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromoethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloro-ethoxy, 0C2F5, 2-fluoropropoxy, 3-fluoropropoxy, 2,2-difluoropropoxy, 2,3-difluoro-′propoxy, 2 chloropropoxy, 3-chloropropoxy, 2,3-dichloropropoxy, 2-bromopropoxy, 3 bromopropoxy, 3,3,3-trifluoropropoxy, 3,3,3-trichloropropoxy, OCH2—C2F5, OCF2—C2F5, 1-fluoromethyl-2-fluoroethoxy, 1-chloromethyl-2-chloroethoxy, 1-bromomethyl-2-bromo′ethoxy, 4-fluorobutoxy, 4-chlorobutoxy, 4-bromobutoxy or nonafluorobutoxy.


The term “phenyl-C1-C6-alkyl” refers to alkyl having 1 to 6 carbon atoms (as defined above), wherein one hydrogen atom of the alkyl radical is replaced by a phenyl radical. Likewise, the terms “phenyl-C2-C6-alkenyl” and “phenyl-C2-C6-alkynyl” refer to alkenyl and alkynyl, respectively, wherein one hydrogen atom of the aforementioned radicals is replaced by a phenyl radical.


The term “C1-C4-alkoxy-C1-C6-alkyl” refers to alkyl having 1 to 6 carbon atoms (as defined above), wherein one hydrogen atom of the alkyl radical is replaced by a C1-C4-alkoxy radical having 1 to 4 carbon atoms (as defined above).


The term “C1-C4-alkoxy-C2-C6-alkenyl” refers to alkenyl having 2 to 6 carbon atoms (as defined above), wherein one hydrogen atom of the alkenyl radical is replaced by a C1-C4-alkoxy radical having 1 to 4 carbon atoms (as defined above).


The term “C1-C4-alkoxy-C2-C6-alkynyl” refers to alkynyl having 2 to 6 carbon atoms (as defined above), wherein one hydrogen atom of the alkynyl radical is replaced by a C1-C4-alkoxy radical having 1 to 4 carbon atoms (as defined above).


Agriculturally acceptable salts of the inventive compounds encompass especially the salts of those cations or the acid addition salts of those acids whose cations and anions, respectively, have no adverse effect on the fungicidal action of said compounds. Suitable cations are thus in particular the ions of the alkali metals, preferably sodium and potassium, of the alkaline earth metals, preferably calcium, magnesium and barium, of the transition metals, preferably manganese, copper, zinc and iron, and also the ammonium ion which, if desired, may carry one to four C1-C4-alkyl substituents and/or one phenyl or benzyl substituent, preferably diisopropylammonium, tetramethylammonium, tetrabutylammonium, trimethylbenzylammonium, furthermore phosphonium ions, sulfonium ions, preferably tri(C1-C4-alkyl)sulfonium, and sulfoxonium ions, preferably tri(C1-C4-alkyl)sulfoxonium. Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogensulfate, sulfate, dihydrogenphosphate, hydrogenphosphate, phosphate, nitrate, bicarbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and the anions of C1-C4-alkanoic acids, preferably formate, acetate, propionate and butyrate. They can be formed by reacting such inventive compound with an acid of the corresponding anion, preferably of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid.


The inventive compounds can be present in atropisomers arising from restricted rotation about a single bond of asymmetric groups. They also form part of the subject matter of the present invention.


Depending on the substitution pattern, the compounds of formula I and their N-oxides may have one or more centers of chirality, in which case they are present as pure enantiomers or pure diastereomers or as enantiomer or diastereomer mixtures. Both, the pure enantiomers or diastereomers and their mixtures are subject matter of the present invention.


In the following, particular embodiments of the inventive compounds are described. Therein, specific meanings of the respective substituents are further detailled, wherein the meanings are in each case on their own but also in any combination with one another, particular embodiments of the present invention.


Furthermore, in respect of the variables, generally, the embodiments of the compounds I also apply to the intermediates.


R1 according to the present invention is C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-C1-C6-alkyl, phenyl or phenyl-C1-C4-alkyl, wherein the aliphatic moieties of R1 may carry one, two, three or up to the maximum possible number of identical or different groups R12a which independently of one another are selected from halogen, OH, CN, nitro, C1-C4-alkoxy, C3-C8-cycloalkyl, C3-C8-halocycloalkyl and C1-C4-halogenalkoxy; and wherein the cycloalkyl and/or phenyl moieties of R1 may carry one, two, three, four, five or up to the maximum number of identical or different groups R12b, which independently of one another are selected from halogen, OH, CN, nitro, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C8-cycloalkyl, C3-C8-halocycloalkyl and C1-C4-halogenalkoxy.


According to one embodiment, R1 is C1-C6-alkyl, CF3, C2-C6-alkenyl, C2-C6-haloalkenyl, C1-C4-alkoxy-C2-C6-alkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-C1-C6-alkyl, phenyl, phenyl-C1-C4-alkyl, phenyl-C1-C4-haloalkyl and phenyl-C1-C4-alkoxy-C1-C4-alkyl, wherein the aliphatic moieties of R1 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R12a1 which independently of one another are selected from OH, CN, nitro, C3-C8-cycloalkyl, C3-C8-halocycloalkyl and C1-C4-halogenalkoxy; and wherein the cycloalkyl and/or phenyl moieties of R1 may carry one, two, three, four, five or up to the maximum number of identical or different groups R12b which independently of one another are selected from halogen, OH, CN, nitro, C1-C8-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C8-cycloalkyl, C3-C8-halocycloalkyl and C1-C4-halogenalkoxy. According to a further embodiment, R1 is C1-C6-alkyl, CF3, C2-C6-alkenyl, C1-C4-alkoxy-C2-C6-alkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-C1-C6-alkyl, phenyl, phenyl-C1-C4-alkyl, phenyl-C1-C4-haloalkyl and phenyl-C1-C4-alkoxy-C1-C4-alkyl, wherein the aliphatic moieties of R1 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R12a1 which independently of one another are selected from OH, CN, nitro, C3-C8-cycloalkyl, C3-C8-halocycloalkyl and C1-C4-halogenalkoxy; and wherein the cycloalkyl and/or phenyl moieties of R1 may carry one, two, three, four, five or up to the maximum number of identical or different groups R12b which independently of one another are selected from halogen, OH, CN, nitro, C1-C8-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C8-cycloalkyl, C3-C8-halocycloalkyl and C1-C4-halogenalkoxy.


According to a further embodiment of the invention, R1 is selected from C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-C1-C4-alkyl, phenyl and phenyl-C1-C4-alkyl, wherein the R1 are in each case unsubstituted or are substituted by R12a and/or R12b as defined and preferably defined herein. Specific embodiments thereof can be found in the below Table P1.


According to one particular embodiment, R1 is C1-C6-alkyl, in particular C1-C4-alkyl, such as CH3, C2H5, CH(CH3)2 or C(CH3)3. According to one embodiment, this R1 is not further substituted. A further embodiment relates to compounds, wherein R1 is C1-C6-alkyl, in particular C1-C4-alkyl, that is substituted by one, two or three or up to the maximum possible number of identical or different groups R12a, as defined and preferably defined herein. According to a specific embodiment thereof, R1 is C1-C6-haloalkyl, in particular C1-C4-haloalkyl, more particularly C1-C2-haloalkyl such as CF3 or CHF2. According to a further specific embodiment thereof, R1 is C1-C4-alkoxy-C1-C6-alkyl, in particular C1-C4-alkoxy-C1-C4-alkyl, such as CH2—OCH3. Further specific embodiments thereof can be found in the below Table P1.


According to still another embodiment, R1 is C3-C8-cycloalkyl-C1-C6-alkyl, in particular C3-C6-cycloalkyl-C1-C4-alkyl. A further embodiment relates to compounds, wherein R1 is C3-C8-cycloalkyl-C1-C6-alkyl, in particular C3-C6-cycloalkyl-C1-C4-alkyl, that is substituted by one, two or three or up to the maximum possible number of identical or different groups R12a in the alkyl moiety and/or substituted by one, two, three four or five or up to the maximum possible number of identical or different groups R12b in the cycloalkyl moiety. R12a and R12b are in each case as defined and preferably defined herein. Specific embodiments thereof can be found in the below Table P1.


According to another embodiment, R1 is C2-C6-alkenyl, in particular C2-C4-alkenyl, such as CH═CH2, CH2CH═CH2, CH═CHCH3 or C(CH3)═CH2. According to one embodiment, if R1 is alkenyl, said alkenyl is not substituted. A further embodiment relates to compounds, wherein R1 is C2-C6-alkenyl, in particular C2-C4-alkenyl, that is substituted by one, two or three or up to the maximum possible number of identical or different groups R12a as defined and preferably defined herein. According to a specific embodiment thereof, R1 is C2-C6-haloalkenyl, in particular C2-C4-haloalkenyl, wherein specifically, said haloalkenyl contains exactly one halogen. According to a further specific embodiment thereof, R1 is C3-C8-cycloalkyl-C2-C6-alkenyl or C3-C8-halocycloalkyl-C2-C6-alkenyl, in particular C3-C6-cycloalkyl-C2-C4-alkenyl or C3-C6-halocycloalkyl-C2-C4-alkenyl. Further specific embodiments thereof can be found in the below Table P1.


According to still another embodiment, R1 is C2-C6-alkynyl, in particular C2-C4-alkynyl, such as C≡CH, CC≡CH3, CH2—C≡C—H or CH2—C≡C—CH3. A further embodiment relates to compounds, wherein R1 is C2-C6-alkynyl, in particular C2-C4-alkynyl, that is substituted by one, two or three or up to the maximum possible number of identical or different groups R12a, as defined and preferably defined herein. According to a specific embodiment thereof, R1 is C2-C6-haloalkynyl, in particular C2-C4-haloalkynyl. According to a further specific embodiment thereof, R1 is C3-C8-cycloalkyl-C2-C6-alkynyl or C3-C8-halocycloalkyl-C2-C6-alkynyl, in particular C3-C6-cycloalkyl-C2-C4-alkynyl or C3-C6-halocycloalkyl-C2-C4-alkynyl. Further specific embodiments thereof can be found in the below Table P1.


According to still another embodiment, R1 is phenyl-C1-C4-alkyl, in particular phenyl-C1-C2-alkyl, such as benzyl, wherein the alkyl moiety in each case is unsubstituted or carries one, two or three R12a as defined and preferably defined herein, in particular selected from halogen, in particular F and Cl, C1-C4-alkoxy, in particular OCH3, and CN, and wherein the phenyl in each case is unsubstituted or carries one, two or three R12b as as defined and preferably defined herein, in particular selected from halogen, in particular Cl and F, C1-C4-alkoxy, in particular OCH3, C1-C4-alkyl, in particular CH3 or C2H5, and CN. Specific embodiments thereof can be found in the below Table P1.


According to still another embodiment, R1 is C3-C8-cycloalkyl, in particular C3-C6-cycloalkyl, such as C3H5 (cyclopropyl), C4H7 (cyclobutyl), cyclopentyl or cyclohexyl. A further embodiment relates to compounds, wherein R1 is C3-C8-cycloalkyl, in particular C3-C6-cycloalkyl, such as C3H5 (cyclopropyl) or C4H7 (cyclobutyl), that is substituted by one, two, three four or five or up to the maximum possible number of identical or different groups R12b as defined and preferably defined herein. According to a specific embodiment thereof, R1 is C3-C8-halocycloalkyl, in particular C3-C6-halocycloalkyl, such as halocyclopropyl, in particular 1-F-cyclopropyl or 1-C1-cyclopropyl. According to a further specific embodiment thereof, R1 is C3-C8-cycloalkyl-C3-C8-cycloalkyl, in particular C3-C6-cycloalkyl-C3-C6-cycloalkyl, wherein each of said cycloalkylcycloalkyl moieties is unsubstituted or carries one, two or three R12b as defined and preferably defined herein, such as 1-cyclopropyl-cyclopropyl or 2-cyclopropyl-cyclopropyl. Specific embodiments thereof can be found in the below Table P1.


According to still another embodiment, R1 is phenyl, wherein the phenyl is unsubstituted or carries one, two, three, four or five independently selected R12b as defined and preferably defined herein, in particular selected from halogen, in particular Cl and F, C1-C4-alkoxy, in particular OCH3, C1-C4-alkyl, in particular CH3 or C2H5, and CN. Specific embodiments thereof can be found in the below Table P1.


In a further embodiment of the invention, R1 is selected from C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl and C3-C6-cycloalkyl, wherein the R1 are in each case unsubstituted or are substituted by R12a and/or R12b as defined and preferably defined herein. In each case, the substituents may also have the preferred meanings for the respective substituent as defined above. Specific embodiments thereof can be found in the below Table P1.


In still a further embodiment of the invention, R1 is selected from C1-C6-alkyl, C1-C4-alkoxy-C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl and C3-C6-cycloalkyl, wherein the R1 are in each case unsubstituted or are substituted by R12a1 and/or R12b as defined and preferably defined herein. In each case, the substituents may also have the preferred meanings for the respective substituent as defined above. Specific embodiments thereof can be found in the below Table P1. Particularly preferred embodiments of R1 according to the invention are in Table P1 below, wherein each line of lines P1-1 to P1-160 corresponds to one particular embodiment of the invention, wherein P1-1 to P1-160 are also in any combination a preferred embodiment of the present invention.












TABLE P1







line
R1









P1-1
H



P1-2
CH3



P1-3
CH2CH3



P1-4
CH2CH2CH3



P1-5
CH(CH3)2



P1-6
C(CH3)3



P1-7
CH(CH3)CH2CH3



P1-8
CH2CH(CH3)2



P1-9
CH2CH2CH2CH3



P1-10
CF3



P1-11
CHF2



P1-12
CH2F



P1-13
CHCl2



P1-14
CH2Cl



P1-15
CH2OH



P1-16
CH2CH2OH



P1-17
CH2CH2CH2OH



P1-18
CH(CH3)CH2OH



P1-19
CH2CH(CH3)OH



P1-20
CH2CH2CH2CH2OH



P1-21
CH(CH3)CN



P1-22
CH2CH2CN



P1-23
CH2CN



P1-24
CH2CH2CN



P1-25
CH2CH2CH2CN,



P1-26
CH(CH3)CH2CN



P1-27
CH2CH(CH3)CN



P1-28
CH2CH2CH2CH2CN



P1-29
CH2OCH3



P1-30
CH2OCH2CH3



P1-31
CH(CH3)OCH3



P1-32
CH(CH3)OCH2CH3



P1-33
CH2CH2OCH2CH3



P1-34
CH2OCF3



P1-35
CH2CH2OCF3



P1-36
CH2OCCl3



P1-37
CH2CH2OCCl3



P1-38
CH═CH2



P1-39
CH2CH═CH2



P1-40
CH2CH═CHCH3



P1-41
CH2C(CH3)═CH2



P1-42
CH2C(CH3)═CHCH3



P1-43
CH2C(CH3)═C(CH3)2



P1-44
CH═CHCH3



P1-45
C(CH3)═CH2



P1-46
CH═C(CH3)2



P1-47
C(CH3)═C(CH3)2



P1-48
C(CH3)═CH(CH3)



P1-49
C(Cl)═CH2



P1-50
C(H)═CHCl



P1-51
C(Cl)═CHCl



P1-52
CH═CCl2



P1-53
C(Cl)═CCl2



P1-54
C(H)═CH(F)



P1-55
C(H)═CF2



P1-56
C(F)═CF2



P1-57
C(F)═CHF



P1-58
CH═CHCH2OH



P1-59
CH═CHOCH3



P1-60
CH═CHCH2OCH3



P1-61
CH═CHCH2OCF3



P1-62
CH═CHCH2OCCl3



P1-63
CH═CH(C3H5)



P1-64
CH═CH(C4H7)



P1-65
CH═CH(1-Cl—C3H4)



P1-66
CH═CH(1-F—C3H4)



P1-67
CH═CH(1-Cl—C4H6)



P1-68
CH═CH(1-F—C4H6)



P1-69
C≡CH



P1-70
C≡CCH3



P1-71
CH2C≡CCH3



P1-72
CH2C≡CH



P1-73
CH2C≡CCH2CH3



P1-74
C≡CCH(CH3)2



P1-75
C≡CC(CH3)3



P1-76
C≡C(C3H5)



P1-77
C≡C(C4H7)



P1-78
C≡C(1-Cl—C3H4)



P1-79
C≡C(1-Cl—C4H6)



P1-80
C≡CCl



P1-81
C≡CBr



P1-82
C≡C—I



P1-83
CH2C≡CCl



P1-84
CH2C≡CBr



P1-85
CH2C≡C—I



P1-86
C≡CCH2OCH3



P1-87
C≡CCH(OH)CH3



P1-88
C≡CCH(OCH3)CH3



P1-89
C≡COCH3



P1-90
CH2C≡COCH3



P1-91
C≡CCH2OCCl3



P1-92
C≡CCH2OCF3



P1-93
C≡CCH2(C3H5)



P1-94
C≡CCH2(C4H7)



P1-95
C≡C(1-Cl—C3H4)



P1-96
C≡C(1-F—C3H4)



P1-97
C≡C(1-Cl—C4H6)



P1-98
C≡C(1-F—C4H6)



P1-99
C3H5 (cyclopropyl)



P1-100
C4H7 (cyclobutyl)



P1-101
C5H9 (cyclopentyl)



P1-102
cyclohexyl



P1-103
CH(CH3)—C3H5




(CH(CH3)-cyclopropyl)



P1-104
CH2—C3H5 (CH2-cyclopropyl)



P1-105
1-(Cl)-cyclopropyl



P1-106
1-(F)-cyclopropyl



P1-107
1-(CH3)-cyclopropyl



P1-108
1-(CN)-cyclopropyl



P1-109
2-(Cl)-cyclopropyl



P1-110
2-(F)-cyclopropyl



P1-111
1-(Cl)-cyclobutyl



P1-112
1-(F)-cyclobutyl



P1-113
2-(Cl)-cyclobutyl



P1-114
3-(Cl)-cyclobutyl



P1-115
2-(F)-cyclobutyl



P1-116
3-(F)-cyclobutyl



P1-117
3,3-Cl2-cyclobutyl



P1-118
3,3-F2-cyclobutyl



P1-119
2-(CH3)-cyclopropyl



P1-120
1-(CH3)-cyclobutyl



P1-121
2-(CH3)-cyclobutyl



P1-122
3-(CH3)-cyclobutyl



P1-123
3,3-(CH3)2-cyclobutyl



P1-124
2-(CN)-cyclopropyl



P1-125
1-cyclopropyl-cyclopropyl



P1-126
2-cyclopropyl-cyclopropyl



P1-127
CH(CH3)(cyclobutyl)



P1-128
CH2-(cyclobutyl)



P1-129
CH2CH2-(cyclopropyl)



P1-130
CH2CH2-(cyclobutyl)



P1-131
CH2-(1-Cl-cyclopropyl)



P1-132
CH2-(1-F-cyclopropyl)



P1-133
CH2-(1-Cl-cyclobutyl)



P1-134
CH2-(1-F-cyclobutyl)



P1-135
CHCH3-(1-Cl-cyclopropyl)



P1-136
C(CH3)2-(1-F-cyclopropyl)



P1-137
C6H5



P1-138
4-Cl—C6H4



P1-139
4-OCH3—C6H4



P1-140
4-CH3—C6H4



P1-141
4-F—C6H4



P1-142
2,4-F2—C6H3



P1-143
2,4-Cl2—C6H3



P1-144
2-CH3—C6H4



P1-145
2-CF3—C6H4



P1-146
4-CH3—C6H4



P1-147
4-CF3—C6H4



P1-148
2-OCH3—C6H4



P1-149
2-OCF3—C6H4



P1-150
4-OCH3—C6H4



P1-151
4-OCF3—C6H4



P1-152
2,4,6-F3—C6H2



P1-153
2,4,6-Cl3—C6H2



P1-154
CH2C6H5



P1-155
CH2—(4-Cl)—C6H4



P1-156
CH2—(4-CH3)—C6H4



P1-157
CH2—(4-OCH3)—C6H4



P1-158
CH2—(4-F)—C6H4



P1-159
CH2-(2,4-Cl2)—C6H3



P1-160
CH2-(2,4-F2)—C6H3











R2 according to the present invention is hydrogen, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-C1-C6-alkyl, phenyl, phenyl-C1-C4-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4-alkynyl, wherein the aliphatic groups of R2 may carry one, two, three or up to the maximum possible number of identical or different groups R12a which independently of one another are selected from halogen, OH, CN, nitro, C1-C4-alkoxy, C3-C8-cycloalkyl, C3-C8-halocycloalkyl and C1-C4-halogenalkoxy; and wherein the cycloalkyl and/or phenyl moieties of R2 may carry one, two, three, four, five or up to the maximum number of identical or different groups R12b, which independently of one another are selected from halogen, OH, CN, nitro, C1-C8-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C8-cycloalkyl, C3-C8-halocycloalkyl and C1-C4-halogenalkoxy.


According to one embodiment, R2 is H.


According to a further embodiment of the invention, R2 is selected from C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyl-C1-C4-alkyl, phenyl, phenyl-C1-C4-alkyl, phenyl-C2-C4-alkenyl and phenyl-C2-C4-alkynyl, wherein the R2 are in each case unsubstituted or are substituted by R12a and/or R12b as defined and preferably defined herein. Specific embodiments thereof can be found in the below Table P2.


According to one particular embodiment, R2 is C1-C6-alkyl, in particular C1-C4-alkyl, such as CH3, C2H5, CH(CH3)2, CH2CH2CH3, CH2CH2CH2CH3, CH2CH(CH3)2. A further embodiment relates to compounds, wherein R2 is C1-C6-alkyl, in particular C1-C4-alkyl, that is substituted by one, two or three or up to the maximum possible number of identical or different groups R12a, as defined and preferably defined herein. According to a specific embodiment thereof, R2 is C1-C6-haloalkyl, in particular C1-C4-haloalkyl, more particularly C1-C2-haloalkyl. According to a further specific embodiment thereof, R2 is C1-C4-alkoxy-C1-C6-alkyl, in particular C1-C4-alkoxy-C1-C4-alkyl, such as CH2OCH3 or CH2CH2OCH3. According to still a further specific embodiment thereof, R2 is hydroxy-C1-C6-alkyl, in particular hydroxyl-C1-C4-alkyl, such as CH2CH2OH. Further specific embodiments thereof can be found in the below Table P2


According to still another embodiment, R2 is C3-C8-cycloalkyl-C1-C6-alkyl, in particular C3-C6-cycloalkyl-C1-C4-alkyl. A further embodiment relates to compounds, wherein R2 is C3-C8-cycloalkyl-C1-C6-alkyl, in particular C3-C6-cycloalkyl-C1-C4-alkyl, more particularly C3-C6-cycloalkyl-C1-C2-alkyl, that is substituted by one, two or three or up to the maximum possible number of identical or different groups R12a in the alkyl moiety and/or substituted by one, two, three four or five or up to the maximum possible number of identical or different groups R12b in the cycloalkyl moiety. R12a and R12b are in each case as defined and preferably defined herein. Specific embodiments thereof can be found in the below Table P2.


According to another embodiment, R2 is C2-C6-alkenyl, in particular C2-C4-alkenyl, such as CH2CH═CH2, CH2C(CH3)═CH2 or CH2CH═CHCH3. A further embodiment relates to compounds, wherein R2 is C2-C6-alkenyl, in particular C2-C4-alkenyl, that is substituted by one, two or three or up to the maximum possible number of identical or different groups R12a as defined and preferably defined herein. According to a specific embodiment thereof, R2 is C2-C6-haloalkenyl, in particular C2-C4-haloalkenyl, such as CH2C(Cl)═CH2 and CH2C(H)═CHCl. According to a further specific embodiment thereof, R2 is C3-C8-cycloalkyl-C2-C6-alkenyl or C3-C8-halocycloalkyl-C2-C6-alkenyl, in particular C3-C6-cycloalkyl-C2-C4-alkenyl or C3-C6-halocycloalkyl-C2-C4-alkenyl. Further specific embodiments thereof can be found in the below Table P2.


According to still another embodiment, R2 is C2-C6-alkynyl, in particular C2-C4-alkynyl, such as CH2C≡CH or CH2C≡CCH3. A further embodiment relates to compounds, wherein R2 is C2-C6-alkynyl, in particular C2-C4-alkynyl, that is substituted by one, two or three or up to the maximum possible number of identical or different groups R12a, as defined and preferably defined herein.


According to a specific embodiment thereof, R2 is C2-C6-haloalkynyl, in particular C2-C4-haloalkynyl. According to a further specific embodiment thereof, R2 is C3-C8-cycloalkyl-C2-C6-alkynyl or C3-C8-halocycloalkyl-C2-C6-alkynyl, in particular C3-C6-cycloalkyl-C2-C4-alkynyl or C3-C6-halocycloalkyl-C2-C4-alkynyl. Specific embodiments thereof can be found in the below Table P2.


According to still another embodiment, R2 is phenyl-C1-C4-alkyl, in particular phenyl-C1-C2-alkyl, such as benzyl, wherein the alkyl moiety in each case is unsubstituted or carries one, two or three R12a as defined and preferably defined herein, in particular selected from halogen, in particular F and Cl, C1-C4-alkoxy, in particular OCH3, and CN, and wherein the phenyl in each case is unsubstituted or carries one, two or three R12b as as defined and preferably defined herein, in particular selected from halogen, in particular Cl and F, C1-C4-alkoxy, in particular OCH3, C1-C4-alkyl, in particular CH3 or C2H5, and CN. Specific embodiments thereof can be found in the below Table P2.


According to still another embodiment, R2 is phenyl-C2-C4-alkenyl, in particular phenyl-C2-C3-alkenyl, such as phenylethenyl, wherein the alkenyl moiety in each case is unsubstituted or carries one, two or three R12a as defined and preferably defined herein, in particular selected from halogen, in particular F and Cl, C1-C4-alkoxy, in particular OCH3, and CN, and wherein the phenyl in each case is unsubstituted or carries one, two or three R12b as defined and preferably defined herein, in particular selected from halogen, in particular Cl and F, C1-C4-alkoxy, in particular OCH3, C1-C4-alkyl, in particular CH3 or C2H5, and CN.


According to still another embodiment, R2 is phenyl-C2-C4-alkynyl, in particular phenyl-C2-C3-alkynyl, such as phenylethenyl, wherein the alkynyl moiety in each case is unsubstituted or carries one, two or three R12a, as defined and preferably defined herein, in particular selected from halogen, in particular F and Cl, C1-C4-alkoxy, in particular OCH3, and CN, and wherein the phenyl in each case is unsubstituted or carries one, two or three R12b as defined and preferably defined herein, in particular selected from halogen, in particular Cl and F, C1-C4-alkoxy, in particular OCH3, C1-C4-alkyl, in particular CH3 or C2H5, and CN.


According to still another embodiment, R2 is C3-C8-cycloalkyl, in particular C3-C6-cycloalkyl, such as C3H5 (cyclopropyl), C4H7 (cyclobutyl), cyclopentyl or cyclohexyl. A further embodiment relates to compounds, wherein R2 is C3-C8-cycloalkyl, in particular C3-C6-cycloalkyl, such as C3H5 (cyclopropyl) or C4H7 (cyclobutyl), that is substituted by one, two, three four or five or up to the maximum possible number of identical or different groups R12b as defined and preferably defined herein. According to a specific embodiment thereof, R2 is C3-C8-halocycloalkyl, in particular C3-C6-halocycloalkyl, such as halocyclopropyl, in particular 1-F-cyclopropyl or 1-CIcyclopropyl. According to a further specific embodiment thereof, R2 is C3-C8-cycloalkyl-C3-C8-cycloalkyl, in particular C3-C6-cycloalkyl-C3-C6-cycloalkyl, wherein each of said cycloalkylcycloalkyl moieties is unsubstituted or carries one, two or three R12b as defined and preferably defined herein.


According to still another embodiment, R2 is phenyl, wherein the phenyl is unsubstituted or carries one, two, three, four or five independently selected R12b as defined and preferably defined herein, in particular selected from halogen, in particular Cl and F, C1-C4-alkoxy, in particular OCH3, C1-C4-alkyl, in particular CH3 or C2H5, and CN.


In a further embodiment of the invention, R2 is selected from hydrogen, C1-C6-alkyl, C2-C6-alkenyl and C2-C6-alkynyl, wherein the R2 are in each case unsubstituted or are substituted by R12a and/or R12b as defined and preferably defined herein. In a specific embodiment thereof, R2 is selected from hydrogen, C1-C4-alkyl, C2-C4-alkenyl and C2-C4-alkynyl, wherein the R2 are in each case unsubstituted or are substituted by one, two or three R12a and/or R12b as defined and preferably defined herein. In each case, the substituents may also have the preferred meanings for the respective substituent as defined above. Specific embodiments thereof can be found in the below Table P2.


Particularly preferred embodiments of R2 according to the invention are in Table P2 below, wherein each line of lines P2-1 to P2-88 corresponds to one particular embodiment of the invention, wherein P2-1 to P2-88 are also in any combination a preferred embodiment of the present invention.












TABLE P2







line
R2









P2-1
H



P2-2
CH3



P2-3
CH2CH3



P2-4
CH(CH3)2



P2-5
CH2CH2CH3



P2-6
CH2CH2CH2CH3



P2-7
CH2CH(CH3)2



P2-8
CF3.



P2-9
CHF2



P2-10
CFH2



P2-11
CCl3.



P2-12
CHCl2



P2-13
CClH2



P2-14
CH2CF3



P2-15
CH2CHF2



P2-16
CH2CCl3



P2-17
CH2CHCl2



P2-18
CH2CH2OCH2CH3



P2-19
CH(CH3)OCH2CH3



P2-20
CH(CH3)OCH3



P2-21
CH2OCH3



P2-22
CH2CH2OCH3



P2-23
CH2OCF3



P2-24
CH2CH2OCF3



P2-25
CH2OCCl3



P2-26
CH2CH2OCCl3



P2-27
CH2CH2OH



P2-28
CH2OH



P2-29
CH2CH2CH2OH,



P2-30
CH(CH3)CH2OH



P2-31
CH2CH(CH3)OH



P2-32
CH2CH2CH2CH2OH



P2-33
CH2CN,



P2-34
CH2CH2CN,



P2-35
CH2CH2CH2CN,



P2-36
CH(CH3)CH2CN,



P2-37
CH2CH(CH3)CN,



P2-38
CH2CH2CH2CH2CN



P2-39
CH═CH2



P2-40
C(CH3)═CH2



P2-41
CH═CHCH3



P2-42
CH2CH═CH2



P2-43
CH2CH═CHCH3



P2-44
CH2C(CH3)═CH2



P2-45
C(CH3)═CH(CH3)



P2-46
C(CH3)═C(CH3)2



P2-47
CH═C(CH3)2



P2-48
CH═C(Cl)2



P2-49
C(CH3)═CH2



P2-50
CH2C(Cl)═CH2



P2-51
CH2C(H)═CHCl



P2-52
CH═CHCH2OH



P2-53
CH═C(CH3)OH



P2-54
CH═CHOCH3



P2-55
CH═CHCH2OCH3



P2-56
CH2CH═CHCH2OCH3



P2-57
CH═CHOCF3



P2-58
CH═CHCH2OCF3



P2-59
CH═CHOCCl3



P2-60
CH═CHCH2OCCl3



P2-61
CH2CH═CH(C3H5)



P2-62
CH2CH═CH(C4H7)



P2-63
CH2CH═CH(1-Cl—C3H4)



P2-64
CH2CH═CH(1-F—C3H4)



P2-65
C≡CH



P2-66
CH2C≡CH



P2-67
CH2C≡CCH3



P2-68
CH2C≡CCH2CH3



P2-69
CH2C≡CCl



P2-70
CH2C≡CF



P2-71
CH2C≡C—I



P2-72
CH2C≡CCH2OH



P2-73
C≡COCH3



P2-74
CH2C≡COCH3



P2-75
CH2C≡CCCH2OCH3



P2-76
C≡COCF3



P2-77
CH2C≡COCF3



P2-78
C≡COCCl3



P2-79
CH2C≡COCCl3



P2-80
CH2-(cyclopropyl)



P2-81
CH2-(cyclobutyl)



P2-82
CH2-(1-Cl-cyclopropyl)



P2-83
CH2-(1-F-cyclopropyl)



P2-84
CH2C6H5



P2-85
CH2—(4-Cl)—C6H4



P2-86
CH2—(4-F)—C6H4



P2-87
CH2—(4-CH3)—C6H4



P2-88
CH2—(4-OCH3)—C6H4










Particularly preferred embodiments of combination of R1 and R2 according to the invention are given in Table A below, wherein each line of lines A-1 to A-70 corresponds to one particular embodiment of the invention, wherein A-1 to A-70 are also in any combination a preferred embodiment for combinations of R1 and R2 of the present invention.


R12a or more specifically, R12a1 are the possible substituents for any aliphatic moiety of R1 and/or R2 and can independently be defined for R1 and R2.


According to one embodiment, the respective R1 is not further substituted. According to a further embodiment, the respective R1 contains one, two, three or up to the maximum possible number of identical or different groups R12a or R12a1. According to still a further embodiment, the respective R1 contains one, two or three identical or different groups R12a or R12a1. According to one specific embodiment thereof, the respective R1 contains one group R12a or R12a1. According to one further specific embodiment thereof, the respective R1 contains one or two identical or different groups R12a or R12a1.


According to one embodiment, the respective R2 is not further substituted. According to a further embodiment, the respective R2 contains one, two, three or up to the maximum possible number of identical or different groups R12a. According to still a further embodiment, the respective R2 contains one, two or three identical or different groups R12a. According to one specific embodiment thereof, the respective R2 contains one group R12a. According to one further specific embodiment thereof, the respective R2 contains one or two identical or different groups R12a.


R12a according to the invention is independently selected from halogen, OH, CN, nitro, C1-C4-alkoxy, C3-C8-cycloalkyl, C3-C8-halocycloalkyl and C1-C4-halogenalkoxy.


According to one embodiment R12a is independently selected from halogen, OH, CN, C1-C2-alkoxy, C3-C6-cycloalkyl, C3-C6-halocycloalkyl and C1-C2-halogenalkoxy. Specifically, R12a is independently selected from F, Cl, OH, CN, C1-C2-alkoxy, cyclopropyl, 1-F-cyclopropyl, 1-C1-cyclopropyl and C1-C2-halogenalkoxy.


According to a further embodiment R12a is independently selected from halogen, OH, CN, C3-C6-cycloalkyl and C3-C6-halocycloalkyl. Specifically, R12a is independently selected from F, Cl, OH, CN, cyclopropyl, 1-F-cyclopropyl and 1-C1-cyclopropyl.


R12a1 are independently of one another selected from halogen, OH, CN, nitro, C3-C8-cycloalkyl, C3-C8-halocycloalkyl and C1-C4-halogenalkoxy, in particular halogen, OH, CN, C3-C6-cycloalkyl and C3-C8-halocycloalkyl. Specifically, R12a1 is independently selected from F, Cl, OH, CN, cyclopropyl, 1-F-cyclopropyl and 1-C1-cyclopropyl.


R12b are the possible substituents for any cycloalkyl and/or phenyl moiety of R1 and/or R2 and can independently be defined for R1 and R2.


According to one embodiment, the respective R1 is not further substituted. According to a further embodiment, the respective R1 contains one, two, three or up to the maximum possible number of identical or different groups R12b. According to still a further embodiment, the respective R1 contains one, two or three identical or different groups R12b. According to one specific embodiment thereof, the respective R1 contains one group R12b. According to one further specific embodiment thereof, the respective R1 contains one or two identical or different groups Rub.


According to one embodiment, the respective R2 is not further substituted. According to a further embodiment, the respective R2 contains one, two, three or up to the maximum possible number of identical or different groups R12b. According to still a further embodiment, the respective R2 contains one, two or three identical or different groups R12b. According to one specific embodiment thereof, the respective R2 contains one group R12b. According to one further specific embodiment thereof, the respective R2 contains one or two identical or different groups R12b.


R12b according to the invention is is independently selected from halogen, OH, CN, nitro, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C8-cycloalkyl, C3-C8-halocycloalkyl and C1-C4-halogenalkoxy.


According to one embodiment R12b is independently selected from halogen, CN, nitro, C1-C2-alkyl, C1-C2-alkoxy, C1-C2-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halocycloalkyl and C1-C2-halogenalkoxy. Specifically, R12b is independently selected from F, Cl, OH, CN, nitro, CH3, OCH3, cyclopropyl, 1-F-cyclopropyl, 1-C1-cyclopropyl and halogenmethoxy.


R31 according to the invention is halogen.


According to one embodiment, R31 is F, corresponding to compounds I.A:




embedded image


According to a further embodiment, R31 is Cl, corresponding to compounds I.B:




embedded image


According to still a further embodiment, R31 is Br, corresponding to compounds I.C:




embedded image


Each R4 according to the present invention is independently selected from halogen, CN, NO2, OH, SH, C1-C6-alkyl, C1-C6-alkoxy, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyloxy, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C3-C6-cycloalkyl), N(C3-C6-cycloalkyl)2, S(O)p(C1-C4-alkyl), C(═O)(C1-C4-alkyl), C(═O)(OH), C(═O)(O—C1-C4-alkyl), C(═O)(NH(C1-C4-alkyl)), C(═O)(N(C1-C4-alkyl)2), C(═O)(NH(C3-C6-cycloalkyl)) and C(═O)—(N(C3-C6-cycloalkyl)2); wherein each of R4 is unsubstituted or further substituted by one, two, three or four R4a independently selected from halogen, CN, NO2, OH, C1-C4-alkyl, C1-C4-haloalkyl, C3-C8-cycloalkyl, C3-C8-halocycloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy, with the provisos given herein.


According to the invention, there can be zero, one, two, three, four or five R4 present, namely for m is 0, 1, 2, 3, 4 or 5. In particular, m is 0, 1, 2, 3 or 4.


According to one embodiment, m is 0.


According to a further embodiment, m is 1, 2, 3 or 4, in particular 1, 2 or 3, more specifically 1 or 2. According to one specific embodiment thereof, m is 1, according to a further specific embodiment, m is 2.


According to still a further embodiment, m is 2, 3 or 4.


According to still a further embodiment, m is 3.


According to one embodiment of the invention, one R4 is attached to the para-position (4-position).


According to a further embodiment of the invention, one R4 is attached to the meta-position (3-position).


According to a further embodiment of the invention, one R4 is attached to the ortho-position (2-position).


According to a further embodiment of the invention, two R4 are attached in 2,4-position.


According to a further embodiment of the invention, two R4 are attached in 2,3-position.


According to a further embodiment of the invention, two R4 are attached in 2,5-position.


According to a further embodiment of the invention, two R4 are attached in 2,6-position.


According to a further embodiment of the invention, two R4 are attached in 3,4-position.


According to a further embodiment of the invention, two R4 are attached in 3,5-position.


According to a further embodiment of the invention, three R4 are attached in 2,4,6-position.


According to one embodiment of the invention, (R4)m is selected from 2-(R4)1, 3-(R4)1, 2,3-(R4)2, 2,5-(R4)2, 2,6-(R4)2, 3,4-(R4)2, 3,5-(R4)2, 2,3,4-(R4)3, 2,3,5-(R4)3, 2,3,6-(R4)3 and 3,4,5- (R4)3.


For every R4 that is present in the inventive compounds, the following embodiments and preferences apply independently of the meaning of any other R4 that may be present in the phenyl ring. Furthermore, the particular embodiments and preferences given herein for R4 apply independently for each of m=1, m=2, m=3, m=4 and m=5, taking into account the provisos according to the invention, however.


According to one embodiment, R4 is independently selected from halogen, CN, NO2, OH, SH, C1-C6-alkyl, C1-C6-alkoxy, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyloxy, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C3-C6-cycloalkyl), N(C3-C6-cycloalkyl)2, S(O)p(C1-C4-alkyl) (p=0, 1 or 2), C(═O)(C1-C4-alkyl), C(═O)(OH), C(═O)(O—C1-C4-alkyl), C(═O)(NH(C1-C4-alkyl)), C(═O)(N(C1-C4-alkyl)2), C(═O)(NH(C3-C6-cycloalkyl)) and C(═O)—(N(C3-C6-cycloalkyl)2); wherein each of R4 is unsubstituted or further substituted by one, two, three or four independently selected R4a, wherein R4a is as defined and preferably defined herein.


According to a further embodiment, R4 is independently selected from halogen, CN, NO2, C1-C4-alkyl, C1-C4-alkoxy, C2-C4-alkenyl, C2-C4-alkynyl, C3-C6-cycloalkyl, C3-C6-cycloalkyloxy, NH2, NH(C1-C42-alkyl), N(C1-C2-alkyl)2, S(O)p(C1-C2-alkyl) (p=0, 1 or 2), C(═O)(C1-C2-alkyl), C(═O)(OH) and C(═O)(O—C1-C2-alkyl), wherein each of R4 is unsubstituted or further substituted by one, two, three or four independently selected R4a, wherein R4a is as defined and preferably defined herein.


According to a further embodiment, R4 is independently selected from halogen, CN, NO2, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy, C1-C4-haloalkoxy, C2-C4-alkenyl, C2-C4-haloalkenyl, C2-C4-alkynyl, C2-C4-haloalkynyl, C3-C6-cycloalkyl, C3-C6-halocycloalkyl, S(C1-C2-alkyl), S(O)(C1-C2-alkyl), S(O)2(C1-C2-alkyl), C(═O)(C1-C2-alkyl), C(═O)(OH) and C(═O)(O—C1-C2-alkyl).


According to a further embodiment, R4 is independently selected from halogen, CN, NO2, C1-C2-alkyl, C1-C2-haloalkyl, C1-C2-alkoxy, C1-C2-haloalkoxy, S(C1-C2-alkyl), S(O)(C1-C2-alkyl), S(O)2(C1-C2-alkyl), C(═O)(OH) and C(═O)(O—C1-C2-alkyl).


According to a further embodiment, R4 is independently selected from F, Cl, Br, CN, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy, C1-C4-haloalkoxy, S(C1-C4-alkyl), S(O)(C1-C4-alkyl) and S(O)2(C1-C4-alkyl).


According to still a further specific embodiment, R4 is independently selected from CN, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy, in particular CN, CF3 and OCF3.


According to still a further specific embodiment, R4 is independently selected from halogen, in particular from Br, F. and Cl, more specifically from F and C1.


According to a further specific embodiment, R4 is CN.


According to one further embodiment R4 is NO2.


According to one further embodiment R4 is OH.


According to one further embodiment R4 is SH.


According to a further specific embodiment, R4 is C1-C6-alkyl, in particular C1-C4-alkyl, such as CH3. Further appropriate alkyls are ethyl, n-propyl, i-propyl, n-butyl, i-butyl and t-butyl.


According to a further specific embodiment, R4 is C1-C6-haloalkyl, in particular C1-C4-haloalkyl, such as CF3, CHF2, CH2F, CCl3, CHCl2 or CH2Cl.


According to a further specific embodiment R4 is C1-C6-alkyl, preferably C1-C4-alkyl, substituted by OH, more preferably CH2OH, CH2CH2OH, CH2CH2CH2OH, CH(CH3)CH2OH, CH2CH(CH3)OH, CH2CH2CH2CH2OH. In a special embodiment R4 is CH2OH. According to a further specific embodiment R4 is C1-C6-alkyl, preferably C1-C4-alkyl substituted by CN, more preferably CH2CN, CH2CH2CN, CH2CH2CH2CN, CH(CH3)CH2CN, CH2CH(CH3)CN, CH2CH2CH2CH2CN. In a special embodiment R4 is CH2CH2CN. In a further special embodiment R4 is CH(CH3)CN. According to a further specific embodiment R4 is C1-C4-alkoxy-C1-C6-alkyl, more preferably C1-C4-alkoxy-C1-C4-alkyl. In a special embodiment R4 is CH2OCH3. In a further special embodiment R4 is CH2CH2OCH3. In a further special embodiment R4 is CH(CH3)OCH3. In a further special embodiment R4 is CH(CH3)OCH2CH3. In a further special embodiment R4 is CH2CH2OCH2CH3. According to a further specific embodiment R4 is C1-C4-haloalkoxy-C1-C6-alkyl, more preferably C1-C4-alkoxy-C1-C4-alkyl. In a special embodiment R4 is CH2OCF3. In a further special embodiment R4 is CH2CH2OCF3. In a further special embodiment R4 is CH2OCCl3. In a further special embodiment R4 is CH2CH2OCCl3.


According to a further specific embodiment, R4 is C1-C6-alkoxy, in particular C1-C4-alkoxy, more specifically C1-C2-alkoxy such as OCH3 or OCH2CH3.


According to a further specific embodiment, R4 is C1-C6-haloalkoxy, in particular C1-C4-haloalkoxy, more specifically C1-C2-haloalkoxy such as OCF3, OCHF2, OCH2F, OCCl3, OCHCl2 or OCH2Cl, in particular OCF3, OCHF2, OCCl3 or OCHCl2.


According to still a further embodiment, R4 is C2-C6-alkenyl or C2-C6-haloalkenyl, in particular C2-C4-alkenyl or C2-C4-haloalkenyl, such as CH═CH2, CH2CH═CH2, CH═CHCH3 or C(CH3)═CH2.


According to a further specific embodiment R4 is C2-C6-alkenyl, preferably C2-C4-alkenyl, substituted by OH, more preferably, CH═CHOH, CH═CHCH2OH, C(CH3)═CHOH, CH═C(CH3)OH. In a special embodiment R4 is CH═CHOH. In a further special embodiment R4 is CH═CHCH2OH. According to a further specific embodiment R4 is C1-C4-alkoxy-C2-C6-alkenyl, more preferably C1-C4-alkoxy-C2-C4-alkenyl. In a special embodiment R4 is CH═CHOCH3. In a further special embodiment R4 is CH═CHCH2OCH3. According to a further specific embodiment R4 is C1-C4-haloalkoxy-C2-C6-alkenyl, more preferably C1-C4-haloalkoxy-C2-C4-alkenyl. In a special embodiment R4 is CH═CHOCF3. In a further special embodiment R4 is CH═CHCH2OCF3. In a further special embodiment R4 is CH═CHOCCl3. In a further special embodiment R4 is CH═CHCH2OCCl3. According to a further specific embodiment R4 is C3-C8-cycloalkyl-C2-C6-alkenyl, preferably C3-C6-cycloalkyl-C2-C4-alkenyl. According to a further specific embodiment R4 is C3-C6-halocycloalkyl-C2-C4-alkenyl, preferably C3-C8-halocycloalkyl-C2-C6-alkenyl.


According to still a further embodiment, R4 is C2-C6-alkynyl or C2-C6-haloalkynyl, in particular C2-C4-alkynyl or C2-C4-haloalkynyl, such as C≡CH, CH2C≡CH or CH2CCCH3.


According to a further specific embodiment R4 is C2-C6-alkynyl, preferably C2-C4-alkynyl, substituted by OH, more preferably, CCOH, CH2CCOH. In a special embodiment R4 is CCOH. In a further special embodiment R4 is CH2CCOH. According to a further specific embodiment R4 is C1-C4-alkoxy-C2-C6-alkynyl, more preferably C1-C4-alkoxy-C2-C4-alkynyl. In a special embodiment R4 is CCOCH3. In a further special embodiment R4 is CH2CCOCH3. According to a further specific embodiment R4 is C1-C4-haloalkoxy-C2-C6-alkynyl, more preferably C1-C4-haloalkoxy-C2-C4-alkynyl. In a special embodiment R4 is CCOCF3. In a further special embodiment R4 is CH2CCOCF3. In a further special embodiment R4 is CCOCCl3. In a further special embodiment R4 is CH2CCOCCl3. According to a further specific embodiment R4 is C3-C8-cycloalkyl-C2-C6-alkynyl, preferably C3-C6-cycloalkyl-C2-C4-alkynyl. According to a further specific embodiment R4 is C3-C6-halocycloalkyl-C2-C4-alkynyl, preferably C3-C8-halocycloalkyl-C2-C6-alkynyl.


According to one another embodiment R4 is C3-C8-cycloalkyl, preferably cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, in particular cyclopropyl or cyclobutyl. In a special embodiment R4 is cyclopropyl. In a further special embodiment R4 is cyclobutyl. In a further special embodiment R4 is cyclopentyl. In a further special embodiment R4 is cyclohexyl.


According to one another embodiment R4 is C3-C8-cycloalkoxy, preferably C3-C6-cycloalkoxy. In a special embodiment R4 is O-cyclopropyl.


According to a specific embodiment R4 is C3-C8-halocycloalkyl, more preferably fully or partially halogenated C3-C6-cycloalkyl. In a special embodiment R4 is fully or partially halogenated cyclopropyl. In a further special embodiment R4 is 1-C1-cyclopropyl. In a further special embodiment R4 is 2-C1-cyclopropyl. In a further special embodiment R4 is 1-F-cyclopropyl. In a further special embodiment R4 is 2-F-cyclopropyl. In a further special embodiment R4 is fully or partially halogenated cyclobutyl. In a further special embodiment R4 is 1-C1-cyclobutyl. In a further special embodiment R4 is 1-F-cyclobutyl. In a further special embodiment R4 is 3,3-Cl2-cyclobutyl. In a further special embodiment R4 is 3,3-F2-cyclobutyl. According to a specific embodiment R4 is C3-C8-cycloalkyl substituted by C1-C4-alkyl, more preferably is C3-C6-cycloalkyl substituted by C1-C4-alkyl. In a special embodiment R4 is 1-CH3-cyclopropyl. According to a specific embodiment R4 is C3-C8-cycloalkyl substituted by CN, more preferably is C3-C6-cycloalkyl substituted by CN. In a special embodiment R4 is 1-CN-cyclopropyl. According to a further specific embodiment R4 is C3-C8-cycloalkyl-C3-C8-cycloalkyl, preferably C3-C6-cycloalkyl-C3-C6-cycloalkyl. In a special embodiment R4 is cyclopropyl-cyclopropyl. In a special embodiment R4 is 2-cyclopropyl-cyclopropyl.


According to a further specific embodiment R4 is C3-C8-cycloalkyl-C3-C8-halocycloalkyl, preferably C3-C6-cycloalkyl-C3-C6-halocycloalkyl.


According to one another embodiment R4 is C3-C8-cycloalkyl-C1-C4-alkyl, preferably C3-C6-cycloalkyl-C1-C4-alkyl. In a special embodiment R4 is CH(CH3)(cyclopropyl). In a further special embodiment R4 is CH2-(cyclopropyl).


According to a further preferred embodiment R4 is C3-C8-cycloalkyl-C1-C4-alkyl wherein the alkyl moiety can be substituted by one, two, three or up to the maximum possible number of identical or different groups Ra as defined and preferably herein and the cycloalkyl moiety can be substituted by one, two, three or up to the maximum possible number of identical or different groups Rb as defined and preferably herein.


According to a specific embodiment R4 is C3-C8-cycloalkyl-C1-C4-haloalkyl, C3-C6-cycloalkyl-C1-C4-haloalkyl. According to a specific embodiment R4 is C3-C8-halocycloalkyl-C1-C4-alkyl, C3-C6-halocycloalkyl-C1-Cealkyl. In a special embodiment R4 is fully or partially halogenated cyclopropyl-C1-C4-alkyl. In a further special embodiment R4 is 1-C1-cyclopropyl-C1-C4-alkyl. In a further special embodiment R4 is 1-F-cyclopropyl-C1-C4-alkyl.


According to one another embodiment R4 is NH2.


According to one another embodiment R4 is NH(C1-C4-alkyl). According to a specific embodiment R4 is NH(CH3). According to a specific embodiment R4 is NH(CH2CH3). According to a specific embodiment R4 is NH(CH2CH2CH3). According to a specific embodiment R4 is NH(CH(CH3)2). According to a specific embodiment R4 is NH(CH2CH2CH2CH3). According to a specific embodiment R4 is NH(C(CH3)3).


According to one another embodiment R4 is N(C1-C4-alkyl)2. According to a specific embodiment R4 is N(CH3)2. According to a specific embodiment R4 is N(CH2CH3)2. According to a specific embodiment R4 is N(CH2CH2CH3)2. According to a specific embodiment R4 is N(CH(CH3)2)2.


According to a specific embodiment R4 is N(CH2CH2CH2CH3)2. According to a specific embodiment R4 is NH(C(CH3)3)2.


According to one another embodiment R4 is NH(C3-C8-cycloalkyl) preferably NH(C3-C6-cycloalkyl). According to a specific embodiment R4 is NH(cyclopropyl). According to a specific embodiment R4 is NH(cyclobutyl). According to a specific embodiment R4 is NH(cyclopentyl). According to a specific embodiment R4 is NH(cyclohexyl).


According to one another embodiment R4 is N(C3-C8-cycloalkyl)2 preferably N(C3-C6-cycloalkyl)2. According to a specific embodiment R4 is N(cyclopropyl)2. According to a specific embodiment R4 is N(cyclobutyl)2. According to a specific embodiment R4 is N(cyclopentyl)2. According to a specific embodiment R4 is N(cyclohexyl)2.


According to still a further embodiment, R4 is selected from C(═O)(C1-C4-alkyl), C(═O)(OH), C(═O)(O—C1-C4-alkyl), C(═O)(NH(C1-C4-alkyl)), C(═O)(N(C1-C4-alkyl)2), C(═O)(NH(C3-C6-cycloalkyl)) and C(═O)(N(C3-C6-cycloalkyl)2), in particular selected from C(═O)(C1-C2-alkyl), C(═O)(OH), C(═O)(O—C1-C2-alkyl), C(═O)(NH(C1-C2-alkyl)), C(═O)(N(C1-C2-alkyl)2), C(═O)(NH(C3-C6-cycloalkyl)) and C(═O)(N(C3-C6-cycloalkyl)2). According to one specific embodinvent thereof, R4 is C(═O)(OH) or C(═O)(O—C1-C4-alkyl), in particular C(═O)(OCH3).


According to one another embodiment R4 is C(═O)(—C1-C4-alkyl). According to a specific embodiment R4 is C(═O)CH3. According to a further specific embodiment R4 is C(═O)CH2CH3. According to a further specific embodiment R4 is C(═O)CH2CH2CH3. According to a further specific embodiment R4 is C(═O)CH(CH3)2. According to a further specific embodiment R4 is C(═O)C(CH3)3. BITTE ERGÄNZEN


According to one another embodiment R4 is C(═O)OH.


According to one another embodiment R4 is C(═O)(—O—C1-C4-alkyl). According to a specific embodiment R4 is C(═O)OCH3. According to a further specific embodiment R4 is C(═O)OCH2CH3. According to a further specific embodiment R4 is C(═O)OCH2CH2CH3. According to a further specific embodiment R4 is C(═O)OCH(CH3)2. According to a further specific embodiment R4 is C(═O)OC(CH3)3.


According to one another embodiment R4 is C(═O)—NH(C1-C4-alkyl). According to a specific embodiment R4 is C(═O)NHCH3. According to a further specific embodiment R4 is C(═O)NHCH2CH3. According to a further specific embodiment R4 is C(═O)NHCH2CH2CH3. According to a further specific embodiment R4 is C(═O)NHCH(CH3)2. According to a further specific embodiment R4 is C(═O)NHC(CH3)3.


According to one another embodiment R4 is C(═O)—N(C1-C4-alkyl)2. According to a specific embodiment R4 is C(═O)N(CH3)2. According to a further specific embodiment R4 is C(═O)N(CH2CH3)2. According to a further specific embodiment R4 is C(═O)N(CH2CH2CH3)2. According to a further specific embodiment R4 is C(═O)N(CH(CH3)2)2. According to a further specific embodiment R4 is C(═O)N(C(CH3)3)2.


According to one another embodiment R4 is C(═O)—NH(C3-C6-cycloalkyl). According to a specific embodiment R4 is C(═O)NH(cyclopropyl). According to a further specific embodiment R4 is C(═O)NH(cyclobutyl). According to a further specific embodiment R4 is C(═O)NH(cyclopentyl). According to a further specific embodiment R4 is C(═O)NH(cyclohexyl).


According to one another embodiment R4 is C(═O)—N(C3-C6-cycloalkyl)2. According to a specific embodiment R4 is C(═O)N(cyclopropyl)2. According to a further specific embodiment R4 is C(═O)N(cyclobutyl)2. According to a further specific embodiment R4 is C(═O)N(cyclopentyl)2. According to a further specific embodiment R4 is C(═O)N(cyclohexyl)2.


According to still a further embodiment, R4 is selected from S(C1-C2-alkyl), S(O)(C1-C2-alkyl) and S(O)2(C1-C2-alkyl), in particular SCH3, S(O)(CH3) and S(O)2(CH3). According to a specific embodiment R4 is selected from S(C1-C2-haloalkyl), S(O)(C1-C2-haloalkyl) and S(O)2(C1-C2-haloalkyl), such as SO2CF3. Particularly preferred embodiments of R4 according to the invention are in Table P3 below, wherein each line of lines P3-1 to P3-16 corresponds to one particular embodiment of the invention, wherein P3-1 to P3-16 are also in any combination with one another a preferred embodiment of the present invention. Thereby, for every R4 that is present in the inventive compounds, these specific embodiments and preferences apply independently of the meaning of any other R4 that may be present in the phenyl ring:












TABLE P3







No.
R4









P3-1
Cl



P3-2
F



P3-3
CN



P3-4
NO2



P3-5
CH3



P3-6
CH2CH3



P3-7
CF3



P3-8
CHF2



P3-9
OCH3



P3-10
OCH2CH3



P3-11
OCF3



P3-12
OCHF2



P3-13
SCH3



P3-14
SOCH3



P3-15
SO2CH3



P3-16
CO2CH3










Particularly preferred embodiments of (R4)m according to the invention are in Table B below, wherein each line of lines B-1 to B-153 corresponds to one particular embodiment of the invention, wherein B-1 to B-153 are also in any combination a preferred embodiment of the present invention, taking into account the inventive provisos, where applicable. More particularly preferred embodiments of (R4)m according to the invention are in Table B1 below, wherein each line of lines B1-1 to B1-64 corresponds to one particular embodiment of the invention, wherein B1-1 to B1-64 are also in any combination a preferred embodiment of the present invention, taking into account the inventive provisos, where applicable.












TABLE B1







line
(R4)m









B1-1
—*



B1-2
2-Cl



B1-3
3-Cl



B1-4
2-F



B1-5
3-F



B1-6
2-CN



B1-7
3-CN



B1-8
4-CN



B1-9
2-NO2



B1-10
3-NO2



B1-11
4-NO2



B1-12
2-SCH3



B1-13
3-SCH3



B1-14
4-SCH3



B1-15
2-SOCH3



B1-16
3-SOCH3



B1-17
4-SOCH3



B1-18
2-SO2CH3



B1-19
3-SO2CH3



B1-20
4-SO2CH3



B1-21
2-CO2CH3



B1-22
3-CO2CH3



B1-23
4-CO2CH3



B1-24
2-CH3



B1-25
3-CH3



B1-26
4-CH3



B1-27
2-CF3



B1-28
3-CF3



B1-29
4-CF3



B1-30
2-CHF2



B1-31
3-CHF2



B1-32
4-CHF2



B1-33
2-OCH3



B1-34
3-OCH3



B1-35
4-OCH3



B1-36
2-OCF3



B1-37
3-OCF3



B1-38
4-OCF3



B1-39
2-OCHF2



B1-40
3-OCHF2



B1-41
4-OCHF2



B1-42
2,4,6-(CH3)3



B1-43
2,4,6-(Cl)3



B1-44
2,4,6-(F)3



B1-45
2,3-Cl2



B1-46
2,4-Cl2



B1-47
2,5-Cl2



B1-48
3,4-Cl2



B1-49
3,5-Cl2



B1-50
2,6-Cl2



B1-51
2,3-F2



B1-52
2,4-F2



B1-53
2,5-F2



B1-54
3,4-F2



B1-55
3,5-F2



B1-56
2,6-F2



B1-57
2-CF3-4-Cl



B1-58
2-CF3-4-F



B1-59
2-Cl-4-CF3



B1-60
2-F-4-CF3



B1-61
2-CN-4-Cl



B1-62
2-CN-4-F



B1-63
2-Cl-4-CN



B1-64
2-F-4-CN










According to the invention, the following provisos apply:


if m=1, R4 is not para-halogen;


if R31 is Cl and m=2, (R4)m is not 2,4-di-halogen, wherein each halogen is selected from Cl and F; and


if R31 is Cl and m=3, (R4)m is not 2,4,6-tri-halogen, wherein each halogen is selected from Cl and F,


wherein these provisos refer to any embodiment, where applicable.


In a particular embodiment, the provisos are as follows:


with the proviso that if m=1, R4 is not para-halogen;


with the proviso that if R31 is Cl and m=2, (R4)m is not 2,4-di-halogen; and


with the proviso that if R31 is Cl and m=3, (R4)m is not 2,4,6-tri-halogen;


According to a more particular embodiment, the provisos are as follows:


if m=1, R4 is not para-halogen;


if m=2, (R4)m is not 2,4-di-halogen; and


if m=3, (R4)m is not 2,4,6-tri-halogen; wherein these provisos refer to any embodiment, where applicable.


According to one embodiment, m is 1, 2, 3, 4 or 5 and one of the R4 is independently selected from CN, NO2, OH, SH, C1-C6-alkyl, C1-C6-alkoxy, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyloxy, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C3-C6-cycloalkyl), N(C3-C6-cycloalkyl)2, S(O)p(C1-C4-alkyl), C(═O)(C1-C4-alkyl), C(═O)(OH), C(═O)(O—C1-C4-alkyl), C(═O)(NH(C1-C4-alkyl)), C(═O)(N(C1-C4-alkyl)2), C(═O)(NH(C3-C6-cycloalkyl)) and C(═O)(N(C3-C6-cycloalkyl)2; wherein each of R4 is unsubstituted or further substituted by one, two, three or four R4a as defined and preferably defined herein, wherein said R4 may also be one of the preferred substituents as defined herein comprising these substituents. The other R4, if present, are independently selected from halogen, in particular Cl, Br or F, and the other substituents as defined and preferably defined for R4 herein.


According to one specific embodiment of the invention, m is 1 and R4 is in ortho- or meta-position.


According to one specific embodiment of the invention, m is 2, 3 or 4 and two of the R4 are in 2,3-, 3,4-, 3,5- or 2,6-position.


According to one specific embodiment, the present invention relates to the following compounds Ia:




embedded image


wherein R43 is selected from CN, NO2, OH, SH, C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-alkoxy, C1-C6-haloalkoxy, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C3-C8-cycloalkyl, C3-C8-halocycloalkyl and C3-C8-cycloalkyloxy, in particular selected from CN, C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-alkoxy and C1-C6-haloalkoxy.


According to a further specific embodiment, m is 2, 3 or 4 and two of the R4 are in 2,4-position, wherein one (called R4-1) of said two substituents is selected from CN, NO2, OH, SH, C1-C6-alkyl, C1-C6-alkoxy, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyloxy, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C3-C6-cycloalkyl), N(C3-C6-cycloalkyl)2, S(O)p(C1-C4-alkyl), C(═O)(C1-C4-alkyl), C(═O)(OH), C(═O)(O—C1-C4-alkyl), C(═O)(NH(C1-C4-alkyl)), C(═O)(N(C1-C4-alkyl)2), C(═O)(NH(C3-C6-cycloalkyl)) and C(═O)—(N(C3-C6-cycloalkyl)2; wherein each substituent is unsubstituted or further substituted by one, two, three or four R4a as defined and preferably defined herein; and wherein the other one (called R4-2) is halogen or selected from the substituents as defined for R4-1.


According to still a further specific embodiment, m is 2, 3 or 4 and the compounds have the following formula I.2a:




embedded image


wherein

  • R45′ is selected from CN, NO2, OH, SH, C1-C6-alkyl, C1-C6-alkoxy, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyloxy, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C3-C6-cycloalkyl), N(C3-C6-cycloalkyl)2, S(O)p(C1-C4-alkyl), C(═O)(C1-C4-alkyl), C(═O)(OH), C(═O)(O—C1-C4-alkyl), C(═O)(NH(C1-C4-alkyl)), C(═O)(N(C1-C4-alkyl)2), C(═O)(NH(C3-C6-cycloalkyl)) and C(═O)—(N(C3-C6-cycloalkyl)2; wherein each of R45′ is unsubstituted or further substituted by one, two, three or four R45′a; wherein
    • R45′a is independently selected from halogen, CN, NO2, OH, C1-C4-alkyl, C1-C4-haloalkyl, C3-C8-cycloalkyl, C3-C8-halocycloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;
  • R43′ is halogen or selected from the substituents as defined for R45′; wherein said R43′ are unsubstituted or further substituted by one, two, three or four R43′a, wherein each R43′a is independently selected from the substituents as defined for R45′a;
  • o is 0, 1 or 2;
  • R4 is as defined and preferably defined herein.


According to still a further specific embodiment, in the compounds of formula I.2a, o is 0, R45″ is halogen and R43″ is selected from CN, C1-C4-haloalkyl, C1-C4-alkoxy, C1-C4-haloalkoxy, S(C1-C4-alkyl), S(O)(C1-C4-alkyl) or S(O2)(C1-C4-alkyl).


According to still a further specific embodiment, m is 2, 3 or 4 and the compounds have the formula I.2b




embedded image


wherein

  • R43″ is selected from CN, NO2, OH, SH, C1-C6-alkyl, C1-C6-alkoxy, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyloxy, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C3-C6-cycloalkyl), N(C3-C6-cycloalkyl)2, S(O)p(C1-C4-alkyl), C(═O)(C1-C4-alkyl), C(═O)(OH), C(═O)(O—C1-C4-alkyl), C(═O)(NH(C1-C4-alkyl)), C(═O)(N(C1-C4-alkyl)2), C(═O)(NH(C3-C6-cycloalkyl)) and C(═O)—(N(C3-C6-cycloalkyl)2; wherein each of R43″ is unsubstituted or further substituted by one, two, three or four R43″a; wherein
    • R43″a is independently selected from halogen, CN, NO2, OH, C1-C4-alkyl, C3-C8-cycloalkyl, C3-C8-halocycloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;
  • R45″ is halogen or selected from the substituents as defined for R43″; wherein said R45″ are unsubstituted or further substituted by one, two, three or four R45″a, wherein each R45″a is independently selected from the substituents as defined for R43″a;
  • o is 0, 1 or 2;
  • R4 is as defined and preferably defined herein.


In particular with a view to their use, preference is given to the compounds of the formula I, in particular I.A, I.B and I.C, compiled in the Tables 1a to 70a, Tables 1 b to 70b and Tables 1c to 70c below, taking into account the inventive provisos, where applicable. Each of the groups mentioned for a substituent in the tables is furthermore per se, independently of the combination in which it is mentioned, a particularly preferred aspect of the substituent in question.


Table 1a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-1 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.M.B1 to I.A.M.B153).


Table 2a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-2 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A2.B1 to I.A.A2.B153).


Table 3a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-3 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A3.B1 to I.A.A3.B153).


Table 4a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-4 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A4.B1 to I.A.A4.B153).


Table 5a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-5 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A5.B1 to I.A.A5.B153).


Table 6a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-6 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A6.B1 to I.A.A6.B153).


Table 7a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-7 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A7.B1 to I.A.A7.B153).


Table 8a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-8 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A8.B1 to I.A.A8.B153).


Table 9a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-9 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A9.B1 to I.A.A9.B153).


Table 10a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-10 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A10.B1 to I.A.A10.B153).


Table 11a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-11 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A11.B1 to I.A.A11.B153).


Table 12a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-12 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A12.B1 to I.A.A12.B153).


Table 13a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-13 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A13.B1 to I.A.A13.B153).


Table 14a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-14 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A14.B1 to I.A.A14.B153).


Table 15a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-15 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A15.B1 to I.A.A15.B153).


Table 16a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-16 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A16.B1 to I.A.A16.B153).


Table 17a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-17 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A17.B1 to I.A.A17.B153).


Table 18a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-18 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A18.B1 to I.A.A18.B153).


Table 19a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-19 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A19.B1 to I.A.A19.B153).


Table 20a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-20 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A20.B1 to I.A.A20.B153).


Table 21a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-21 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A21.B1 to I.A.A21.B153).


Table 22a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-22 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A22.B1 to I.A.A22.B153).


Table 23a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-23 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A23.B1 to I.A.A23.B153).


Table 24a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-24 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A24.B1 to I.A.A24.B153).


Table 25a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-25 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A25.B1 to I.A.A25.B153).


Table 26a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-26 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A26.B1 to I.A.A26.B153).


Table 27a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-27 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A27.B1 to I.A.A27.B153).


Table 28a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-28 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A28.B1 to I.A.A28.B153).


Table 29a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-29 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A29.B1 to I.A.A29.B153).


Table 30a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-30 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A30.B1 to I.A.A30.B153).


Table 31a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-31 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A31.B1 to I.A.A31.B153).


Table 32a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-32 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A32.B1 to I.A.A32.B153).


Table 33a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-33 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A33.B1 to I.A.A33.B153).


Table 34a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-34 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A34.B1 to I.A.A34.B153).


Table 35a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-35 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A35.B1 to I.A.A35.B153).


Table 36a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-36 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A36.B1 to I.A.A36.B153).


Table 37a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-37 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A37.B1 to I.A.A37.B153).


Table 38a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-38 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A38.B1 to I.A.A38.B153).


Table 39a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-39 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A39.B1 to I.A.A39.B153).


Table 40a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-40 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A40.B1 to I.A.A40.B153).


Table 41a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-41 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A41.B1 to I.A.A41.B153).


Table 42a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-42 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A42.B1 to I.A.A42.B153).


Table 43a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-43 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A43.B1 to I.A.A43.B153).


Table 44a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-44 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A44.B1 to I.A.A44.B153).


Table 45a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-45 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A45.B1 to I.A.A45.B153).


Table 46a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-46 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A46.B1 to I.A.A46.B153).


Table 47a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-47 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A47.B1 to I.A.A47.B153).


Table 48a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-48 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A48.B1 to I.A.A48.B153).


Table 49a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-49 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A49.B1 to I.A.A49.B153).


Table 50a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-50 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A50.B1 to I.A.A50.B153).


Table 51a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-51 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A51.B1 to I.A.A51.B153).


Table 52a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-52 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A52.B1 to I.A.A52.B153).


Table 53a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-53 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A53.B1 to I.A.A53.B153).


Table 54a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-54 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A54.B1 to I.A.A54.B153).


Table 55a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-55 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A55.B1 to I.A.A55.B153).


Table 56a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-56 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A56.B1 to I.A.A56.B153).


Table 57a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-57 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A57.B1 to I.A.A57.B153).


Table 58a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-58 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A58.B1 to I.A.A58.B153).


Table 59a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-59 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A59.B1 to I.A.A59.B153).


Table 60a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-60 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A60.B1 to I.A.A60.B153).


Table 61a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-61 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A61.B1 to I.A.A61.B153).


Table 62a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-62 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A62.B1 to I.A.A62.B153).


Table 63a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-63 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A63.B1 to I.A.A63.B153).


Table 64a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-64 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A64.B1 to I.A.A64.B153).


Table 65a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-65 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A65.B1 to I.A.A65.B153).


Table 66a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-66 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A66.B1 to I.A.A66.B153).


Table 67a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-67 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A67.B1 to I.A.A67.B153).


Table 68a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-68 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A68.B1 to I.A.A68.B153).


Table 69a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-69 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A69.B1 to I.A.A69.B153).


Table 70a Compounds of the formula I.A in which the combination of R1 and R2 corresponds to line A-70 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.A.A70.B1 to I.A.A70.B153).


Table 1b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-1 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A1.B1 to I.B.A1.B153).


Table 2b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-2 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A2.B1 to I.B.A2.B153).


Table 3b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-3 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A3.B1 to I.B.A3.B153).


Table 4b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-4 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A4.B1 to I.B.A4.B153).


Table 5b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-5 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A5.B1 to I.B.A5.B153).


Table 6b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-6 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A6.B1 to I.B.A6.B153).


Table 7b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-7 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A7.B1 to I.B.A7.B153).


Table 8b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-8 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A8.B1 to I.B.A8.B153).


Table 9b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-9 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A9.B1 to I.B.A9.B153).


Table 10b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-10 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A10.B1 to I.B.A10.B153).


Table 11b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-11 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A11.B1 to I.B.A11.B153).


Table 12b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-12 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A12.B1 to I.B.A12.B153).


Table 13b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-13 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A13.B1 to I.B.A13.B153).


Table 14b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-14 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A14.B1 to I.B.A14.B153).


Table 15b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-15 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A15.B1 to I.B.A15.B153).


Table 16b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-16 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A16.B1 to I.B.A16.B153).


Table 17b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-17 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A17.B1 to I.B.A17.B153).


Table 18b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-18 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A18.B1 to I.B.A18.B153).


Table 19b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-19 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A19.B1 to I.B.A19.B153).


Table 20b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-20 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A20.B1 to I.B.A20.B153).


Table 21 b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-21 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A21.B1 to I.B.A21.B153).


Table 22b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-22 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A22.B1 to I.B.A22.B153).


Table 23b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-23 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A23.B1 to I.B.A23.B153).


Table 24b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-24 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A24.B1 to I.B.A24.B153).


Table 25b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-25 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A25.B1 to I.B.A25.B153).


Table 26b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-26 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A26.B1 to I.B.A26.B153).


Table 27b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-27 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A27.B1 to I.B.A27.B153).


Table 28b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-28 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A28.B1 to I.B.A28.B153).


Table 29b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-29 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A29.B1 to I.B.A29.B153).


Table 30b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-30 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A30.B1 to I.B.A30.B153).


Table 31 b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-31 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A31.B1 to I.B.A31.B153).


Table 32b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-32 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A32.B1 to I.B.A32.B153).


Table 33b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-33 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A33.B1 to I.B.A33.B153).


Table 34b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-34 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A34.B1 to I.B.A34.B153).


Table 35b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-35 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A35.B1 to I.B.A35.B153).


Table 36b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-36 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A36.B1 to I.B.A36.B153).


Table 37b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-37 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A37.B1 to I.B.A37.B153).


Table 38b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-38 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A38.B1 to I.B.A38.B153).


Table 39b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-39 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A39.B1 to I.B.A39.B153).


Table 40b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-40 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A40.B1 to I.B.A40.B153).


Table 41 b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-41 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A41.B1 to I.B.A41.B153).


Table 42b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-42 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A42.B1 to I.B.A42.B153).


Table 43b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-43 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A43.B1 to I.B.A43.B153).


Table 44b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-44 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A44.B1 to I.B.A44.B153).


Table 45b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-45 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A45.B1 to I.B.A45.B153).


Table 46b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-46 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A46.B1 to I.B.A46.B153).


Table 47b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-47 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A47.B1 to I.B.A47.B153).


Table 48b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-48 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A48.B1 to I.B.A48.B153).


Table 49b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-49 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A49.B1 to I.B.A49.B153).


Table 50b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-50 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A50.B1 to I.B.A50.B153).


Table 51b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-51 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A51.B1 to I.B.A51.B153).


Table 52b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-52 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A52.B1 to I.B.A52.B153).


Table 53b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-53 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A53.B1 to I.B.A53.B153).


Table 54b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-54 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A54.B1 to I.B.A54.B153).


Table 55b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-55 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A55.B1 to I.B.A55.B153).


Table 56b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-56 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A56.B1 to I.B.A56.B153).


Table 57b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-57 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A57.B1 to I.B.A57.B153).


Table 58b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-58 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A58.B1 to I.B.A58.B153).


Table 59b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-59 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A59.B1 to I.B.A59.B153).


Table 60b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-60 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A60.B1 to I.B.A60.B153).


Table 61 b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-61 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A61.B1 to I.B.A61.B153).


Table 62b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-62 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A62.B1 to I.B.A62.B153).


Table 63b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-63 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A63.B1 to I.B.A63.B153).


Table 64b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-64 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A64.B1 to I.B.A64.B153).


Table 65b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-65 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A65.B1 to I.B.A65.B153).


Table 66b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-66 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A66.B1 to I.B.A66.B153).


Table 67b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-67 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A67.B1 to I.B.A67.B153).


Table 68b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-68 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A68.B1 to I.B.A68.B153).


Table 69b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-69 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A69.B1 to I.B.A69.B153).


Table 70b Compounds of the formula I.B in which the combination of R1 and R2 corresponds to line A-70 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.B.A70.B1 to I.B.A70.B153).


Table 1c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-1 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A1.B1 to I.C.A1.B153).


Table 2c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-2 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A2.B1 to I.C.A2.B153).


Table 3c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-3 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A3.B1 to I.C.A3.B153).


Table 4c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-4 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A4.B1 to I.C.A4.B153).


Table 5c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-5 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A5.B1 to I.C.A5.B153).


Table 6c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-6 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A6.B1 to I.C.A6.B153).


Table 7c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-7 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A7.B1 to I.C.A7.B153).


Table 8c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-8 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A8.B1 to I.C.A8.B153).


Table 9c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-9 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A9.B1 to I.C.A9.B153).


Table 10c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-10 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A10.B1 to I.C.A10.B153).


Table 11c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-11 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A11.B1 to I.C.A11.B153).


Table 12c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-12 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A12.B1 to I.C.A12.B153).


Table 13c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-13 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A13.B1 to I.C.A13.B153).


Table 14c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-14 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A14.B1 to I.C.A14.B153).


Table 15c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-15 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A15.B1 to I.C.A15.B153).


Table 16c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-16 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A16.B1 to I.C.A16.B153).


Table 17c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-17 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A17.B1 to I.C.A17.B153).


Table 18c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-18 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A18.B1 to I.C.A18.B153).


Table 19c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-19 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A19.B1 to I.C.A19.B153).


Table 20c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-20 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A20.B1 to I.C.A20.B153).


Table 21c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-21 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A21.B1 to I.C.A21.B153).


Table 22c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-22 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A22.B1 to I.C.A22.B153).


Table 23c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-23 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A23.B1 to I.C.A23.B153).


Table 24c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-24 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A24.B1 to I.C.A24.B153).


Table 25c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-25 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A25.B1 to I.C.A25.B153).


Table 26c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-26 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A26.B1 to I.C.A26.B153).


Table 27c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-27 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A27.B1 to I.C.A27.B153).


Table 28c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-28 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A28.B1 to I.C.A28.B153).


Table 29c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-29 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A29.B1 to I.C.A29.B153).


Table 30c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-30 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A30.B1 to I.C.A30.B153).


Table 31c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-31 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A31.B1 to I.C.A31.B153).


Table 32c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-32 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A32.B1 to I.C.A32.B153).


Table 33c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-33 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A33.B1 to I.C.A33.B153).


Table 34c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-34 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A34.B1 to I.C.A34.B153).


Table 35c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-35 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A35.B1 to I.C.A35.B153).


Table 36c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-36 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A36.B1 to I.C.A36.B153).


Table 37c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-37 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A37.B1 to I.C.A37.B153).


Table 38c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-38 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A38.B1 to I.C.A38.B153).


Table 39c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-39 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A39.B1 to I.C.A39.B153).


Table 40c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-40 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A40.B1 to I.C.A40.B153).


Table 41c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-41 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A41.B1 to I.C.A41.B153).


Table 42c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-42 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A42.B1 to I.C.A42.B153).


Table 43c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-43 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A43.B1 to I.C.A43.B153).


Table 44c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-44 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A44.B1 to I.C.A44.B153).


Table 45c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-45 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A45.B1 to I.C.A45.B153).


Table 46c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-46 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A46.B1 to I.C.A46.B153).


Table 47c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-47 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A47.B1 to I.C.A47.B153).


Table 48c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-48 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A48.B1 to I.C.A48.B153).


Table 49c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-49 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A49.B1 to I.C.A49.B153).


Table 50c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-50 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A50.B1 to I.C.A50.B153).


Table 51c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-51 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A51.B1 to I.C.A51.B153).


Table 52c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-52 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A52.B1 to I.C.A52.B153).


Table 53c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-53 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A53.B1 to I.C.A53.B153).


Table 54c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-54 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A54.B1 to I.C.A54.B153).


Table 55c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-55 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A55.B1 to I.C.A55.B153).


Table 56c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-56 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A56.B1 to I.C.A56.B153).


Table 57c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-57 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A57.B1 to I.C.A57.B153).


Table 58c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-58 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A58.B1 to I.C.A58.B153).


Table 59c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-59 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A59.B1 to I.C.A59.B153).


Table 60c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-60 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A60.B1 to I.C.A60.B153).


Table 61c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-61 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A61.B1 to I.C.A61.B153).


Table 62c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-62 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A62.B1 to I.C.A62.B153).


Table 63c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-63 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A63.B1 to I.C.A63.B153).


Table 64c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-64 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A64.B1 to I.C.A64.B153).


Table 65c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-65 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A65.B1 to I.C.A65.B153).


Table 66c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-66 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A66.B1 to I.C.A66.B153).


Table 67c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-67 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A67.B1 to I.C.A67.B153).


Table 68c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-68 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A68.B1 to I.C.A68.B153).


Table 69c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-69 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A69.B1 to I.C.A69.B153).


Table 70c Compounds of the formula I.C in which the combination of R1 and R2 corresponds to line A-70 of Table A and the meaning for (R4)m for each individual compound corresponds in each case to one line of Table B (compounds I.C.A70.B1 to I.C.A70.B153).













TABLE A







line
R1
R2









A-1
H
H



A-2
CH3
H



A-3
CH2CH3
H



A-4
CH(CH3)2
H



A-5
C3H5
H




(cyclopropyl)



A-6
C4H7 (cyclobutyl)
H



A-7
C≡CCH3
H



A-8
C(CH3)3
H



A-9
CF3
H



A-10
CHF2
H



A-11
CH═CHCH3
H



A-12
C(CH3)═CH2
H



A-13
1-(Cl)-cyclopropyl
H



A-14
1-(F)-cyclopropyl
H



A-15
H
CH3



A-16
CH3
CH3



A-17
CH2CH3
CH3



A-18
CH(CH3)2
CH3



A-19
C3H5
CH3




(cyclopropyl)



A-20
C4H7 (cyclobutyl)
CH3



A-21
C≡CCH3
CH3



A-22
C(CH3)3
CH3



A-23
CF3
CH3



A-24
CHF2
CH3



A-25
CH═CHCH3
CH3



A-26
C(CH3)═CH2
CH3



A-27
1-(Cl)-cyclopropyl
CH3



A-28
1-(F)-cyclopropyl
CH3



A-29
H
CH2CH3



A-30
CH3
CH2CH3



A-31
CH2CH3
CH2CH3



A-32
CH(CH3)2
CH2CH3



A-33
C3H5
CH2CH3




(cyclopropyl)



A-34
C4H7 (cyclobutyl)
CH2CH3



A-35
C≡CCH3
CH2CH3



A-36
C(CH3)3
CH2CH3



A-37
CF3
CH2CH3



A-38
CHF2
CH2CH3



A-39
CH═CHCH3
CH2CH3



A-40
C(CH3)═CH2
CH2CH3



A-41
1-(Cl)-cyclopropyl
CH2CH3



A-42
1-(F)-cyclopropyl
CH2CH3



A-43
H
CH2—CH═CH2



A-44
CH3
CH2—CH═CH2



A-45
CH2CH3
CH2—CH═CH2



A-46
CH(CH3)2
CH2—CH═CH2



A-47
C3H5
CH2—CH═CH2




(cyclopropyl)



A-48
C4H7 (cyclobutyl)
CH2—CH═CH2



A-49
C≡CCH3
CH2—CH═CH2



A-50
C(CH3)3
CH2—CH═CH2



A-51
CF3
CH2—CH═CH2



A-52
CHF2
CH2—CH═CH2



A-53
CH═CHCH3
CH2—CH═CH2



A-54
C(CH3)═CH2
CH2—CH═CH2



A-55
1-(Cl)-cyclopropyl
CH2—CH═CH2



A-56
1-(F)-cyclopropyl
CH2—CH═CH2



A-57
H
CH2—C≡C—H



A-58
CH3
CH2—C≡C—H



A-59
CH2CH3
CH2—C≡C—H



A-60
CH(CH3)2
CH2—C≡C—H



A-61
C3H5
CH2—C≡C—H




(cyclopropyl)



A-62
C4H7 (cyclobutyl)
CH2—C≡C—H



A-63
C≡CCH3
CH2—C≡C—H



A-64
C(CH3)3
CH2—C≡C—H



A-65
CF3
CH2—C≡C—H



A-66
CHF2
CH2—C≡C—H



A-67
CH═CHCH3
CH2—C≡C—H



A-68
C(CH3)═CH2
CH2—C≡C—H



A-69
1-(Cl)-cyclopropyl
CH2—C≡C—H



A-70
1-(F)-cyclopropyl
CH2—C≡C—H




















TABLE B







No.
(R4m)









B-1
—*



B-2
2-Cl



B-3
3-Cl



B-4
2-F



B-5
3-F



B-6
2-CN



B-7
3-CN



B-8
4-CN



B-9
2-NO2



B-10
3-NO2



B-11
4-NO2



B-12
2-SCH3



B-13
3-SCH3



B-14
4-SCH3



B-15
2-SOCH3



B-16
3-SOCH3



B-17
4-SOCH3



B-18
2-SO2CH3



B-19
3-SO2CH3



B-20
4-SO2CH3



B-21
2-CO2CH3



B-22
3-CO2CH3



B-23
4-CO2CH3



B-24
2,3-Cl2



B-25
2,4-Cl2



B-26
2,5-Cl2



B-27
3,4-Cl2



B-28
3,5-Cl2



B-29
2,6-Cl2



B-30
2,3-F2



B-31
2,4-F2



B-32
2,5-F2



B-33
3,4-F2



B-34
3,5-F2



B-35
2,6-F2



B-36
2-F-3-Cl



B-37
2-F-4-Cl



B-38
3-F-4-Cl



B-39
2-F-6-Cl



B-40
2-Cl-3-F



B-41
2-Cl-4-F



B-42
3-Cl-4-F



B-43
2,3,4-Cl3



B-44
2,4,5-Cl3



B-45
3,4,5-Cl3



B-46
2,4,6-Cl3



B-47
2,3,4-F3



B-48
2,4,5-F3



B-49
3,4,5-F3



B-50
2,4,6-F3



B-51
2,3,4-F3



B-52
2,4-F2-3-Cl



B-53
2,6-F2-4-Cl



B-54
2,5-F2-4-Cl



B-55
2,4-Cl2-3-F



B-56
2,6-Cl2-4-F



B-57
2,5-Cl2-4-F



B-58
2-CH3



B-59
3-CH3



B-60
4-CH3



B-61
2-CH2CH3



B-62
3-CH2CH3



B-63
4-CH2CH3



B-64
2-CF3



B-65
3-CF3



B-66
4-CF3



B-67
2-CHF2



B-68
3-CHF2



B-69
4-CHF2



B-70
2-OCH3



B-71
3-OCH3



B-72
4-OCH3



B-73
2-OCH2CH3



B-74
3-OCH2CH3



B-75
4-OCH2CH3



B-76
2-OCF3



B-77
3-OCF3



B-78
4-OCF3



B-79
2-OCHF2



B-80
3-OCHF2



B-81
4-OCHF2



B-82
2,3-(CH3)2



B-83
2,4-(CH3)2



B-84
3,4-(CH3)2



B-85
2,6-(CH3)2



B-86
2,3-(CH2CH3)2



B-87
2,4-(CH2CH3)2



B-88
3,4-(CH2CH3)2



B-89
2,6-(CH2CH3)2



B-90
2,3-(CF3)2



B-91
2,4-(CF3)2



B-92
3,4-(CF3)2



B-93
2,6-(CF3)2



B-94
2,3-(CHF2)2



B-95
2,4-(CHF2)2



B-96
3,4-(CHF2)2



B-97
2,6-(CHF2)2



B-98
2,3-(OCH3)2



B-99
2,4-(OCH3)2



B-100
3,4-(OCH3)2



B-101
2,6-(OCH3)2



B-102
2,3-(OCH2CH3)2



B-103
2,4-(OCH2CH3)2



B-104
3,4-(OCH2CH3)2



B-105
2,6-(OCH2CH3)2



B-106
2,3-(OCF3)2



B-107
2,4-(OCF3)2



B-108
3,4-(OCF3)2



B-109
2,6-(OCF3)2



B-110
2,3-(OCHF2)2



B-111
2,4-(OCHF2)2



B-112
3,4-(OCHF2)2



B-113
2,6-(OCHF2)2



B-114
2,3,4-(CH3)3



B-115
2,4,5-(CH3)3



B-116
3,4,5-(CH3)3



B-117
2,4,6-(CH3)3



B-118
2,3,4-(CH2CH3)3



B-119
2,4,5-(CH2CH3)3



B-120
3,4,5-(CH2CH3)3



B-121
2,4,6-(CH2CH3)3



B-122
2,3,4-(CF3)3



B-123
2,4,5-(CF3)3



B-124
3,4,5-(CF3)3



B-125
2,4,6-(CF3)3



B-126
2,3,4-(CHF2)3



B-127
2,4,5-(CHF2)3



B-128
3,4,5-(CHF2)3



B-129
2,4,6-(CHF2)3



B-130
2,3,4-(OCH3)3



B-131
2,4,5-(OCH3)3



B-132
3,4,5-(OCH3)3



B-133
2,4,6-(OCH3)3



B-134
2,3,4-(OCH2CH3)3



B-135
2,4,5-(OCH2CH3)3



B-136
3,4,5-(OCH2CH3)3



B-137
2,4,6-(OCH2CH3)3



B-138
2,3,4-(OCF3)3



B-139
2,4,5-(OCF3)3



B-140
3,4,5-(OCF3)3



B-141
2,4,6-(OCF3)3



B-142
2,3,4-(OCHF2)3



B-143
2,4,5-(OCHF2)3



B-144
3,4,5-(OCHF2)3



B-145
2,4,6-(OCHF2)3



B-146
2-CF3-4-Cl



B-147
2-CF3-4-F



B-148
2-Cl-4-CF3



B-149
2-F-4-CF3



B-150
2-CN-4-Cl



B-151
2-CN-4-F



B-152
2-Cl-4-CN



B-153
2-F-4-CN










The compounds I and the compositions according to the invention, respectively, are suitable as fungicides.


Consequently, according to a further aspect, the present invention relates to the use of compounds of formula I, the N-oxides and the agriculturally acceptable salts thereof or of the compositions of the invention for combating phytopathogenic fungi.


Accordingly, the present invention also encompasses a method for combating harmful fungi, comprising treating the fungi or the materials, plants, the soil or seeds to be protected against fungal attack with an effective amount of at least one compound of formula I or with a composition comprising according to the invention.


They are distinguished by an outstanding effectiveness against a broad spectrum of phytopathogenic fungi, including soil-borne fungi, which derive especially from the classes of the Plasmodiophoromycetes, Peronosporomycetes (syn. Oomycetes), Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes (syn. Fungi imperfecti). Some are systemically effective and they can be used in crop protection as foliar fungicides, fungicides for seed dressing and soil fungicides. Moreover, they are suitable for controlling harmful fungi, which inter alia occur in wood or roots of plants.


The compounds I and the compositions according to the invention are particularly important in the control of a multitude of phytopathogenic fungi on various cultivated plants, such as cereals, e.g. wheat, rye, barley, triticale, oats or rice; beet, e.g. sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, e.g. apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries, blackberries or gooseberries; leguminous plants, such as lentils, peas, alfalfa or soybeans; oil plants, such as rape, mustard, olives, sunflowers, coconut, cocoa beans, castor oil plants, oil palms, ground nuts or soybeans; cucurbits, such as squashes, cucumber or melons; fiber plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruits or mandarins; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, cucurbits or paprika; lauraceous plants, such as avocados, cinnamon or camphor; energy and raw material plants, such as corn, soybean, rape, sugar cane or oil palm; corn; tobacco; nuts; coffee; tea; bananas; vines (table grapes and grape juice grape vines); hop; turf; sweet leaf (also called Stevia); natural rubber plants or ornamental and forestry plants, such as flowers, shrubs, broad-leaved trees or evergreens, e.g. conifers; and on the plant propagation material, such as seeds, and the crop material of these plants.


Preferably, compounds I and compositions thereof, respectively are used for controlling a multitude of fungi on field crops, such as potatoes sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.


The term “plant propagation material” is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e.g. potatoes), which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants, including seedlings and young plants, which are to be transplanted after germination or after emergence from soil. These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring.


Preferably, treatment of plant propagation materials with compounds I and compositions thereof, respectively, is used for controlling a multitude of fungi on cereals, such as wheat, rye, barley and oats; rice, corn, cotton and soybeans.


The term “cultivated plants” is to be understood as including plants which have been modified by breeding, mutagenesis or genetic engineering including but not limiting to agricultural biotech products on the market or in development (cf. http://cera-gmc.org/, see GM crop database therein). Genetically modified plants are plants, which genetic material has been so modified by the use of recombinant DNA techniques that under natural circumstances cannot readily be obtained by cross breeding, mutations or natural recombination. Typically, one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant. Such genetic modifications also include but are not limited to targeted post-translational modification of protein(s), oligo- or polypeptides e.g. by glycosylation or polymer additions such as prenylated, acetylated or farnesylated moieties or PEG moieties.


Plants that have been modified by breeding, mutagenesis or genetic engineering, e.g. have been rendered tolerant to applications of specific classes of herbicides, such as auxin herbicides such as dicamba or 2,4-D; bleacher herbicides such as hydroxylphenylpyruvate dioxygenase (HPPD) inhibitors or phytoene desaturase (PDS) inhibittors; acetolactate synthase (ALS) inhibitors such as sulfonyl ureas or imidazolinones; enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitors, such as glyphosate; glutamine synthetase (GS) inhibitors such as glufosinate; protoporphyrinogen-IX oxidase inhibitors; lipid biosynthesis inhibitors such as acetyl CoA carboxylase (ACCase) inhibitors; or oxynil (i.e. bromoxynil or ioxynil) herbicides as a result of conventional methods of breeding or genetic engineering. Furthermore, plants have been made resistant to multiple classes of herbicides through multiple genetic modifications, such as resistance to both glyphosate and glufosinate or to both glyphosate and a herbicide from another class such as ALS inhibitors, HPPD inhibitors, auxin herbicides, or ACCase inhibitors. These herbicide resistance technologies are e.g. described in Pest Managem. Sci. 61, 2005, 246; 61, 2005, 258; 61, 2005, 277; 61, 2005, 269; 61, 2005, 286; 64, 2008, 326; 64, 2008, 332; Weed Sci. 57, 2009, 108; Austral. J. Agricult. Res. 58, 2007, 708; Science 316, 2007, 1185; and references quoted therein. Several cultivated plants have been rendered tolerant to herbicides by conventional methods of breeding (mutagenesis), e.g. Clearfield® summer rape (Canola, BASF SE, Germany) being tolerant to imidazolinones, e.g. imazamox, or ExpressSun® sunflowers (DuPont, USA) being tolerant to sulfonyl ureas, e.g. tribenuron. Genetic engineering methods have been used to render cultivated plants such as soybean, cotton, corn, beets and rape, tolerant to herbicides such as glyphosate and glufosinate, some of which are commercially available under the trade names RoundupReady® (glyphosate-tolerant, Monsanto, U.S.A.), Cultivance® (imidazolinone tolerant, BASF SE, Germany) and LibertyLink® (glufosinate-tolerant, Bayer CropScience, Germany).


Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more insecticidal proteins, especially those known from the bacterial genus Bacillus, particularly from Bacillus thuringiensis, such as 5-endotoxins, e.g. CryIA(b), CryIA(c), CryIF, CryIF(a2), CryIIA(b), CryIIIA, CryIIIB(b1) or Cry9c; vegetative insecticidal proteins (VIP), e.g. VIP1, VIP2, VIP3 or VIP3A; insecticidal proteins of bacteria colonizing nematodes, e.g. Photorhabdus spp. or Xenorhabdus spp.; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins, or other insect-specific neurotoxins; toxins produced by fungi, such Streptomycetes toxins, plant lectins, such as pea or barley lectins; agglutinins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin or papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxysteroid oxidase, ecdysteroid-IDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors or HMG-CoA-reductase; ion channel blockers, such as blockers of sodium or calcium channels; juvenile hormone esterase; diuretic hormone receptors (helicokinin receptors); stilben synthase, bibenzyl synthase, chitinases or glucanases. In the context of the present invention these insecticidal proteins or toxins are to be understood expressly also as pre-toxins, hybrid proteins, truncated or otherwise modified proteins. Hybrid proteins are characterized by a new combination of protein domains, (see, e.g. WO 02/015701). Further examples of such toxins or genetically modified plants capable of synthesizing such toxins are disclosed, e.g., in EP-A 374 753, WO 93/007278, WO 95/34656, EP-A 427 529, EP-A 451 878, WO 03/18810 and WO 03/52073. The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e.g. in the publications mentioned above. These insecticidal proteins contained in the genetically modified plants impart to the plants producing these proteins tolerance to harmful pests from all taxonomic groups of athropods, especially to beetles (Coeloptera), two-winged insects (Diptera), and moths (Lepidoptera) and to nematodes (Nematoda). Genetically modified plants capable to synthesize one or more insecticidal proteins are, e.g., described in the publications mentioned above, and some of which are commercially available such as YieldGard® (corn cultivars producing the CryIAb toxin), YieldGard® Plus (corn cultivars producing CryIAb and Cry3Bb1 toxins), Starlink® (corn cultivars producing the Cry9c toxin), Herculex® RW (corn cultivars producing Cry34Ab1, Cry35Ab1 and the enzyme Phosphinothricin-N-Acetyltransferase [PAT]); NuCOTN® 33B (cotton cultivars producing the CryIAc toxin), Bollgard® I (cotton cultivars producing the CryIAc toxin), Bollgard® II (cotton cultivars producing CryIAc and Cry2Ab2 toxins); VIPCOT® (cotton cultivars producing a VIP-toxin); NewLeaf® (potato cultivars producing the Cry3A toxin); Bt-Xtra®, NatureGard®, KnockOut®, BiteGard®, Protecta®, Bt11 (e.g. Agrisure® CB) and Bt176 from Syngenta Seeds SAS, France, (corn cultivars producing the CryIAb toxin and PAT enyzme), MIR604 from Syngenta Seeds SAS, France (corn cultivars producing a modified version of the Cry3A toxin, c.f. WO 03/018810), MON 863 from Monsanto Europe S.A., Belgium (corn cultivars producing the Cry3Bb1 toxin), IPC 531 from Monsanto Europe S.A., Belgium (cotton cultivars producing a modified version of the CryIAc toxin) and 1507 from Pioneer Overseas Corporation, Belgium (corn cultivars producing the CryIF toxin and PAT enzyme).


Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the resistance or tolerance of those plants to bacterial, viral or fungal pathogens. Examples of such proteins are the so-called “pathogenesisrelated proteins” (PR proteins, see, e.g. EP-A 392 225), plant disease resistance genes (e.g. potato cultivars, which express resistance genes acting against Phytophthora infestans derived from the mexican wild potato Solanum bulbocastanum) or T4-lysozym (e.g. potato cultivars capable of synthesizing these proteins with increased resistance against bacteria such as Erwinia amylvora). The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e.g. in the publications mentioned above.


Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the productivity (e.g. bio mass production, grain yield, starch content, oil content or protein content), tolerance to drought, salinity or other growth-limiting environmental factors or tolerance to pests and fungal, bacterial or viral pathogens of those plants.


Furthermore, plants are also covered that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve human or animal nutrition, e.g. oil crops that produce health-promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e.g. Nexera® rape, DOW Agro Sciences, Canada).


Furthermore, plants are also covered that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve raw material production, e.g. potatoes that produce increased amounts of amylopectin (e.g. Amflora® potato, BASF SE, Germany).


The compounds I and compositions thereof, respectively, are particularly suitable for controlling the following plant diseases:



Albugo spp. (white rust) on ornamentals, vegetables (e.g. A. candida) and sunflowers (e.g. A. tragopogonis); Alternaria spp. (Alternaria leaf spot) on vegetables, rape (A. brassicola or brassicae), sugar beets (A. tenuis), fruits, rice, soybeans, potatoes (e.g. A. solani or A. alternata), tomatoes (e.g. A. solani or A. alternata) and wheat; Aphanomyces spp. on sugar beets and vegetables; Ascochyta spp. on cereals and vegetables, e.g. A. tritici (anthracnose) on wheat and A. hordei on barley; Bipolaris and Drechslera spp. (teleomorph: Cochliobolus spp.), e.g. Southern leaf blight (D. maydis) or Northern leaf blight (B. zeicola) on corn, e.g. spot blotch (B. sorodniana) on cereals and e.g. B. oryzae on rice and turfs; Blumeria (formerly Erysiphe) graminis (powdery mildew) on cereals (e.g. on wheat or barley); Botrytis cinerea (teleomorph: Bottyotinia fuckeliana: grey mold) on fruits and berries (e.g. strawberries), vegetables (e.g. lettuce, carrots, celery and cabbages), rape, flowers, vines, forestry plants and wheat; Bremia lactucae (downy mildew) on lettuce; Ceratocystis (syn. Ophiostoma) spp. (rot or wilt) on broad-leaved trees and evergreens, e.g. C. ulmi (Dutch elm disease) on elms; Cercospora spp. (Cercospora leaf spots) on corn (e.g. Gray leaf spot: C. zeae-maydis), rice, sugar beets (e.g. C. beticola), sugar cane, vegetables, coffee, soybeans (e.g. C. solina or C. kikuchii) and rice; Cladosporium spp. on tomatoes (e.g. C. fulvum: leaf mold) and cereals, e.g. C. herbarum (black ear) on wheat; ClaviCeps purpurea (ergot) on cereals; Cochliobolus (anamorph: Helminthosporium of Bipolaris) spp. (leaf spots) on corn (C. carbonum), cereals (e.g. C. sativus, anamorph: B. sorokiniana) and rice (e.g. C. miyabeanus, anamorph: H. oryzae); Colletotrichum (teleomorph: Glomerella) spp. (anthracnose) on cotton (e.g. C. gossypii), corn (e.g. C. graminicola: Anthracnose stalk rot), soft fruits, potatoes (e.g. C. coccodes: black dot), beans (e.g. C. lindemuthianum) and soybeans (e.g. C. truncatum or C. gloeosporiodes); Corticium spp., e.g. C. sasakii (sheath blight) on rice; Corynespora cassiicola (leaf spots) on soybeans and ornamentals; Cycloconium spp., e.g. C. oleaginum on olive trees; Cylindrocarpon spp. (e.g. fruit tree canker or young vine decline, teleomorph: Nectria or Neonectna spp.) on fruit trees, vines (e.g. C. liriodendri, teleomorph: Neonectria liriodendri: Black Foot Disease) and ornamentals; Dematophora (teleomorph: Rosellinia) necatrix (root and stem rot) on soybeans; Diaporthe spp., e.g. D. phaseolorum (damping off) on soybeans; Drechslera (syn. Helminthosporium, teleomorph: Pyrenophora) spp. on corn, cereals, such as barley (e.g. D. teres, net blotch) and wheat (e.g. D. tritici-repentis: tan spot), rice and turf; Esca (dieback, apoplexy) on vines, caused by Formitiporia (syn. Phellinus) punctata, F. mediterranea, Phaeomoniella chlamydospora (earlier Phaeoacremonium chlamydosporum), Phaeoacremonium aleophlium and/or Botryosphaeria obtusa; Elsinoe spp. on pome fruits (E. pyri), soft fruits (E. veneta: anthracnose) and vines (E. ampelina: anthracnose); Entyloma oryzae (leaf smut) on rice; Epicoccum spp. (black mold) on wheat; Erysiphe spp. (powdery mildew) on sugar beets (E. betae), vegetables (e.g. E. pisi), such as cucurbits (e.g. E. cichoracearum), cabbages, rape (e.g. E. cruciferarum); Eutypa lata (Eutypa canker or dieback, anamorph: Cytosporina lata, syn. Libertella blepharis) on fruit trees, vines and ornamental woods; Exserohllum (syn. Helminthosporium) spp. on corn (e.g. E. turcicum); Fusarium (teleomorph: Gibberella) spp. (wilt, root or stem rot) on various plants, such as F. graminearum or F. culmorum (root rot, scab or head blight) on cereals (e.g. wheat or barley), F. oxysporum on tomatoes, F. solani f. sp. glycines now syn. F. virguliforme) and F. tucumaniae and F. brasiliense each causing sudden death syndrome on soybeans and F. verticilliodes on corn; Gaeumannomyces graminis (take-all) on cereals (e.g. wheat or barley) and corn; Gibberella spp. on cereals (e.g. G. zeae) and rice (e.g. G. fujikuroi: Bakanae disease); Glomerella angulata on vines, pome fruits and other plants and G. gossypii on cotton; Grainstaining complex on rice; Guignardia bidwellii (black rot) on vines; Gymnosporangium spp. on rosaceous plants and junipers, e.g. G. sabinae (rust) on pears; Helminthosporium spp. (syn. Drechslera, teleomorph: Cochliobolus) on corn, cereals and rice; Hemileia spp., e.g. H. vastatrix (coffee leaf rust) on coffee; Isariopsis clavispora (syn. Cladosporium vitis) on vines; Macrophomina phaseolina (syn. phaseoli) (root and stem rot) on soybeans and cotton; Microdochium (syn. Fusarium) nivale (pink snow mold) on cereals (e.g. wheat or barley); Microsphaera diffusa (powdery mildew) on soybeans; Monilinia spp., e.g. M. laxa, M. fructicola and M. fructigena (bloom and twig blight, brown rot) on stone fruits and other rosaceous plants; Mycosphaerella spp. on cereals, bananas, soft fruits and ground nuts, such as e.g. M. graminicola (anamorph: Septoria tritici, Septoria blotch) on wheat or M. fijiensis (black Sigatoka disease) on bananas; Peronospora spp. (downy mildew) on cabbage (e.g. P. brassicae), rape (e.g. P. parasitica), onions (e.g. P. destructor), tobacco (P. tabacina) and soybeans (e.g. P. manshurica); Phakopsora pachyrhizi and P. meibomiae (soybean rust) on soybeans; Phialophora spp. e.g. on vines (e.g. P. tracheiphila and P. tetraspora) and soybeans (e.g. P. gregata: stem rot); Phoma lingam (root and stem rot) on rape and cabbage and P. betae (root rot, leaf spot and damping-off) on sugar beets; Phomopsis spp. on sunflowers, vines (e.g. P. viticola: can and leaf spot) and soybeans (e.g. stem rot: P. phaseoli, teleomorph: Diaporthe phaseolorum); Physoderma maydiS (brown spots) on corn; Phytophthora spp. (wilt, root, leaf, fruit and stem root) on various plants, such as paprika and cucurbits (e.g. P. capsici), soybeans (e.g. P. megasperma, syn. P. sojae), potatoes and tomatoes (e.g. P. infestans late blight) and broad-leaved trees (e.g. P. ramorum: sudden oak death); Plasmodiophora brassicae (club root) on cabbage, rape, radish and other plants; Plasmopara spp., e.g. P. viticola (grapevine downy mildew) on vines and P. halstedii on sunflowers; Podosphaera spp. (powdery mildew) on rosaceous plants, hop, pome and soft fruits, e.g. P. leucotricha on apples; Polymyxa spp., e.g. on cereals, such as barley and wheat (P. graminis) and sugar beets (P. betae) and thereby transmitted viral diseases; Pseudocercosporella herpotrichoides (eyespot, teleomorph: Tapesia yallundae) on cereals, e.g. wheat or barley; Pseudoperonospora (downy mildew) on various plants, e.g. P. cubensis on cucurbits or P. humili on hop; Pseudopezicula tracheiphila (red fire disease or ‘rotbrenner’, anamorph: Phialophora) on vines; Puccinia spp. (rusts) on various plants, e.g. P. triticina (brown or leaf rust), P. striiformis (stripe or yellow rust), P. hordei (dwarf rust), P. graminis (stem or black rust) or P. recondita (brown or leaf rust) on cereals, such as e.g. wheat, barley or rye, P. kuehnii (orange rust) on sugar cane and P. asparagion asparagus; Pyrenophora (anamorph: Drechslera) tritici-repentis (tan spot) on wheat or P. teres (net blotch) on barley; Pyricularia spp., e.g. P. oryzae (teleomorph: Magnaporthe grisea, rice blast) on rice and P. grisea on turf and cereals; Pythium spp. (damping-off) on turf, rice, corn, wheat, cotton, rape, sunflowers, soybeans, sugar beets, vegetables and various other plants (e.g. P. ultimum or P. aphanidermatum); Ramularia spp., e.g. R. collo-cygni (Ramularia leaf spots, Physiological leaf spots) on barley and R. beticola on sugar beets; Rhizoctonia spp. on cotton, rice, potatoes, turf, corn, rape, potatoes, sugar beets, vegetables and various other plants, e.g. R. solani (root and stem rot) on soybeans, R. solani (sheath blight) on rice or R. cerealis (Rhizoctonia spring blight) on wheat or barley; Rhizopus stolonifer (black mold, soft rot) on strawberries, carrots, cabbage, vines and tomatoes; Rhynchosporium secalis (scald) on barley, rye and triticale; Sarocladium oryzae and S. attenuatum (sheath rot) on rice; Sclerotima spp. (stem rot or white mold) on vegetables and field crops, such as rape, sunflowers (e.g. S. sclerotiorum) and soybeans (e.g. S. rolfsii or S. sclerotiorum); Septoria spp. on various plants, e.g. S. glycines (brown spot) on soybeans, S. tritici(Septoria blotch) on wheat and S. (syn. Stagonospora) nodorum (Stagonospora blotch) on cereals; Uncinula (syn. Erysiphe) necator (powdery mildew, anamorph: Odium tuckeri) on vines; Setospaeria spp. (leaf blight) on corn (e.g. S. turcicum, syn. Helminthosporium turcicum) and turf; Sphacelotheca spp. (smut) on corn, (e.g. S. reiliana: head smut), sorghum and sugar cane; Sphaerotheca fuliginea (powdery mildew) on cucurbits; Spongospora subterranea (powdery scab) on potatoes and thereby transmitted viral diseases; Stagonospora spp. on cereals, e.g. S. nodorum (Stagonospora blotch, teleomorph: Leptosphaeria [syn. Phaeosphaeria] nodorum) on wheat; Synchytrium endobioticum on potatoes (potato wart disease); Taphrina spp., e.g. T. deformans (leaf curl disease) on peaches and T. pruni (plum pocket) on plums; Thielaviopsis spp. (black root rot) on tobacco, pome fruits, vegetables, soybeans and cotton, e.g. T. basicola (syn. Chalara elegans); Tilletia spp. (common bunt or stinking smut) on cereals, such as e.g. T. tritici (syn. T caries, wheat bunt) and T. controversa (dwarf bunt) on wheat; Typhula incarnata (grey snow mold) on barley or wheat; Urocystis spp., e.g. U. occulta (stem smut) on rye; Uromyces spp. (rust) on vegetables, such as beans (e.g. U. appendiculatus, syn. U. phaseoli) and sugar beets (e.g. U. betae); Ustilago spp. (loose smut) on cereals (e.g. U. nuda and U. avaenae), corn (e.g. U. maydis: corn smut) and sugar cane; Venturia spp. (scab) on apples (e.g. V. inaequalis) and pears; and Verticillium spp. (wilt) on various plants, such as fruits and ornamentals, vines, soft fruits, vegetables and field crops, e.g. V. dahliae on strawberries, rape, potatoes and tomatoes.


The compounds I and compositions thereof, respectively, are also suitable for controlling harmful fungi in the protection of stored products or harvest and in the protection of materials. The term “protection of materials” is to be understood to denote the protection of technical and nonliving materials, such as adhesives, glues, wood, paper and paperboard, textiles, leather, paint dispersions, plastics, coiling lubricants, fiber or fabrics, against the infestation and destruction by harmful microorganisms, such as fungi and bacteria. As to the protection of wood and other materials, the particular attention is paid to the following harmful fungi: Ascomycetes such as Ophiostoma spp., Ceratocystis spp., Aureobasidium pullulans, Sclerophoma spp., Chaetomium spp., Humicola spp., Petriella spp., Trichurus spp.; Basidiomycetes such as Coniophora spp., Coriolus spp., Gloeophyllum spp., Lentinus spp., Pleurotus spp., Poria spp., Serpula spp. and Tyromyces spp., Deuteromycetes such as Aspergillus spp., Cladosporium spp., Penicillium spp., Trichorma spp., Alternaria spp., Paecilomyces spp. and Zygomycetes such as Mucor spp., and in addition in the protection of stored products and harvest the following yeast fungi are worthy of note: Candida spp. and Saccharomyces cerevisae.


The method of treatment according to the invention can also be used in the field of protecting stored products or harvest against attack of fungi and microorganisms. According to the present invention, the term “stored products” is understood to denote natural substances of plant or animal origin and their processed forms, which have been taken from the natural life cycle and for which long-term protection is desired. Stored products of crop plant origin, such as plants or parts thereof, for example stalks, leafs, tubers, seeds, fruits or grains, can be protected in the freshly harvested state or in processed form, such as pre-dried, moistened, comminuted, ground, pressed or roasted, which process is also known as post-harvest treatment. Also falling under the definition of stored products is timber, whether in the form of crude timber, such as construction timber, electricity pylons and barriers, or in the form of finished articles, such as furniture or objects made from wood. Stored products of animal origin are hides, leather, furs, hairs and the like. The combinations according the present invention can prevent disadvantageous effects such as decay, discoloration or mold. Preferably “stored products” is understood to denote natural substances of plant origin and their processed forms, more preferably fruits and their processed forms, such as pomes, stone fruits, soft fruits and citrus fruits and their processed forms.


The compounds I and compositions thereof, respectively, may be used for improving the health of a plant. The invention also relates to a method for improving plant health by treating a plant, its propagation material and/or the locus where the plant is growing or is to grow with an effective amount of compounds I and compositions thereof, respectively.


The term “plant health” is to be understood to denote a condition of the plant and/or its products which is determined by several indicators alone or in combination with each other such as yield (e.g. increased biomass and/or increased content of valuable ingredients), plant vigor (e.g. improved plant growth and/or greener leaves (“greening effect”)), quality (e.g. improved content or composition of certain ingredients) and tolerance to abiotic and/or biotic stress. The above identified indicators for the health condition of a plant may be interdependent or may result from each other.


The compounds of formula I can be present in different crystal modifications whose biological activity may differ. They are likewise subject matter of the present invention.


The compounds I are employed as such or in form of compositions by treating the fungi or the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms to be protected from fungal attack with a fungicidally effective amount of the active substances. The application can be carried out both before and after the infection of the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms by the fungi.


Plant propagation materials may be treated with compounds I as such or a composition comprising at least one compound I prophylactically either at or before planting or transplanting.


The invention also relates to compositions comprising one compound I according to the invention. In particular, such composition further comprises an auxiliary as defined below.


The term “effective amount” used denotes an amount of the composition or of the compounds I, which is sufficient for controlling harmful fungi on cultivated plants or in the protection of materials and which does not result in a substantial damage to the treated plants. Such an amount can vary in a broad range and is dependent on various factors, such as the fungal species to be controlled, the treated cultivated plant or material, the climatic conditions and the specific compound I used.


The compounds I, their N-oxides and salts can be converted into customary types of agrochemical compositions, e.g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof. Examples for composition types are suspensions (e.g. SC, OD, FS), emulsifiable concentrates (e.g. EC), emulsions (e.g. EW, EO, ES, ME), capsules (e.g. CS, ZC), pastes, pastilles, wettable powders or dusts (e.g. WP, SP, WS, DP, DS), pressings (e.g. BR, TB, DT), granules (e.g. WG, SG, GR, FG, GG, MG), insecticidal articles (e.g. LN), as well as gel formulations for the treatment of plant propagation materials such as seeds (e.g. GF). These and further compositions types are defined in the “Catalogue of pesticide formulation types and international coding system”, Technical Monograph No. 2, 6th Ed. May 2008, CropLife International.


The compositions are prepared in a known manner, such as described by Mollet and Grubemann, Formulation technology, Wiley VCH, Weinheim, 2001; or Knowles, New developments in crop protection product formulation, Agrow Reports DS243, T&F Informa, London, 2005.


Suitable auxiliaries are solvents, liquid carriers, solid carriers or fillers, surfactants, dispersants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compatibilizers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers and binders.


Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e.g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic and aromatic hydrocarbons, e.g. toluene, paraffin, tetrahydronaphthalene, alkylated naphthalenes; alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclohexanol; glycols; DMSO; ketones, e.g. cyclohexanone; esters, e.g. lactates, carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates; amines; amides, e.g. N-methylpyrrolidone, fatty acid dimethylamides; and mixtures thereof.


Suitable solid carriers or fillers are mineral earths, e.g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharides, e.g. cellulose, starch; fertilizers, e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e.g. cereal meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof.


Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emulsifier, dispersant, solubilizer, wetter, penetration enhancer, protective colloid, or adjuvant. Examples of surfactants are listed in McCutcheon's, Vol. 1: Emulsifiers & Detergents, McCutcheon's Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).


Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof. Examples of sulfonates are alkylarylsulfonates, diphenylsulfonates, alpha-olefin sulfonates, lignine sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkylnaphthalenes, sulfosuccinates or sulfosuccinamates. Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters. Examples of phosphates are phosphate esters. Examples of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates.


Suitable nonionic surfactants are alkoxylates, N-subsituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, and mixtures thereof. Examples of alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents. Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide. Examples of N-subsititued fatty acid amides are fatty acid glucamides or fatty acid alkanolamides. Examples of esters are fatty acid esters, glycerol esters or monoglycerides. Examples of sugar-based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or alkylpolyglucosides. Examples of polymeric surfactants are home- or copolymers of vinylpyrrolidone, vinylalcohols, or vinylacetate.


Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long-chain primary amines. Suitable amphoteric surfactants are alkylbetains and imidazolines. Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B—C type comprising alkanol, polyethylene oxide and polypropylene oxide. Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinylamines or polyethyleneamines.


Suitable adjuvants are compounds, which have a neglectable or even no pesticidal activity themselves, and which improve the biological performance of the compound I on the target. Examples are surfactants, mineral or vegetable oils, and other auxilaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5.


Suitable thickeners are polysaccharides (e.g. xanthan gum, carboxymethylcellulose), anorganic clays (organically modified or unmodified), polycarboxylates, and silicates.


Suitable bactericides are bronopol and isothiazolinone derivatives such as alkylisothiazolinones and benzisothiazolinones.


Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin.


Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids.


Suitable colorants (e.g. in red, blue, or green) are pigments of low water solubility and water-soluble dyes. Examples are inorganic colorants (e.g. iron oxide, titan oxide, iron hexacyanoferrate) and organic colorants (e.g. alizarin-, azo- and phthalocyanine colorants).


Suitable tackifiers or binders are polyvinylpyrrolidons, polyvinylacetates, polyvinyl alcohols, polyacrylates, biological or synthetic waxes, and cellulose ethers.


Examples for composition types and their preparation are:


i) Water-Soluble Concentrates (SL, LS)

10-60 wt % of a compound I and 5-15 wt % wetting agent (e.g. alcohol alkoxylates) are dissolved in water and/or in a water-soluble solvent (e.g. alcohols) ad 100 wt %. The active substance dissolves upon dilution with water.


ii) Dispersible Concentrates (DC)

5-25 wt % of a compound I and 1-10 wt % dispersant (e.g. polyvinylpyrrolidone) are dissolved in organic solvent (e.g. cyclohexanone) ad 100 wt %. Dilution with water gives a dispersion.


iii) Emulsifiable Concentrates (EC)


15-70 wt % of a compound I and 5-10 wt % emulsifiers (e.g. calcium dodecylbenzenesulfonate and castor oil ethoxylate) are dissolved in water-insoluble organic solvent (e.g. aromatic hydrocarbon) ad 100 wt %. Dilution with water gives an emulsion.


iv) Emulsions (EW, EO, ES)

5-40 wt % of a compound I and 1-10 wt % emulsifiers (e.g. calcium dodecylbenzenesulfonate and castor oil ethoxylate) are dissolved in 20-40 wt % water-insoluble organic solvent (e.g. aromatic hydrocarbon). This mixture is introduced into water ad 100 wt % by means of an emulsifying machine and made into a homogeneous emulsion. Dilution with water gives an emulsion.


v) Suspensions (SC, OD, FS)

In an agitated ball mill, 20-60 wt % of a compound I are comminuted with addition of 2-10 wt % dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate), 0.1-2 wt % thickener (e.g. xanthan gum) and water ad 100 wt % to give a fine active substance suspension. Dilution with water gives a stable suspension of the active substance. For FS type composition up to 40 wt % binder (e.g. polyvinylalcohol) is added.


vi) Water-Dispersible Granules and Water-Soluble Granules (WG, SG)

50-80 wt % of a compound I are ground finely with addition of dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate) ad 100 wt % and prepared as water-dispersible or water-soluble granules by means of technical appliances (e.g. extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the active substance.


vii) Water-Dispersible Powders and Water-Soluble Powders (WP, SP, WS)


50-80 wt % of a compound I are ground in a rotor-stator mill with addition of 1-5 wt % dispersants (e.g. sodium lignosulfonate), 1-3 wt % wetting agents (e.g. alcohol ethoxylate) and solid carrier (e.g. silica gel) ad 100 wt %. Dilution with water gives a stable dispersion or solution of the active substance.


viii) Gel (GW, GF)


In an agitated ball mill, 5-25 wt % of a compound I are comminuted with addition of 3-10 wt % dispersants (e.g. sodium lignosulfonate), 1-5 wt % thickener (e.g. carboxymethylcellulose) and water ad 100 wt % to give a fine suspension of the active substance. Dilution with water gives a stable suspension of the active substance.


ix) Microemulsion (ME)

5-20 wt % of a compound I are added to 5-30 wt % organic solvent blend (e.g. fatty acid dimethylamide and cyclohexanone), 10-25 wt % surfactant blend (e.g. alcohol ethoxylate and arylphenol ethoxylate), and water ad 100%. This mixture is stirred for 1 h to produce spontaneously a thermodynamically stable microemulsion.


x) Microcapsules (CS)

An oil phase comprising 5-50 wt % of a compound I, 0-40 wt % water insoluble organic solvent (e.g. aromatic hydrocarbon), 2-15 wt % acrylic monomers (e.g. methylmethacrylate, methacrylic acid and a di- or triacrylate) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). Radical polymerization initiated by a radical initiator results in the formation of poly(meth)acrylate microcapsules. Alternatively, an oil phase comprising 5-50 wt % of a compound I according to the invention, 0-40 wt % water insoluble organic solvent (e.g. aromatic hydrocarbon), and an isocyanate monomer (e.g. diphenylmethene-4,4′-diisocyanatae) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). The addition of a polyamine (e.g. hexamethylenediamine) results in the formation of polyurea microcapsules. The monomers amount to 1-10 wt %. The wt % relate to the total CS composition.


xi) Dustable powders (DP, DS)


1-10 wt % of a compound I are ground finely and mixed intimately with solid carrier (e.g. finely divided kaolin) ad 100 wt %.


xii) Granules (GR, FG)


0.5-30 wt % of a compound I is ground finely and associated with solid carrier (e.g. silicate) ad 100 wt %. Granulation is achieved by extrusion, spray-drying or fluidized bed.


xiii) Ultra-low volume liquids (UL)


1-50 wt % of a compound I are dissolved in organic solvent (e.g. aromatic hydrocarbon) ad 100 wt %.


The compositions types i) to xiii) may optionally comprise further auxiliaries, such as 0.1-1 wt % bactericides, 5-15 wt % anti-freezing agents, 0.1-1 wt % anti-foaming agents, and 0.1-1 wt % colorants.


The agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, and in particular between 0.5 and 75%, by weight of active substance. The active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).


Solutions for seed treatment (LS), Suspoemulsions (SE), flowable concentrates (FS), powders for dry treatment (DS), water-dispersible powders for slurry treatment (WS), water-soluble powders (SS), emulsions (ES), emulsifiable concentrates (EC) and gels (GF) are usually employed for the purposes of treatment of plant propagation materials, particularly seeds. The compositions in question give, after two-to-tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40%, in the ready-to-use preparations. Application can be carried out before or during sowing. Methods for applying compound I and compositions thereof, respectively, on to plant propagation material, especially seeds include dressing, coating, pelleting, dusting, soaking and in-furrow application methods of the propagation material. Preferably, compound I or the compositions thereof, respectively, are applied on to the plant propagation material by a method such that germination is not induced, e.g. by seed dressing, pelleting, coating and dusting.


When employed in plant protection, the amounts of active substances applied are, depending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.05 to 0.9 kg per ha, and in particular from 0.1 to 0.75 kg per ha.


In treatment of plant propagation materials such as seeds, e.g. by dusting, coating or drenching seed, amounts of active substance of from 0.1 g to 10 kg, in particular 0.1 to 1000 g, more particularly from 1 to 1000 g, specificaly from 1 to 100 g and most specificaly from 5 to 100 g, per 100 kilogram of plant propagation material (preferably seeds) are generally required.


When used in the protection of materials or stored products, the amount of active substance applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substance per cubic meter of treated material.


Various types of oils, wetters, adjuvants, fertilizer, or micronutrients, and further pesticides (e.g. herbicides, insecticides, fungicides, growth regulators, safeners, biopesticides) may be added to the active substances or the compositions comprising them as premix or, if appropriate not until immediately prior to use (tank mix). These agents can be admixed with the compositions according to the invention in a weight ratio of 1:100 to 100:1, preferably 1:10 to 10:1.


A pesticide is generally a chemical or biological agent (such as a virus, bacterium, antimicrobial or disinfectant) that through its effect deters, incapacitates, kills or otherwise discourages pests. Target pests can include insects, plant pathogens, weeds, mollusks, birds, mammals, fish, nematodes (roundworms), and microbes that destroy property, cause nuisance, spread disease or are vectors for disease. The term pesticides includes also plant growth regulators that alter the expected growth, flowering, or reproduction rate of plants; defoliants that cause leaves or other foliage to drop from a plant, usually to facilitate harvest; desiccants that promote drying of living tissues, such as unwanted plant tops; plant activators that activate plant physiology for defense of against certain pests; safeners that reduce unwanted herbicidal action of pesticides on crop plants; and plant growth promoters that affect plant physiology to increase plant growth, biomass, yield or any other quality parameter of the harvestable goods of acrop plant.


Biopesticides are typically created by growing and concentrating naturally occurring organisms and/or their metabolites including bacteria and other microbes, fungi, viruses, nematodes, proteins, etc. They are often considered to be important components of integrated pest management (IPM) programmes.


Biopesticides fall into two major classes, microbial and biochemical pesticides:


(1) Microbial pesticides consist of bacteria, fungi or viruses (and often include the metabolites that bacteria and fungi produce). Entomopathogenic nematodes are also classed as microbial pesticides, even though they are multi-cellular.


Biochemical pesticides are naturally occurring substances that control pests or provide other crop protection uses as defined below, but are relatively non-toxic to mammals.


The user applies the composition according to the invention usually from a predosage device, a knapsack sprayer, a spray tank, a spray plane, or an irrigation system. Usually, the agrochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained. Usually, 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area.


According to one embodiment, individual components of the composition according to the invention such as parts of a kit or parts of a composition comprising two or three active ingredients, may be mixed by the user himself in a spray tank or any other kind of vessel used for applications (e.g. seed treater drums, seed pelleting machinery, knapsack sprayer) and further auxiliaries may be added, if appropriate.


When living microorganisms, such as pesticides from groups L1), L3) and L5), form part of such kit, it must be taken care that choice and amounts of the components (e.g. chemcial pesticidal agents) and of the further auxiliaries should not influence the viability of the microbial pesticides in the composition mixed by the user. Especially for bactericides and solvents, compatibility with the respective microbial pesticide has to be taken into account.


Consequently, one embodiment of the invention is a kit for preparing a usable pesticidal composition, the kit comprising a) a composition comprising component 1) as defined herein and at least one auxiliary; and b) a composition comprising component 2) as defined herein and at least one auxiliary; and optionally c) a composition comprising at least one auxiliary and optionally a further active component 3) as defined herein.


Mixing the compounds I or the compositions comprising them in the use form as fungicides with other fungicides results in many cases in an expansion of the fungicidal spectrum of activity being obtained or in a prevention of fungicide resistance development. Furthermore, in many cases, synergistic effects are obtained.


The following list of pesticides (e.g. pesticidally active substances and biopesticides), in conjunction with which the compounds I can be used, is intended to illustrate the possible combinations but does not limit them:


A) Respiration Inhibitors





    • Inhibitors of complex III at Qo site (e.g. strobilurins): azoxystrobin, coumethoxystrobin, coumoxystrobin, dimoxystrobin, enestroburin, fenaminstrobin, fenoxystrobin/flufenoxystrobin, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin, pyrametostrobin, pyraoxystrobin, trifloxystrobin and 2-(2-(3-(2,6-dichlorophenyl)-1-methyl-allylideneaminooxymethyl)-phenyl)-2-methoxyiminoN-methyl-acetamide, pyribencarb, triclopyricarb/chlorodincarb, famoxadone, fenamidone;

    • inhibitors of complex III at Qi site: cyazofamid, amisulbrom, [(3S,6S,7R,8R)-8-benzyl-3-[(3-acetoxy-4-methoxy-pyridine-2-carbonyl)amino]-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl]2-methylpropanoate, [(3S,6S,7R,8R)-8-benzyl-3-[[3-(acetoxymethoxy)-4-methoxy-pyridine-2-carbonyl]amino]-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl]2-methylpropanoate, [(3S,6S,7R,8R)-8-benzyl-3-[(3-isobutoxycarbonyloxy-4-methoxy-pyridine-2-carbonyl)amino]-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl]2-methylpropanoate, [(3S,6S,7R,8R)-8-benzyl-3-[[3-(1,3-benzodioxol-5-ylmethoxy)-4-methoxy-pyridine-2-carbonyl]amino]-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl]2-methylpropanoate; (3S,6S,7R,8R)-3-[[(3-hydroxy-4-methoxy-2-pyridinyl)carbonyl]amino]-6-methyl-4,9-dioxo-8-(phenylmethyl)-1,5-dioxonan-7-yl2-methylpropanoate, (3S,6S,7R,8R)-3-[[(3-hydroxy-4-methoxy-2-pyridinyl)carbonyl]amino]-6-methyl-4,9-dioxo-8-(phenylmethyl)-1,5-dioxonan-7-yl 2-methylpropanoate;

    • inhibitors of complex II (e.g. carboxamides): benodanil, benzovindiflupyr, bixafen, boscalid, carboxin, fenfuram, fluopyram, flutolanil, fluxapyroxad, furametpyr, isofetamid, isopyrazam, mepronil, oxycarboxin, penflufen, penthiopyrad, sedaxane, tecloftalam, thifluzamide, N-(4′-trifluoromethylthiobiphenyl-2-yl)-3-difluoromethyl-1-methyl-1H-pyrazole-4-carboxamide, N-(2-(1,3,3-trimethyl-butyl)-phenyl)-1,3-dimethyl-5-fluoro-1H-pyrazole-4-carboxamide, 3-(difluoromethyl)-1-methyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide, 3-(trifluoromethyl)-1-methyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide, 1,3-dimethyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide, 3-(trifluoromethyl)-1,5-dimethyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide, 1,3,5-trimethyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide, N-(7-fluoro-1,1,3-trimethylindan-4-yl)-1,3-dimethyl-pyrazole-4-carboxamide, N-[2-(2,4-dichlorophenyl)-2-methoxy-1-methyl-ethyl]-3-(difluoromethyl)-1-methyl-pyrazole-4-carboxamide;

    • other respiration inhibitors (e.g. complex I, uncouplers): diflumetorim, (5,8-difluoroquinazolin-4-yl)-{2-[2-fluoro-4-(4-trifluoromethylpyridin-2-yloxy)-phenyl]ethyl}-amine; nitrophenyl derivates: binapacryl, dinobuton, dinocap, fluazinam; ferimzone; organometal compounds: fentin salts, such as fentin-acetate, fentin chloride or fentin hydroxide; ametoctradin; and silthiofam;





B) Sterol Biosynthesis Inhibitors (SBI Fungicides)





    • C14 demethylase inhibitors (DMI fungicides): triazoles: azaconazole, bitertanol, bromuconazole, cyproconazole, difenoconazole, diniconazole, diniconazole-M, epoxiconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imibenconazole, ipconazole, metconazole, myclobutanil, oxpoconazole, paclobutrazole, penconazole, propiconazole, prothioconazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triticonazole, uniconazole, 1-[rel-(2S,3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)-oxiranylmethyl]-5-thiocyanato-1H-[1,2,4]triazole, 2-[rel-(2S,3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)-oxiranylmethyl]-2H-[1,2,4]triazole-3-thiol; 2-[2-chloro-4-(4-chlorophenoxyl)phenyl]-1-(1,2,4-triazol-1-yl)pentan-2-ol, 1-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-cyclopropyl-2-(1,2,4-triazol-1-yl)ethanol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)butan-2-ol, 2-[2-chloro-4-(4-chlorophenoxyl)phenyl]-1-(1,2,4-triazol-1-yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-3-methyl-1-(1,2,4-triazol-1-yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)propan-2-ol, 2-[2-chloro-4-(4-chlorophenoxyl)phenyl]-3-methyl-1-(1,2,4-triazol-1-yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)pentan-2-ol, 2-[4-(4-fluorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)propan-2-ol; imidazoles: imazalil, pefurazoate, prochloraz, triflumizol; pyrimidines, pyridines and piperazines: fenarimol, nuarimol, pyrifenox, triforine, 3-(4-chloro-2-fluoro-phenyl)-5-(2,4-difluorophenypisoxazol-4-yl]-(3-pyridyl)methanol;

    • Delta14-reductase inhibitors: aldimorph, dodemorph, dodemorph-acetate, fenpropimorph, tridemorph, fenpropidin, piperalin, spiroxamine;

    • Inhibitors of 3-keto reductase: fenhexamid;





C) Nucleic Acid Synthesis Inhibitors





    • phenylamides or acyl amino acid fungicides: benalaxyl, benalaxyl-M, kiralaxyl, metalaxyl, metalaxyl-M (mefenoxam), ofurace, oxadixyl;

    • others: hymexazole, octhilinone, oxolinic acid, bupirimate, 5-fluorocytosine, 5-fluoro-2-(ptolylmethoxy)pyrimidin-4-amine, 5-fluoro-2-(4-fluorophenylmethoxyl)pyrimidin-4-amine;





D) Inhibitors of Cell Division and Cytoskeleton





    • tubulin inhibitors, such as benzimidazoles, thiophanates: benomyl, carbendazim, fuberidazole, thiabendazole, thiophanate-methyl; triazolopyrimidines: 5-chloro-7-(4-methylpiperidin-1-yl)-6-(2,4,6-trifluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidine

    • other cell division inhibitors: diethofencarb, ethaboxam, pencycuron, fluopicolide, zoxamide, metrafenone, pyriofenone;


      E) Inhibitors of amino acid and protein synthesis

    • methionine synthesis inhibitors (anilino-pyrimidines): cyprodinil, mepanipyrim, pyrimethanil;

    • protein synthesis inhibitors: blasticidin-S, kasugamycin, kasugamycin hydrochloridehydrate, mildiomycin, streptomycin, oxytetracyclin, polyoxine, validamycin A;





F) Signal Transduction Inhibitors





    • MAP/histidine kinase inhibitors: fluoroimid, iprodione, procymidone, vinclozolin, fenpiclonil, fludioxonil;

    • G protein inhibitors: quinoxyfen;





G) Lipid and Membrane Synthesis Inhibitors

Phospholipid biosynthesis inhibitors: edifenphos, iprobenfos, pyrazophos, isoprothiolane;

    • lipid peroxidation: dicloran, quintozene, tecnazene, tolclofos-methyl, biphenyl, chloroneb, etridiazole;
    • phospholipid biosynthesis and cell wall deposition: dimethomorph, flumorph, mandipropamid, pyrimorph, benthiavalicarb, iprovalicarb, valifenalate and N-(1-(1-(4-cyano-phenyl)ethanesulfonyl)-but-2-yl) carbamic acid-(4-fluorophenyl) ester;
    • compounds affecting cell membrane permeability and fatty acides: propamocarb, propamocarb-hydrochlorid
    • fatty acid amide hydrolase inhibitors: oxathiapiprolin, 1-[4-[4-[5-(2,6-difluorophenyl)-4,5-dihydro-3-isoxazolyl]-2-thiazolyl]-1-piperidinyl]-2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanone; 2-{3-[2-(1-{[3,5-bis(difluoromethyl-1H-pyrazol-1-yl]acetyl}piperidin-4-yl)-1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}phenyl methanesulfonate, 2-{3-[2-(1-{[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl)1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}-3-chlorophenyl methanesulfonate;


      H) Inhibitors with Multi Site Action
    • inorganic active substances: Bordeaux mixture, copper acetate, copper hydroxide, copper oxychloride, basic copper sulfate, sulfur;
    • thio- and dithiocarbamates: ferbam, mancozeb, maneb, metam, metiram, propineb, thiram, zineb, ziram;
    • organochlorine compounds (e.g. phthalimides, sulfamides, chloronitriles): anilazine, chlorothalonil, captafol, captan, folpet, dichlofluanid, dichlorophen, hexachlorobenzene, pentachlorphenole and its salts, phthalide, tolylfluanid, N-(4-chloro-2-nitro-phenyl)-N-ethyl-4-methyl-benzenesulfonamide;
    • guanidines and others: guanidine, dodine, dodine free base, guazatine, guazatineacetate, iminoctadine, iminoctadine-triacetate, iminoctadine-tris(albesilate), dithianon, 2,6-dimethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c′]dipyrrole-1,3,5,7(2H,6H)-tetraone;


I) Cell Wall Synthesis Inhibitors





    • inhibitors of glucan synthesis: validamycin, polyoxin B; melanin synthesis inhibitors: pyroquilon, tricyclazole, carpropamid, dicyclomet, fenoxanil;





J) Plant Defence Inducers





    • acibenzolar-S-methyl, probenazole, isotianil, tiadinil, prohexadione-calcium; phosphonates: fosetyl, fosetyl-aluminum, phosphorous acid and its salts;





K) Unknown Mode of Action





    • bronopol, chinomethionat, cyflufenamid, cymoxanil, dazomet, debacarb, diclomezine, difenzoquat, difenzoquat-methylsulfate, diphenylamin, fenpyrazamine, flumetover, flusulfamide, flutianil, methasulfocarb, nitrapyrin, nitrothal-isopropyl, oxathiapiprolin, tolprocarb, oxin-copper, proquinazid, tebufloquin, tecloftalam, triazoxide, 2-butoxy-6-iodo-3-propylchromen-4-one, 2-[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]-1-[4-(4-{5-[2-(prop-2-yn-1-yloxy)phenyl]-4,5-dihydro-1,2-oxazol-3-yl}-1,3-thiazol-2-yl)piperidin-1-yl]ethanone, 2-[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]-1-[4-(4-{5-[2-fluoro-6-(prop-2-yn-1-yloxy)phenyl]-4,5-dihydro-1,2-oxazol-3-yl}-1,3-thiazol-2-yl)piperidin-1-yl]ethanone, bis(difluoromethyl)-1H-pyrazol-1-yl]-1-[4-(4-{5-[2-chloro-6-(prop-2-yn-1-yloxy)phenyl]-4,5-dihydro-1,2-oxazol-3-yl}-1,3-thiazol-2-yl)piperidin-1-yl]ethanone, N-(cyclopropylmethoxyimino-(6-difluoro-methoxy-2,3-difluoro-phenyl)-methyl)-2-phenyl acetamide, N′-(4-(4-chloro-3-trifluoromethyl-phenoxy)-2,5-dimethyl-phenyl)-N-ethyl-N-methyl formamidine, N′-(4-(4-fluoro-3-trifluoromethyl-phenoxy)-2,5-dimethyl-phenyl)-N-ethyl-Nmethyl formamidine, N′-(2-methyl-5-trifluoromethyl-4-(3-trimethylsilanyl-propoxy)-phenyl)N-ethyl-N-methyl formamidine, N′-(5-difluoromethyl-2-methyl-4-(3-trimethylsilanyl-propoxy)-phenyl)-N-ethyl-N-methyl formamidine, methoxy-acetic acid 6-tert-butyl-8-fluoro-2,3-dimethyl-quinolin-4-yl ester, 3-[5-(4-methylphenyl)-2,3-dimethyl-isoxazolidin-3-yl]-pyridine, 3-[5-(4-chloro-phenyl)-2,3-dimethyl-isoxazolidin-3-yl]-pyridine (pyrisoxazole), N-(6-methoxy-pyridin-3-yl)cyclopropanecarboxylic acid amide, 5-chloro-1-(4,6-dimethoxy-pyrimidin-2-yl)-2-methyl-1H-benzoimidazole, 2-(4-chloro-phenyl)N-[4-(3,4-dimethoxy-phenyl)-isoxazol-5-yl]-2-prop-2-ynyloxy-acetamide, ethyl(Z)-3-amino-2-cyano-3-phenyl-prop-2-enoate, picarbutrazox, pentyl N-[6-[[(Z)-[(1-methyltetrazol-5-yl)phenyl-methylene]amino]oxymethyl]-2-pyridyl]carbamate, 2-[2-[(7,8-difluoro-2-methyl-3-quinolyl)oxy]-6-fluoro-phenyl]propan-2-ol, 2-[2-fluoro-6-[(8-fluoro-2-methyl-3-quinolyl)oxy]-phenyl]propan-2-ol, 3-(5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-1-yl)quinoline, 3-(4,4-difluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline, 3-(4,4,5-trifluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline;





L) Biopesticides





    • L1) Microbial pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: Ampelomyces quisqualis, Aspergillus flavus, Aureobasidium pullulans, Bacillus amyloliquefaciens, B. mojavensis, B. pumilus, B. simplex, B. solisalsi, B. subtilis, B. subtilis var. amyloliquefaciens, Candida oleophila, C. saitoana, Clavibacter michiganensis (bacteriophages), Coniothyrium minitans, Cryphonectria parasitica, Cryptococcus albidus, Dilophosphora alopecuri, Fusarium oxysporum, Clonostachys rosea f. catenulate (also named Gliocladium catenulatum), Gliocladium roseum, Lysobacter antibioticus, L. enzymogenes, Metschnikowia fructicola, Microdochium dimerum, Microsphaeropsis ochracea, Muscodor albus, Paenibacillus polymyxa, Pantoea vagans, Phlebiopsis gigantea, Pseudomonas sp., Pseudomonas chloraphis, Pseudozyma flocculosa, Pichia anomala, Pythium oligandrum, Sphaerodes mycoparasitica, Streptomyces griseoviridis, S. lydicus, S. violaceusniger, Talaromyces flavus, Trichoderma asperellum, T. atroviride, T. fertile, T. gamsii, T. harmatum, T. harzianum; mixture of T. harzianum and T. viride; mixture of T. polysporum and T. harzianum; T. stromaticum, T. virens (also named Gliocladium virens), T. viride, Typhula phacorrhiza, Ulocladium oudemansii, Verticillium dahlia, zucchini yellow mosaic virus (avirulent strain);

    • L2) Biochemical pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: chitosan (hydrolysate), harpin protein, laminarin, Menhaden fish oil, natamycin, Plum pox virus coat protein, potassium or sodium bicarbonate, Reynoutria sachlinensis extract, salicylic acid, tea tree oil;

    • L3) Microbial pesticides with insecticidal, acaricidal, molluscidal and/or nematicidal activity: Agrobacterium radiobacter, Bacillus cereus, B. firmus, B. thuringiensis, B. thuringiensis ssp. aizawai, B. t. ssp. israelensis, B. t. ssp. galleriae, B. t. ssp. kurstaki, B. t. ssp. tenebrionis, Beauveria bassiana, B. brongniartii, Burkholderia sp., Chromobacterium subtsugae, Cydia pomonella granulosis virus, Cryptophlebia leucotreta granulovirus (CrIeGV), Isaria fumosorosea, Heterorhabditis bacteriophora, Lecanicillium longisporum, L. muscarium (formerly Verticillium lecanii), Metarhizium anisopliae, M. anisopliae var. acridum, Nomuraea rileyi, Paecilomyces fumosoroseus, P. lilacinus, Paenibacillus popilliae, Pasteuria spp., P. nishizawae, P. penetrans, P. ramose, P. reneformis, P. thornea, P. usgae, Pseudomonas fluorescens, Steinernema carpocapsae, S. feltiae, S. kraussei;

    • L4) Biochemical pesticides with insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity: L-carvone, citral, (E,Z)-7,9-dodecadien-1-ylacetate, ethyl formate, (E,Z)-2,4-ethyl decadienoate (pear ester), (Z,Z,E)-7,11,13-hexadecatrienal, heptyl butyrate, isopropyl myristate, lavanulyl senecioate, cis-jasmone, 2-methyl 1-butanol, methyl eugenol, methyl jasmonate, (E,Z)-2,13-octadecadien-1-ol, (E,Z)-2,13-octadecadien-1-ol acetate, (E,Z)-3,13-octadecadien-1-ol, R-1-octen-3-ol, pentatermanone, potassium silicate, sorbitol actanoate, (E,Z,Z)-3,8,11-tetradecatrienyl acetate, (Z,E)-9,12-tetradecadien-1-yl acetate, Z-7-tetradecen-2-one, Z-9-tetradecen-1-yl acetate, Z-11-tetradecenal, Z-11-tetradecen-1-ol, Acacia negra extract, extract of grapefruit seeds and pulp, extract of Chenopodium ambrosiodae, Catnip oil, Neem oil, Quillay extract, Tagetes oil;

    • L5) Microbial pesticides with plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity: Azospirillum amazonense, A. brasilense, A. lipoferum, A. irakense, A. halopraeferens, Bradyrhizobium sp., B. elkanii, B. japonicum, B. liaoningense, B. lupini, Delftia acidovorans, Glomus intraradices, Mesorhizobium sp., Paenibacillus alvei, Penicillium bilaiae, Rhizobium leguminosarum bv. phaseoli, R. I. trifolii, R. I. bv. viciae, R. tropici, Sinorhizobium meliloti;

    • L6) Biochemical pesticides with plant stress reducing, plant growth regulator and/or plant yield enhancing activity: abscisic acid, aluminium silicate (kaolin), 3-decen-2-one, formononetin, genistein, hesperetin, homobrassinlide, humates, jasmonic acid or salts or derivatives thereof, lysophosphatidyl ethanolamine, naringenin, polymeric polyhydroxy acid, Ascophyllum nodosum (Norwegian kelp, Brown kelp) extract and Ecklonia maxima (kelp) extract;





M) Growth Regulators





    • abscisic acid, amidochlor, ancymidol, 6-benzylaminopurine, brassinolide, butralin, chlormequat (chlormequat chloride), choline chloride, cyclanilide, daminozide, dikegulac, dimethipin, 2,6-dimethylpuridine, ethephon, flumetralin, flurprimidol, fluthiacet, forchlorfenuron, gibberellic acid, inabenfide, indole-3-acetic acid, maleic hydrazide, mefluidide, mepiquat (mepiquat chloride), naphthaleneacetic acid, N-6-benzyladenine, paclobutrazol, prohexadione (prohexadione-calcium), prohydrojasmon, thidiazuron, triapenthenol, tributyl phosphorotrithioate, 2,3,5-tri-iodobenzoic acid, trinexapac-ethyl and uniconazole;





N) Herbicides





    • acetamides: acetochlor, alachlor, butachlor, dimethachlor, dimethenamid, flufenacet, mefenacet, metolachlor, metazachlor, napropamide, naproanilide, pethoxamid, pretilachlor, propachlor, thenylchlor;

    • amino acid derivatives: bilanafos, glyphosate, glufosinate, sulfosate;

    • aryloxyphenoxypropionates: clodinafop, cyhalofop-butyl, fenoxaprop, fluazifop, haloxyfop, metamifop, propaquizafop, quizalofop, quizalofop-P-tefuryl;

    • Bipyridyls: diquat, paraquat;

    • (thio)carbamates: asulam, butylate, carbetamide, desmedipham, dimepiperate, eptam (EPTC), esprocarb, molinate, orbencarb, phenmedipham, prosulfocarb, pyributicarb, thiobencarb, triallate;

    • cyclohexanediones: butroxydim, clethodim, cycloxydim, profoxydim, sethoxydim, tepraloxydim, tralkoxydim;

    • dinitroanilines: benfluralin, ethalfluralin, oryzalin, pendimethalin, prodiamine, trifluralin;

    • diphenyl ethers: acifluorfen, aclonifen, bifenox, diclofop, ethoxyfen, fomesafen, lactofen, oxyfluorfen;

    • hydroxybenzonitriles: bomoxynil, dichlobenil, ioxynil;

    • imidazolinones: imazamethabenz, imazamox, imazapic, imazapyr, imazaquin, imazethapyr;

    • phenoxy acetic acids: clomeprop, 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4-DB, dichlorprop, MCPA, MCPA-thioethyl, MCPB, Mecoprop;

    • pyrazines: chloridazon, flufenpyr-ethyl, fluthiacet, norflurazon, pyridate;

    • pyridines: aminopyralid, clopyralid, diflufenican, dithiopyr, fluridone, fluroxypyr, picloram, picolinafen, thiazopyr;

    • sulfonyl ureas: amidosulfuron, azimsulfuron, bensulfuron, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, ethoxysulfuron, flazasulfuron, flucetosulfuron, flupyrsulfuron, foramsulfuron, halosulfuron, imazosulfuron, iodosulfuron, mesosulfuron, metazosulfuron, metsulfuron-methyl, nicosulfuron, oxasulfuron, primisulfuron, prosulfuron, pyrazosulfuron, rimsulfuron, sulfometuron, sulfosulfuron, thifensulfuron, triasulfuron, tribenuron, trifloxysulfuron, triflusulfuron, tritosulfuron, 1-((2-chloro-6-propyl-imidazo[1,2-b]pyridazin-3-yl)sulfonyl)-3-(4,6-dimethoxy-pyrimidin-2-yl)urea;

    • triazines: ametryn, atrazine, cyanazine, dimethametryn, ethiozin, hexazinone, metamitron, metribuzin, prometryn, simazine, terbuthylazine, terbutryn, triaziflam;

    • ureas: chlorotoluron, daimuron, diuron, fluometuron, isoproturon, linuron, methabenzthiazuron, tebuthiuron;

    • other acetolactate synthase inhibitors: bispyribac-sodium, cloransulam-methyl, diclosulam, florasulam, flucarbazone, flumetsulam, metosulam, ortho-sulfamuron, penoxsulam, propoxycarbazone, pyribambenz-propyl, pyribenzoxim, pyriftalid, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyroxasulfone, pyroxsulam;

    • others: amicarbazone, aminotriazole, anilofos, beflubutamid, benazolin, bencarbazone, benfluresate, benzofenap, bentazone, benzobicyclon, bicyclopyrone, bromacil, bromobutide, butafenacil, butamifos, cafenstrole, carfentrazone, cinidon-ethyl, chlorthal, cinmethylin, clomazone, cumyluron, cyprosulfamide, dicamba, difenzoquat, diflufenzopyr, Drechslera monoceras, endothal, ethofumesate, etobenzanid, fenoxasulfone, fentrazamide, flumiclorac-pentyl, flumioxazin, flupoxam, flurochloridone, flurtamone, indanofan, isoxaben, isoxaflutole, lenacil, propanil, propyzamide, quinclorac, quinmerac, mesotrione, methyl arsonic acid, naptalam, oxadiargyl, oxadiazon, oxaziclomefone, pentoxazone, pinoxaden, pyraclonil, pyraflufen-ethyl, pyrasulfotole, pyrazoxyfen, pyrazolynate, quinoclamine, saflufenacil, sulcotrione, sulfentrazone, terbacil, tefuryltrione, tembotrione, thiencarbazone, topramezone, (3-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxy]-pyridin-2-yloxy)-acetic acid ethyl ester, 6-amino-5-chloro-2-cyclopropyl-pyrimidine-4-carboxylic acid methyl ester, 6-chloro-3-(2-cyclopropyl-6-methyl-phenoxy)-pyridazin-4-ol, 4-amino-3-chloro-6-(4-chloro-phenyl)-5-fluoro-pyridine-2-carboxylic acid, 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)-pyridine-2-carboxylic acid methyl ester, and 4-amino-3-chloro-6-(4-chloro-3-dimethylamino-2-fluoro-phenyl)-pyridine-2-carboxylic acid methyl ester.





O) Insecticides





    • organo(thio)phosphates: acephate, azamethiphos, azinphos-methyl, chlorpyrifos, chlorpyrifos-methyl, chlorfenvinphos, diazinon, dichlorvos, dicrotophos, dimethoate, disulfoton, ethion, fenitrothion, fenthion, isoxathion, malathion, methamidophos, methidathion, methyl-parathion, mevinphos, monocrotophos, oxydemeton-methyl, paraoxon, parathion, phenthoate, phosalone, phosmet, phosphamidon, phorate, phoxim, pirimiphos-methyl, profenofos, prothiofos, sulprophos, tetrachlorvinphos, terbufos, triazophos, trichlorfon;

    • carbamates: alanycarb, aldicarb, bendiocarb, benfuracarb, carbaryl, carbofuran, carbosulfan, fenoxycarb, furathiocarb, methiocarb, methomyl, oxamyl, pirimicarb, propoxur, thiodicarb, triazamate;

    • pyrethroids: allethrin, bifenthrin, cyfluthrin, cyhalothrin, cyphenothrin, cypermethrin, alphacypermethrin, beta-cypermethrin, zeta-cypermethrin, deltamethrin, esfenvalerate, etofenprox, fenpropathrin, fenvalerate, imiprothrin, lambda-cyhalothrin, permethrin, prallethrin, pyrethrin I and II, resmethrin, silafluofen, tau-fluvalinate, tefluthrin, tetramethrin, tralomethrin, transfluthrin, profluthrin, dimefluthrin;

    • insect growth regulators: a) chitin synthesis inhibitors: benzoylureas: chlorfluazuron, cyramazin, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, teflubenzuron, triflumuron; buprofezin, diofenolan, hexythiazox, etoxazole, clofentazine; b) ecdysone antagonists: halofenozide, methoxyfenozide, tebufenozide, azadirachtin; c) juvenoids: pyriproxyfen, methoprene, fenoxycarb; d) lipid biosynthesis inhibitors: spirodiclofen, spiromesifen, spirotetramat;

    • nicotinic receptor agonists/antagonists compounds: clothianidin, dinotefuran, flupyradifurone, imidacloprid, thiamethoxam, nitenpyram, acetamiprid, thiacloprid, 1-2-chlorothiazol-5-ylmethyl)-2-nitrimino-3,5-dimethyl-[1,3,5]triazinane;

    • GABA antagonist compounds: endosulfan, ethiprole, fipronil, vaniliprole, pyrafluprole, pyriprole, 5-amino-1-(2,6-dichloro-4-methyl-phenyl)-4-sulfinamoyl-1H-pyrazole-3-carbothioic acid amide;

    • macrocyclic lactone insecticides: abamectin, emamectin, milbemectin, lepimectin, spinosad, spinetoram;

    • mitochondrial electron transport inhibitor (METI) I acaricides: fenazaquin, pyridaben, tebufenpyrad, tolfenpyrad, flufenerim;

    • METI II and III compounds: acequinocyl, fluacyprim, hydramethylnon;

    • Uncouplers: chlorfenapyr;

    • oxidative phosphorylation inhibitors: cyhexatin, diafenthiuron, fenbutatin oxide, propargite; moulting disruptor compounds: cryomazine;

    • mixed function oxidase inhibitors: piperonyl butoxide;

    • sodium channel blockers: indoxacarb, metaflumizone;

    • ryanodine receptor inhibitors: chlorantraniliprole, cyantraniliprole, flubendiamide, N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(difluoromethyl)pyrazole-3-carboxamide; N-[4,6-dibromo-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-cyano-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; N-[4,6-dibromo-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide);

    • others: benclothiaz, bifenazate, cartap, flonicamid, pyridalyl, pymetrozine, sulfur, thiocyclam, cyenopyrafen, flupyrazofos, cyflumetofen, amidoflumet, imicyafos, bistrifluron, pyrifluquinazon and 1,1′-[(3S,4R,4aR,6S,6aS,12R,12aS,12bS)-4-[[(2-cyclopropylacetyl)oxy]methyl]-1,3,4,4a,5,6,6a,12,12a,12b-decahydro-12-hydroxy-4,6a,12b-trimethyl-11-oxo-9-(3-pyridinyl)-2H,11H-naphtho[2,1-b]pyrano[3,4-e]pyran-3,6-diyl]cyclopropaneacetic acid ester.





The present invention furthermore relates to compositions comprising a compound I (component 1) and at least one further active substance useful for plant protection, e.g. selected from the groups A) to O) (component 2), in particular one further fungicide, e.g. fungicide from the groups A) to K), as described above, and if desired one suitable solvent or solid carrier. Those compositions are of particular interest, since many of them at the same application rate show higher efficiencies against harmful fungi. Furthermore, combating harmful fungi with a compristion comprising a compound I and a fungicide from groups A) to K), as described above, is more efficient than combating those fungi with individual compounds I or individual fungicides from groups A) to K). By applying compounds I together with at least one active substance from groups A) to O) a synergistic effect can be obtained, i.e. more then simple addition of the individual effects is obtained (synergistic compositions).


This can be obtained by applying the compounds I and at least one further active substance simultaneously, either jointly (e.g. as tank-mix) or seperately, or in succession, wherein the time interval between the individual applications is selected to ensure that the active substance applied first still occurs at the site of action in a sufficient amount at the time of application of the further active substance(s). The order of application is not essential for working of the present invention.


When applying a compound of the present invention and a pesticide II sequentially the time between both applications may vary e.g. between 2 hours to 7 days. Also a broader range is possible ranging from 0.25 hour to 30 days, preferably from 0.5 hour to 14 days, particularly from 1 hour to 7 days or from 1.5 hours to 5 days, even more preferred from 2 hours to 1 day. In case of a composition or mixture comprising a pesticide II selected from group L), it is preferred that the pesticide II is applied as last treatment.


According to the invention, the solid material (dry matter) of the biopesticides (with the exception of oils such as Neem oil, Tagetes oil, etc.) are considered as active components (e.g. to be obtained after drying or evaporation of the extraction medium or the suspension medium in case of liquid formulations of the microbial pesticides).


In accordance with the present invention, the weight ratios and percentages used herein for a biological extract such as Quillay extract are based on the total weight of the dry content (solid material) of the respective extract(s).


The total weight ratios of compositions comprising at least one microbial pesticide in the form of viable microbial cells including dormant forms, can be determined using the amount of CFU of the respective microorganism to calculate the total weight of the respective active component with the following equation that 1×109 CFU equals one gram of total weight of the respective active component. Colony forming unit is measure of viable microbial cells, in particular fungal and bacterial cells. In addition, here “CFU” may also be understood as the number of (juvenile) individual nematodes in case of (entomopathogenic) nematode biopesticides, such as Steinernema feltiae.


In the binary mixtures and compositions according to the invention the weight ratio of the component 1) and the component 2) generally depends from the properties of the active components used, usually it is in the range of from 1:100 to 100:1, regularly in the range of from 1:50 to 50:1, preferably in the range of from 1:20 to 20:1, more preferably in the range of from 1:10 to 10:1, even more preferably in the range of from 1:4 to 4:1 and in particular in the range of from 1:2 to 2:1.


According to a further embodiments of the binary mixtures and compositions, the weight ratio of the component 1) and the component 2) usually is in the range of from 1000:1 to 1:1, often in the range of from 100:1 to 1:1, regularly in the range of from 50:1 to 1:1, preferably in the range of from 20:1 to 1:1, more preferably in the range of from 10:1 to 1:1, even more preferably in the range of from 4:1 to 1:1 and in particular in the range of from 2:1 to 1:1.


According to a further embodiments of the binary mixtures and compositions, the weight ratio of the component 1) and the component 2) usually is in the range of from 1:1 to 1:1000, often in the range of from 1:1 to 1:100, regularly in the range of from 1:1 to 1:50, preferably in the range of from 1:1 to 1:20, more preferably in the range of from 1:1 to 1:10, even more preferably in the range of from 1:1 to 1:4 and in particular in the range of from 1:1 to 1:2.


In the ternary mixtures, i.e. compositions according to the invention comprising the component 1) and component 2) and a compound III (component 3), the weight ratio of component 1) and component 2) depends from the properties of the active substances used, usually it is in the range of from 1:100 to 100:1, regularly in the range of from 1:50 to 50:1, preferably in the range of from 1:20 to 20:1, more preferably in the range of from 1:10 to 10:1 and in particular in the range of from 1:4 to 4:1, and the weight ratio of component 1) and component 3) usually it is in the range of from 1:100 to 100:1, regularly in the range of from 1:50 to 50:1, preferably in the range of from 1:20 to 20:1, more preferably in the range of from 1:10 to 10:1 and in particular in the range of from 1:4 to 4:1.


Any further active components are, if desired, added in a ratio of from 20:1 to 1:20 to the component 1).


These ratios are also suitable for inventive mixtures applied by seed treatment.


In compositions according to the invention comprising one compound I (component 1) and one further pesticidally active substance (component 2), e.g. one active substance from groups A) to K), the weight ratio of component 1 and component 2 generally depends from the properties of the active substances used, usually it is in the range of from 1:100 to 100:1, regularly in the range of from 1:50 to 50:1, preferably in the range of from 1:20 to 20:1, more preferably in the range of from 1:10 to 10:1 and in particular in the range of from 1:3 to 3:1.


In compositions according to the invention comprising one compound I (component 1) and a first further pesticidally active substance (component 2) and a second further pesticidally active substance (component 3), e.g. two active substances from groups A) to K), the weight ratio of component 1 and component 2 depends from the properties of the active substances used, preferably it is in the range of from 1:50 to 50:1 and particularly in the range of from 1:10 to 10:1, and the weight ratio of component 1 and component 3 preferably is in the range of from 1:50 to 50:1 and particularly in the range of from 1:10 to 10:1.


Preference is also given to compositions comprising a compound I (component 1) and at least one active substance selected from group A) (component 2) and particularly selected from azoxystrobin, dimoxystrobin, fluoxastrobin, kresoxim-methyl, orysastrobin, picoxystrobin, pyraclostrobin, trifloxystrobin; famoxadone, fenamidone; benzovindiflupyr, bixafen, boscalid, fluopyram, fluxapyroxad, isopyrazam, penflufen, penthiopyrad, sedaxane; ametoctradin, cyazofamid, fluazinam, fentin salts, such as fentin acetate.


Preference is given to compositions comprising a compound of formula I (component 1) and at least one active substance selected from group B) (component 2) and particularly selected from cyproconazole, difenoconazole, epoxiconazole, fluquinconazole, flusilazole, flutriafol, metconazole, myclobutanil, penconazole, propiconazole, prothioconazole, triadimefon, triadimenol, tebuconazole, tetraconazole, triticonazole, prochloraz, fenarimol, triforine; dodemorph, fenpropimorph, tridemorph, fenpropidin, spiroxamine; fenhexamid.


Preference is given to compositions comprising a compound of formula I (component 1) and at least one active substance selected from group C) (component 2) and particularly selected from metalaxyl, (metalaxyl-M) mefenoxam, ofurace.


Preference is given to compositions comprising a compound of formula I (component 1) and at least one active substance selected from group D) (component 2) and particularly selected from benomyl, carbendazim, thiophanate-methyl, ethaboxam, fluopicolide, zoxamide, metrafenone, pyriofenone.


Preference is also given to compositions comprising a compound I (component 1) and at least one active substance selected from group E) (component 2) and particularly selected from cyprodinil, mepanipyrim, pyrimethanil.


Preference is also given to compositions comprising a compound I (component 1) and at least one active substance selected from group F) (component 2) and particularly selected from iprodione, fludioxonil, vinclozolin, quinoxyfen.


Preference is also given to compositions comprising a compound I (component 1) and at least one active substance selected from group G) (component 2) and particularly selected from dimethomorph, flumorph, iprovalicarb, benthiavalicarb, mandipropamid, propamocarb.


Preference is also given to compositions comprising a compound I (component 1) and at least one active substance selected from group H) (component 2) and particularly selected from copper acetate, copper hydroxide, copper oxychloride, copper sulfate, sulfur, mancozeb, metiram, propineb, thiram, captafol, folpet, chlorothalonil, dichlofluanid, dithianon.


Preference is also given to compositions comprising a compound I (component 1) and at least one active substance selected from group I) (component 2) and particularly selected from carpropamid and fenoxanil.


Preference is also given to compositions comprising a compound I (component 1) and at least one active substance selected from group J) (component 2) and particularly selected from acibenzolar-S-methyl, probenazole, tiadinil, fosetyl, fosetyl-aluminium, H3PO3 and salts thereof.


Preference is also given to compositions comprising a compound I (component 1) and at least one active substance selected from group K) (component 2) and particularly selected from cymoxanil, proquinazid and N-methyl-2-{1-[(5-methyl-3-trifluoromethyl-1H-pyrazol-1-yl)-acetyl]-piperidin-4-yl}-N-[(1R)-1,2,3,4-tetrahydronaphthalen-1-yl]-4-thiazolecarboxamide.


The biopesticides from group L) of pesticides II, their preparation and their pesticidal activity e.g. against harmful fungi or insects are known (e-Pesticide Manual V 5.2 (ISBN 978 1 901396 85 0) (2008-2011); http://www.epa.gov/opp00001/biopesticides/, see product lists therein; http://www.omri.org/omri-lists, see lists therein; Bio-Pesticides Database BPDB http://sitem.herts.ac.uk/aeru/bpdb/, see A to Z link therein).


The biopesticides from group L1) and/or L2) may also have insecticidal, acaricidal, molluscidal, pheromone, nematicidal, plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity. The biopesticides from group L3) and/or L4) may also have fungicidal, bactericidal, viricidal, plant defense activator, plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity. The biopesticides from group L5) and/or L6) may also have fungicidal, bactericidal, viricidal, plant defense activator, insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity.


Many of these biopesticides are registered and/or are commercially available: aluminium silicate (Screen™ Duo from Certis LLC, USA), Agrobacterium radiobacter K1026 (e.g. NoGall® from Becker Underwood Pty Ltd., Australia), A. radiobacter K84 (Nature 280, 697-699, 1979; e.g. GallTroll® from AG Biochem, Inc., C, USA), Ampelomyces quisqualis M-10 (e.g. AQ 10® from Intrachem Bio GmbH & Co. KG, Germany), Ascophyllum nodosum (Norwegian kelp, Brown kelp) extract or filtrate (e.g. ORKA GOLD from Becker Underwood, South Africa; or Goemar® from Laboratoires Goemar, France), Aspergillus flavus NRRL 21882 isolated from a peanut in Georgia in 1991 by the USDA, National Peanut Research Laboratory (e.g. in Afla-Guard® from Syngenta, CH), mixtures of Aureobasidium pullulans DSM14940 and DSM 14941 (e.g. blastospores in BlossomProtect® from bio-ferm GmbH, Germany), Azospirillum amazonense BR 11140 (SpY2T) (Proc. 9th Int. and 1st Latin American PGPR meeting, Quimara, Medellin, Colombia 2012, p. 60, ISBN 978-958-46-0908-3), A. brasilense AZ39 (Eur. J. Soil Biol 45(1), 28-35, 2009), A. brasilense XOH (e.g. AZOS from Xtreme Gardening, USA or RTI Reforestation Technologies International; USA), A. brasilense BR 11002 (Proc. 9th Int. and 1st Latin American PGPR meeting, Quimara, Medellin, Colombia 2012, p. 60, ISBN 978-958-46-0908-3), A. brasilense BR 11005 (SP245; e.g. in GELFIX Gramineas from BASF Agricultural Specialties Ltd., Brazil), A. lipoferum BR 11646 (Sp31) (Proc. 9th Int. and 1st Latin American PGPR meeting, Quimara, Medellin, Colombia 2012, p. 60), Bacillus amyloliquefaciens FZB42 (e.g. in RhizoVital® 42 from AbiTEP GmbH, Berlin, Germany), B. amyloliquefaciens IN937a (J. Microbiol. Biotechnol. 17(2), 280-286, 2007; e.g. in BioYield® from Gustafson LLC, TX, USA), B. amyloliquefaciens IT-45 (CNCM 1-3800) (e.g. Rhizocell C from ITHEC, France), B. amyloliquefaciens subsp. plantarum MBI600 (NRRL B-50595, deposited at United States Department of Agriculture) (e.g. Integral®, Subtilex® NG from Becker Underwood, USA), B. cereus CNCM 1-1562 (U.S. Pat. No. 6,406,690), B. firmus CNCM 1-1582 (WO 2009/126473, WO 2009/124707, U.S. Pat. No. 6,406,690; Votivo® from Bayer Crop Science LP, USA), B. pumilus GB34 (ATCC 700814; e.g. in YieldShield® from Gustafson LLC, TX, USA), and Bacillus pumilus KFP9F (NRRL B-50754) (e.g. in BAC-UP or FUSION-P from Becker Underwood South Africa), B. pumilus QST 2808 (NRRL B-30087) (e.g. Sonata® and Ballad® Plus from AgraQuest Inc., USA), B. subtilis GB03 (e.g. Kodiak® or BioYield® from Gustafson, Inc., USA; or Companion® from Growth Products, Ltd., White Plains, N.Y. 10603, USA), B. subtilis GB07 (Epic® from Gustafson, Inc., USA), B. subtilis QST-713 (NRRL B-21661 in Rhapsody®, Serenade® MAX and Serenade® ASO from AgraQuest Inc., USA), B. subtilis var. amyloliquefaciens FZB24 (e.g. Taegro® from Novozyme Biologicals, Inc., USA), B. subtilis var. amyloliquefaciens D747 (e.g. Double Nickel 55 from Certis LLC, USA), B. thuringiensis ssp. aizawai ABTS-1857 (e.g. in XenTari® from BioFa AG, Münsingen, Germany), B. t. ssp. aizawai SAN 401 I, ABG-6305 and ABG-6346, Bacillus t. ssp. israelensis AM65-52 (e.g. in VectoBac® from Valent BioSciences, IL, USA), Bacillus thuringiensis ssp. kurstaki SB4 (NRRL B-50753; e.g. Beta Pro® from Becker Underwood, South Africa), B. t. ssp. kurstaki ABTS-351 identical to HD-1 (ATCC SD-1275; e.g. in Dipel® DF from Valent BioSciences, IL, USA), B. t. ssp. kurstaki EG 2348 (e.g. in Lepinox® or Rapax® from CBC (Europe) S.r.I., Italy), B. t. ssp. tenebrionis DSM 2803 (EP 0 585 215 B1; identical to NRRL B-15939; Mycogen Corp.), B. t. ssp. tenebrionis NB-125 (DSM 5526; EP 0 585 215 B1; also referred to as SAN 418 I or ABG-6479; former production strain of Novo-Nordisk), B. t. ssp. tenebrionis NB-176 (or NB-176-1) a gamma-irridated, induced high-yielding mutant of strain NB-125 (DSM 5480; EP 585 215 B1; Novodor® from Valent BioSciences, Switzerland), Beauveria bassiana ATCC 74040 (e.g. in Naturalis® from CBC (Europe) S.r.I., Italy), B. bassiana DSM 12256 (US 200020031495; e.g. BioExpert® SC from Live Sytems Technology S.A., Colombia), B. bassiana GHA (BotaniGard® 22WGP from Laverlam Int. Corp., USA), B. bassiana PPRI 5339 (ARSEF number 5339 in the USDA ARS collection of entomopathogenic fungal cultures; NRRL 50757) (e.g. BroadBand® from Becker Underwood, South Africa), B. brongniartii (e.g. in Melocont® from Agrifutur, Agrianello, Italy, for control of cockchafer; J. Appl. Microbiol. 100(5),1063-72, 2006), Bradyrhizobium sp. (e.g. Vault® from Becker Underwood, USA), B. japonicum (e.g. VAULT® from Becker Underwood, USA), Candida oleophila 1-182 (NRRL Y-18846; e.g. Aspire® from Ecogen Inc., USA, Phytoparasitica 23(3), 231-234, 1995), C. oleophila strain O (NRRL Y-2317; Biological Control 51, 403-408, 2009), Candida saitoana (e.g. Biocure® (in mixture with lysozyme) and BioCoat® from Micro Flo Company, USA (BASF SE) and Arysta), Chitosan (e.g. ArmourZen® from BotriZen Ltd., NZ), Clonostachys rosea f. catenulata, also named Gliocladium catenulatum (e.g. isolate J 1446: Prestop® from Verdera Oy, Finland), Chromobacterium subtsugae PRAA4-1 isolated from soil under an eastern hemlock (Tsuga canadensis) in the Catoctin Mountain region of central Maryland (e.g. in GRANDEVO from Marrone Bio Innovations, USA), Coniothyrium minitans CON/M/91-08 (e.g. Contans® WG from Prophyta, Germany), Cryphonectria parasitica (e.g. Endothia parasitica from CNICM, France), Cryptococcus albidus (e.g. YIELD PLUS® from Anchor Bio-Technologies, South Africa), Cryptophlebia leucotreta granulovirus (CrIeGV) (e.g. in CRYPTEX from Adermatt Biocontrol, Switzerland), Cydia pomonella granulovirus (CpGV) V03 (DSM GV-0006; e.g. in MADEX Max from Andermatt Biocontrol, Switzerland), CpGV V22 (DSM GV-0014; e.g. in MADEX Twin from Adermatt Biocontrol, Switzerland), Delftia acidovorans RAY209 (ATCC PTA-4249; WO 2003/57861; e.g. in BIOBOOST from Brett Young, Winnipeg, Canada), Dilophosphora alopecuri (Twist Fungus from Becker Underwood, Australia), Ecklonia maxima (kelp) extract (e.g. KELPAK SL from Kelp Products Ltd, South Africa), formononetin (e.g. in MYCONATE from Plant Health Care plc, U.K.), Fusarium oxysporum (e.g. BIOFOX® from S.I.A.P.A., Italy, FUSACLEAN® from Natural Plant Protection, France), Glomus intraradices (e.g. MYC 4000 from ITHEC, France), Glomus intraradices RTI-801 (e.g. MYKOS from Xtreme Gardening, USA or RTI Reforestation Technologies International; USA), grapefruit seeds and pulp extract (e.g. BC-1000 from Chemie S.A., Chile), harpin (alpha-beta) protein (e.g. MESSENGER or HARP—N-Tek from Plant Health Care plc, U.K.; Science 257, 1-132, 1992), Heterorhabditis bacteriophaga (e.g. Nemasys® G from Becker Underwood Ltd., UK), Isaria fumosorosea Apopka-97 (ATCC 20874) (PFR-97™ from Certis LLC, USA), cis-jasmone (U.S. Pat. No. 8,221,736), laminarin (e.g. in VACCIPLANT from Laboratoires Goemar, St. Malo, France or Stahler SA, Switzerland), Lecanicillium longisporum KV42 and KV71 (e.g. VERTALEC® from Koppert BV, Netherlands), L. muscarium KV01 (formerly Verticillium lecanii) (e.g. MYCOTAL from Koppert BV, Netherlands), Lysobacter antibioticus 13-1 (Biological Control 45, 288-296, 2008), L. antibioticus HS124 (Curr. Microbiol. 59(6), 608-615, 2009), L. enzymogenes 3.1T8 (Microbiol. Res. 158, 107-115; Biological Control 31(2), 145-154, 2004), Metarhizium anisopliae var. acridum IMI 330189 (isolated from Ornithacris cavroisi in Niger; also NRRL 50758) (e.g. GREEN MUSCLE® from Becker Underwood, South Africa), M. a. var. acridum FI-985 (e.g. GREEN GUARD® SC from Becker Underwood Pty Ltd, Australia), M. anisopliae FI-1045 (e.g. BIOCANE® from Becker Underwood Pty Ltd, Australia), M. anisopliae F52 (DSM 3884, ATCC 90448; e.g. MET52® Novozymes Biologicals BioAg Group, Canada), M. anisopliae ICIPE 69 (e.g. METATHRIPOL from ICIPE, Nairobe, Kenya), Metschnikowia fructicola (NRRL Y-30752; e.g. SHEMER® from Agrogreen, Israel, now distributed by Bayer CropSciences, Germany; U.S. Pat. No. 6,994,849), Microdochium dimerum (e.g. ANTIBOT® from Agrauxine, France), Microsphaeropsis ochracea P130A (ATCC 74412 isolated from apple leaves from an abandoned orchard, St-Joseph-du-Lac, Quebec, Canada in 1993; Mycologia 94(2), 297-301, 2002), Muscodor albus QST 20799 originally isolated from the bark of a cinnamon tree in Honduras (e.g. in development products Muscudor™ or QRD300 from AgraQuest, USA), Neem oil (e.g. TRILOGY®, TRIACT® 70 EC from Certis LLC, USA), Nomuraea rileyi strains SA86101, GU87401, SR86151, CG128 and VA9101, Paecilomyces fumosoroseus FE 9901 (e.g. NO FLY™ from Natural Industries, Inc., USA), P. lilacinus 251 (e.g. in BioAct®/MeloCon® from Prophyta, Germany; Crop Protection 27, 352-361, 2008; originally isolated from infected nematode eggs in the Philippines), P. lilacinus DSM 15169 (e.g. NEMATA® SC from Live Systems Technology S.A., Colombia), P. lilacinus BCP2 (NRRL 50756; e.g. PL GOLD from Becker Underwood BioAg SA Ltd, South Africa), mixture of Paenibacillus alvei NAS6G6 (NRRL B-50755), Pantoea vagans (formerly agglomerans) C9-1 (originally isolated in 1994 from apple stem tissue; BlightBan C9-1® from NuFrams America Inc., USA, for control of fire blight in apple; J. Bacteriol. 192(24) 6486-6487, 2010), Pasteuria spp. ATCC PTA-9643 (WO 2010/085795), Pasteuria spp. ATCC SD-5832 (WO 2012/064527), P. nishizawae (WO 2010/80169), P. penetrans (U.S. Pat. No. 5,248,500), P. ramose (WO 2010/80619), P. thornea (WO 2010/80169), P. usgae (WO 2010/80169), Penicillium bilaiae (e.g. Jump Start® from Novozymes Biologicals BioAg Group, Canada, originally isolated from soil in southern Alberta; Fertilizer Res. 39, 97-103, 1994), Phlebiopsis gigantea (e.g. RotStop® from Verdera Oy, Finland), Pichia anomala WRL-076 (NRRL Y-30842; U.S. Pat. No. 8,206,972), potassium bicarbonate (e.g. Amicarb® fromm Stahler SA, Switzerland), potassium silicate (e.g. Sil-MATRIX™ from Certis LLC, USA), Pseudozyma flocculosa PF-A22 UL (e.g. Sporodex® from Plant Products Co. Ltd., Canada), Pseudomonas sp. DSM 13134 (WO 2001/40441, e.g. in PRORADIX from Sourcon Padena GmbH & Co. KG, Hechinger Str. 262, 72072 Tubingen, Germany), P. chloraphis MA 342 (e.g. in CERALL or CEDEMON from BioAgri AB, Uppsala, Sweden), P. fluorescens CL 145A (e.g. in ZEQUANOX from Marrone BioInnovations, Davis, Calif., USA; J. Invertebr. Pathol. 113(1):104-14, 2013), Pythium oligandrum DV 74 (ATCC 38472; e.g. POLYVERSUM® from Remeslo SSRO, Biopreparaty, Czech Rep. and GOWAN, USA; US 2013/0035230), Reynoutria sachlinensis extract (e.g. REGALIA® SC from Marrone Biolnnovations, Davis, Calif., USA), Rhizobium leguminosarum bv. phaseoli (e.g. RHIZO-STICK from Becker Underwood, USA), R. I. trifolii RP113-7 (e.g. DORMAL from Becker Underwood, USA; Appl. Environ. Microbiol. 44(5), 1096-1101), R. I. bv. viciae P1NP3Cst (also referred to as 1435; New Phytol 179(1), 224-235, 2008; e.g. in NODULATOR PL Peat Granule from Becker Underwood, USA; or in NODULATOR XL PL bfrom Becker Underwood, Canada), R. I. bv. viciae SU303 (e.g. NODULAID Group E from Becker Underwood, Australia), R. I. bv. viciae WSM1455 (e.g. NODULAID Group F from Becker Underwood, Australia), R. tropici SEMIA 4080 (identical to PRF 81; Soil Biology & Biochemistry 39, 867-876, 2007), Sinorhizobium meliloti MSDJ0848 (INRA, France) also referred to as strain 2011 or RCR2011 (Mol Gen Genomics (2004) 272: 1-17; e.g. DORMAL ALFALFA from Becker Underwood, USA; NITRAGINO Gold from Novozymes Biologicals BioAg Group, Canada), Sphaerodes mycoparasitica IDAC 301008-01 (WO 2011/022809), Steinernema carpocapsae (e.g. MILLENIUMO from Becker Underwood Ltd., UK), S. feltiae (NEMASHIELDO from BioWorks, Inc., USA; NEMASYSO from Becker Underwood Ltd., UK), S. kraussei L137 (NEMASYSO L from Becker Underwood Ltd., UK), Streptomyces griseoviridis K61 (e.g. MYCOSTOPO from Verdera Oy, Espoo, Finland; Crop Protection 25, 468-475, 2006), S. lydicus WYEC 108 (e.g. Actinovate0 from Natural Industries, Inc., USA, U.S. Pat. No. 5,403,584), S. violaceusniger YCED-9 (e.g. DT-9® from Natural Industries, Inc., USA, U.S. Pat. No. 5,968,503), Talaromyces flavus V117b (e.g. PROTUSO from Prophyta, Germany), Trichoderma asperellum SKT-1 (e.g. ECO-HOPE® from Kumiai Chemical Industry Co., Ltd., Japan), T. asperellum ICC012 (e.g. in TENET WP, REMDIER WP, BIOTEN WP from Isagro N.C., USA, BIO-TAM from AgraQuest, USA), T. atroviride LC52 (e.g. SENTINEL® from Agrimm Technologies Ltd, NZ), T. atroviride CNCM 1-1237 (e.g. in Esquive WG from Agrauxine S.A., France, e.g. against pruning wound diseases on vine and plant root pathogens), T. fertile JM41 R (NRRL 50759; e.g. RICHPLUS™ from Becker Underwood Bio Ag SA Ltd, South Africa), T. gamsii ICC080 (e.g. in TENET WP, REMDIER WP, BIOTEN WP from Isagro N.C., USA, BIO-TAM from AgraQuest, USA), T. harzianum T-22 (e.g. PLANTSHIELDO der Firma BioWorks Inc., USA), T. harzianum TH 35 (e.g. ROOT PRO® from Mycontrol Ltd., Israel), T. harzianum T-39 (e.g. TRICHODEXO and TRICHODERMA 2000® from Mycontrol Ltd., Israel and Makhteshim Ltd., Israel), T. harzianum and T. viride (e.g. TRICHOPEL from Agrimm Technologies Ltd, NZ), T. harzianum ICC012 and T. viride ICC080 (e.g. REMEDIERO WP from Isagro Ricerca, Italy), T. polysporum and T. harzianum (e.g. BINABO from BINAB BioInnovation AB, Sweden), T. stromaticum (e.g. TRICOVABO from C.E.P.L.A.C., Brazil), T. virens GL-21 (also named Gliocladium virens) (e.g. SOILGARDO from Certis LLC, USA), T. viride (e.g. TRIECO® from Ecosense Labs. (India) Pvt. Ltd., Indien, BIO-CURE® F from T. Stanes & Co. Ltd., Indien), T. viride TV1 (e.g. T. viride TV1 from Agribiotec srl, Italy) and Ulocladium oudemansii HRU3 (e.g. in BOTRY-ZEN® from Botry-Zen Ltd, NZ).


Strains can be sourced from genetic resource and deposition centers: American Type Culture Collection, 10801 University Blvd., Manassas, Va. 20110-2209, USA (strains with ATCC prefic); CABI Europe—International Mycological Institute, Bakeham Lane, Egham, Surrey, TW20 9TYNRRL, UK (strains with prefices CABI and IMI); Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Uppsalaan 8, PO Box 85167, 3508 AD Utrecht, Netherlands (strains with prefic CBS); Division of Plant Industry, CSIRO, Canberra, Australia (strains with prefix CC); Collection Nationale de Cultures de Microorganismes, Institut Pasteur, 25 rue du Docteur Roux, F-75724 PARIS Cedex 15 (strains with prefix CNCM); Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH, Inhoffenstraβe 7 B, 38124 Braunschweig, Germany (strains with prefix DSM); International Depositary Authority of Canada Collection, Canada (strains with prefix IDAC); Interntional Collection of Micro-orgniasms from Plants, Landcare Research, Private Bag 92170, Auckland Mail Centre, Auckland 1142, New Zealand (strans with prefix ICMP); IITA, PMB 5320, Ibadan, Nigeria (straisn with prefix IITA); The National Collections of Industrial and Marine Bacteria Ltd., Torry Research Station, P.O. Box 31, 135 Abbey Road, Aberdeen, AB9 8DG, Scotland (strains with prefix NCIMB); ARS Culture Collection of the National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, Ill. 61604, USA (strains with prefix NRRL); Department of Scientific and Industrial Research Culture Collection, Applied Biochemistry Division, Palmerston North, New Zealand (strains with prefix NZP); FEPAGRO-Fundaão Estadual de Pesquisa Agropecuária, Rua Gonsalves Dias, 570, Bairro Menino Deus, Porto Alegre/RS, Brazil (strains with prefix SEMIA); SARDI, Adelaide, South Australia (strains with prefix SRDI); U.S. Department of Agriculture, Agricultural Research Service, Soybean and Alfalfa Research Laboratory, BARC-West, 10300 Baltimore Boulevard, Building 011, Room 19-9, Beltsville, Md. 20705, USA (strains with prefix USDA: Beltsville Rhizobium Culture Collection Catalog March 1987 USDA-ARS ARS-30:


http://pdf.usaid.gov/pdf_docs/PNAAW891.pdf); and Murdoch University, Perth, Western Australia (strains with prefix WSM). Further strains may be found at the Global catalogue of Microorganisms: http://gcm.wfcc.info/ and


http://www.landcareresearch.co.nz/resources/collections/icmp and further references to strain collections and their prefixes at http://refs.wdcm.org/collections.htm.



Bacillus amyloliquefaciens subsp. plantarum MBI600 (NRRL B-50595) is deposited under accession number NRRL B-50595 with the strain designation Bacillus subtilis 1430 (and identical to NCIMB 1237). Recently, MBI 600 has been re-classified as Bacillus amyloliquefaciens subsp. plantarum based on polyphasic testing which combines classical microbiological methods relying on a mixture of traditional tools (such as culture-based methods) and molecular tools (such as genotyping and fatty acids analysis). Thus, Bacillus subtilis MBI600 (or MBI 600 or MBI-600) is identical to Bacillus amyloliquefaciens subsp. plantarum MBI600, formerly Bacillus subtilis MBI600. Bacillus amyloliquefaciens MBI600 is known as plant growth-promoting rice seed treatment from Int. J. Microbiol. Res. 3(2) (2011), 120-130 and further described e.g. in US 2012/0149571 A1. This strain MBI600 is e.g. commercially available as liquid formulation product INTEGRAL® (Becker-Underwood Inc., USA).



Bacillus subtilis strain FB17 was originally isolated from red beet roots in North America (System Appl. Microbiol 27 (2004) 372-379). This B. subtilis strain promotes plant health (US 2010/0260735 A1; WO 2011/109395 A2). B. subtilis FB17 has also been deposited at ATCC under number PTA-11857 on Apr. 26, 2011. Bacillus subtilis strain FB17 may be referred elsewhere to as UD1022 or UD10-22.



Bacillus amyloliquefaciens AP-136 (NRRL B-50614), B. amyloliquefaciens AP-188 (NRRL B-50615), B. amyloliquefaciens AP-218 (NRRL B-50618), B. amyloliquefaciens AP-219 (NRRL B-50619), B. amyloliquefaciens AP-295 (NRRL B-50620), B. japonicum SEMIA 5079 (e.g. Gelfix 5 or Adhere 60 from Nitral Urbana Laoboratories, Brazil, a BASF Company), B. japonicum SEMIA 5080 (e.g. GELFIX 5 or ADHERE 60 from Nitral Urbana Laoboratories, Brazil, a BASF Company), B. mojavensis AP-209 (NRRL B-50616), B. solisalsi AP-217 (NRRL B-50617), B. pumilus strain INR-7 (otherwise referred to as BU-F22 (NRRL B-50153) and BU-F33 (NRRL B-50185)), B. simplex ABU 288 (NRRL B-50340) and B. amyloliquefaciens subsp. plantarum MBI600 (NRRL B-50595) have been mentioned i.a. in US patent appl. 20120149571, U.S. Pat. No. 8,445,255, WO 2012/079073. Bradyrhizobium japonicum USDA 3 is known from U.S. Pat. No. 7,262,151.


Jasmonic acid or salts (jasmonates) or derivatives include without limitation potassium jasmonate, sodium jasmonate, lithium jasmonate, ammonium jasmonate, dimethylammonium jasmonate, isopropylammonium jasmonate, diolammonium jasmonate, diethtriethanolammonium jasmonate, jasmonic acid methyl ester, jasmonic acid amide, jasmonic acid methylamide, jasmonic acid-L-amino acid (amide-linked) conjugates (e.g., conjugates with L-isoleucine, Lvaline, L-leucine, or L-phenylalanine), 12-oxo-phytodienoic acid, coronatine, coronafacoyl-Lserine, coronafacoyl-L-threonine, methyl esters of 1-oxo-indanoyl-isoleucine, methyl esters of 1-oxo-indanoyl-leucine, coronalon (2-[(6-ethyl-1-oxo-indane-4-carbonyl)-amino]-3-methyl-pentanoic acid methyl ester), linoleic acid or derivatives thereof and cis-jasmone, or combinations of any of the above.


Humates are humic and fulvic acids extracted from a form of lignite coal and clay, known as leonardite. Humic acids are organic acids that occur in humus and other organically derived materials such as peat and certain soft coal. They have been shown to increase fertilizer efficiency in phosphate and micro-nutrient uptake by plants as well as aiding in the development of plant root systems.


According to one embodiment, the microbial pesticides selected from groups L1), L3) and L5) embrace not only the isolated, pure cultures of the respective micro-organism as defined herein, but also its cell-free extract, its suspensions in a whole broth culture or as a metabolitecontaining supernatant or a purified metabolite obtained from a whole broth culture of the microorganism or microorganism strain.


According to a further embodiment, the microbial pesticides selected from groups L1), L3 and L5) embraces not only the isolated, pure cultures of the respective micro-organism as defined herein, but also a cell-free extract thereof or at least one metabolite thereof, and/or a mutant of the respective micro-organism having all the identifying characteristics thereof and also a cell-free extract or at least one metabolite of the mutant.


“Whole broth culture” refers to a liquid culture containing both cells and media.


“Supernatant” refers to the liquid broth remaining when cells grown in broth are removed by centrifugation, filtration, sedimentation, or other means well known in the art.


The term “cell-free extract” refers to an extract of the vegetative cells, spores and/or the whole culture broth of a microorganism comprising cellular metabolites produced by the respective microorganism obtainable by cell disruption methods known in the art such as solvent-based (e.g. organic solvents such as alcohols sometimesin combination with suitable salts), temperature-based, application of shear forces, cell disrupotion with an ultrasonicator. The desired extract may be concentrated by conventional concentration techniques such as drying, evaporation, centrifugation or alike. Certain washing steps using organic solents and/or water-based media may also be applied to the crude extract preferably prior to use.


The term “metabolite” refers to any compound, substance or byproduct produced by a microorganism (such as fungi and bacteria) that has improves plant growth, water use efficiency of the plant, plant health, plant appearance, or the population of beneficial microorganisms in the soil around the plant activity.


The term “mutant” refers a microorganism obtained by direct mutant selection but also includes microorganisms that have been further mutagenized or otherwise manipulated (e.g., via the introduction of a plasmid). Accordingly, embodiments include mutants, variants, and or derivatives of the respective microorganism, both naturally occurring and artificially induced mutants. For example, mutants may be induced by subjecting the microorganism to known mutagens, such as N-methyl-nitrosoguanidine, using conventional methods.


Suitable bactericides are bronopol and isothiazolinone derivatives such as alkylisothiazolinones and benzisothiazolinones. Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin. Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids. Suitable colorants (e.g. in red, blue, or green) are pigments of low water solubility and water-soluble dyes. Examples are inorganic colorants (e.g. iron oxide, titan oxide, iron hexacyanoferrate) and organic colorants (e.g. alizarin-, azo- and phthalocyanine colorants). Suitable tackifiers or binders are polyvinylpyrrolidons, polyvinylacetates, polyvinyl alcohols, polyacrylates, biological or synthetic waxes, and cellulose ethers.


In the case of mixtures comprising microbial pesticides II selected from groups L1), L3) and L5), the microorganisms as used according to the invention can be cultivated continuously or discontinuously in the batch process or in the fed batch or repeated fed batch process. A review of known methods of cultivation will be found in the textbook by Chmiel (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (Bioreaktoren and periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)).


When living microorganisms, such as pesticides II from groups L1), L3) and L5), form part of the compositions, such compositions can be prepared as compositions comprising besides the active ingredients at least one auxiliary (inert ingredient) by usual means (see e.g. H. D. Burges: Formulation of Micobial Biopestcides, Springer, 1998). Suitable customary types of such compositions are suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof. Examples for composition types are suspensions (e.g. SC, OD, FS), capsules (e.g. CS, ZC), pastes, pastilles, wettable powders or dusts (e.g. WP, SP, WS, DP, DS), pressings (e.g. BR, TB, DT), granules (e.g. WG, SG, GR, FG, GG, MG), insecticidal articles (e.g. LN), as well as gel formulations for the treatment of plant propagation materials such as seeds (e.g. GF). Herein, it has to be taken into account that each formulation type or choice of auxiliary should not influence the viability of the microorganism during storage of thecomposition and when finally applied to the soil, plant or plant propagation material. Suitable formulations are e.g. mentioned in WO 2008/002371, U.S. Pat. No. 6,955,912, U.S. Pat. No. 5,422,107.


Examples for suitable auxiliaries are those mentioned earlier herein, wherein it must be taken care that choice and amounts of such auxiliaries should not influence the viability of the microbial pesticides in the composition. Especially for bactericides and solvents, compatibility with the respective microorganism of the respective microbial pesticide has to be taken into account. In addition, compositions with microbial pesticides may further contain stabilizers or nutrients and UV protectants. Suitable stabilzers or nutrients are e.g. alpha-tocopherol, trehalose, glutamate, potassium sorbate, various sugars like glucose, sucrose, lactose and maltodextrine (H. D. Burges: Formulation of Micobial Biopestcides, Springer, 1998). Suitable UV protectants are e.g. inorganic compouns like titan dioxide, zinc oxide and iron oxide pigments or organic compounds like benzophenones, benzotriazoles and phenyltriazines. The compositions may in addition to auxiliaries mentioned for compositions comprising compounds I herein optionally comprise 0.1—80% stabilizers or nutrients and 0.1-10% UV protectants.


When mixtures comprising microbial pesticides are employed in crop protection, the application rates preferably range from about 1×106 to 5×1015 (or more) CFU/ha. Preferably, the spore concentration is about 1×107 to about 1×1011 CFU/ha. In the case of (entomopathogenic) nematodes as microbial pesticides (e.g. Steinernema feltiae), the application rates preferably range inform about 1×105 to 1×1012 (or more), more preferably from 1×108 to 1×1011, even more preferably from 5×108 to 1×1010 individuals (e.g. in the form of eggs, juvenile or any other live stages, preferably in an infective juvenile stage) per ha.


When mixtures comprising microbial pesticides are employed in seed treatment, the application rates with respect to plant propagation material preferably range from about 1×106 to 1×1012 (or more) CFU/seed. Preferably, the concentration is about 1×106 to about 1×1011 CFU/seed. In the case of the microbial pesticides II, the application rates with respect to plant propagation material also preferably range from about 1×107 to 1×1014 (or more) CFU per 100 kg of seed, preferably from 1×109 to about 1×1011 CFU per 100 kg of seed.


Accordingly, the present invention furthermore relates to compositions comprising one compound I (component 1) and one further active substance (component 2), which further active substance is selected from the column “Component 2” of the lines C-1 to C-398 of Table C.


A further embodiment relates to the compositions C-1 to C-398 listed in Table C, wherein one row of Table C corresponds in each case to a composition comprising one of the compounds I that are individualized compounds of formula I (component 1) and the respective further active substance from groups A) to O) (component 2) stated in the respective row. According to a preferred embodiment, the “individualized compound I” is one of the compounds as individualized in Tables 1a to 70a, Tables 1 b to 70b and Tables 1c to 70c or one of the inventive compounds as given in Table I. Preferably, the compositions described comprise the active substances in synergistically effective amounts.









TABLE C







Composition comprising one individualized compound of the present invention and one


further active substance from groups A) to O)









composition
Component 1
Component 2





C-1
one individualized compound I
Azoxystrobin


C-2
one individualized compound I
Coumethoxystrobin


C-3
one individualized compound I
Coumoxystrobin


C-4
one individualized compound I
Dimoxystrobin


C-5
one individualized compound I
Enestroburin


C-6
one individualized compound I
Fenaminstrobin


C-7
one individualized compound I
Fenoxystrobin/Flufenoxystrobin


C-8
one individualized compound I
Fluoxastrobin


C-9
one individualized compound I
Kresoxim-methyl


C-10
one individualized compound I
Metominostrobin


C-11
one individualized compound I
Orysastrobin


C-12
one individualized compound I
Picoxystrobin


C-13
one individualized compound I
Pyraclostrobin


C-14
one individualized compound I
Pyrametostrobin


C-15
one individualized compound I
Pyraoxystrobin


C-16
one individualized compound I
Pyribencarb


C-17
one individualized compound I
Trifloxystrobin


C-18
one individualized compound I
Triclopyricarb/Chlorodincarb


C-19
one individualized compound I
2-[2-(2,5-dimethyl-phenoxymethyl)-




phenyl]-3-methoxy-acrylic acid methyl




ester


C-20
one individualized compound I
2-(2-(3-(2,6-dichlorophenyl)-1-methyl-




allylideneaminooxymethyl)-phenyl)-




2-methoxyimino-N-methyl-acetamide


C-21
one individualized compound I
Benalaxyl


C-22
one individualized compound I
Benalaxyl-M


C-23
one individualized compound I
Benodanil


C-24
one individualized compound I
Benzovindiflupyr


C-25
one individualized compound I
Bixafen


C-26
one individualized compound I
Boscalid


C-27
one individualized compound I
Carboxin


C-28
one individualized compound I
Fenfuram


C-29
one individualized compound I
Fenhexamid


C-30
one individualized compound I
Flutolanil


C-31
one individualized compound I
Fluxapyroxad


C-32
one individualized compound I
Furametpyr


C-33
one individualized compound I
Isopyrazam


C-34
one individualized compound I
Isotianil


C-35
one individualized compound I
Kiralaxyl


C-36
one individualized compound I
Mepronil


C-37
one individualized compound I
Metalaxyl


C-38
one individualized compound I
Metalaxyl-M


C-39
one individualized compound I
Ofurace


C-40
one individualized compound I
Oxadixyl


C-41
one individualized compound I
Oxycarboxin


C-42
one individualized compound I
Penflufen


C-43
one individualized compound I
Penthiopyrad


C-44
one individualized compound I
Sedaxane


C-45
one individualized compound I
Tecloftalam


C-46
one individualized compound I
Thifluzamide


C-47
one individualized compound I
Tiadinil


C-48
one individualized compound I
2-Amino-4-methyl-thiazole-5-




carboxylic acid anilide


C-49
one individualized compound I
N-(4′-trifluoromethylthiobiphenyl-2-yl)-




3-difluoromethyl-1-methyl-1H-




pyrazole-4-carboxamide


C-50
one individualized compound I
N-(2-(1,3,3-trimethyl-butyl)-phenyl)-




1,3-dimethyl-5-fluoro-1H-pyrazole-




4-carboxamide


C-51
one individualized compound I
3-(difluoromethyl)-1-methyl-N-(1,1,3-




trimethylindan-4-yl)pyrazole-4-carbox-




amide


C-52
one individualized compound I
3-(trifluoromethyl)-1-methyl-N-(1,1,3-




trimethylindan-4-yl)pyrazole-4-carbox-




amide


C-53
one individualized compound I
1,3-dimethyl-N-(1,1,3-trimethylindan-




4-yl)pyrazole-4-carboxamide


C-54
one individualized compound I
3-(trifluoromethyl)-1,5-dimethyl-




N-(1,1,3-trimethylindan-4-yl)pyrazole-




4-carboxamide


C-55
one individualized compound I
3-(difluoromethyl)-1,5-dimethyl-




N-(1,1,3-trimethylindan-4-yl)pyrazole-




4-carboxamide


C-56
one individualized compound I
1,3,5-trimethyl-N-(1,1,3-




trimethylindan-4-yl)pyrazole-4-




carboxamide


C-57
one individualized compound I
Dimethomorph


C-58
one individualized compound I
Flumorph


C-59
one individualized compound I
Pyrimorph


C-60
one individualized compound I
Flumetover


C-61
one individualized compound I
Fluopicolide


C-62
one individualized compound I
Fluopyram


C-63
one individualized compound I
Zoxamide


C-64
one individualized compound I
Carpropamid


C-65
one individualized compound I
Diclocymet


C-66
one individualized compound I
Mandipropamid


C-67
one individualized compound I
Oxytetracyclin


C-68
one individualized compound I
Silthiofam


C-69
one individualized compound I
N-(6-methoxy-pyridin-3-yl) cyclopropanecarboxylic




acid amide


C-70
one individualized compound I
Azaconazole


C-71
one individualized compound I
Bitertanol


C-72
one individualized compound I
Bromuconazole


C-73
one individualized compound I
Cyproconazole


C-74
one individualized compound I
Difenoconazole


C-75
one individualized compound I
Diniconazole


C-76
one individualized compound I
Diniconazole-M


C-77
one individualized compound I
Epoxiconazole


C-78
one individualized compound I
Fenbuconazole


C-79
one individualized compound I
Fluquinconazole


C-80
one individualized compound I
Flusilazole


C-81
one individualized compound I
Flutriafol


C-82
one individualized compound I
Hexaconazol


C-83
one individualized compound I
Imibenconazole


C-84
one individualized compound I
Ipconazole


C-85
one individualized compound I
Metconazole


C-86
one individualized compound I
Myclobutanil


C-87
one individualized compound I
Oxpoconazol


C-88
one individualized compound I
Paclobutrazol


C-89
one individualized compound I
Penconazole


C-90
one individualized compound I
Propiconazole


C-91
one individualized compound I
Prothioconazole


C-92
one individualized compound I
Simeconazole


C-93
one individualized compound I
Tebuconazole


C-94
one individualized compound I
Tetraconazole


C-95
one individualized compound I
Triadimefon


C-96
one individualized compound I
Triadimenol


C-97
one individualized compound I
Triticonazole


C-98
one individualized compound I
Uniconazole


C-99
one individualized compound I
1-[rel-(2S;3R)-3-(2-chlorophenyl)-




2-(2,4-difluorophenyl)-oxiranylmethyl]-




5-thiocyanato-1H-[1,2,4]triazole,


C-100
one individualized compound I
2-[rel-(2S;3R)-3-(2-chlorophenyl)-




2-(2,4-difluorophenyl)-oxiranylmethyl]-




2H-[1,2,4]triazole-3-thiol


C-101
one individualized compound I
Cyazofamid


C-102
one individualized compound I
Amisulbrom


C-103
one individualized compound I
Imazalil


C-104
one individualized compound I
Imazalil-sulfate


C-105
one individualized compound I
Pefurazoate


C-106
one individualized compound I
Prochloraz


C-107
one individualized compound I
Triflumizole


C-108
one individualized compound I
Benomyl


C-109
one individualized compound I
Carbendazim


C-110
one individualized compound I
Fuberidazole


C-111
one individualized compound I
Thiabendazole


C-112
one individualized compound I
Ethaboxam


C-113
one individualized compound I
Etridiazole


C-114
one individualized compound I
Hymexazole


C-115
one individualized compound I
2-(4-Chloro-phenyl)-N-[4-(3,4-dimethoxy-




phenyl)-isoxazol-5-yl]-2-prop-2-




ynyloxy-acetamide


C-116
one individualized compound I
Fluazinam


C-117
one individualized compound I
Pyrifenox


C-118
one individualized compound I
3-[5-(4-Chloro-phenyl)-2,3-dimethyl-is-




oxazolidin-3-yl]-pyridine (Pyrisoxazole)


C-119
one individualized compound I
3-[5-(4-Methyl-phenyl)-2,3-dimethyl-




isoxazolid in-3-yl]-pyridine


C-120
one individualized compound I
Bupirimate


C-121
one individualized compound I
Cyprodinil


C-122
one individualized compound I
5-Fluorocytosine


C-123
one individualized compound I
5-Fluoro-2-(p-tolylmethoxy)pyrimidin-




4-amine


C-124
one individualized compound I
5-Fluoro-2-(4-fluorophenylmethoxy)-




pyrimidin-4-amine


C-125
one individualized compound I
Diflumetorim


C-126
one individualized compound I
(5,8-Difluoroquinazolin-4-yl)-{2-[2-fluoro-




4-(4-trifluoromethylpyridin-2-yloxy)-




phenyl]-ethyl}-amine


C-127
one individualized compound I
Fenarimol


C-128
one individualized compound I
Ferimzone


C-129
one individualized compound I
Mepanipyrim


C-130
one individualized compound I
Nitrapyrin


C-131
one individualized compound I
Nuarimol


C-132
one individualized compound I
Pyrimethanil


C-133
one individualized compound I
Triforine


C-134
one individualized compound I
Fenpiclonil


C-135
one individualized compound I
Fludioxonil


C-136
one individualized compound I
Aldimorph


C-137
one individualized compound I
Dodemorph


C-138
one individualized compound I
Dodemorph-acetate


C-139
one individualized compound I
Fenpropimorph


C-140
one individualized compound I
Tridemorph


C-141
one individualized compound I
Fenpropidin


C-142
one individualized compound I
Fluoroimid


C-143
one individualized compound I
Iprodione


C-144
one individualized compound I
Procymidone


C-145
one individualized compound I
Vinclozolin


C-146
one individualized compound I
Famoxadone


C-147
one individualized compound I
Fenamidone


C-148
one individualized compound I
Flutianil


C-149
one individualized compound I
Octhilinone


C-150
one individualized compound I
Probenazole


C-151
one individualized compound I
Fenpyrazamine


C-152
one individualized compound I
Acibenzolar-S-methyl


C-153
one individualized compound I
Ametoctradin


C-154
one individualized compound I
Amisulbrom


C-155
one individualized compound I
[(3S,6S,7R,8R)-8-benzyl-3-[(3-




isobutyryloxymethoxy-4-




methoxypyridine-2-carbonyl)amino]-6-




methyl-4,9-dioxo-[1,5]dioxonan-7-yl]




2-methylpropanoate


C-156
one individualized compound I
[(3S,6S,7R,8R)-8-benzyl-3-[(3-




acetoxy-4-methoxy-pyridine-2-




carbonyl)amino]-6-methyl-4,9-dioxo-




1,5-dioxonan-7-yl]




2-methylpropanoate


C-157
one individualized compound I
[(3S,6S,7R,8R)-8-benzyl-3-[[3-(acetoxymethoxy)-




4-methoxy-pyridine-




2-carbonyl]amino]-6-methyl-4,9-dioxo-




1,5-dioxonan-7-yl] 2-




methylpropanoate


C-158
one individualized compound I
[(3S,6S,7R,8R)-8-benzyl-3-[(3-isobutoxycarbonyloxy-




4-methoxy-pyridine-




2-carbonyl)amino]-6-methyl-4,9-dioxo-




1,5-dioxonan-7-yl] 2-




methylpropanoate


C-159
one individualized compound I
[(3S,6S,7R,8R)-8-benzyl-3-[[3-(1,3-




benzodioxol-5-ylmethoxy)-4-methoxy-




pyridine-2-carbonyl]amino]-6-methyl-




4,9-dioxo-1,5-dioxonan-7-yl] 2-methyl-




propanoate


C-160
one individualized compound I
(3S,6S,7R,8R)-3-[[(3-hydroxy-4-methoxy-




2-pyridinyl)carbonyl]amino]-




6-methyl-4,9-dioxo-8-(phenylmethyl)-




1,5-dioxonan-7-yl 2-methylpropanoate


C-161
one individualized compound I
Anilazin


C-162
one individualized compound I
Blasticidin-S


C-163
one individualized compound I
Captafol


C-164
one individualized compound I
Captan


C-165
one individualized compound I
Chinomethionat


C-166
one individualized compound I
Dazomet


C-167
one individualized compound I
Debacarb


C-168
one individualized compound I
Diclomezine


C-169
one individualized compound I
Difenzoquat,


C-170
one individualized compound I
Difenzoquat-methylsulfate


C-171
one individualized compound I
Fenoxanil


C-172
one individualized compound I
Folpet


C-173
one individualized compound I
Oxolinsäure


C-174
one individualized compound I
Piperalin


C-175
one individualized compound I
Proquinazid


C-176
one individualized compound I
Pyroquilon


C-177
one individualized compound I
Quinoxyfen


C-178
one individualized compound I
Triazoxid


C-179
one individualized compound I
Tricyclazole


C-180
one individualized compound I
2-Butoxy-6-iodo-3-propyl-chromen-4-




one


C-181
one individualized compound I
5-Chloro-1-(4,6-dimethoxy-pyrimidin-




2-yl)-2-methyl-1H-benzoimidazole


C-182
one individualized compound I
5-Chloro-7-(4-methyl-piperidin-1-yl)-




6-(2,4,6-trifluoro-phenyl)-[1,2,4]tri-




azolo[1,5-a]pyrimidine


C-183
one individualized compound I
Ferbam


C-184
one individualized compound I
Mancozeb


C-185
one individualized compound I
Maneb


C-186
one individualized compound I
Metam


C-187
one individualized compound I
Methasulphocarb


C-188
one individualized compound I
Metiram


C-189
one individualized compound I
Propineb


C-190
one individualized compound I
Thiram


C-191
one individualized compound I
Zineb


C-192
one individualized compound I
Ziram


C-193
one individualized compound I
Diethofencarb


C-194
one individualized compound I
Benthiavalicarb


C-195
one individualized compound I
Iprovalicarb


C-196
one individualized compound I
Propamocarb


C-197
one individualized compound I
Propamocarb hydrochlorid


C-198
one individualized compound I
Valifenalate


C-199
one individualized compound I
N-(1-(1-(4-cyanophenyl)ethanesulfonyl)-




but-2-yl) carbamic acid-(4-fluoro-




phenyl) ester


C-200
one individualized compound I
Dodine


C-201
one individualized compound I
Dodine free base


C-202
one individualized compound I
Guazatine


C-203
one individualized compound I
Guazatine-acetate


C-204
one individualized compound I
Iminoctadine


C-205
one individualized compound I
Iminoctadine-triacetate


C-206
one individualized compound I
Iminoctadine-tris(albesilate)


C-207
one individualized compound I
Kasugamycin


C-208
one individualized compound I
Kasugamycin-hydrochloride-hydrate


C-209
one individualized compound I
Polyoxine


C-210
one individualized compound I
Streptomycin


C-211
one individualized compound I
Validamycin A


C-212
one individualized compound I
Binapacryl


C-213
one individualized compound I
Dicloran


C-214
one individualized compound I
Dinobuton


C-215
one individualized compound I
Dinocap


C-216
one individualized compound I
Nitrothal-isopropyl


C-217
one individualized compound I
Tecnazen


C-218
one individualized compound I
Fentin salts


C-219
one individualized compound I
Dithianon


C-220
one individualized compound I
2,6-dimethyl-1H,5H-[1,4]dithiino




[2,3-c:5,6-c′]dipyrrole-




1,3,5,7(2H,6H)-tetraone


C-221
one individualized compound I
Isoprothiolane


C-222
one individualized compound I
Edifenphos


C-223
one individualized compound I
Fosetyl, Fosetyl-aluminium


C-224
one individualized compound I
Iprobenfos


C-225
one individualized compound I
Phosphorous acid (H3PO3) and derivatives


C-226
one individualized compound I
Pyrazophos


C-227
one individualized compound I
Tolclofos-methyl


C-228
one individualized compound I
Chlorothalonil


C-229
one individualized compound I
Dichlofluanid


C-230
one individualized compound I
Dichlorophen


C-231
one individualized compound I
Flusulfamide


C-232
one individualized compound I
Hexachlorbenzene


C-233
one individualized compound I
Pencycuron


C-234
one individualized compound I
Pentachlorophenol and salts


C-235
one individualized compound I
Phthalide


C-236
one individualized compound I
Quintozene


C-237
one individualized compound I
Thiophanate Methyl


C-238
one individualized compound I
Tolylfluanid


C-239
one individualized compound I
N-(4-chloro-2-nitro-phenyl)-N-ethyl-




4-methyl-benzenesulfonamide


C-240
one individualized compound I
Bordeaux mixture


C-241
one individualized compound I
Copper acetate


C-242
one individualized compound I
Copper hydroxide


C-243
one individualized compound I
Copper oxychloride


C-244
one individualized compound I
basic Copper sulfate


C-245
one individualized compound I
Sulfur


C-246
one individualized compound I
Biphenyl


C-247
one individualized compound I
Bronopol


C-248
one individualized compound I
Cyflufenamid


C-249
one individualized compound I
Cymoxanil


C-250
one individualized compound I
Diphenylamin


C-251
one individualized compound I
Metrafenone


C-252
one individualized compound I
Pyriofenone


C-253
one individualized compound I
Mildiomycin


C-254
one individualized compound I
Oxin-copper


C-255
one individualized compound I
Oxathiapiprolin


C-256
one individualized compound I
Prohexadione calcium


C-257
one individualized compound I
Spiroxamine


C-258
one individualized compound I
Tebufloquin


C-259
one individualized compound I
Tolylfluanid


C-260
one individualized compound I
N-(Cyclopropylmethoxyimino-(6-




difluoromethoxy-2,3-difluoro-phenyl)-




methyl)-2-phenyl acetamide


C-261
one individualized compound I
N′-(4-(4-chloro-3-trifluoromethyl-




phenoxy)-2,5-dimethyl-phenyl)-N-




ethyl-N-methyl formamidine


C-262
one individualized compound I
N′-(4-(4-fluoro-3-trifluoromethyl-




phenoxy)-2,5-dimethyl-phenyl)-N-




ethyl-N-methyl formamidine


C-263
one individualized compound I
N′-(2-methyl-5-trifluoromethyl-4-(3-tri-




methylsilanyl-propoxy)-phenyl)-N-




ethyl-N-methyl formamidine


C-264
one individualized compound I
N′-(5-difluoromethyl-2-methyl-4-(3-tri-




methylsilanyl-propoxy)-phenyl)-N-




ethyl-N-methyl formamidine


C-265
one individualized compound I
Methoxy-acetic acid 6-tert-butyl-8-




fluoro-2,3-dimethyl-quinolin-4-yl ester


C-266
one individualized compound I

Bacillus subtilis NRRL No. B-21661



C-267
one individualized compound I

Bacillus pumilus NRRL No. B-30087



C-268
one individualized compound I

Ulocladium oudemansii



C-269
one individualized compound I
Carbaryl


C-270
one individualized compound I
Carbofuran


C-271
one individualized compound I
Carbosulfan


C-272
one individualized compound I
Methomylthiodicarb


C-273
one individualized compound I
Bifenthrin


C-274
one individualized compound I
Cyfluthrin


C-275
one individualized compound I
Cypermethrin


C-276
one individualized compound I
alpha-Cypermethrin


C-277
one individualized compound I
zeta-Cypermethrin


C-278
one individualized compound I
Deltamethrin


C-279
one individualized compound I
Esfenvalerate


C-280
one individualized compound I
Lambda-cyhalothrin


C-281
one individualized compound I
Permethrin


C-282
one individualized compound I
Tefluthrin


C-283
one individualized compound I
Diflubenzuron


C-284
one individualized compound I
Flufenoxuron


C-285
one individualized compound I
Lufenuron


C-286
one individualized compound I
Teflubenzuron


C-287
one individualized compound I
Spirotetramate


C-288
one individualized compound I
Clothianidin


C-289
one individualized compound I
Dinotefuran


C-290
one individualized compound I
Imidacloprid


C-291
one individualized compound I
Thiamethoxam


C-292
one individualized compound I
Flupyradifurone


C-293
one individualized compound I
Acetamiprid


C-294
one individualized compound I
Thiacloprid


C-295
one individualized compound I
Endosulfan


C-296
one individualized compound I
Fipronil


C-297
one individualized compound I
Abamectin


C-298
one individualized compound I
Emamectin


C-299
one individualized compound I
Spinosad


C-300
one individualized compound I
Spinetoram


C-301
one individualized compound I
Hydramethylnon


C-302
one individualized compound I
Chlorfenapyr


C-303
one individualized compound I
Fenbutatin oxide


C-304
one individualized compound I
Indoxacarb


C-305
one individualized compound I
Metaflumizone


C-306
one individualized compound I
Flonicamid


C-307
one individualized compound I
Lubendiamide


C-308
one individualized compound I
Chlorantraniliprole


C-309
one individualized compound I
Cyazypyr (HGW86)


C-310
one individualized compound I
Cyflumetofen


C-311
one individualized compound I
Acetochlor


C-312
one individualized compound I
Dimethenamid


C-313
one individualized compound I
metolachlor


C-314
one individualized compound I
Metazachlor


C-315
one individualized compound I
Glyphosate


C-316
one individualized compound I
Glufosinate


C-317
one individualized compound I
Sulfosate


C-318
one individualized compound I
Clodinafop


C-319
one individualized compound I
Fenoxaprop


C-320
one individualized compound I
Fluazifop


C-321
one individualized compound I
Haloxyfop


C-322
one individualized compound I
Paraquat


C-323
one individualized compound I
Phenmedipham


C-324
one individualized compound I
Clethodim


C-325
one individualized compound I
Cycloxydim


C-326
one individualized compound I
Profoxydim


C-327
one individualized compound I
Sethoxydim


C-328
one individualized compound I
Tepraloxydim


C-329
one individualized compound I
Pendimethalin


C-330
one individualized compound I
Prodiamine


C-331
one individualized compound I
Trifluralin


C-332
one individualized compound I
Acifluorfen


C-333
one individualized compound I
Bromoxynil


C-334
one individualized compound I
Imazamethabenz


C-335
one individualized compound I
Imazamox


C-336
one individualized compound I
Imazapic


C-337
one individualized compound I
Imazapyr


C-338
one individualized compound I
Imazaquin


C-339
one individualized compound I
Imazethapyr


C-340
one individualized compound I
2,4-Dichlorophenoxyacetic acid (2,4-




D)


C-341
one individualized compound I
Chloridazon


C-342
one individualized compound I
Clopyralid


C-343
one individualized compound I
Fluroxypyr


C-344
one individualized compound I
Picloram


C-345
one individualized compound I
Picolinafen


C-346
one individualized compound I
Bensulfuron


C-347
one individualized compound I
Chlorimuron-ethyl


C-348
one individualized compound I
Cyclosulfamuron


C-349
one individualized compound I
Iodosulfuron


C-350
one individualized compound I
Mesosulfuron


C-351
one individualized compound I
Metsulfuron-methyl


C-352
one individualized compound I
Nicosulfuron


C-353
one individualized compound I
Rimsulfuron


C-354
one individualized compound I
Triflusulfuron


C-355
one individualized compound I
Atrazine


C-356
one individualized compound I
Hexazinone


C-357
one individualized compound I
Diuron


C-358
one individualized compound I
Florasulam


C-359
one individualized compound I
Pyroxasulfone


C-360
one individualized compound I
Bentazone


C-361
one individualized compound I
Cinidon-ethyl


C-362
one individualized compound I
Cinmethylin


C-363
one individualized compound I
Dicamba


C-364
one individualized compound I
Diflufenzopyr


C-365
one individualized compound I
Quinclorac


C-366
one individualized compound I
Quinmerac


C-367
one individualized compound I
Mesotrione


C-368
one individualized compound I
Saflufenacil


C-369
one individualized compound I
Topramezone


C-370
one individualized compound I
1,1′-[(3S,4R,4aR,6S,6aS,12R,12aS,




12bS)-4-[[(2-




cyclopropylacetyl)oxy]methyl]-




1,3,4,4a,5,6,6a,12,12a,12b-deca-




hydro-12-hydroxy-4,6a,12b-trimethyl-




11-oxo-9-(3-pyridinyl)-2H,11H-naphtho[2,




1-b]pyrano[3,4-e]pyran-3,6-diyl]




cyclopropaneacetic acid ester


C-371
one individualized compound I
(3S,6S,7R,8R)-3-[[(3-hydroxy-4-




methoxy-2-pyridinyl)carbonyl]amino]-




6-methyl-4,9-dioxo-8-(phenylmethyl)-




1,5-dioxonan-7-yl 2-methylpropanoate


C-372
one individualized compound I
isofetamid


C-373
one individualized compound I
N-(7-fluoro-1,1,3-trimethyl-indan-4-yl)-




1,3-dimethyl-pyrazole-4-carboxamide


C-374
one individualized compound I
N-[2-(2,4-dichlorophenyl)-2-methoxy-




1-methyl-ethyl]-3-(difluoromethyl)-1-




methyl-pyrazole-4-carboxamide


C-375
one individualized compound I
2-[2-chloro-4-(4-chlorophenoxy)-




phenyl]-1-(1,2,4-triazol-1-yl)pentan-2-




ol


C-376
one individualized compound I
1-[4-(4-chlorophenoxy)-2-(trifluoro-




methyl)phenyl]-1-cyclopropyl-2-(1,2,4-




triazol-1-yl)ethanol


C-377
one individualized compound I
2-[4-(4-chlorophenoxy)-2-




(trifluoromethyl)phenyl]-1-(1,2,4-




triazol-1-yl)butan-2-ol


C-378
one individualized compound I
2-[2-chloro-4-(4-




chlorophenoxy)phenyl]-1-(1,2,4-




triazol-1-yl)butan-2-ol


C-379
one individualized compound I
2-[4-(4-chlorophenoxy)-2-




(trifluoromethyl)phenyl]-3-methyl-1-




(1,2,4-triazol-1-yl)butan-2-ol


C-380
one individualized compound I
2-[4-(4-chlorophenoxy)-2-




(trifluoromethyl)phenyl]-1-(1,2,4-




triazol-1-yl)propan-2-ol


C-381
one individualized compound I
2-[2-chloro-4-(4-




chlorophenoxy)phenyl]-3-methyl-1-




(1,2,4-triazol-1-yl)butan-2-ol


C-382
one individualized compound I
2-[4-(4-chlorophenoxy)-2-




(trifluoromethyl)phenyl]-1-(1,2,4-




triazol-1-yl)pentan-2-ol


C-383
one individualized compound I
2-[4-(4-fluorophenoxy)-2-




(trifluoromethyl)phenyl]-1-(1,2,4-




triazol-1-yl)propan-2-ol


C-384
one individualized compound I
3-(4-chloro-2-fluoro-phenyl)-5-(2,4-




difluorophenyl)isoxazol-4-yl]-(3-




pyridyl)methanol


C-385
one individualized compound I
2-{3-[2-(1-{[3,5-bis(difluoromethyl-1H-




pyrazol-1-yl]acetyl}piperidin-4-yl)-1,3-




thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-




yl}phenyl methanesulfonate


C-386
one individualized compound I
2-{3-[2-(1-{[3,5-bis(difluoromethyl)-1H-




pyrazol-1-yl]acetyl}piperidin-4-yl) 1,3-




thiazol-4-yl]-4,5-dihydro-1,2-oxazol-




5-yl}-3-chlorophenyl methanesulfonate


C-387
one individualized compound I
tolprocarb


C-388
one individualized compound I
2-[3,5-bis(difluoromethyl)-1H-pyrazol-




1-yl]-1-[4-(4-{5-[2-(prop-2-yn-1-




yloxy)phenyl]-4,5-dihydro-1,2-oxazol-




3-yl}-1,3-thiazol-2-yl)piperidin-1-




yl]ethanone


C-389
one individualized compound I
2-[3,5-bis(difluoromethyl)-1H-pyrazol-




1-yl]-1-[4-(4-{5-[2-fluoro-6-(prop-2-yn-




1-yloxy)phenyl]-4,5-dihydro-1,2-




oxazol-3-yl}-1,3-thiazol-2-yl)piperidin-




1-yl]ethanone


C-390
one individualized compound I
2-[3,5-bis(difluoromethyl)-1H-pyrazol-




1-yl]-1-[4-(4-{5-[2-chloro-6-(prop-2-yn-




1-yloxy)phenyl]-4,5-dihydro-1,2-




oxazol-3-yl}-1,3-thiazol-2-yl)piperidin-




1-yl]ethanone


C-391
one individualized compound I
ethyl (Z)-3-amino-2-cyano-3-phenyl-




prop-2-enoate,


C-392
one individualized compound I
picarbutrazox


C-393
one individualized compound I
pentyl N-[6-[[(Z)-[(1-methyltetrazol-5-




yl)-phenyl-methylene]amino]oxy-




methyl]-2-pyridyl]carbamate,


C-394
one individualized compound I
2-[2-[(7,8-difluoro-2-methyl-3-




quinolyl)oxy]-6-fluoro-phenyl]propan-




2-ol


C-395
one individualized compound I
2-[2-fluoro-6-[(8-fluoro-2-methyl-3-




quinolyl)oxy]phen-yl]propan-2-ol,


C-396
one individualized compound I
3-(5-fluoro-3,3,4,4-tetramethyl-3,4-




dihydroisoquinolin-1-yl)quinoline


C-397
one individualized compound I
3-(4,4-difluoro-3,3-dimethyl-3,4-




dihydroisoquinolin-1-yl)quinoline


C-398
one individualized compound I
3-(4,4,5-trifluoro-3,3-dimethyl-3,4-




dihydroisoquinolin-1-yl)quinoline;









The active substances referred to as component 2, their preparation and their activity e.g. against harmful fungi is known (cf.: http://www.alanwood.net/pesticides/); these substances are commercially available. The compounds described by IUPAC nomenclature, their preparation and their fungicidal activity are also known (cf. Can. J. Plant Sci. 48(6), 587-94, 1968; EP-A 141 317; EP-A 152 031; EP-A 226 917; EP-A 243 970; EP-A 256 503; EP-A 428 941; EP-A 532 022; EP-A 1 028 125; EP-A 1 035 122; EP-A 1 201 648; EP-A 1 122 244, JP 2002316902; DE 19650197; DE 10021412; DE 102005009458; U.S. Pat. No. 3,296,272; U.S. Pat. No. 3,325,503; WO 98/46608; WO 99/14187; WO 99/24413; WO 99/27783; WO 00/29404; WO 00/46148; WO 00/65913; WO 01/54501; WO 01/56358; WO 02/22583; WO 02/40431; WO 03/10149; WO 03/11853; WO 03/14103; WO 03/16286; WO 03/53145; WO 03/61388; WO 03/66609; WO 03/74491; WO 04/49804; WO 04/83193; WO 05/120234; WO 05/123689; WO 05/123690; WO 05/63721; WO 05/87772; WO 05/87773; WO 06/15866; WO 06/87325; WO 06/87343; WO 07/82098; WO 07/90624, WO 11/028657, WO2012/168188, WO 2007/006670, WO 2011/77514; WO13/047749, WO 10/069882, WO 13/047441, WO 03/16303, WO 09/90181, WO 13/007767, WO 13/010862, WO 13/127704, WO 13/024009 and WO 13/024010).


The composition of active substances can be prepared as compositions comprising besides the active ingredients at least one inert ingredient (auxiliary) by usual means, e.g. by the means given for the compositions of compounds I.


Concerning usual ingredients of such compositions reference is made to the explanations given for the compositions containing compounds I.


The compositions of active substances according to the present invention are suitable as fungicides, as are the compounds of formula I. They are distinguished by an outstanding effectiveness against a broad spectrum of phytopathogenic fungi, especially from the classes of the Ascomycetes, Basidiomycetes, Deuteromycetes and Peronosporomycetes (syn. Oomycetes). In addition, it is refered to the explanations regarding the fungicidal activity of the compounds andthe compositions containing compounds I, respectively. I. Synthesis examples:







EXAMPLE 1
Synthesis of 2-[2-chloro-4-(2-methylphenoxyl)phenyl]-1-(1,2,4-triazol-1-yl)pent-3-yn-2-ol (Compound I-14, Table I)
Step 1a) Synthesis of 1-(4-bromo-2-chloro-phenyl)-2-chloro-ethanone

To a mixture 2-Chloro-4-Bromo acetophenone (500 g), MeOH (137 g) in CH2Cl2 (4 L), SO2Cl2 (578 g in 1 L of CH2Cl2) was added dropwise, maintaining the temperature below 30° C. After gas evultion stopped, HPLC indicated full conversion. H2O (3 L) was added carefully and the pH was adjusted to 6.5 using 50% NaOH. The phases were separated and the aqueous phase extracted with CH2Cl2 (2*1 L). The combined organic phases were washed with brine and dried with Na2SO4. The crude compound was obtained as a viscous oil (608 g) and was used without further purification. HPLC*: RT=3.096 min; 1H-NMR (300 MHz, CDCI3): δ=4.65 (2H), 7.40-7.65 (3H).


Step 1 b) Synthesis of 2-(4-bromo-2-chloro-phenyl)-1-chloro-pent-3-yn-2-ol

A solution of 1-(4-bromo-2-chloro-phenyl)-2-chloro-ethanone (267 g in 500 mL CH2Cl2) was added dropwise to prop-1-inyl magnesium bromide (1915 mL of a 0.5M. solution in THF) at −20° C. and warmed to RT. The reaction mixture was added to sat. aqu. NH4CI-solution (5 L) and extracted with CH2Cl2 (3*2 L). the combined organic phases were washd with brine and dried with Na2SO4 and evaporated. The crude product was used in the next reaction without any further purification. HPLC*: RT=3.271 min; 1H-NMR (300 MHz, CDCI3): δ=1.85 (3H), 3.95 (1H), 4.20 (1H), 7.45 (1H), 7.55 (1H), 7.80 (1H).


Step 1c) Synthesis of 2-(4-bromo-2-chloro-phenyl)-1-(1,2,4-triazol-1-yl)pent-3-yn-2-ol

2-(4-bromo-2-chloro-phenyl)-1-chloro-pent-3-yn-2-ol (305 g), 1,2,4-triazole (191 g) and NaOH (83.2 g) were stirred in NMP (2 L) at 100° C. for 30 min. HPLC indicated full conversion. The reaction mixture was diluted with sat aqu NH4Cl (2 L) and extracted with MTBE (4*2 L) washed with brine (1 L) and dried with Na2SO4. After evaporation, crystallization from iPr2O enabled the target compound as colorless crystals (322.6 g). HPLC*: RT=2.629 min; 1H-NMR (300 MHz, CDCI3): 5=1.80 (3H), 4.70 (1H), 4.90 (1H), 7.40 (1H), 7.60 (1H), 7.75 (1H), 7.90 (1H), 8.10 (1H).


Step 1d) Synthesis of 2-[2-chloro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1-(1,2,4-triazol-1-yl)pent-3-yn-2-ol

A mixture of 2-(4-bromo-2-chloro-phenyl)-1-(1,2,4-triazol-1-yl)pent-3-yn-2-ol (22 g), bis(pinacolato)-diboron (19.2 g) KOAc (5.7 g) abd PdCl2dppf (470 mg) in dioxane (200 mL) was heated to 100° C. for 5 h. HPLC indicated full conversion. The reaction mixture was added to brine (200 mL) and extracted with EtOAc (3*300 mL). the combined organic phases were dried with Na2SO4 and filtered over a plug of celite. The crude compound (43 g) was used in the next step without further purification. HPLC-MS*: RT=1.099 [M=389.8, [M+H+]]


Step 1e) Synthesis of 3-chloro-4-[1-hydroxy-1-(1,2,4-triazol-1-ylmethyl)but-2-ynyl]phenol

Crude 2-[2-chloro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1-(1,2,4-triazol-1-yl)pent-3-yn-2-ol (46 g) was dissolved in MeOH (10 mL) and NaOH (5.7 g) was added. H2O2 (37%, 8.1 mL) was added dropwise. The mixture was heated to 100° C. and stirred for 30 min. Water (10 mL) was added and after extraction of the basic aqueous phase with MTBE (3*30 mL) the aqueous phase was neutralized and extracted with EtOAc (7*20 mL). the combined Ethyl acetate phases were dried with Na2SO4 and evaporated. The target compound (10.1 g) was obtained as colorless solid. HPLC-MS*: RT=0.700 [M=278, [M+H+]]


Step 1f) Synthesis of 2-[2-chloro-4-(2-methylphenoxyl)phenyl]-1-(1,2,4-triazol-1-yl)pent-3-yn-2-ol

A mixture of 3-chloro-4-[1-hydroxy-1-(1,2,4-triazol-1-ylmethyl)but-2-ynyl]phenol (300 mg), 2-Methyl phenyl boronic acid (264 mg), Cu(OAc)2, NEt3 (0.5 g), sieves (MS 4A, 1 g) in CH2Cl2 (5 mL) and MeCN (1 mL) were stirred at RT for 14 h. Addition of sat. aqu. NH4Cl (10 mL) and extraction with EtOAc (3*15 mL) gave the crude product and was purified by means of HPLC. To obtain the clean compound as solid (49 mg); HPLC-MS*: RT=1.151 [M=368, [M+]]; 1H-NMR (300 MHz, CDCI3): δ=1.80 (3H), 2.20 (3H), 4.75 (1H), 4.90 (1H), 6.75 (1H), 6.95 (2H), 7.10-7.30 (1H), 7.40 (1H), 7.70 (1H), 7.75 (1H), 7.95 (1H), 8.35 (1H).


The compounds I listed in Table I have been prepared in an analogous manner.




embedded image















TABLE I





compound




HPLC * Rt

1H NMR (300 MHz, CDCl3):



No.
R31
(R4)m
R1
R2
(min)
δ (ppm) =







I-1
Cl
4-CF3
CH3
H
1.183



I-2
Cl
3-CF3
CH3
H
1.178


I-3
Cl
3,4-F2
CH3
H
1.008


I-4
Cl
2-F
CH3
H
1.070


I-5
Cl
4-CF3
cyclopropyl
H
1.272


I-6
Cl
3-CF3
cyclopropyl
H
1.268


I-7
Cl
4-CN
cyclopropyl
H
1.115


I-8
Cl
3,5-Cl2
cyclopropyl
H
1.344


I-9
Cl
3-Cl
cyclopropyl
H
1.247


I-10
Cl
3,4,5-F3
cyclopropyl
H
1.241


I-11
Cl
4-CF3
C≡C—CH3
H
1.197


I-12
Cl
3,4-Cl2
C≡C—CH3
H
1.236


I-13
Cl
4-OCF3
C≡C—CH3
H
1.214


I-14
Cl
2-CH3
C≡C—CH3
H
1.151
1.80 (3H), 2.20 (3H),








4.75 (1H), 4.90 (1H),








6.75 (1H), 6.95 (2H),








7.10-7.30 (1H), 7.40 (1H),








7.70 (1H), 7.75 (1H), 7.95 (1H),








8.35 (1H).


I-15
F
3,4-Cl2
CH3
H
1.156


I-16
F
3-Cl
CH3
H
1.082


I-17
F
3,4-F2
CH3
H
1.040


I-18
F
3-F
CH3
H
1.026


I-19
F
2-Cl
CH3
H
1.070


I-20**
Cl
2-F-4-Cl
C≡C—CH3
H
1.132






**not subject mater of the invention


*: HPLC method Data:


Mobile Phase: A: Wasser + 0.1% T FA; B: acetonitrile; Gradient: 5% B to 100% B in 1.5 min; Temperature: 60° C.; MS-Method: ESI positive; mass area (m/z): 100-700; Flow: 0.8 ml/min to 1.0 ml/min in 1.5 min; Column: Kinetex XB C18 1.7μ 50 × 2.1 mm; Aparatus: Shimadzu Nexera LC-30 LCMS-2020.





Claims
  • 1-14. (canceled)
  • 15. A compound of the formula I
  • 16. The compound of claim 15, wherein m is 1 and R4 is in ortho- or meta-position.
  • 17. The compound of claim 15, wherein m is 2, 3 or 4 and two of the R4 are in 2,3-, 3,4-, 3,5- or 2,6-position.
  • 18. The compound of claim 15, wherein m is 2, 3 or 4 and two of the R4, are in 2,4-position, wherein one (called R4-1) of said two substituents is selected from the group consisting of CN, NO2, OH, SH, C1-C6-alkyl, C1-C6-alkoxy, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkyloxy, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C3-C6-cycloalkyl), N(C3-C6-cycloalkyl)2, S(O)p(C1-C4-alkyl), C(═O)(C1-C4-alkyl), C(═O)(OH), C(═O)(O—C1-C4-alkyl), C(═O)(NH(C1-C4-alkyl)), C(═O)(N(C1-C4-alkyl)2), C(═O)(NH(C3-C6-cycloalkyl)) and C(═O)—(N(C3-C6-cycloalkyl)2; wherein each substituent is unsubstituted or further substituted by one, two, three or four R4a; and wherein the other one (called R4-2) is halogen or selected from the substituents as defined for R4-1.
  • 19. The compound of claim 15, wherein R31 is Br or F.
  • 20. A composition comprising one compound of formula I, as defined in claim 15, an N-oxide or an agriculturally acceptable salt thereof.
  • 21. The composition of claim 20, comprising additionally a further active substance.
  • 22. A method for combating harmful fungi, comprising treating the fungi or the materials, plants, the soil or seeds to be protected against fungal attack with an effective amount of at least one compound of formula I, as defined in claim 15.
  • 28. A method for combating harmful fungi, comprising treating the fungi or the materials, plants, the soil or seeds to be protected against fungal attack with an effective amount of the composition of claim 20.
  • 23. A seed coated with at least one compound of the formula I, as defined in claim 15, and/or an agriculturally acceptable salt thereof, in an amount of from 0.1 to 10 kg per 100 kg of seed.
  • 29. A seed coated with the composition of claim 20 in an amount of from 0.1 to 10 kg per 100 kg of seed.
  • 24. A process (b) for the preparation of the compound of formula I comprising the following step: 1b) reacting a compound of formula Va
  • 25. The process of claim 24, further comprising the step: 2b) reacting a compound of formula IX as given in claim 24 with R2OH in order to cleave the epoxide ring and to obtain compounds of formula X
  • 26. The process of claim 25, further comprising the step: 2c) reacting a compound of formula X as given in claim 25 with a halogenating agent or sulfonating agent in order to introduce a leaving group LG and to obtain compounds of formula XI:
  • 27. The intermediate compounds IX, X and XI of claim 26.
Priority Claims (2)
Number Date Country Kind
12194433.4 Nov 2012 EP regional
13150668.5 Jan 2013 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2013/074009 11/18/2013 WO 00
Provisional Applications (1)
Number Date Country
61730091 Nov 2012 US