Substituted 2-quinolyl-oxazoles useful as PDE4 inhibitors

Abstract
The invention claims compounds of the formula wherein is a 5-membered heteroaryl; X is S or O; R1 is H, alkyl, cycloalkyl, cylcoalkylalkyl-, —CH2F, —CHF2, —CF3, —C(O)alkyl or —C(O)NR18R19; R3 and R4H, alkyl, hydroxyalkyl or —C(O)Oalkyl; R5 and R6 are H, alkyl, hydroxyalkyl, alkoxyalkyl, mercaptoalkyl, —CH2F, —CHF2, —CF3, —C(O)OH or —C(O)Oalkyl; R7 is H, alkyl, alkenyl, hydroxyalkyl, cycloalkyl, alkoxyalkyl, aminoalkyl, (R17-phenyl)alkyl or —CH2—C(O)—O-alkyl; and R8 comprises alkyl, heteroaryl, phenyl or cycloalkyl, or heterocycloalkyl, all optionally substituted, or a cycloalkyl- or heterocycloalkyl-substituted amide; or R7 and R8 and the nitrogen to which they are attached together form an optionally substituted ring; and the remaining variables are as defined in the specification. Also claimed are pharmaceutical compositions, the use of the compounds as PDE4 inhibitors, and combinations with other actives.
Description
FIELD OF THE INVENTION

The present invention relates to substituted 2-quinolyl-oxazoles, thiazoles, imidazoles and pyrazoles, pharmaceutical compositions comprising them, and their use as PDE4 inhibitors for treating a variety of diseases such as allergic and inflammatory diseases, CNS diseases and diabetes. Combinations with other agents useful in the treatment of several diseases are also claimed.


BACKGROUND

Phosphodiesterases are known to regulate cyclic AMP, and phosphodiesterase 4 (PDE4) has been shown to be the predominant regulator of cyclic AMP in respiratory smooth muscle and inflammatory cells. Inhibitors of PDE4 are useful in treating a variety of diseases, including allergic and inflammatory diseases, diabetes, central nervous system diseases, pain, and viruses that produce TNF.


Amino-substituted quinolyl PDE4 inhibitors are disclosed in U.S. Pat. No. 5,804,588; sulfonamide-substituted quinolyl PDE4 inhibitors are disclosed in U.S. Pat. No. 5,834,485; and (benzo-fused)heteroaryl-substituted PDE4 inhibitors are disclosed in U.S. Pat. No. 6,069,151.


SUMMARY OF THE INVENTION

The present invention relates to a compound having the structural formula I
embedded image

or a pharmaceutically acceptable salt or solvate thereof, wherein
embedded image

    • R is H or alkyl;
    • X is O or S;
    • R1 is H, alkyl, cycloalkyl, cycloalkyl(C1-C4)alkyl-, —CH2F, —CHF2, —CF3, —C(O)alkyl or —C(O)NR18R19;
    • R3 and R4 are independently selected from the group consisting of H, alkyl, hydroxyalkyl and —C(O)Oalkyl;
    • R5 and R6 are independently selected from the group consisting of H, alkyl, hydroxyalkyl, alkoxyalkyl, mercaptoalkyl, —CH2F, —CHF2, —CF3, —C(O)OH, —C(O)Oalkyl and —C(O)NR43R44;
    • t is 1 or 2;
    • R7 is H, alkyl, alkenyl, hydroxyalkyl, cycloalkyl, alkoxyalkyl, aminoalkyl, (R17-phenyl)alkyl or —CH2—C(O)—O-alkyl;
    • R8 is H, alkyl, alkenyl, alkoxy, alkoxyalkyl, hydroxyalkyl, dihydroxyalkyl, alkyl-NR18R19, cyanoalkyl, haloalkyl, R23-heteroaryl, R23-heteroarylalkyl, R36-heterocycloalkyl, (R36-heterocycloalkyl)alkyl, R17-phenyl, (R17-phenyl)alkyl, R17-naphthyl, (R17-naphthyl)alkyl, R17-benzyloxy, -alkyl-C(O)—NR18R19, -alkyl-C(O)—N(R30)—(R23-heteroaryl), -alkyl-C(O)—(R17-phenyl), -alkyl-C(O)—(R36-heterocycloalkyl); -alkyl-N(R30)—C(O)Oalkyl, -alkyl-N(R30)—C(O)—NR18R19, -alkyl-N(R30)—C(O)alkyl, -alkyl-N(R30)—C(O)-(fluoroalkyl), -alkyl-N(R30)—C(O)—(R39-cycloalkyl), -alkyl-N(R30)—C(O)—(R17-phenyl), -alkyl-N(R30)—C(O)—(R23-heteroaryl), -alkyl-N(R30)—C(O)-alkylene-(R23-heteroaryl), -alkyl-NH—SO2—NR18R19, -alkyl-N(R30)—(R17-phenyl), -alkyl-N(R30)—(R23-heteroaryl), -alkyl-O—(R17-phenyl), -alkyl-O—(R23-heteroaryl), -alkyl-N(R30)—SO2-alkyl, alkylthioalkyl-, alkyl-SO2-alkyl-, (R35-phenylalkyl)-S-alkyl-, (hydroxyalkyl)-S-alkyl-, (alkoxyalkyl)-S-alkyl-, -alkyl-CO2-alkyl, R45-hydroxyalkyl, dihydroxyalkyl substituted by R17-benzyloxy, dihydroxyalkyl substituted by R17-phenyl, alkoxyalkyl substituted by R17-phenyl, (R17-phenyl)alkyl substituted by —CO2alkyl, (R17-phenyl)alkyl substituted by —C(O)N(R30)2, alkyl substituted by (R23-heteroaryl) and —C(O)NR37R38, haloalkyl substituted by CO2alkyl, R12-cycloalkyl, (R12-cycloalkyl)alkyl,
      embedded imageembedded image
    • or R7 and R8 and the nitrogen to which they are attached together form a ring system selected from the group consisting of
      embedded imageembedded image

      comprises an R35-substituted 5 or 6-membered heteroaryl group fused to the piperidinyl or pyrrolidinyl ring;
    • p is 0 or 1;
    • q is 0 or 1;
    • the dotted line represents an optional double bond;
    • R9 is H, halo, alkyl, cycloalkyl, —CH2F, —CHF2 or CF3;
    • R10, R11, and R13 are independently selected from the group consisting of H and halo;
    • R12 is 1-3 substituents independently selected from the group consisting of H, alkyl, hydroxy, alkoxy, hydroxyalkyl, alkoxyalkyl, —C(O)Oalkyl, —(CH2)n—N(R30)—C(O)-cycloalkyl, —(CH2)n—N(R30)—C(O)alkyl, —(CH2)n—N(R30)—C(O)Oalkyl, —(CH2)n—N(R30)—(R23-heteroaryl), —(CH2)n—N(R30)—C(O)—NR18R19, —(CH2)n—C(O)—NR18R19, R17-phenyl, R35-heteroarylalkyl, R35-heteroaryloxy, —C(O)-heterocycloalkyl, —O—C(O)-heterocycloalkyl, —O—C(O)—NR18R19, —NH—SO2-alkyl, —NH—C(═NH)NH2, and
      embedded image

      or two R12 substituents on the same carbon form ═O, ═NOR30 or ═CH2;
    • R14 is 1 or 2 substituents independently selected from the group consisting of H, OH, halo, alkyl, alkoxy, hydroxyalkyl, alkoxyalkyl, —CF3, CN, R17-phenyl, (R17-phenyl)alkyl, —NR18R19, alkyl-NR18R19, —(CH2)n—C(O)OH, —(CH2)n—C(O)Oalkyl, —(CH2)n—C(O)alkyl, —(CH2)n—C(O)(R35-phenyl), —(CH2)n—C(O)(R23-heteroaryl), —(CH2)n—C(O)NR18R19, —(CH2)n—C(O)N(R30)—(CH2)n—(R23-heteroaryl), —(CH2)n—N(R30)—C(O)alkyl, —(CH2)n—N(R30)—C(O)-(fluoroalkyl), —(CH2)n—N(R30)—C(O)-(cycloalkyl), —(CH2)n—N(R30)—C(O)(R35-phenyl), —(CH2)n—N(R30)—C(O)(R23-heteroaryl), —(CH2)n—N(R30)C(O)NR18R19, —(CH2)n—N(R30)—C(O)Oalkyl, —(CH2)n—N(R30)cycloalkyl, —(CH2)n—N(R30)(R17-phenyl), —(CH2)n—N(R30)(R23-heteroaryl), —(CH2)n—N(R18)SO2alkyl, —(CH2)n—N(R2)SO2—(R—7-phenyl), —(CH2)n—N(R3)SO2—CF3, —CH2S(O)0-2(R35-phenyl), —(CH2)n—OC(O)N(R3)alkyl, R23-heteroaryl, (R23-heteroaryl)alkyl, (R23-heteroaryl)oxy, (R23-heteroaryl)amino, —CH(OH)—(R17-phenyl), —CH(OH)—(R23-heteroaryl), —C(═NOR30)—(R17-phenyl), —C(═NOR30)—(R23-heteroaryl), morpholinyl, thiomorpholinyl,
      embedded image
    • w is 0 or 1;
    • or two R14 substituents and the carbon to which they are both attached form —C(═NOR30)— or —C(O)—;
    • each n is independently 0, 1, 2 or 3;
    • R15 is H, alkyl, cycloalkyl, (cycloalkyl)alkyl, hydroxyalkyl, alkoxyalkyl, haloalkyl, —C(O)Oalkyl, —C(O)O(R30-cycloalkyl), -alkyl-C(O)O-alkyl, —C(O)O-alkylene-(R35-phenyl), R17-phenyl, (R17-phenyl)alkyl, —CH—(R17-phenyl)2, R23-heteroaryl, —(CH2), —C(O)NR18R19, —SO2-alkyl, —SO2-cycloalkyl, —SO2—CF3, —SO2—(R35-phenyl), —SO2—NR18R19, —C(O)alkyl, —C(O)-(fluoroalkyl), —C(O)—C(CH3)(CF3)2, —C(O)—(R17-phenyl), —C(O)—(R23-heteroaryl), —C(O)-hydroxyalkyl, —C(O)-alkoxyalkyl, —C(O)—(R39-cycloalkyl), —C(O)-alkylene-(R17-phenyl), —C(O)-alkylene-(R23-heteroaryl), —C(O)-alkylene-S—C(O)alkyl, —C(═S)—(R17-phenyl), hydroxyalkyl substituted by R17-phenyl, hydroxyalkyl substituted by R23-heteroaryl, alkoxyalkyl substituted by R17-phenyl, alkoxyalkyl substituted by R23-heteroaryl,
      embedded image

      wherein z is 0, 1 or 2;
    • R16 is 1 to 4 substituents independently selected from the group consisting of H, alkyl, R17-phenyl, (R17-phenyl)alkyl, (R23-heteroaryl)alkyl, hydroxyalkyl, alkoxyalkyl and —C(O)Oalkyl, or two R16 groups and the carbon to which they are both attached form —C(O)—;
    • R17 is 1 to 3 substituents independently selected from the group consisting of H, halo, alkyl, cycloalkyl, —OH, hydroxyalkyl, alkoxy, alkoxyalkyl, —CN, —CF3, —OCF3, —OCHF2, —OCH2F, —C(O)OH, —C(O)Oalkyl, —C(O)O—(R35-phenyl), —C(O)alkyl, —C(O)—(R35-phenyl), —SOalkyl, —SO2alkyl, —SO2—CF3, alkylthio, —NR43R44, -alkyl-NR43R44, R35-phenyl, R35-phenoxy, R35-heteroaryl, R35-heteroaryloxy, R36-heterocycloalkyl, —C(O)—(R36-heterocycloalkyl), hydroxyalkyl-NH—, —C(O)N(R30)2, —N(R43)—(R35-cycloalkyl) and —C(═NOR30); or two R17 substituents on adjacent carbon atoms together form —O—CH2—O—, —O—(CH2)2—O—, —(CH2)2—O— or —O—CH2—O—CH2—;
    • R18 and R19 are independently selected from the group consisting of H, alkyl, hydroxyalkyl, alkoxyalkyl, haloalkyl, R17-phenyl, (R17-phenyl)alkyl, naphthyl and cycloalkyl;
    • R20 is H, alkyl, or cycloalkyl;
    • R22 is 1 to 4 substituents independently selected from the group consisting of H, alkyl, hydroxy, alkoxy, halo, —CF3, —NH2 and R35-phenyl;
    • R23 is 1 to 4 substituents independently selected from the group consisting of H, alkyl, hydroxy, alkoxy, halo, —CF3, —NR18R19, —CN, —C(O)Oalkyl, —SO2-alkyl, —NHSO2-alkyl, R35-phenyl, R35-heteroaryl, morpholinyl, and —(CH2)n—C(O)—N(R30)2;
    • R24 is H, OH or alkoxy; or when the optional double bond is present, R24 and the adjacent carbon atom form the double bond;
    • R25 is H or R35-phenyl;
    • R27 is 1 to 3 substituents independently selected from the group consisting of H, halo, OH, alkyl, alkoxy, hydroxyalkyl, alkoxyalkyl, haloalkyl, —CN, —C(O)OH, —C(O)Oalkyl, —C(O)N(R30)(R18), —C(O)—(R36-hetercycloalkyl), R17-phenyl, (R17-phenyl)-alkyl, R23-heteroaryl, (R23-heteroaryl)alkyl, (R23-heteroaryl)oxy, (R23-heteroaryl)amino NR18R19, NR18R19-alkyl, —(CH2)n—N(R3)—C(O)alkyl, —(CH2)n—N(R30)—C(O)-(fluoroalkyl), —(CH2)n—N(R30)—C(O)alkoxyalkyl, —(CH2)n—N(R30)—C(O)(cycloalkyl), —(CH2)n—N(R30)—(R23-heteroaryl), —(CH2)n—N(R30)—C(O)—(R23-heteroaryl), —(CH2)n—N(R30)—C(O)O-alkyl, —(CH2)n—N(R30)—C(O)O—(CF3-alkyl), —(CH2)n—N(R30)—C(O)O—(R39-cycloalkyl), —(CH2)n—N(R30)—C(O)O-alkylene-cycloalkyl, —(CH2)n—N(R30)—C(O)—N(R30)(R20), —(CH2)n—N(R30)—SO2-alkyl, —(CH2)—NN(R30)—SO2—CF3, —(CH2)n—N(R30)—SO2—N(R3)2 and
      embedded image
    • or two R27 groups and the carbon to which they are both attached form —C(═NOR30)— or —C(O)—;
    • R28 is H, alkyl, R35-benzyl or -alkyl-C(O)O-alkyl;
    • R29 is alkyl, haloalkyl, —C(O)Oalkyl, —C(O)alkyl, —C(O)CF3, —C(O)—(R12-cycloalkyl), —C(O)—(R17-phenyl), —C(O)—(R23-heteroaryl), —C(O)—(R36-hetercycloalkyl), —SO2-alkyl, —SO2—(R35-phenyl), —C(O)NR18R19, R35-phenyl, (R35-phenyl)alkyl or R23-heteroaryl;
    • R30 is independently selected from the group consisting of H, alkyl, R35-benzyl and R35-phenyl;
    • R31 is H, alkyl, R35-benzyl or phenoxyalkyl;
    • R33 is H, OH or alkoxy;
    • R34 is H, alkyl, hydroxyalkyl, alkoxyalkyl or —C(O)Oalkyl;
    • R35 is 1 to 3 substituents independently selected from the group consisting of H, halo, alkyl, OH, —CF3, alkoxy, —CO2alkyl and —N(R43)(R44);
    • R36 is 1 or 2 substituents independently selected from the group consisting of H, alkyl, R17-phenyl, —OH, hydroxyalkyl, alkoxyalkyl, —C(O)Oalkyl and —NR18R19; or two R groups and the carbon to which they are both attached form —C(═NOR30)— or —C(O)—;
    • R37 and R38 are independently selected from the group consisting of H and alkyl, or R37 and R38 together are —(CH2)3— or —(CH2)4—, and together with the nitrogen to which they are attached, form a ring;
    • R39 is H, OH, alkyl, alkoxy, or CF3;
    • R40 is —OR30 or —NHC(O)alkyl;
    • R41 is H or —SO2alkyl;
    • R42 is —(CH2)n—(R35-phenyl), —(CH2)n—(R23-heteroaryl), —C(O)Oalkyl or —C(O)alkyl;
    • R43 and R44 are independently selected from the group consisting of H and alkyl; and
    • R45 is 1 or 2 substituents independently selected from the group consisting of halo, alkoxyalkyl, —CO2alkyl, R17-phenyl, R23-heteroaryl and cycloalkyl.


This invention also provides a method of treating diseases mediated by PDE 4, including allergic and inflammatory diseases, CNS diseases, and diabetes comprising administering an effective amount of at least one compound of formula I to a patient in need of such treatment.


In particular, this invention also provides a method of treating a PDE4 mediated disease or condition selected from the group consisting of: pain (e.g., acute pain, acute inflammatory pain, chronic inflammatory pain, and neuropathic pain), acute inflammation, chronic inflammation, rheumatoid arthritis, psoriasis, atopic dermatitis, asthma, COPD, adult respiratory disease, arthritis, inflammatory bowel disease, Crohn's disease, ulcerative colitis, septic shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, stroke, ischemia reperfusion injury, renal reperfusion injury, glomerulonephritis, Parkinson's disease, Alzheimer's disease, mild cognitive impairment (MCI), depression, anxiety, graft vs. host reaction (i.e., graft vs. host disease), allograft rejections (e.g., acute allograft rejection, and chronic allograft rejection), acute respiratory distress syndrome, delayed type hypersensitivity reaction, atherosclerosis, cerebral ischemia, osteoarthritis, multiple sclerosis, angiogenesis, osteoporosis, gingivitis, respiratory viruses, herpes viruses, hepatitis viruses, HIV, Kaposi's sarcoma associated virus (i.e., Kaposi's sarcoma), meningitis, cystic fibrosis, pre-term labor, cough, pruritis, multi-organ dysfunction, psoriatic arthritis, herpes, encephalitis, traumatic brain injury, CNS tumors, interstitial pneumonitis, hypersensitivity, crystal induced arthritis, acute pancreatitis, chronic pancreatitis, acute alcoholic hepatitis, necrotizing enterocolitis, chronic sinusitis, ocular inflammation, corneal neovascularization, polymyositis, acne, esophagitis, glossitis, airflow obstruction, airway hyperresponsiveness (i.e., airway hyperreactivity), bronchiectasis, bronchiolitis, bronchiolitis obliterans (i.e., bronchiolitis obliterans syndrome), chronic bronchitis, dyspnea, emphysema, hypercapnea, hyperinflation, hypoxemia, hyperoxia-induced inflammations, hypoxia, pulmonary fibrosis, pulmonary hypertension, peritonitis associated with continuous ambulatory peritoneal dialysis (CAPD), granulocytic ehrlichiosis, sarcoidosis, small airway disease, ventilation-perfusion mismatching, wheeze, colds, gout, alcoholic liver disease, lupus, periodontitis, cancer, transplant reperfusion injury, early transplantation rejection (e.g., acute allograft rejection), airway hyperreactivity, allergic contact dermatitis, allergic rhinitis, alopecia greata, autoimmune deafness (including, for example, Meniere's disease), autoimmune hemolytic syndromes, autoimmune hepatitis, autoimmune neuropathy, autoimmune ovarian failure, autoimmune orchitis, autoimmune thrombocytopenia, chronic inflammatory demyelinating polyneuropathy, cirrhosis, dermatomyositis, diabetes, drug-induced autoimmunity, endometriosis, fibrotic diseases, gastritis, Goodpasture's syndrome, Graves' disease, Gullain-Barre disease, Hashimoto's thyroiditis, hepatitis-associated autoimmunity, HIV-related autoimmune syndromes and hematologic disorders, hypophytis, interstitial cystitis, juvenile arthritis, Langerhans' cell histiocytitis, lichen planus, metal-induced autoimmunity, myocarditis (including viral myocarditis), myositis, neuropathies (including, for example, IgA neuropathy, membranous neuropathy and idiopathic neuropathy), nephritic syndrome, optic neuritis, pancreatitis, post-infectious autoimmunity, primary biliary cirrhosis, reactive arthritis, ankylosing spondylitis, Reiter's syndrome, reperfusion injury, scleritis, scleroderma, secondary hematologic manifestation of autoimmune diseases (such as anemias), silicone implant associated autoimmune disease, Sjogren's syndrome, systemic lupus erythematosus, transverse myelitis, tubulointerstitial nephritis, uveitis, and vitiglio in a patient in need of such treatment comprising administering to said patient an effective amount of at least one compound of formula I, or a pharmaceutically acceptable salt or solvate thereof.


Compounds of formula I are preferably useful in treating pain (e.g., acute pain, acute inflammatory pain, chronic inflammatory pain, and neuropathic pain), acute inflammation, chronic inflammation, rheumatoid arthritis, psoriasis, atopic dermatitis, asthma, COPD, arthritis, inflammatory bowel disease, Crohn's disease, ulcerative colitis, septic shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, stroke, ischemia reperfusion injury, glomerulonephritis, Parkinson's disease, Alzheimer's disease, mild cognitive impairment, depression, anxiety, graft vs. host reaction (i.e., graft vs. host disease), allograft rejections (e.g., acute allograft rejection, and chronic allograft rejection), delayed type hypersensitivity reaction, osteoarthritis, multiple sclerosis, angiogenesis, osteoporosis, HIV, cough, psoriatic arthritis, CNS tumors, necrotizing enterocolitis, airflow obstruction, airway hyperresponsiveness (i.e., airway hyperreactivity), bronchiolitis, chronic bronchitis, emphysema, pulmonary fibrosis, pulmonary hypertension, small airway disease, wheeze, lupus, cancer, transplant reperfusion injury, early transplantation rejection (e.g., acute allograft rejection), airway hyperreactivity, allergic contact dermatitis, allergic rhinitis, diabetes, juvenile arthritis, reactive arthritis, ankylosing spondylitis, reperfusion injury, and systemic lupus erythematosus.


More preferably, compounds of formula I are useful for treating COPD, asthma, IBD, dermatitis, MS, arthritis, Parkinson's disease, Alzheimer's disease, mild cognitive impairment, depression and anxiety.


Preferred veterinary uses for compounds of formula I include the treatment of dermatitis in dogs and the treatment of recurrent airway disease in horses.


This invention also provides a method of treating a PDE4 mediated disease or condition in a patient in need of such treatment comprising administering to said patient at least one compound of formula I, or a pharmaceutically acceptable salt or solvate thereof, in combination with at least one other medicament (e.g., a drug, agent or therapeutic) selected from the group consisting of:

    • a) disease modifying antirheumatic drugs;
    • b) nonsteroidal anitinflammatory drugs;
    • c) COX-2 selective inhibitors;
    • d) COX-1 inhibitors;
    • e) immunosuppressives;
    • f) steroids;
    • g) biological response modifiers;
    • h) other anti-inflammatory agents or therapeutics useful for the treatment of chemokine mediated diseases; and
    • i) other agents or therapeutics useful for the treatment of depression, anxiety, Alzheimer's Disease or Parkinson's Disease.


This invention also provides a method of treating a pulmonary disease (e.g., COPD, asthma or cystic fibrosis) in a patient in need of such treatment comprising administering to said patient a therapeutically effective amount of at least one compound of formula I, or a pharmaceutically acceptable salt or solvate thereof, in combination with at least one compound selected from the group consisting of: glucocorticoids, 5-lipoxygenase inhibitors, β-2 adrenoceptor agonists, muscarinic M1 antagonists, muscarinic M3 antagonists, muscarinic M2 agonists, NK3 antagonists, LTB4 antagonists, cysteinyl leukotriene antagonists, bronchodilators, PDE4 inhibitors, PDE inhibitors, elastase inhibitors, MMP inhibitors, phospholipase A2 inhibitors, phospholipase D inhibitors, histamine H1 antagonists, histamine H3 antagonists, dopamine agonists, adenosine A2 agonists, NK1 and NK2 antagonists, GABA-b agonists, nociceptin agonists, expectorants, mucolytic agents, decongestants, antioxidants, anti-IL-8 anti-bodies, anti-IL-5 antibodies, anti-IgE antibodies, anti-TNF antibodies, IL-10, adhesion molecule inhibitors, and growth hormones.


This invention also provides a method of treating multiple sclerosis in a patient in need of such treatment comprising administering to said patient, a therapeutically effective amount of at least one compound of formula I, or a pharmaceutically acceptable salt or solvate thereof, in combination with at least one compound selected from the group consisting of glatiramer acetate, glucocorticoids, methotrexate, azothioprine, mitoxantrone, chemokine inhibitors, and CB2-selective agents.


This invention also provides a method of treating multiple sclerosis in a patient in need of such treatment comprising administering to said patient a therapeutically effective amount of at least one compound of formula I, or a pharmaceutically acceptable salt or solvate thereof, in combination with at least one compound selected from the group consisting of: methotrexate, cyclosporin, leflunimide, sulfasalazine, β-methasone, β-interferon, glatiramer acetate, and prednisone.


This invention also provides a method of treating rheumatoid arthritis in a patient in need of such treatment comprising administering to said patient a therapeutically effective amount of at least one compound of formula I, or a pharmaceutically acceptable salt or solvate thereof, in combination with at least one compound selected from the group consisting of COX-2 inhibitors, COX inhibitors, immunosuppressives (e.g., methotrexate, cyclosporin, leflunimide and sulfasalazine), steroids (e.g., betamethasone, cortisone and dexamethasone), anti-TNF-α compounds, MMP inhibitors, glucocorticoids, chemokine inhibitors, CB2-selective inhibitors, and other classes of compounds indicated for the treatment of rheumatoid arthritis.


This invention also provides a method of treating stroke and ischemia reperfusion injury in a patient in need of such treatment comprising administering to said patient a therapeutically effective amount of at least one compound of formula I, or a pharmaceutically acceptable salt or solvate thereof, in combination with at least one compound selected from the group consisting of thrombolitics (e.g., tenecteplase, TPA, alteplase), antiplatelet agents (e.g., gpIIb/IIIa), antagonists (e.g., abciximab and eftiifbatide), anticoagulants (e.g., heparin), and other compounds indicated for the treatment of rheumatoid arthritis.


This invention also provides a method of treating stroke and ischemia reperfusion injury in a patient in need of such treatment comprising administering to said patient a therapeutically effective amount of at least one compound of formula I, or a pharmaceutically acceptable salt or solvate thereof, in combination with at least one compound selected from the group consisting of tenecteplase, TPA, alteplase, abciximab, eftiifbatide, and heparin.


This invention also provides a method of treating psoriasis in a patient in need of such treatment comprising administering to said patient a therapeutically effective amount of at least one compound of formula I, or a pharmaceutically acceptable salt or solvate thereof, in combination with at least one compound selected from the group consisting of immunosuppressives (e.g., methotrexate, cyclosporin, leflunimide and sulfasalazine), steroids (e.g., β-methasone) and anti-TNF-α compounds (e.g., etonercept and infliximab).


This invention also provides a method of treating COPD in a patient in need of such treatment comprising administering to said patient a therapeutically effective amount of at least one compound of formula I, or a pharmaceutically acceptable salt or solvate thereof.


This invention also provides a method of treating arthritis in a patient in need of such treatment comprising administering to said patient a therapeutically effective amount of at least one compound of formula I, or a pharmaceutically acceptable salt or solvate thereof.


This invention also provides a method of treating osteoarthritis in a patient in need of such treatment comprising administering to said patient a therapeutically effective amount of at least one compound of formula I, or a pharmaceutically acceptable salt or solvate thereof.


This invention also provides a method of treating acute pain, acute inflammatory pain, chronic inflammatory pain, or neuropathic pain in a patient in need of such treatment comprising administering to said patient a therapeutically effective amount of at least one compound of formula I, or a pharmaceutically acceptable salt or solvate thereof.


This invention also provides a method of treating pain in a patient in need of such treatment comprising administering to said patient a therapeutically effective amount of at least one compound of formula I, or a pharmaceutically acceptable salt or solvate thereof, and administering a therapeutically effective amount of at least one medicament selected from the group consisting of: NSAIDs, COXIB inhibitors, anti-depressants, and anti-convulsants.


This invention also provides a pharmaceutical composition comprising at least one (e.g., 1-3, usually 1) compound of formula I, or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier. Preferred are oral dosage forms and dosage forms suitable for inhalation.


This invention also provides a pharmaceutical composition comprising at least one (e.g., 1-3, usually 1) compound of formula I, or a pharmaceutically acceptable salt or solvate thereof, and at least one (e.g., 1-3, usually 1) other agent, medicament, antibody and/or inhibitor disclosed above, and a pharmaceutically acceptable carrier.







DETAILED DESCRIPTION

Preferred compounds of formula I are those wherein the quinolyl portion has the structure
embedded image


More preferred are compounds wherein R10, R11 and R13 are each H. Also preferred are compounds wherein R1 is H, alkyl, cycloalkyl or CF3; more preferably, R1 is alkyl, especially methyl. Also preferred are compounds wherein R9 is H, alkyl or —CF3, more preferably —CF3.


In compounds of formula I, X is preferably O.


In compounds of formula I,
embedded image

is preferably oxazolyl, more preferably
embedded image


In compounds of formula I, R3 is preferably H, alkyl, hydroxalkyl or —C(O)Oalkyl, and R4 is H or alkyl. More preferably, R3 and R4 are each independently H or alkyl.


In compounds of formula I, R5 is preferably H, and R6 is preferably H, alkyl or hydroxyalkyl. When R6 is alkyl, it is preferably methyl, ethyl or isopropyl, more preferably methyl; when it is hydroxyalkyl, it is preferably hydroxymethyl or hydroxyethyl (i.e., —(CH2)2OH or —CH(OH)CH3). In a more preferred embodiment, R5 is H and R6 is H, methyl or hydroxymethyl. Preferably, t is 1. When t is 2, preferably both R5 substituents and one R6 substituent are H and one R6 substituent is H or methyl.


Preferably, R5 and R6 have the following stereochemistry (i.e., R6 is “S”):
embedded image


When R7 and R8 do not form a ring, the following definitions are preferred.


R7 is preferably H, alkyl, cycloalkyl, hydroxyalkyl or alkoxyalkyl. More preferably, R7 is H, alkyl, hydroxyalkyl, especially wherein alkyl is methyl or ethyl, and hydroxyalkyl is hydroxyethyl. Especially preferred are compounds wherein R7 is H or alkyl, especially H, methyl or ethyl, with H being most preferred.


R8 is preferably R12-cycloalkyl, (R12-cycloalkyl)alkyl, R45-hydroxyalkyl, R17-phenyl, (R17-phenyl)alkyl, R23-heteroaryl, (R23-heteroaryl)alkyl, -alkyl-N(R30)—C(O)—NR18R19, -alkyl-N(R30)—C(O)alkyl, -alkyl-N(R30)—C(O)—(R17-phenyl), -alkyl-N(R30)—C(O)—(R23-heteroaryl), -alkyl-N(R30)—(R23-heteroaryl),
embedded image

More preferably, R8 is R12-cycloalkyl, R45-hydroxyalkyl, (R17-phenyl)alkyl, R23-heteroaryl, (R23-heteroaryl)alkyl, -alkyl-N(R30)—(R23-heteroaryl), -alkyl-N(R30)—C(O)alkyl,
embedded image

(especially where p is 0) or
embedded image

(especially where p is 1). Especially preferred are compounds wherein R8 is R12-cycloalkyl, R45-hydroxyalkyl, (R17-phenyl)alkyl, (R23-heteroaryl)alkyl, -alkyl-N(R30)—C(O)-alkyl, -alkyl-N(R30)—(R23-heteroaryl) or
embedded image


When R8 comprises R12-cycloalkyl, R12 is preferably OH, —(CH2)n—N(R30)—C(O)-cycloalkyl or —(CH2)n—N(R30)—(R23-heteroaryl), especially OH. When R8 is
embedded image

n is preferably 0 and R29 is preferably heteroaryl, —C(O)alkyl or —C(O)cycloalkyl. When R8 is R45-hydroxyalkyl, R45 is preferably R17-phenyl.


R30 is preferably H.


Preferred heteroaryl groups include pyrimidyl, benzothienyl, benzofuranyl, indolyl, pyridyl and pyrazinyl.


Especially preferred are compounds of formula I wherein R7 is H and R8 is (R17-phenyl)alkyl, (R23-heteroaryl)alkyl, R45-hydroxyalkyl, -alkyl-N(R30)—(R23-heteroaryl) or
embedded image

R17 is preferably 1-3 substituents selected from the group consisting of halogen, OH, alkoxy and alkyl; R23 is preferably 1 or 2 substituents independently selected from the group consisting of H, alkyl, alkoxy and halogen; R45 is preferably R17-phenyl, wherein R17 is 1-3 substituents selected from the group consisting of halogen, OH, alkoxy and alkyl; heteroaryl is pyrimidyl, benzothienyl, benzofuranyl, indolyl, pyridyl or pyrazinyl, and R30 is H.


Also preferred are compounds of formula I wherein R7 and R8 and the nitrogen to which they are attached form
embedded image


In the preferred compounds where R7 and R8 form
embedded image

the optional double bond preferably is not present (i.e., a single bond is present). R14 is preferably selected from H, OH, alkoxy, —(CH2)n—N(R30)(R23-heteroaryl), R23-heteroaryl or (R23-heteroaryl)-alkyl. In a further preferred embodiment, one R14 is OH and the other R14 is R23-heteroaryl; in another embodiment, one R14 is H and the other is (R23 heteroaryl)-alkyl or —(CH2)n—N(R30)(R23-heteroaryl) (especially wherein n is 1).


In the preferred compounds where R7 and R8 form
embedded image

q is preferably 1. R27 is preferably 1-3 substituents independently selected from the group consisting of H, OH, alkyl, alkoxy, alkoxyalkyl, R17-phenyl, —C(O)OH, —C(O)Oalkyl, R23-heteroaryl, (R23-heteroaryl)amino and —(CH2)n—N(R30)—C(O)(cycloalkyl), wherein n is 0.


In the preferred compounds where R7 and R8 form
embedded image

R15 is preferably alkyl, R17-phenyl, R23-heteroaryl, —C(O)alkyl, —C(O)(fluoroalkyl), —C(O)—(R23-heteroaryl), —C(O)-alkoxyalkyl, —C(O)—(R38-cycloalkyl), —SO2-alkyl, —SO2—NR18R19 or
embedded image

R16 is preferably H, alkyl, or two R16 groups and the carbon to which they are attached form —C(O)—.


In the preferred compounds where R7 and R8 form
embedded image

preferably p is 0, R34 is hydrogen, and R35 is 1 or 2 substituents independently selected from H, OH, halo and alkyl.


In the preferred compounds where R7 and R8 form
embedded image

preferably p is 0, ring B is a pyrazolyl or thiazolyl ring, and R35 is 1 or 2 substituents independently selected from H and alkyl.


As used above, and throughout the specification, the following terms, unless otherwise indicated, shall be understood to have the following meanings:


“Patient” includes both humans and animals.


“Mammal” means humans and other mammalian animals.


“Alkyl” means an aliphatic hydrocarbon group which may be straight or branched and comprising about 1 to about 6 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkyl chain. Non-limiting examples of suitable alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl and n-pentyl.


“Alkenyl” means an aliphatic hydrocarbon group containing at least one carbon-carbon double bond and which may be straight or branched and comprising about 2 to about 6 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkenyl chain. Non-limiting examples of suitable alkenyl groups include ethenyl, propenyl, n-butenyl, 3-methylbut-2-enyl and n-pentenyl.


“Alkylene” means a difunctional group obtained by removal of a hydrogen atom from an alkyl group that is defined above. Non-limiting examples of alkylene include methylene (i.e., —CH2—), ethylene (i.e., —CH2—CH2—) and branched chains such as —CH(CH3)—CH2—.


“Heteroaryl” means a single ring, bicyclic or benzofused heteroaromatic group of 5 to 10 atoms comprised of 2 to 9 carbon atoms and 1 to 4 heteroatoms independently selected from the group consisting of N, O and S, provided that the rings do not include adjacent oxygen and/or sulfur atoms. N-oxides of the ring nitrogens are also included. Examples of single-ring heteroaryl groups are pyridyl, oxazolyl, isoxazolyl, oxadiazolyl, furanyl, pyrrolyl, thienyl, imidazolyl, pyrazolyl, tetrazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrazinyl, pyrimidyl, pyridazinyl and triazolyl. Examples of bicyclic heteroaryl groups are naphthyridyl (e.g., 1, 5 or 1,7), imidazopyridyl, pyridopyrimidinyl and 7-azaindolyl. Examples of benzofused heteroaryl groups are indolyl, quinolyl, isoquinolyl, phthalazinyl, benzothienyl (i.e., thianaphthenyl), benzimidazolyl, benzofuranyl, benzoxazolyl, benzisoxazolyl, benzothiazolyl and benzofurazanyl. All positional isomers are contemplated, e.g., 2-pyridyl, 3-pyridyl and 4-pyridyl. The term R23-heteroaryl refers to such groups wherein substitutable ring carbon atoms have a substituent as defined above. When the heteroaryl group is a benzofused ring, the substituents can be attached to either or both the phenyl ring portion and the heteroaromatic ring portion, and the heteroaryl group can be attached to the rest of the molecule either through the phenyl ring portion or the heteroaromatic ring portion.


“Cycloalkyl” means a non-aromatic mono- or multicyclic ring system comprising about 3 to about 10 carbon atoms, preferably about 3 to about 6 carbon atoms. Non-limiting examples of suitable monocyclic cycloalkyls include cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl and the like. Non-limiting examples of suitable multicyclic cycloalkyls include 1-decalin, norbornyl, adamantyl and the like. Monocyclic rings are preferred.


“Halo” means fluoro, chloro, bromo, or iodo groups. Preferred are fluoro, chloro or bromo, and more preferred are fluoro and chloro.


“Haloalkyl” means an alkyl as defined above wherein one or more hydrogen atoms on the alkyl is replaced by a halo group defined above; in particular, fluoroalkyl refers to an alkyl chain substituted by one or more fluoro atoms.


“Aminoalkyl” means an alkyl as defined above wherein a hydrogen atom on the alkyl is replaced by an amino (i.e., —NH2) group.


“Heterocycloalkyl” means a non-aromatic saturated monocyclic or multicyclic ring system comprising about 3 to about 10 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more, preferably 1, 2, 3 or 4, of the atoms in the ring system is independently selected from an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination. There are no adjacent oxygen and/or sulfur atoms present in the ring system. Preferred heterocycloalkyls contain 5 to 6 ring atoms. The prefix aza, oxa or thia before the heterocycloalkyl root name means that at least a nitrogen, oxygen or sulfur atom respectively is present as a ring atom. The nitrogen or sulfur atom of the heterocyclyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S-dioxide. Non-limiting examples of suitable monocyclic heterocyclyl rings include piperidyl, pyrrolidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, 1,3-dioxolanyl, 1,4-dioxanyl, tetrahydrofuranyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like. The heterocycloalkyl group can be attached to the parent moiety through a ring carbon or a ring nitrogen.


“(Heterocycloalkyl)alkyl” means a heterocycloalkyl-alkyl group in which the heterocycloalkyl and alkyl groups are as defined above. The bond to the parent is through the alkyl.


“(Heteroaryl)alkyl” means a heteroaryl-alkyl- group in which the heteroaryl and alkyl are as previously described. Non-limiting examples of suitable heteroarylalkyl groups include pyridylmethyl, 2-(furan-3-yl)ethyl and quinolin-3-ylmethyl. The bond to the parent moiety is through the alkyl.


“(Phenyl)alkyl and “(naphthyl)alkyl similarly mean phenyl-alkyl and naphthyl-alkyl groups wherein the bond to the parent moiety is through the alkyl.


“Hydroxyalkyl” means a HO-alkyl- group in which alkyl is as previously defined. Non-limiting examples of suitable hydroxyalkyl groups include hydroxymethyl and 2-hydroxyethyl. Similarly, “dihydroxyalkyl” refers to a straight or branched alkyl chain substituted by two hydroxy groups.


“Alkoxy” means an alkyl-O— group in which the alkyl group is as previously described. Non-limiting examples of suitable alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy and n-butoxy. The bond to the parent moiety is through the ether oxygen.


“Alkylthio” means an alkyl-S— group in which the alkyl group is as previously described. Non-limiting examples of suitable alkylthio groups include methylthio, ethylthio and isopropylthio. The bond to the parent moiety is through the sulfur.


“Heteroarylamino” means an heteroaryl-NH— group in which the heteroaryl group is as previously described. Non-limiting examples of suitable heteroarylamino groups include pyrimidinyl-amino and pyrazinyl-amino. The bond to the parent moiety is through the amino nitrogen.


“Heteroaryloxy” means an heteroaryl-O— group in which the heteroaryl group is as previously described. Non-limiting examples of suitable heteroaryloxy groups include pyrimidinyl-O— and pyrazinyl-O—. The bond to the parent moiety is through the ether oxygen.


The term “hydroxyalkyl substituted by CO2alkyl” means an alkyl chain substituted by a hydroxy group and a CO2alkyl group. Similarly, terms such as “hydroxyalkyl substituted by R17-phenyl” means an alkyl chain substituted by a hydroxy group and a R17-phenyl group; “hydroxyalkyl substituted by R17-phenyl and alkoxy” means an alkyl group substituted by a hydroxy group, a R17-phenyl, and an alkoxy group. In each of these substituents and other similar substituents listed in the definitions, the alkyl chains can be branched.


Examples of moieties formed when two adjacent R17 groups form a ring with the carbons on the phenyl ring to which they are attached are:
embedded image


When R and R8 together form
embedded image

the dotted line indicates an optional double bond as defined above. When the double bond is absent, i.e., when a single bond is present, the one or two R14 substituents can be attached to the same or different ring carbons. When the double bond is present, only one R14 substituent can be attached to a carbon that is part of the double bond.


When R7 and R8 together form
embedded image

the dotted line indicates an optional double bond as defined above. When the double bond is absent, i.e., when a single bond is present, R24 can be H, OH or alkoxy and R25 can be H or R35-phenyl, but when the double bond is present, R24 forms the double bond with the adjacent carbon and R25 is H or R35-phenyl. That is, the moiety has the structural formula
embedded image


When R7 and R8 together form
embedded image

it means that an optionally substituted fused bicyclic ring is formed, wherein the
embedded image

portion comprises an R35-substituted 5 or 6-membered heteroaryl group fused to the piperidinyl ring.


Examples are:
embedded image


The term “optionally substituted” means optional substitution with the specified groups, radicals or moieties, in available position or positions.


With reference to the number of moieties (e.g., substituents, groups or rings) in a compound, unless otherwise defined, the phrases “one or more” and “at least one” mean that there can be as many moieties as chemically permitted, and the determination of the maximum number of such moieties is well within the knowledge of those skilled in the art.


As used herein, the term “composition” is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.


The wavy line custom character as a bond generally indicates a mixture of, or either of, the possible isomers, e.g., containing (R)- and (S)-stereochemistry. For example,
embedded image


Lines drawn into the ring systems, such as, for example:
embedded image

indicate that the indicated line (bond) may be attached to any of the substitutable ring carbon atoms.


As well known in the art, a bond drawn from a particular atom wherein no moiety is depicted at the terminal end of the bond indicates a methyl group bound through that bond to the atom, unless stated otherwise. For example:
embedded image


It should also be noted that any carbon or heteroatom with unsatisfied valences in the text, schemes, examples, structural formulae, and any Tables herein is assumed to have the hydrogen atom or atoms to satisfy the valences.


Prodrugs and solvates of the compounds of the invention are also contemplated herein. The term “prodrug”, as employed herein, denotes a compound that is a drug precursor which, upon administration to a subject, undergoes chemical conversion by metabolic or chemical processes to yield a compound of formula I or a salt and/or solvate thereof. A discussion of prodrugs is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems (1987) Volume 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, (1987) Edward B. Roche, ed., American Pharmaceutical Association and Pergamon Press, both of which are incorporated herein by reference thereto.


“Solvate” means a physical association of a compound of this invention with one or more solvent molecules. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. “Solvate” encompasses both solution-phase and isolatable solvates. Non-limiting examples of suitable solvates include ethanolates, methanolates, and the like. “Hydrate” is a solvate wherein the solvent molecule is H2O.


“Effective amount” or “therapeutically effective amount” is meant to describe an amount of compound or a composition of the present invention effective in inhibiting PDE 4 and thus producing the desired therapeutic effect in a suitable patient.


The compounds of formula I form salts which are also within the scope of this invention. Reference to a compound of formula I herein is understood to include reference to salts thereof, unless otherwise indicated. The term “salt(s)”, as employed herein, denotes acidic salts formed with inorganic and/or organic acids, as well as basic salts formed with inorganic and/or organic bases. In addition, when a compound of formula I contains both a basic moiety, such as, but not limited to a pyridine or imidazole, and an acidic moiety, such as, but not limited to a carboxylic acid, zwitterions (“inner salts”) may be formed and are included within the term “salt(s)” as used herein. Pharmaceutically acceptable (i.e., non-toxic, physiologically acceptable) salts are preferred, although other salts are also useful. Salts of the compounds of the formula I may be formed, for example, by reacting a compound of formula I with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization. Acids (and bases) which are generally considered suitable for the formation of pharmaceutically useful salts from basic (or acidic) pharmaceutical compounds are discussed, for example, by S. Berge et al, Journal of Pharmaceutical Sciences (1977) 66(1) 1-19; P. Gould, International J. of Pharmaceutics (1986) 33 201-217; Anderson et al, The Practice of Medicinal Chemistry (1996), Academic Press, New York; in The Orange Book (Food & Drug Administration, Washington, D.C. on their website); and P. Heinrich Stahl, Camille G. Wermuth (Eds.), Handbook of Pharmaceutical Salts: Properties, Selection, and Use, (2002) Int'l. Union of Pure and Applied Chemistry, pp. 330-331. These disclosures are incorporated herein by reference thereto.


Exemplary acid addition salts include acetates, adipates, alginates, ascorbates, aspartates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates, camphorsulfonates, cyclopentanepropionates, digluconates, dodecylsulfates, ethanesulfonates, fumarates, glucoheptanoates, glycerophosphates, hemisulfates, heptanoates, hexanoates, hydrochlorides, hydrobromides, hydroiodides, 2-hydroxyethanesulfonates, lactates, maleates, methanesulfonates, methyl sulfates, 2-naphthalenesulfonates, nicotinates, nitrates, oxalates, pamoates, pectinates, persulfates, 3-phenylpropionates, phosphates, picrates, pivalates, propionates, salicylates, succinates, sulfates, sulfonates (such as those mentioned herein), tartarates, thiocyanates, toluenesulfonates (also known as tosylates,) undecanoates, and the like.


Exemplary basic salts include ammonium salts, alkali metal salts such as sodium, lithium, and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, aluminum salts, zinc salts, salts with organic bases (for example, organic amines) such as benzathines, diethylamine, dicyclohexylamines, hydrabamines (formed with N,N-bis(dehydroabietyl)ethylenediamine), N-methyl-D-glucamines, N-methyl-D-glucamides, t-butyl amines, piperazine, phenylcyclohexylamine, choline, tromethamine, and salts with amino acids such as arginine, lysine and the like. Basic nitrogen-containing groups may be quarternized with agents such as lower alkyl halides (e.g. methyl, ethyl, propyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (e.g. dimethyl, diethyl, dibutyl, and diamyl sulfates), long chain halides (e.g. decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides), aralkyl halides (e.g. benzyl and phenethyl bromides), and others.


All such acid salts and base salts are intended to be pharmaceutically acceptable salts within the scope of the invention and all acid and base salts are considered equivalent to the free forms of the corresponding compounds for purposes of the invention.


Compounds of formula I, and salts, solvates and prodrugs thereof, may exist in their tautomeric form (for example, as an amide or imino ether). All such tautomeric forms are contemplated herein as part of the present invention.


All stereoisomers (for example, geometric isomers, optical isomers and the like) of the present compounds (including those of the salts, solvates and prodrugs of the compounds as well as the salts and solvates of the prodrugs), such as those which may exist due to asymmetric carbons on various substituents, including enantiomeric forms (which may exist even in the absence of asymmetric carbons), rotameric forms, atropisomers, and diastereomeric forms, are contemplated within the scope of this invention. Individual stereoisomers of the compounds of the invention may, for example, be substantially free of other isomers, or may be admixed, for example, as racemates or with all other, or other selected, stereoisomers. The chiral centers of the present invention can have the S or R configuration as defined by the IUPAC 1974 Recommendations. The use of the terms “salt”, “solvate” “prodrug” and the like, is intended to equally apply to the salt, solvate and prodrug of enantiomers, stereoisomers, rotamers, tautomers, racemates or prodrugs of the inventive compounds.


Polymorphic forms of the compounds of Formula I, and of the salts, solvates and prodrugs of the compounds of Formula I, are intended to be included in the present invention.


This invention also includes the compounds of this invention in isolated and pure form.


Compounds of formula I can be prepared by known methods from starting materials either known in the art or prepared by methods known in the art. Non-limiting examples of suitable methods are illustrated in the following schemes.


In the schemes, the quinolyl portion is shown as the preferred structure, but those skilled in the art will recognize that other substitutions on the quinolyl portion can be made by these procedures. Also, one skilled in the art will recognize that the schemes show the significant steps of the procedures, and that the synthesis of compounds of formula I may require the need for the protection of certain functional groups during the preparation of the compounds; the synthesis of compounds also may require the reduction of a reducible functional group or the oxidation of an oxidizable functional group.
embedded image

Step a


Formation of the oxazole ring can be accomplished by a number of methods including, but not limited to the following.
embedded imageembedded imageembedded image


Using the appropriate starting materials, both the amine and ester functional groups can be incorporated when the oxazole ring is synthesized.


Step b


Introduction of the ester moiety COOR2 can be accomplished stepwise by reaction with phosphorous oxychloride and subsequent oxidation of the intermediate aldehyde to the carboxylic acid and further esterification. Alternatively, reaction at this position can proceed with a Lewis acid such as zinc triflate and an acid chloride.


Step c


Introduction of the R moiety can be accomplished by deprotonation with a strong base such as n-butyl lithium, sec-butyl lithium, lithium diisopropylamine or lithium hexamethyldisilazide, followed by addition of an aldehyde or alkyl halide. This reaction can use a variety of solvents including diethyl ether, THF, dioxane, hexane, toluene, HMPA, DMPU and TMEDA.


Step d


Activation of the R moiety in (3) can be accomplished by several different methods. If R is an alkyl moiety, halogenation, for example with bromine or N-bromo-succinimide and an initiator such as benzoyl peroxide, AIBN or light in carbon tetrachloride as the solvent provides (5) as a halide. If R incorporates an ester or alcohol functional group, through appropriate oxidation or reduction reactions, the aldehyde or ketone functional group can be obtained for further reaction in Step e through a reductive amination reaction. If R incorporates an ester, ketone, or aldehyde functional group, appropriate reduction reaction with a hydride such as NaBH4, LiBH4, LiAlH4, or diisobutylaluminum hydride will provide the alcohol moiety. This alcohol can be activated by conversion, for example, to the corresponding mesylate, tosylate, chloride, bromide or iodide.


Step e


Introduction of the amine moiety in (6) can be accomplished by an alkylation reaction on (5) if X is a leaving group such as chloride, bromide, mesylate or tosylate. This reaction can use a variety of bases including TEA, DIPEA, N-methyl morpholine, pyridine, dimethylaminopyridine, imidazole, K2CO3, Cs2CO3, potassium t-butoxide, and NaOH, and can be done in a variety of solvents including DMF, dimethylacetamide, THF, dioxane, CH3CN, toluene, CH2Cl2 and dichloroethane. Alternatively, if the —C(X)(R5)(R6) moiety incorporates a ketone or aldehyde functional group, the amine moiety can be introduced through a reductive amination reaction. Suitable reducing reagents for this reaction include NaBH3CN, sodium triacetoxyborohydride in a mixture of solvents including THF, dioxane, CH3CN, toluene, CH2Cl2, dichloroethane, methanol, ethanol, trifluoroethanol. The reductive amination reaction may require the addition of a drying agent such as sieves or MgSO4, or azeotropic removal of water or the addition of a Lewis acid such as titanium isopropoxide. In addition, the ketone or aldehyde moiety can be converted into an oxime with hydroxylamine and a variety of bases such as pyridine, TEA, sodium acetate, and Na2CO3. The oxime can be reduced to an amine.


Step f


Hydrolysis of ester (6) to acid (7) can be accomplished with a suitable base such as NaOH, LiOH, sodium methoxide, sodium ethoxide, K2CO3, Cs2CO3, BCl3, potassium t-butoxide, TEA, DBU and DIPEA in a mixture of solvents including water, methanol, ethanol, isopropanol, CH2Cl2, THF, diethyl ether and dioxane.


Step g


Amide bond formation to obtain (8) can be accomplished by formation of the acid chloride, a mixed anhydride, or activated ester and addition of the appropriate amine. A variety of suitable amide bond coupling reagents such as HATU, CDI, EDC, DCC, PyBOP, polymer supported CDI, polymer supported EDC and the like, with or without HOBt, can be used. These coupling reagents can be used with a suitable base such as TEA, DIPEA, N-methyl morpholine, pyridine, dimethylaminopyridine, DBU, imidazole and the like in a mixture of solvents including DMF, dimethylacetamide, THF, dioxane, CH3CN, N-methylpyrrolidine, CH2Cl2, and dichloroethane.


Abbreviations used in the above general schemes and in the following examples, as well as throughout the specification, are as follows: Me (methyl); Bu (butyl); Et (ethyl); Ac (acetyl); Boc or BOC (t-butoxycarbonyl); DMF (dimethyl-formamide); THF (tetrahydrofuran); DIPEA (diisopropylethylamine); RT (room temperature); HOBt (hydroxybenzotriazole); TFA (trifluoroacetic acid); TEA (triethyl amine); KHMDS (potassium bis(trimethylsilyl)amide); TLC (thin layer chromatography); EDC (1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride); HMPA (hexamethylphosphoramide); DMPU (1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H)-pyrimidinone); TMEDA (N,N,N′,N′-tetramethyletheylenediamine); HATU (O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyl uranium hexafluoro-phosphate); NBS (N-bromosuccinimide); DCC (1,3-dicyclohexylcarbodiimide); DEC (1,2-diethylaminoethyl chloride hydrochloride); TMSCN (trimethylsilylcyanide); CDI (carbonyldiimidazole); PyBOP (benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate).


EXAMPLE 1



embedded image


Step 1: SOCl2 (26.7 ml, 367 mmol) was added to a mixture of compound 1 (40 g, 147 mmol) in dry toluene (300 ml) and DMF (0.4 ml). The mixture was heated at 70° C. for 2 h, then the excess of SOCl2 and solvents were evaporated to dryness to obtain compound 2 as an off white-solid (41 g).


Step 2: A solution of compound 2 (41 g, 141 mmol) in CH2Cl2 (200 ml) was added slowly to a solution of L-threonine methyl ester HCl salt (29 g, 170 mmol) in CH2Cl2 (200 ml) and DIPEA (38 g, 296 mmol) at 0° C. The solution was stirred at 0° C., then warmed to RT over 3 h. After 3 h at RT, the mixture was washed with aqueous NH4Cl solution, then the solid was precipitated in the organic layer and filtered off to give compound 3 (54 g) as a white solid. MS: C17H17F3N2O5 [M+1]+387.1.


Step 3: SOCl2 (76.8 ml, 645 mmol) was added through a syringe to a suspension of compound 3 (50 g, 129 mmol) in dry CH2Cl2 (500 ml) cooled to −45 0° C. The mixture was stirred at −45° C. for 1 h, then warmed up to RT slowly. After the reaction was complete, solvent and excess SOCl2 were evaporated. The residue was dissolved in CH2Cl2 (800 ml) and washed with saturated NaHCO3 solution (3×600 ml), dried (Na2SO4), filtered and concentrated to give compound 4 as a beige solid (43 g, 120 mmol, 93%). MS: C17H15F3N2O4 [M+1]+369.1.


Step 4: DBU (13.9 ml, 93 mmol) was added via a syringe to a solution of compound 4 (31 g, 84 mmol) in dry CH2Cl2 (300 ml) at 0° C., followed by the addition of BrCCl3 (9.1 ml, 93 mmol). The mixture was stirred at 0° C. for 2 h, then at RT overnight. The reaction was quenched with 0.15 N HCl (400 ml) and extracted with CH2Cl2 (2×100 ml). The organic layer was dried with Na2SO4, filtered- and concentrated to give crude title compound 5 (35 g). The crude material was triturated with MeOH (200 ml) and 23.5 g of compound 5 was collected as a pale yellow solid. MS: C17H13F3N2O4 [M+1]+367.1.


EXAMPLE 2



embedded image


Step 1: NBS (23.5 g, 132 mmol) and benzoyl peroxide (1.4 g, 5.75 mmol) were added to a mixture of compound 5 (42 g, 115 mmol) in dry CCl4 (550 ml). The mixture was refluxed for 3 h, then concentrated by evaporating off most of the solvent. Saturated NH4Cl solution was added and the product was extracted from the aqueous layer with CH2Cl2 (2×300 ml). The organic fractions were combined, dried (Na2SO4), filtered and evaporated. The crude material was triturated with MeOH to give compound 6 as a white solid (49.5 g, 110 mmol, 96%). MS: C17H12F3BrN2O4 [M+1]+Br79,81 445.1, 447.1.


Step 2: Potassium phthalimide (20.6 g, 111 mmol) was added to a solution of compound 6 (49.5 g, 111 mmol) in dry DMF (650 ml) at RT. After stirring at RT for 2 h, the reaction mixture was poured into an ice water bath (1.5 L). The resultant yellow precipitate was collected, washed with water, and dried at 45° C. under vacuum to give compound 7 as a yellow solid (56 g, 110 mmol). MS: C25H16F3N3O6 [M+1]+512.0.


Step 3: BCl3 (1 M in CH2Cl2, 78 ml, 78 mmol) solution was added to a solution of compound 7 (10 g, 19.57 mmol) in dry CH2Cl2 (400 ml) at −15° C.; After the addition of BCl3, the mixture turned yellow and precipitate started to form. The reaction was warmed to 0° C. After the reaction was complete (checked by TLC), the mixture was poured into ice-water (600 ml). The yellow precipitate was filtered, washed with water, and dried (Na2SO4) to give the title compound 8 as a yellow solid (8.5 g, 17.1 mmol, 87%). MS: C24H14F3N3O6 [M+1]+498.1.


EXAMPLE 3



embedded image


Step 1: To a suspension of compound 8 (0.35 g, 0.7 mmol) in dry DMF (16 ml), compound 9 (3-aminomethyl benzothiophene) (0.11 g, 0.7 mmol), DI PEA (0.18 g, 1.4 mmol) and HATU (0.53 g, 1.4 mmol) were added at RT. After 30 ml, the reaction mixture was poured into cold water (30 ml). The precipitate was filtered, washed with water and dried under vacuum to give crude compound 10 (0.45 g, 0.7 mmol) as a yellow solid.


Step 2: The crude material of compound 10 (0.45 g, 0.7 mmol) was treated with absolute EtOH (15 ml) and 98% hydrazine (0.22 g, 7 mmol) at RT overnight. The reaction mixture was evaporated and purified on a Biotage (40 M) system, eluting with 3% NH4OH:CH3OH (1:9)/97% CH2Cl2. Compound 11 was obtained as a pure yellow solid (0.22 g, 0.43 mmol, 61% yield) which was converted to its HCl salt by treatment with 1.2 equivalent of 4 N HCl/dioxane in CH2Cl2. Compound 12 was obtained by evaporating off solvents and excess acid. MS (M+1): m/e. 513.


EXAMPLE 4

A series of aromatic or heteroaromatic amide analogs (compound 13) was made by methods analogous to those described for compound 12 in Example 3 or via an alternative coupling method by treatment of compound 8 (0.2 mmol) either with aromatic or heteroaromatic amine reagent (0.2 mmol), DEC (0.24 mmol), HOBT (0.24 mmol), and TEA (0.24 mmol) in DMF (2.5 ml) at RT overnight. Water (3 ml) was added to the reaction and precipitate was collected, rinsed with water, and vacuum dried at 40° C. The phthalamido protecting group of the coupled product was removed with 98% hydrazine in EtOH (as in step 2 of Example 3) and purified by silica gel chromatography [5% NH4OH—CH3OH (1:9) in 95% CH2Cl2] or by preparative Gilson Prep column (XTerra RP C18, 5 μm) chromatography, gradient eluted with 0.5% TFA in (9:1) (H2O—CH3CN) to 0.5% TFA in CH3CN:H2O (8:2). Compound 13 was obtained as free form or as a TFA salt, depending on the method of purification. The free form of compound 13 was treated with 1.2 equivalent of HCl to give compound 13 as a HCl salt. The data for compound 13 analogs are listed as follows:

13embedded imageCpd.MSNo.Structure(M + 1)13-1 embedded image487  13-2 embedded image471  13-3 embedded image471  13-4 embedded image475  13-5 embedded image489  13-6 embedded image487  13-7 embedded image491  13-8 embedded image525  13-9 embedded image515  13-10 embedded image515  13-11 embedded image515  13-12 embedded image501  13-13 embedded image525  13-14 embedded image475  13-15 embedded image509  13-16 embedded image525  13-17 embedded image491  13-18 embedded image475  13-19 embedded image491  13-20 embedded image525  13-21 embedded image509  13-22 embedded image493  13-23 embedded image493  13-24 embedded image493  13-25 embedded image535  13-26 embedded image487  13-27 embedded image517  13-28 embedded image509  13-29 embedded image541  13-30 embedded image523  13-31 embedded image487  13-32 embedded image505  13-33 embedded image483  13-34 embedded image539  13-35 embedded image513  13-36 embedded image469  13-37 embedded image457  13-38 embedded image487  13-39 embedded image537  13-40 embedded image517  13-41 embedded image497  13-42 embedded image525  13-43 embedded image499  13-44 embedded image547  13-45 embedded image485  13-46 embedded image483  13-47 embedded image485  13-48 embedded image501  13-49 embedded image501  13-50 embedded image485  13-51 embedded image523  13-52 embedded image526  13-53 embedded image541  13-54 embedded image525  13-55 embedded image507  13-56 embedded image535  13-57 embedded image515  13-58 embedded image499  13-59 embedded image533  13-60 embedded image503  13-61 embedded image483  13-62 embedded image473  13-63 embedded image521  13-64 embedded image521  13-65 embedded image521  13-66 embedded image507  13-67 embedded image499  13-68 embedded image499  13-69 embedded image485  13-70 embedded image485  13-71 embedded image485  13-72 embedded image485  13-73 embedded image538  13-74 embedded image500  13-75 embedded image487  13-76 embedded image565  13-77 embedded image505  13-78 embedded image505  13-79 embedded image505  13-80 embedded image523  13-81 embedded image527  13-82 embedded image513  13-83 embedded image527  13-84 embedded image527  13-85 embedded image555  13-86 embedded image555  13-87 embedded image509  13-88 embedded image515  13-89 embedded image508  13-90 embedded image482  13-91 embedded image499  13-92 embedded image473  13-93 embedded image515  13-94 embedded image503  13-95 embedded image458  13-96 embedded image488  13-97 embedded image487  13-98 embedded image499  13-99 embedded image519  13-100embedded image527  13-101embedded image547  13-102embedded image531  13-103embedded image571  13-104embedded image515  13-105embedded image545  13-106embedded image13-107embedded image496  13-108embedded image511  13-109embedded image523  13-110embedded image527  13-111embedded image550  13-112embedded image536  13-113embedded image561  13-114embedded image567  13-115embedded image581  13-116embedded image595  13-117embedded image525  13-118embedded image532  13-119embedded image539  13-120embedded image569  13-121embedded image533  13-122embedded image546  13-123embedded image555  13-124embedded image540  13-125embedded image541  13-126embedded image536  13-127embedded image633  13-128embedded image617  13-129embedded image664  13-130embedded image539  13-131embedded image533  13-132embedded image568  13-133embedded image554  13-134embedded image437  13-135embedded image453  13-136embedded image497  13-137embedded image591  13-138embedded image635  13-139embedded image629  13-140embedded image526  13-141embedded image511  13-142embedded image582  13-143embedded image569  13-144embedded image574  13-145embedded image629  13-146embedded image447  13-147embedded image538  13-148embedded image589  13-149embedded image573  13-150embedded image579  13-151embedded image579  13-152embedded image576  13-153embedded image512  13-154embedded image580  13-155embedded image553  13-156embedded image535  13-157embedded image619  13-158embedded image605  13-159embedded image513  13-160embedded image501  13-161embedded image501  13-162embedded image636  13-163embedded image604  13-164embedded image473.513-165embedded image501  13-166embedded image501  13-167embedded image518  13-168embedded image487  13-169embedded image487  13-170embedded image601  13-171embedded image645  13-172embedded image580  13-173embedded image552  13-174embedded image541  13-175embedded image568  13-176embedded image584  13-177embedded image636  13-178embedded image652  13-179embedded image478  13-180embedded image478  13-181embedded image542  13-182embedded image542  13-183embedded image568  13-184embedded image585  13-185embedded image515  13-186embedded image637  13-187embedded image542  13-188embedded image530  13-189embedded image540  13-190embedded image510  13-191embedded image609  13-192embedded image629  13-193embedded image541  13-194embedded image482  13-195embedded image514  13-196embedded image512  13-197embedded image517  13-198embedded image518  13-199embedded image529  13-200embedded image546  13-201embedded image568  13-202embedded image584  13-203embedded image543  13-204embedded image543  13-205embedded image561  13-206embedded image582  13-207embedded image517  13-208embedded image541  13-209embedded image536  13-210embedded image624  13-211embedded image541  13-212embedded image554  13-213embedded image550  13-214embedded image550  13-215embedded image526  13-216embedded image529  13-217embedded image576  13-218embedded image573  13-219embedded image521  13-220embedded image566  13-221embedded image471  13-222embedded image485  13-223embedded image522  13-224embedded image536  13-225embedded image543  13-226embedded image522  13-227embedded image505  13-228embedded image510  13-229embedded image545  13-230embedded image467  13-231embedded image519  13-232embedded image536  13-233embedded image453  13-234embedded image514  13-235embedded image534  13-236embedded image590  13-237embedded image513  13-238embedded image520  13-239embedded image467  13-240embedded image581  13-241embedded image581  13-242embedded image544  13-243embedded image529  13-244embedded image477  13-245embedded image529  13-246embedded image520  13-247embedded image534  13-248embedded image569  13-249embedded image542  13-250embedded image507  13-251embedded image625  13-252embedded image577  13-253embedded image521  13-254embedded image522  13-255embedded image604  13-256embedded image593  13-257embedded image556  13-258embedded image575  13-259embedded image602  13-260embedded image465  13-261embedded image590  13-262embedded image590  13-263embedded image594  13-264embedded image593  13-265embedded image542  13-266embedded image560  13-267embedded image587  13-268embedded image527  13-269embedded image526  13-270embedded image541  13-271embedded image541  13-272embedded image599  13-273embedded image602  13-274embedded image520  13-275embedded image527  13-276embedded image580  13-277embedded image529  13-278embedded image528  13-279embedded image529  13-280embedded image542  13-281embedded image500  13-282embedded image505  13-283embedded image501  13-284embedded image536  13-285embedded image557  13-286embedded image558  13-287embedded image559  13-288embedded image524  13-289embedded image544  13-290embedded image541  13-291embedded image616  13-292embedded image464  13-293embedded image518  13-294embedded image472  13-295embedded image502  13-296embedded image502  13-297embedded image507  13-298embedded image586  13-299embedded image516  13-300embedded image502  13-301embedded image516  13-302embedded image497  13-303embedded image517  13-304embedded image527  13-305embedded image527  13-306embedded image498  13-307embedded image522  13-308embedded image535  13-309embedded image556  13-310embedded image


EXAMPLE 5



embedded image


embedded image


Step 1: Glycine ethyl ester hydrochloride (14 g, 100 mmol) was mixed with TEA (29 ml, 200 mmol) in dry CH2Cl2 and cooled in an ice-water bath. Compound 2 (80 mmol) (see Example 1) in dry CH2Cl2 (150 ml) was transferred by cannulation into the above cooled solution. The resulting mixture was allowed to warm to RT slowly. After 2 h, reaction was complete and water (300 ml) was added to dissolve the TEA salt. The organic layer was separated, washed with 5% HCl solution, then water, dried (Na2SO4), filtered and concentrated to give a crude solid, Compound 14, which was used in the next step without further purification.


Step 2: Compound 14 (7.2 g, 20 mmol) was mixed with Lawesson's reagent (5.5 g, 13.6 mmol) in anhydrous THF (100 ml) and heated to 78° C. for 40 min. After cooling to RT, THF was removed and product was purified by silica chromatography, eluting with 100% CH2Cl2 to 5% EtOAc in CH2Cl2, to give compound 15 as a yellow product.


Step 3: Compound 15 (3.9 g, 10 mmol) was dissolved in dry CH2Cl2 (40 ml) and cooled to −78° C. Trimethyloxonium tetrafluoroborate (1.6 g, 11 mmol) was added in one portion. The resulting mixture was then stirred in an ice-water bath for 2 h. NaHCO3 solution was added to quench the reaction. The organic layer was separated, washed with H2O, dried (Na2SO4), and evaporated to give compound 16 as a crude solid which was used in the next reaction without purification.


Step 4a:
embedded image


A neat liquid of cyanuric fluoride (3.4 ml, 40 mmol) was added dropwise to a cooled solution of N-[(1,1-dimethylethoxy)carbonyl]-L-alanine (compound 17) (3.90 g, 20 mmol) in pyridine (1.78 ml, 22 mmol) and dry CH2Cl2 (50 ml) at −40° C. The reaction was kept at −30° C. to −10° C. for 2 h. After 2 h, crushed ice and CH2Cl2 (100 ml) were added. After stirring for 5 min, the mixture was filtered twice, first with a coarse, then with a medium glass filter funnel. The clear solution was separated and the organic phase was washed with H2O, dried (Na2SO4), filtered and concentrated at RT to give compound 18 as a white solid (3.59 g, 18.7 mmol) with a 94% yield.


Step 5: Compound 18 (2.87 g, 15 mmol) was added to a solution of compound 16 (5.0 g, 12.5 mmol) in dry THF (60 ml). The reaction mixture was cooled to −78° C. and KHMDS (0.5 M in toluene) (52.5 ml, 26.25 mmol) was added dropwise over 40 min. During the addition of the first equivalent of base, the reaction mixture turned a deep blue color, which disappeared immediately. A deep brown color was formed when the second equivalent of base was added. The reaction solution was kept at −78° C. for 1 h then gradually warmed to RT. After completion of the reaction (checked by TLC), ice-cold 0.5 M HCl solution (70 ml) was added. The organic layer was separated and the aqueous layer was extracted with EtOAc (70 ml). The combined organic layer were washed with NaHCO3 solution and brine, dried (Na2SO4), filtered and concentrated to give a crude product which was purified by silica gel chromatograph to yield compound 19 as a solid (3.5 g, 6.88 mmol, yield 55%). Alternative method for the preparation of compound 19:


Step 4b:
embedded image


A mixture of BOC-L-alanine (17b) (2.9 g, 15.4 mmol), p-nitrophenol (3.3 g, 15.4 mmol) and DCC (3.3 g, 16.2 mmol) in EtOAc (60 ml) was stirred at RT for 2 h. A white precipitate was formed; the solid was filtered off and the filtrate was evaporated. The crude material was purified on a Biotage silica column, eluting with 20% hexane in CH2Cl2 to give compound 18b (2.8 g, 9 mmol, 58.4% yield) as a yellow solid. LCMS C14H18N2O6 [M+1]+311.1.


Step 5b: By a method analogous to that described in Example 5, Step 5, using compound 18b in place of compound 18, compound 19 was prepared.


Step 6: At 0° C., LiOH solution (150 mg, 6 mmol, in 15 ml of H2O) was added to a solution of compound 19 (1.02 g, 2 mmol) in THF (37 ml). After 1 h at 0° C., the reaction was gradually warmed to RT and stirred at RT overnight. After the reaction was complete, EtOAc (50 ml) and H2O (5 ml) were added, followed by the addition of 1 N HCl to acidify the mixture. The organic phase was separated, dried (Na2SO4), filtered and concentrated to give the title compound 20 as a white solid (0.94 g, 1.95 mmol, 98% yield). MS: C22H22F3N3O6 [M+1]+482.1.


EXAMPLE 6



embedded image


Step 1: A mixture of 4-chlorobenzaldehyde (21) (0.79 g, 5.45 mmol), 2-hydroxyethyl amine (22) (0.34 ml, 5.45 mmol) and Na2SO4 (1.44 g, 10.9 mmol) in dichloroethane (40 ml) was stirred at RT for 40 min. To this mixture, NaBH(OAc)3 (3.12 g, 14.72 mmol) and AcOH (0.82 ml, 13.67 mmol) were added. After stirring at RT overnight, the reaction was quenched with saturated NaHCO3 solution. The mixture was diluted with brine (200 ml) and extracted with CH2Cl2 (100 ml, 3×), combined and washed with brine (100 ml, 2×), dried (MgSO4), filtered and evaporated to give crude compound 23 as an oil. The oil was purified with flash grade silica gel (100 g), eluting with 5% (1:9) (NH4OH/CH3OH)/95% CH2Cl2 to yield compound 23 (0.3 g, 1.62 mmol, 30% yield).


Step 2: A mixture of compound 20 (0.241 g, 0.5 mmol), compound 23 (92.8 mg, 0.5 mmol), HATU (285 mg, 0.75 mmol) and DIPEA (0.131 ml, 0.75 mmol) in dry DMF (3.0 ml) was stirred at RT for 4 h. After the reaction was complete, water (3 ml) was added to quench the reaction and the mixture was stirred for 10 min. Solid was collected, rinsed with water, and redissolved in CH2Cl2 (10 ml), dried (Na2SO4), filtered and evaporated. Product was purified by flash grade silica gel (100 g), eluting with 4.5% (1:9) (NH4OH/CH3OH)/95% CH2Cl2 to give pure compound 24 (0.18 g, 0.28 mmol, 56% yield) as a solid.


4 N HCl-dioxane solution (0.8 ml, 3.2 mmol) and CH3OH (1 ml) were added to a solution of compound 24 (0.18 g, 0.33 mmol) in CH2Cl2 (2 ml). The mixture was stirred at RT overnight. Solvents were evaporated and product was triturated with CH2Cl2, filtered and dried under high vacuum to give-title compound 25 as a HCl salt. LCMS: C26H24F3N4O4Cl. HCl [M+1]+549.1


EXAMPLE 7



embedded image


By employing methods analogous to those described in Example 6, Step 2, the following compounds were prepared using an appropriate aromatic or heteroaromatic amine coupled with compound 20 either by HATU or DEC (Example 4). The data for compounds of formula 26 are as follows:

Cpd.MSNo.Structure(M + 1)26-1embedded image50526-2embedded image53926-3embedded image51526-4embedded image51526-5embedded image50126-6embedded image52926-7embedded image52926-8embedded image50526-9embedded image53926-10embedded image50726-11embedded image50726-12embedded image50726-13embedded image52326-14embedded image51926-15embedded image54026-16embedded image52326-17embedded image58326-18embedded image51926-19embedded image51926-20embedded image51926-21embedded image53726-22embedded image54126-23embedded image55526-24embedded image48926-25embedded image48926-26embedded image56926-27embedded image56926-28embedded image53726-29embedded image53726-30embedded image52726-31embedded image54126-32embedded image55526-33embedded image52726-34embedded image51326-35embedded image52926-36embedded image54126-37embedded image52326-38embedded image52226-39embedded image51126-40embedded image51126-41embedded image51126-42embedded image51326-43embedded image48726-44embedded image51326-45embedded image51326-46embedded image50026-47embedded image51726-48embedded image52926-49embedded image51726-50embedded image51226-51embedded image51226-52embedded image53626-53embedded image51326-54embedded image51326-55embedded image51326-56embedded image48826-57embedded image52926-58embedded image51326-59embedded image52926-60embedded image51326-61embedded image47326-62embedded image52726-63embedded image52726-64embedded image54526-65embedded image58526-66embedded image54126-67embedded image52926-68embedded image55926-69embedded image47826-70embedded image53726-71embedded image47826-72embedded image48726-73embedded image49126-74embedded image48626-75embedded image52926-76embedded image52126-77embedded image52126-78embedded image51026-79embedded image51826-80embedded image49226-81embedded image52926-82embedded image48726-83embedded image50126-84embedded image54126-85embedded image51826-86embedded image45826-87embedded image48826-88embedded image47226-89embedded image47226-90embedded image47226-91embedded image52226-92embedded image51126-93embedded image51526-94embedded image51426-95embedded image52526-96embedded image53726-97embedded image62026-98embedded image46526-99embedded image46126-100embedded image51126-101embedded image52426-102embedded image57226-103embedded image57226-104embedded image58326-105embedded image55726-106embedded image58326-107embedded image55726-108embedded image54626-109embedded image54626-110embedded image49426-111embedded image49426-112embedded image57526-113embedded image55926-114embedded image58126-115embedded image54126-116embedded image54126-117embedded image59526-118embedded image26-119embedded image57526-120embedded image45126-121embedded image50926-122embedded image49226-123embedded image49226-124embedded image45126-125embedded image55026-126embedded image59426-127embedded image52826-128embedded image52326-129embedded image42526-130embedded image38126-131embedded image52926-132embedded image52926-133embedded image55526-134embedded image63726-135embedded image67326-136embedded image58826-137embedded image55626-138embedded image56626-139embedded image58826-140embedded image55626-141embedded image49426-142embedded image42526-143embedded image54126-144embedded image38126-145embedded image52826-146embedded image56326-147embedded image47926-148embedded image47926-149embedded image53626-150embedded image54926-151embedded image57226-152embedded image58326-153embedded image60126-154embedded image55826-155embedded image55426-156embedded image63926-157embedded image58926-158embedded image60426-159embedded image61826-160embedded image54126-161embedded image54126-162embedded image54126-163embedded image54226-164embedded image60426-165embedded image60426-166embedded image54126-167embedded image55526-168embedded image58426-169embedded image52126-170embedded image53526-171embedded image59426-172embedded image54326-173embedded image60826-174embedded image53626-175embedded image58626-176embedded image54326-177embedded image54226-178embedded image50726-179embedded image50726-180embedded image50726-181embedded image50926-182embedded image54326-183embedded image55626-184embedded image56226-185embedded image51426-186embedded image58926-187embedded image51926-188embedded image55626-189embedded image49326-190embedded image56226-191embedded image51526-192embedded image55826-193embedded image54626-194embedded image52626-195embedded image61826-196embedded image56026-197embedded image57226-198embedded image50826-199embedded image53326-200embedded image52326-201embedded image57126-202embedded image57226-203embedded image55626-204embedded image58326-205embedded image53826-206embedded image52226-207embedded image57326-208embedded image55026-209embedded image55526-210embedded image55026-211embedded image55626-212embedded image53626-213embedded image52526-214embedded image52526-215embedded image50926-216embedded image60826-217embedded image58326-218embedded image58326-219embedded image56026-220embedded image54026-221embedded image47326-222embedded image57126-223embedded image50726-224embedded image60526-226embedded image62026-227embedded image57726-228embedded image55726-229embedded image56826-230embedded image56926-231embedded image55626-232embedded image54226-234embedded image55826-235embedded image55826-236embedded image54826-237embedded image57226-238embedded image54326-239embedded image53826-240embedded image61426-241embedded image61526-242embedded image52026-243embedded image63026-244embedded image57126-245embedded image54326-246embedded image53426-247embedded image55226-248embedded image52726-249embedded image53726-250embedded image58226-251embedded image55626-252embedded image54726-253embedded image53326-254embedded image58626-255embedded image51626-256embedded image50226-257embedded image54526-258embedded image56426-259embedded image55726-260embedded image54026-261embedded image54426-262embedded image59526-263embedded image54226-264embedded image55526-265embedded image54626-266embedded image55726-267embedded image54626-268embedded image54226-269embedded image55626-270embedded image53726-271embedded image55126-272embedded image57126-273embedded image52726-274embedded image43926-275embedded image55226-276embedded image54826-277embedded image55226-278embedded image58626-279embedded image58326-280embedded image56126-281embedded image53226-282embedded image43926-283embedded image53226-264embedded image53326-285embedded image60826-286embedded image62026-287embedded image56026-288embedded image54626-289embedded image51226-290embedded image49426-291embedded image50826-292embedded image47426-293embedded image51826-294embedded image43926-295embedded image58526-296embedded image54626-297embedded image54626-298embedded image56926-299embedded image59426-300embedded image56426-301embedded image56126-302embedded image58326-303embedded image57226-304embedded image53026-305embedded image52926-306embedded image50626-307embedded image53026-308embedded image55626-309embedded image54226-310embedded image45326-311embedded image50626-312embedded image55626-313embedded image50826-314embedded image55426-315embedded image53226-316embedded image50626-317embedded image50726-318embedded image58626-319embedded image55226-320embedded image56026-321embedded image50626-322embedded image49226-323embedded image51626-324embedded image64226-325embedded image53226-326embedded image46626-327embedded image53726-328embedded image60026-329embedded image53126-330embedded image48026-331embedded image46626-332embedded image45326-333embedded image46626-334embedded image52226-335embedded image51626-336embedded image55126-337embedded image51426-338embedded image63226-339embedded image51926-340embedded image51626-341embedded image50826-342embedded image50826-343embedded image51626-344embedded image496 (M +! +H)26-345embedded image43926-346embedded image57426-347embedded image59026-348embedded image53626-349embedded image54226-350embedded image62726-351embedded image58226-352embedded image53426-353embedded image54226-354embedded image54226-355embedded image54226-356embedded image53226-357embedded image53226-358embedded image60026-359embedded image60026-360embedded image55026-361embedded image55626-362embedded image54226-363embedded image52826-364embedded image52826-365embedded image52826-366embedded image57026-367embedded image54226-368embedded image53226-369embedded image53226-370embedded image53326-371embedded image53326-372embedded image61426-373embedded image56026-374embedded image49226-375embedded image54826-376embedded image54826-377embedded image53426-378embedded image53226-379embedded image65426-380embedded image52126-381embedded image59026-382embedded image52226-383embedded image56226-384embedded image53026-385embedded image58626-386embedded image51426-387embedded image52126-388embedded image60526-389embedded image59226-390embedded image60626-391embedded image49426-392embedded image49426-393embedded image54226-394embedded image54426-395embedded image53026-396embedded image57526-397embedded image62926-398embedded image52026-399embedded image61526-400embedded image54226-401embedded image59226-402embedded image51626-403embedded image60026-404embedded image56426-405embedded image54226-406embedded image57126-407embedded image53626-408embedded image53626-409embedded image50626-410embedded image49226-411embedded image49226-412embedded image47826-413embedded image55426-414embedded image60026-415embedded image54226-416embedded image46526-417embedded image46526-418embedded image53626-419embedded image53626-420embedded image50926-421embedded image52026-422embedded image50926-423embedded image52026-424embedded image50626-425embedded image45126-426embedded image50426-427embedded image53026-428embedded image50626-429embedded image50426-430embedded image52026-431embedded image54726-432embedded image52826-433embedded image51826-434embedded image53226-435embedded image59226-436embedded image53626-437embedded image55126-438embedded image55026-439embedded image51826-440embedded image52826-441embedded image61426-442embedded image52126-443embedded image5202-444embedded image50626-445embedded image61926-446embedded image58026-447embedded image54226-448embedded image55726-449embedded image59026-450embedded image50626-451embedded image51826-452embedded image52226-453embedded image48126-454embedded image48126-455embedded image46726-456embedded image46726-457embedded image47326-458embedded image48126-459embedded image53026-460embedded image52226-461embedded image58826-462embedded image53426-463embedded image52026-464embedded image54126-465embedded image53526-466embedded image54126-467embedded image54926-468embedded image50126-469embedded image54826-470embedded image50726-471embedded image50926-472embedded image51126-473embedded image53126-474embedded image55726-475embedded image53426-476embedded image52026-477embedded image59026-478embedded image52526-479embedded image53726-480embedded image58926-481embedded image54026-482embedded image47326-483embedded image50226-484embedded image58726-485embedded image52026-486embedded image54326-487embedded image55126-488embedded image52726-489embedded image42326-490embedded image43726-491embedded image42126-492embedded image43526-493embedded image44926-494embedded image43526-495embedded image47926-496embedded image43526-497embedded image46326-498embedded image46526-499embedded image46626-500embedded image48726-501embedded image51126-502embedded image 541, 54326-503embedded image53126-504embedded image49226-505embedded image48326-506embedded image51226-507embedded image55726-508embedded image45526-509embedded image54926-510embedded image51826-511embedded image52026-512embedded image47526-513embedded image46126-514embedded image54126-515embedded image52426-516embedded image50126-517embedded image54926-518embedded image46126-519embedded image50326-520embedded image51726-521embedded image54926-522embedded image54626-523embedded image52726-524embedded image52126-525embedded image52826-526embedded image52826-527embedded image46326-528embedded image45126-529embedded image45126-530embedded image43726-531embedded image46526-532embedded image45126-533embedded image49726-534embedded image55226-535embedded image53226-536embedded image54626-537embedded image55626-538embedded image52626-539embedded image53626-540embedded image53426-541embedded image51826-542embedded image52026-543embedded image47926-544embedded image47926-545embedded image45126-546embedded image45126-547embedded image43726-548embedded image52126-549embedded image52826-550embedded image52926-551embedded image49726-552embedded image51126-553embedded image50226-554embedded image47926-555embedded image44526-556embedded image44926-557embedded image42326-558embedded image43726-559embedded image47926-560embedded image40926-561embedded image47926-562embedded image56226-563embedded image50126-564embedded image47926-565embedded image49326-566embedded image39526-567embedded image40926-568embedded image53726-569embedded image55526-570embedded image52926-571embedded image48726-572embedded image55926-573embedded image54926-574embedded image54926-575embedded image47826-576embedded image57226-577embedded image49926-578embedded image49926-579embedded image47726-580embedded image42326-581embedded image54626-582embedded image53426-583embedded image49226-584embedded image49226-585embedded image54826-586embedded image56926-587embedded image58326-588embedded image50126-589embedded image43726-590embedded image45126-591embedded image43726-592embedded image43726-593embedded image48126-594embedded image45126-595embedded image48126-596embedded image52026-597embedded image48526-598embedded image54626-599embedded image46326-600embedded image49226-601embedded image50626-602embedded image47826-603embedded image49226-604embedded image50626-605embedded image49226-606embedded image50626-607embedded image51826-608embedded image56926-609embedded image54726-610embedded image54526-611embedded image54526-612embedded image52926-613embedded image45726-614embedded image50126-615embedded image44326-616embedded image49226-617embedded image54526-618embedded image53226-619embedded image53226-620embedded image50426-621embedded image49226-622embedded image53126-623embedded image58526-624embedded image53426-625embedded image53426-626embedded image47926-627embedded image47926-628embedded image53526-629embedded image50826-630embedded image45726-631embedded image43926-632embedded image45326-633embedded image49226-634embedded image52026-635embedded image46526-636embedded image48926-637embedded image61326-638embedded image52226-639embedded image46326-640embedded image44926-641embedded image46326-642embedded image53826-643embedded image53826-644embedded image44726-645embedded image46326-646embedded image62726-647embedded image58826-648embedded image55426-649embedded image55426-650embedded image45126-651embedded image46526-652embedded image52726-653embedded image56026-654embedded image56026-655embedded image47626-656embedded image52626-657embedded image51826-658embedded image52826-659embedded image51726-660embedded image50626-661embedded image50626-662embedded image50826-663embedded image52426-664embedded image54126-665embedded image54826-666embedded image52026-667embedded image55426-668embedded image52926-669embedded image46426-670embedded image46526-671embedded image47826-672embedded image49226-673embedded image39526-674embedded image50826-675embedded image54626-676embedded image53226-677embedded image57126-678embedded image51426-679embedded image58826-680embedded image51926-681embedded image57026-682embedded image51426-683embedded image51826-684embedded image52826-685embedded image54026-686embedded image51126-687embedded image52026-688embedded image54826-689embedded image54626-690embedded image52826-691embedded image52826-692embedded image52126-693embedded image52026-694embedded image50626-695embedded image45326-696embedded image56526-697embedded image50426-698embedded image52026-699embedded image53426-700embedded image50326-701embedded image54426-702embedded image42126-703embedded image54726-704embedded image49226-705embedded image46726-706embedded image45126-707embedded image57026-708embedded image54226-709embedded image48426-710embedded image56926-711embedded image57426-712embedded image49126-713embedded image57226-714embedded image55826-715embedded image54826-716embedded image56426-717embedded image56526-718embedded image55126-719embedded image49726-720embedded image54226-721embedded image49226-722embedded image50626-723embedded image53226-724embedded image54626-725embedded image51826-726embedded image53426-727embedded image56526-728embedded image56426-729embedded image56426-730embedded image50626-731embedded image532 M + Na26-732embedded image53526-733embedded image55726-734embedded image52026-735embedded image56826-736embedded image55426-737embedded image46726-738embedded image54026-739embedded image50626-740embedded image51826-741embedded image55826-742embedded image49826-743embedded image49826-744embedded image49326-745embedded image46526-746embedded image52726-747embedded image50726-748embedded image55626-749embedded image55626-750embedded image57226-751embedded image55626-752embedded image69526-753embedded image55626-754embedded image59426-755embedded image53326-756embedded image54726-757embedded image54926-758embedded image52726-759embedded image55426-760embedded image63626-761embedded image61926-762embedded image69926-763embedded image54926-764embedded image52726-765embedded image50626-766embedded image51826-767embedded image52626-768embedded image52626-769embedded image59226-770embedded image65426-771embedded image49626-772embedded image59826-773embedded image51026-774embedded image52926-775embedded image48726-776embedded image48526-777embedded image58426-778embedded image58426-779embedded image50826-780embedded image56326-781embedded image59626-782embedded image47326-783embedded image55726-784embedded image57026-785embedded image56426-786embedded image53426-787embedded image54826-788embedded image54026-789embedded image53026-790embedded image52926-791embedded image52226-792embedded image53626-793embedded image55026-794embedded image56226-795embedded image47926-796embedded image53226-797embedded image54826-798embedded image56226-799embedded image53026-800embedded image47826-801embedded image57026-802embedded image55426-803embedded image52226-804embedded image53626-805embedded image54826-806embedded image57626-807embedded image55426-808embedded image54626-809embedded image55026-810embedded image52026-811embedded image59826-812embedded image59826-813embedded image57226-814embedded image49226-815embedded image49226-816embedded image49726-817embedded image50626-818embedded image48926-819embedded image53926-820embedded image57026-821embedded image57026-822embedded image57526-823embedded image53126-824embedded image58026-825embedded image55826-826embedded image50626-827embedded image51526-828embedded image55726-829embedded image46526-830embedded image56626-831embedded image50726-832embedded image51426-833embedded image53126-834embedded image49626-835embedded image51026-836embedded image58026-837embedded image51826-838embedded image53226-839embedded image52726-840embedded image51426-841embedded image51026-842embedded image49726-843embedded image55526-844embedded image51726-845embedded image53226-846embedded image60626-847embedded image58426-848embedded image58426-849embedded image51826-850embedded image53226-851embedded image46226-852embedded image47626-853embedded image46326-854embedded image53626-855embedded image53426-856embedded image51226-857embedded image51926-858embedded image52426-859embedded image53826-860embedded image52226-861embedded image58426-862embedded image58426-863embedded image56926-864embedded image56926-865embedded image54626-866embedded image55126-867embedded image57326-868embedded image55826-869embedded image55926-870embedded image58626-871embedded image55226-872embedded image47926-873embedded image54626-874embedded image47826-875embedded image50626-876embedded image52726-877embedded image55826-878embedded image51426-879embedded image54426-880embedded image54426-881embedded image57226-882embedded image53426-883embedded image51626-884embedded image58426-885embedded image51826-886embedded image53426-887embedded image46526-888embedded image52926-889embedded image49626-890embedded image57226-891embedded image52226-892embedded image47826-893embedded image49326-894embedded image58026-895embedded image49326-896embedded image52726-897embedded image55826-898embedded image55826-899embedded image49026-890embedded image48726-891embedded image51826-892embedded image54426-893embedded image59426-894embedded image61226-895embedded image56026-896embedded image52826-897embedded image54026-898embedded image48726-899embedded image51526-900embedded image50126-901embedded image51126-902embedded image52926-903embedded image54526-904embedded image55126-905embedded image61726-906embedded image59926-907embedded image56026-908embedded image57426-909embedded image50126-910embedded image52926-911embedded image56426-912embedded image57826-913embedded image499


EXAMPLE 8

Step 1:
embedded image


Using N-[(1,1-dimethylethoxy)carbonyl]-O-(1,1-dimethylethyl)-L-serine (compound 527) as starting material, [1(S)-[(1,1-dimethylethoxy)methyl]-2-fluoro-2-oxoethyl] carbamic acid, 1,1-dimethylethyl ester (compound 28) was prepared by a method analogous to that in Example 5, step 4.


Step 2:
embedded image


0.5 M KHMDS in toluene (92.5 ml, 46.25 mmol) was added slowly via a syringe to a mixture of compound 16 (8.5 g, 22 mmol) and compound 28 (6.8 g, 25.8 mmol) in dry THF (90 ml) at −78° C. The mixture was slowly warmed to RT, then stirred at RT for 1 h. After the reaction was complete, it was quenched with 1 N HCl (80 ml)(cooled with ice-water bath), diluted with saturated NH4Cl solution (100 ml), extracted with EtOAc (200 ml×2), dried (Na2SO4), filtered and evaporated. Crude material was purified on Biotage with CH2Cl2 (4 L) and 5% EtOAc/CH2Cl2 (4 L) to give compound 29 as a light yellow solid (6.5 g, 11.8 mmol, 52%). MS C28H34F3N3O7 [M+1]+582.1.


EXAMPLE 9



embedded image


Compound 29 (13.5 g, 23.24 mmol) was treated with THF:H2O (2:1) (200 ml) and LiOH.H2O (0.95 g, 39.6 mmol) (dissolved in 10 ml of H2O). After stirring at RT for 2 h, the suspension was not dissolved. Additional THF:H2O (2:1) (100 ml) and LiOH.H2O (0.95 g, 39.6 mmol) was added. It was stirred at RT overnight. After completion, the reaction was neutralized with 1 N HCl. The mixture was extracted with CH2Cl2 (100 ml×3), combined, washed with brine (100 ml), dried (Na2SO4), filtered and evaporated to give the title compound 30 as a yellow solid (11.8 g, 21.3 mmol, 92%). LCMS: C26H3F3N3O7 [M+1]+554.1.


EXAMPLE 10

Step 1:
embedded image


By a method analogous to Example 2, using 5-fluoro-3-methyl-benzo[B]-thiophene (31) as starting material, compound 33 was obtained. It was treated with 10 equivalents of 98% hydrazine in absolute EtOH and CH2Cl2 (1:1) to give compound 34, which was purified by treatment with a slight excess of 4 N HCl/dioxane solution to give compound 35 as a HCl salt. FABMS: C9H8FNS. HCl [M+1]+182.0


Step 2:
embedded image


By methods analogous to those described in Example 3, using compound 35 as a starting material, compound 36 was obtained.


Step 3:
embedded image


The protecting groups on compound 36 were removed by treatment with HCl-dioxane/CH2Cl2 or CF3COOH. The title compound 37 was obtained directly as a HCl salt or as a TFA salt depending on the acid treatment. The TFA salt was neutralized with NH4OH and converted to HCl salt with 1.0 equivalent of HCl. HRMS C26H20F4N4O4S. HCl calculated [M+1]+561.1220, Found 561.1230.


EXAMPLE 11



embedded image


By employing analogous methods to those described in Example 10, the following compounds were obtained as HCl salts using compound 30 coupled with the appropriate primary or secondary amine, followed by removal of the protecting group as described for Example 10, step 3.

Cpd.MSNo.Structure(M + 1)38-1embedded image52138-2embedded image55738-3embedded image52338-4embedded image53938-5embedded image52338-6embedded image52338-7embedded image53938-8embedded image53938-9embedded image51338-10embedded image52938-11embedded image53538-12embedded image50538-13embedded image50538-14embedded image53738-15embedded image52938-16embedded image54338-17embedded image60138-18embedded image56138-19embedded image52938-20embedded image54138-21embedded image54538-22embedded image55338-23embedded image53238-24embedded image55838-25embedded image52738-26embedded image60438-27embedded image55738-28embedded image63638-29embedded image55738-30embedded image39738-31embedded image59038-32embedded image55738-33embedded image57338-34embedded image55338-35embedded image54838-36embedded image562


EXAMPLE 12



embedded image


By employing methods analogous to those described for Example 5, using compound 18c in place of compound 18, compound 42 was obtained, which was treated with LiOH.H2O to give the title compound 43.


EXAMPLE 13



embedded image


By employing methods analogous to those described in Example 6, using compound 43 in place of compound 20 and 4-chlorobenzylamine in place of compound 23 in the coupling reaction, compound 44 was obtained. After removal of the t-BOC group of compound 44 with HCl, the title compound 45 was obtained as a HCl salt. MS: C25H22ClF3N4O3. HCl [M+1]+519.1.


Using a procedure similar to that described for compound 45, the following compounds were prepared:

Cpd.MSNo.Structure(M + 1)45-1embedded image56245-2embedded image47945-3embedded image55745-4embedded image54145-5embedded image57645-6embedded image56945-7embedded image50645-8embedded image47945-9embedded image44945-10embedded image43545-11embedded image506


EXAMPLE 14



embedded image


By employing methods analogous to those described in Example 6, using compound 43 in place of compound 20 and compound 9 in place of compound 23 compound 46 was obtained. After removal of the t-BOC group of compound 46 with HCl, the title compound 47 was obtained as a HCl salt. MS C27H23F3N4O3S .HCl [M+1]+541.1.


EXAMPLE 15



embedded image


By employing methods analogous to those described in Example 5, using compound 18d in place of compound 18, compound 48 was obtained, which was treated with LiOH.H2O to obtain the title compound 49.


EXAMPLE 16



embedded image


By employing methods analogous to those described in Example 6, using compound 50 in place of compound 20 and 2,4-diflurobenzylamine in place compound 23, compound 51 was obtained. After removal of the t-BOC group of compound 51 with HCl, the title compound 52 was obtained as a HCl salt. MS: C26H23F5N4O3. HCl [M+1]+535.


Using similar procedures and the appropriate staring materials, the following compounds were also prepared:

Cpd.MSNo.Structure(M + 1)47-1embedded image54247-2embedded image54147-3embedded image51952-1embedded image556


EXAMPLE 17



embedded image


By employing methods analogous to those described in Example 5, using compound 18e in place of compound 18, compound 53 was obtained, which was treated with LiOH.H2O to yield the title compound 54.


EXAMPLE 18



embedded image


By employing methods analogous to those described in Example 10, using compound 55 in place of compound 30 and 1-amino-2-hydroxyethyl benzene in place of compound 35, compound 56 was obtained. After purification and removal of the t-BOC group of compound 56 with HCl, compound 57 was obtained as a HCl salt. MS: C26H25F3N4O5. HCl [M+1]+567.1.


EXAMPLE 19



embedded image


Using the appropriate aromatic or heteroaromatic amine reagent coupled with compound 55 according to the procedure described for Example 10, steps 2 and 3, the desired compound 58 was obtained as a hydrochloride salt.

Cpd.MSNo.Structure(M + 1)58-1embedded image53758-2embedded image56458-3embedded image543


EXAMPLE 20



embedded image


Step 1: DBU (1.7 g, 11 mmol) was added to a mixture of 4-chromanol (59) (1.5 g, 10 mmol) and diphenyl-phosphoryl azide (DPPA) (3.0 g, 11 mmol) in CH2Cl2 (10 ml) at RT. The mixture immediately turned brown (a water bath was used to cool the reaction temperature). The solution was stirred at RT overnight. After completion of the reaction, the reaction mixture was diluted with ether/EtOAc (1:1) (100 ml) and washed with saturated NaHCO3, 5% HCl and brine. The organic layer was dried (Na2CO3), filtered and concentrated to give a residue which was purified by column chromatography, eluting with 30% CH2Cl2/hexane to give compound 60 (1.45 g, 0.83 mmol) with a 83% of yield.


Step 2: 4 N HCl/dioxane (2 ml) and 10% Pd/C (0.5 g) were added to a solution of compound 60 (1.3 g, 7.4 mmol) in MeOH (50 ml). The mixture was stirred under a H2 balloon at RT for 46 h. After the reaction was complete, the solid was filtered off. The filtrate was concentrated and to obtain the desired amine (61) as a light yellow HCl salt. LCMS C9H11NO. HCl [M+1]+149.0.


EXAMPLE 21



embedded image


By employing methods analogous to those described for Example 20, replacing compound 59 with 62 and 60 with 63, the title compound 64 was obtained as an amine HCl salt. LCMS C9H11O2N. HCl [M+1]+166.0


EXAMPLE 22



embedded image


NaBH4 (0.7 g, 18.5 mmol) at RT was added to a solution of compound 65 (0.6 g, 3.57 mmol) in MeOH (20 ml) cooled with a water bath. After 10 min, solvent was removed. The residue was treated with 5% NaHCO3 and the product was extracted with CH2Cl2, then with EtOAc. The combined organic solution was washed with brine, dried (Na2SO4), filtered and concentrated to give compound 66 as a white solid. Using a method similar to Example 27, the title compound 67 was obtained as a HCl salt. LCMS C7H11N3O2.HCl [M+1]+170.0


EXAMPLE 23



embedded image


Solid 1,3,5-triazine (2.4 g, 30 mmol) (68) was mixed with 1-(pyrrolidino)-1-cyclohexene (69) in a pressure tube (15 ml) and heated at 93° C. (bath temperature) with stirring for 22 h. After completion of the reaction, the reaction mixture was concentrated and dissolved in CH2Cl2, washed with saturated NaHCO3 solution, dried (Na2SO4), then purified by column chromatography to give compound 70 as a solid.


The title compound 73 was prepared according to the procedure described for Example 2, and step 2 of Example 3.


EXAMPLE 24



embedded image


A mixture containing 3-acetylthianaphthene (74) (0.5 g, 2.8 mmol), allylamine (0.42 g, 5.6 mmol), NaBH(OAc)3 (1.2 g, 5.6 mmol), and HOAc (0.15 ml) in dichloroethane (15 ml) was stirred at RT overnight. After completion, the reaction mixture was quenched with NaHCO3 and extracted with CH2Cl2. The organic solvent was dried (Na2SO4), filtered and evaporated. The crude material was purified by column chromatography to give compound 75 (0.43 g) as an oil.


N,N-dimethylbarbituric acid (0.65 g, 4.14 mmol) and tetrakis-(triphenyl-phosphine)palladium (16 mg, 0.0138 mmol) were added to a solution of compound 75 (0.3 g, 1.38 mmol) in CH2Cl2 (30 ml). The mixture was stirred at 40° C. for 2 h, then at RT overnight. After completion of the reaction, the mixture was diluted with CH2Cl2 and washed with saturated Na2CO3 solution. The organic layer was separated and the aqueous layer was re-extracted with CH2Cl2. The organic fractions were combined and concentrated. The crude material was purified by silica gel chromatography to give the title compound 76 as an oil.


EXAMPLE 25



embedded image


Step 1: MgO (0.4 g, 10 mmol) and 10% Pd/C (0.5 g) were added to a solution of compound 77 (1.0 g, 5.4 mmol) in EtOH:MeOH (1:1) (100 ml). The mixture was stirred at RT overnight. After completion of the reaction, MgO and Pd/C were filtered off and the filtrate was concentrated to dryness. The residue was dissolved in EtOAc and washed with water, dried (Na2SO4), filtered and evaporated to give a solid compound 78.


Step 2: Using the procedure described in Example 2, Step 1, the bromo derivative 79 was obtained. The crude material was used in the next reaction without purification.


Step 3: Sodium azide was mixed with DMSO and stirred at RT until all solid was dissolved. Compound 78 was added at RT, and after stirring at RT for 1 h, ice-water was added. The product was extracted with EtOAc:ether (1:1). The combined organic layers were washed with water, dried (Na2SO4), filtered and evaporated to obtain the azido derivative 80, as an oil.


Step 4: By employing methods analogous to Example 20, Step 2, the azido derivative 80 was converted to the title compound 81 as a hydrochloride salt.


EXAMPLE 26



embedded image


Step 1: Znl2 (0.64 g, 2 mmol) was added in one portion at RT under N2 to a mixture of 2,4-dichlorobenzaldehyde (82) (3.5 g, 20 mmol) and TMSCN (2.6 g, 26 mmol). After 15 min, 7 N NH3 solution in MeOH (20 ml) was added and the mixture was stirred at 40° C. for 2 h. Solvents were evaporated and the residue was re-dissolved in Et2O, washed with water, dried (MgSO4) and filtered. HCl gas was bubbled through the filtrate to give an off-white solid of compound 83 (3.5 g, 74%). MS: C8H6N2Cl2, [M+1]+202.


Step 2: A stream of HCl gas was bubbled through a solution of compound 83 (3.5 g, 14.8 mmol) in MeOH (85 ml) for 4 h. Water (2 ml) was added and the reaction mixture was concentrated to provide an off-white solid of compound 84 (3.4 g, 90%) as a HCl salt. MS: C8H8N2OCl2, [M+1]+219


EXAMPLE 27



embedded image


Step 1: Compound 85 (2.4 g, 14.4 mmol) was suspended in phosphorus oxychloride (30 ml) and heated to reflux for 15 h. The reaction mixture was cooled to RT, and saturated (aq) NaHCO3 (250 ml) was added carefully with vigorous stirring at 0° C., followed by the addition of Et2O (150 ml). The aqueous layer was separated and extracted with Et2O. The organic layers were combined, washed with brine, filtered and concentrated to give compound 86 as a yellow oil (2.14 g, 81%). MS: C7H5ClN2S [M+1] 185; [M+2], 186


Step 2: Compound 87 was obtained as a white solid (93% yield) according to the procedure described for the Example 25, Step 1. MS: C7H6N2S [M+1]+151.


Step 3: Compound 88 [MS: C7H5BrN2S [M+1]+Br79 229, Br81 231] was synthesized from compound 88 according to the method described in Example 2, Step 1. The bromo-derivative 88 was converted to its azido-derivative-89 [MS: C7H5N5S [M+1]+192] according to the procedure described for Example 25, Step 3. The title compound 90 was obtained as a HCl salt by hydrogenation of compound 89 according to the procedure described for Example 20. MS: C7H7N3S [M+1]+166.


EXAMPLE 28



embedded image


Step 1: Compound 91 (1.47 g, 7.99 mmol) was treated with a solution of 0.5 M NaOMe in MeOH (32 ml) under N2. The suspension was stirred at RT overnight. The solvent was removed and the resultant residue partitioned between EtOAc (75 ml) and water (75 ml). The aqueous layer was separated and extracted with EtOAc. The organic extracts were combined, dried (MgSO4), filtered and concentrated in vacuo to give 1.41 g (98%) of white solid, compound 92. MS: C8H8N2OS [M+1]+181.


Step 2: The title compound 93 was obtained from compound 92 using methods similar to those described for Example 27, Step 3. MS: C8H9N3SO [M+1]+196.


EXAMPLE 29



embedded image


Compound 94 was prepared according to the literature (Tetrahedron Letters 41, 8661-8664, (2000)). Compound 94 (3.0 g, 22.5 mmol) was mixed with NaI (3.37 g, 22.5 mmol) and NaN3 (1.9 g, 29 mmol) in CH2Cl2/acetone (1:1, 250 ml) and refluxed for 36 h. After completion of the reaction, the reaction mixture was filtered and the filtrate concentrated to dryness. Crude compound 95 was purified on Biotage system, eluting with 2% MeOH in CH2Cl2, to obtain pure compound 95 as a white solid. Compound 95 (2.46 g, 17.6 mmol) was dissolved in MeOH (100 ml) and formic acid (0.81 ml, 17.6 mmol), and 10% Pd/C (490 mg) was added. The mixture was stirred at RT under a H2 balloon overnight. The solids were filtered off and the filtrate was evaporated to give the title compound, 96, as a formic acid salt. MS: C3H6N4O [M+1]+1.15.


EXAMPLE 30



embedded image


Step 1: To a solution of compound 97 (280 mg, 0.462 mmol) dissolved in THF (10 ml) was added Lawesson reagent (467 mg, 1.15 mmol). The reaction mixture was heated at reflux for 24 h then cooled to RT. The solvent was evaporated. Purification by silica gel chromatography (eluant: 1%-3% EtOAc—CH2Cl2) gave 166 mg (0.267 mmol, 58%) of the product 98 as a yellow foam. MS (M+1): m/e 623.


Step 2: To a solution of compound 98 (273 mg, 0.438 mmol) dissolved in CH2Cl2 (4 ml) was added TFA (1 ml). The reaction mixture was stirred at RT for 4 h. The solvent was evaporated, and the crude product was dissolved in 10 ml of 1:1 CH2Cl2: MeOH and diethylaminomethylpolystyrene resin (0.50 g, from Fluka) was added. The resulting mixture was stirred for 15 min, filtered, and the resin was washed with MeOH. The filtrate was evaporated. Purification by silica gel chromatography (eluant: 2%-3% MeOH—CH2Cl2) gave 169 mg (0.323 mmol, 74%) of the product 99 as a yellow foam. MS (M+1): m/e 523.


EXAMPLE 31



embedded image


Step 3: To a solution of trans-4-benzoyl-cyclohexylamine (2.06 g, 9.4 mmol) dissolved in dry CH2Cl2 (50 ml) was added 3A sieves (3 g), Et3N (2.38 g, 3.3 ml, 23.5 mmol), [4-(N-BOC-aminomethyl)phenyl]boronic acid 100A (3.00 g, 11.9 mmol), and copper acetate (2.16 g, 11.9 mmol). The reaction mixture was stirred at RT for 24 h. 2 N aqueous NH4OH (50 ml) was added, and the reaction mixture was filtered to remove the sieves which were washed with additional CH2Cl2 and 2 N aqueous NH4OH. The layers of the filtrate were separated, and the aqueous layer was extracted width CH2Cl2. The combined organic extract was dried (MgSO4), filtered, and concentrated. Purification by silica gel chromatography (eluant: 5%-10% EtOAc—CH2Cl2) gave 0.73 g (1.72 mmol, 18%) of the product 101A as a yellow foam. MS (M+1): m/e 425.


The following intermediates were synthesized by using a similar procedure:

NumberCompoundMS (M + 1)101Bembedded image277101Cembedded image371101Dembedded image349101Eembedded image321101Fembedded image335101Gembedded image335101Hembedded image425101Iembedded image277101Jembedded image371101Kembedded image411101Lembedded image335101Membedded image335


Step 2: To a solution of compound 101A (0.72 g, 1.70 mmol) dissolved in THF (6 ml) MeOH (6 ml), and water (3 ml) was added LiOH (0.36 g, 8.48 mmol). The reaction mixture was stirred at RT for 4 h. The solvent was evaporated, saturated NH4Cl (25 ml) was added, and the aqueous solution was extracted with CH2Cl2. The combined organic extract was dried (MgSO4), filtered, and concentrated. Purification by silica gel chromatography (eluant: 3%-5% MeOH—CH2Cl2) gave 0.48 g (1.50 mmol, 89%) of the product 102A as a white foam. MS (M+1): m/e 321.


The following intermediates were synthesized by using a similar procedure:

MSNumberCompound(M + 1)102Bembedded image267102Cembedded image307102Dembedded image279102Eembedded image293102Fembedded image293102Gembedded image321102Hembedded image267102Iembedded image307102Jembedded image293102Kembedded image293


Step 3: To a solution of compound 102A (475 mg, 1.48 mmol) dissolved in 1:1 CH2Cl2:MeOH (10 ml) was added 4 N HCl in dioxane (3.0 ml, 11.9 mmol). The reaction mixture was stirred at RT for 3 h. The solvent was evaporated to give 429 mg (1.46 mmol, 99%) of the product 103A as a white solid. MS (M+1): m/e 221.


To a solution of compound 102D (0.73 g, 2.62 mmol) suspended in CH2Cl2 (18 ml) was added TFA (3 ml). The reaction mixture was stirred at RT for 3 h. The solvent was evaporated, and the TFA salt of the product was dissolved in MeOH (20 ml). Diethylaminomethylpolystrene resin (4 g, Fluka) was added and stirred at RT for 20 min. The resin was removed by filtration and washed with MeOH. The filtrate was concentrated to give 0.47 g (2.62 mmol, 100%) of the product 103B as a yellow solid. MS (M+1-OH): m/e 162.


The following intermediates were synthesized by using a similar procedure:

NumberCompoundMS (M + 1)103Cembedded image150 (M + 1-OH)103Dembedded image207103Eembedded image176 M + 1-OH103Fembedded image176 M + 1-OH103Gembedded image221103Hembedded image167103Iembedded image207103Jembedded image193103Kembedded image193


EXAMPLE 32



embedded image


Step 1: To a solution of methyl 4-(BOC-aminomethyl)-benzoate 104A (4.15 g, 15.6 mmol) dissolved in THF (20 ml), MeOH (20 ml), and water (10 ml) was added LiOH (0.72 g, 17.2 mmol). The reaction mixture was stirred at RT for 24 h. The solvent was evaporated to give 4.02 g (15.6 mmol, 100%) of the product 105A as a white solid. MS (M+2-tBu for acid COOH): m/e 196.


Step 2: To a solution of 4-hydroxypiperidine (0.41 g, 4.08 mmol) dissolved in dry DMF (20 ml) was added 3A sieves (1.0 g) and the mixture was stirred at RT for 15 min. HOBT (0.55 g, 4.08 mmol), EDCI (0.78 g, 4.08 mmol), compound 105A (0.70 g, 2.72 mmol), and Et3N (0.55 g, 0.76 ml, 5.44 mmol) were then added. The reaction mixture was stirred at RT for 20 h. The solvent was evaporated, 0.2 N NaOH (40 ml) was added, and the aqueous solution was extracted with CH2Cl2. The combined organic extract was dried (MgSO4), filtered, and concentrated. Purification by silica gel chromatography (eluant: 5%-10% MeOH—CH2Cl2) gave 0.78 g (2.33 mmol, 86%) of the product 106A as a white foam. MS (M+1): m/e 335.


The following intermediates were synthesized by using a similar procedure:

MSNumberCompound(M + 1)106Bembedded image307106Cembedded image321106Dembedded image321106Eembedded image335106Fembedded image307106Gembedded image321106Hembedded image321106Iembedded image266106Jembedded image308106Kembedded image306106Lembedded image322


Step 3: Using the procedure of step 3 from Example 31, the following intermediates were synthesized:

NumberCompoundMS (M + 1)107Aembedded image235107Bembedded image207107Cembedded image2211070embedded image221107Eembedded image235107Fembedded image207107Gembedded image221107Hembedded image221107Iembedded image166107Jembedded image208107Kembedded image206107Lembedded image222


Step 4: To a solution of compound 104A (2.47 g, 9.31 mmol) dissolved in Et2O (50 ml) was added LiBH4 (0.81 g, 37.2 mmol) then MeOH (1.19 g, 1.5 ml, 37.2 mmol). The reaction mixture was heated at reflux for 5 h and then cooled to RT. The solvent was evaporated. Water (50 ml) was added, and the aqueous solution was extracted with CH2Cl2. The combined organic extract was dried (MgSO4), filtered, and concentrated. Purification by silica gel chromatography (eluant: 5%-8% MeOH —CH2Cl2) gave 2.15 g (9.06 mmol, 97%) of the product 108A as a white solid. MS (M+1): m/e 238.


The following intermediate was synthesized by using a similar procedure:

NumberCompoundMS (M + 1)108Bembedded image182 M + 2 − tBu


Step 5: To a solution of oxalyl chloride (1.43 g, 0.98 ml, 11.3 mmol) dissolved in dry CH2Cl2 (20 ml) and cooled to −78° C. under a N2 atmosphere was added DMSO (1.76 g, 1.6 ml, 22.5 mmol) dissolved in CH2Cl2 (5 ml) dropwise via addition funnel. The reaction mixture was stirred at −78° C. for 15 min then compound 108A (2.14 g, 9.02 mmol) dissolved in CH2Cl2 (25 ml) was added dropwise via addition funnel. The reaction mixture was stirred at −78° C. for 60 min, then Et3N (2.74 g, 3.8 ml, 27.0 mmol) was added. The reaction mixture was stirred at −78° C. for 20 min, then warmed to RT. Water (75 ml) was added, and the aqueous solution was extracted with CH2Cl2. The combined organic extract was dried (MgSO4), filtered, and concentrated. Purification by silica gel chromatography (eluant: 2%-3% MeOH —CH2Cl2) gave 2.12 g (9.02 mmol, 100%) of the product 109A as a white solid. MS (M+1): m/e 236.


The following intermediate was synthesized by using a similar procedure:

NumberCompoundMS (M + 1)109Bembedded image180 M + 2-tBu


Step 6: To a solution of compound 109A (0.50 g, 2.12 mmol) dissolved in 10% water by volume in EtOH (20 ml) was added sodium acetate (1.05 g, 12.7 mmol) and hydroxylamine hydrochloride (0.59 g, 8.50 mmol). The reaction mixture was heated at reflux for 4 h and then cooled to RT. The solvent was evaporated. Water (30 ml) was added, and the aqueous solution was extracted with CH2Cl2. The combined organic extract was dried (MgSO4), filtered, and concentrated to give 0.53 g (2.12 mmol, 100%) of the product 110A as a white solid. MS (M+1): m/e 251.


The following intermediate was synthesized by using a similar procedure:

NumberCompoundMS (M + 1)110Bembedded image195 M + 2-tBu


Step 7: Using the procedure of step 3 from Example 31, the following intermediates were synthesized:

NumberCompoundMS (M + 1)111Aembedded image151111Bembedded image151


EXAMPLE 33



embedded image


Step 1: 3-Methylphthalic anhydride 112A (5.00 g, 30.8 mmol) and urea (1.85 g, 30.8 mmol) were combined and heated at 320-350° C. with stirring for 5 min, then cooled to RT. The brown solid was triturated with water and filtered. The solid was washed with water and dried to give 4.80 g (29.8 mmol, 97%) of the product 113A as a pink solid. MS (M+1): m/e 162.


The following intermediates were synthesized by using a similar procedure:

NumberCompoundMS (M + 1)113Bembedded image204113Cembedded image164113Dembedded image165 for M+113Eembedded image184


Step 2: To compound 113A (4.80 g, 29.8 mmol) was added 1 M borane in THF (104 ml, 0.104 mol) under a N2 atmosphere. The reaction mixture was heated at reflux for 16 h and then cooled to 0° C. EtOH (80 ml) and K2CO3 (9.20 g, 66 mmol) were added carefully. The resulting mixture was heated at reflux for 16 h and then cooled to RT. (tBOC)2O (10.00 g, 45.8 mmol) was added, and the reaction mixture was stirred at RT for 3 h. The solvent was evaporated. Water (200 ml) was added, and the aqueous solution was extracted with CH2Cl2. The combined organic extract was dried (MgSO4), filtered, and concentrated. Purification by silica gel chromatography (eluant: 5% EtOAc—CH2Cl2) gave 4.50 g (19.3 mmol, 64%) of the product 114A as a beige foam. MS (M+2-tBu): m/e 178.


The following intermediates were synthesized by using a similar procedure:

NumberCompoundMS (M + 1)114Bembedded image220 M + 2-tBu114Cembedded image180 M + 2-tBu114Dembedded image182 M + 2-tBu114Eembedded image182 M + 2-tBu114Fembedded image198 M + 2-tBu114Gembedded image200 M + 2-tBu114Hembedded image232 M + 2-tBu114Iembedded image235114Jembedded image235


Step 3: Using the procedure of step 3 from Example 31, the following intermediates were synthesized:

NumberCompoundMS (M + 1)115Aembedded image134115Bembedded image176115Cembedded image136115Dembedded image138115Eembedded image138115Fembedded image154115Gembedded image156115Hembedded image188115Iembedded image135115Jembedded image135


EXAMPLE 34



embedded image


Step 1: Using the procedure of step 6 from Example 32, the following intermediates were synthesized:

NumberCompoundMS (M + 1)117Aembedded image178117Bembedded image192


Step 2: To a solution of compound 117A (1.08 g, 6.09 mmol) dissolved in EtOH (20 ml) was added 10% palladium on carbon catalyst (0.25 g) and 1.73 M HCl in EtOH (10.6 ml, 18.3 mmol). The reaction mixture was shaken on a Parr shaker under 50 psi of hydrogen pressure for 16 h. The catalyst was removed by filtration through celite and washed with EtOH. The filtrate was concentrated to give 1.14 g (5.71 mmol, 93%) of the product 118A as a beige solid. MS (M−NH2): m/e 147.


The following intermediate was synthesized by using a similar procedure:

NumberCompoundMS (M + 1)118Bembedded image161 M-NH2


EXAMPLE 35



embedded image


Step 1: To a solution of compound 119 (3.00 g, 14.9 mmol) dissolved in dry DMF (60 ml) under a N2 atmosphere was added NaH (60 wt % in oil, 1.19 g, 29.8 mmol). The reaction mixture was stirred at RT for 30 min, then 2-chloropyrimidine (3.41 g, 29.8 mmol) was added. The reaction mixture was heated at 80° C. for 16 h and then cooled to RT. The solvent was evaporated. Water (75 ml) was added and the aqueous solution was extracted with CH2Cl2. The combined organic extract was dried (MgSO4), filtered, and concentrated. Purification by silica gel chromatography (eluant: 1%-4% MeOH—CH2Cl2) gave 2.49 g (8.91 mmol, 60%) of the product 120A as a yellowish-orange solid. MS (M+1): m/e 280.


The following intermediates were synthesized by using a similar procedure:

NumberCompoundMS (M + 1)120Bembedded image280120Cembedded image310


Step 2: Using the procedure of step 3 from Example 31, the following intermediates were synthesized:

NumberCompoundMS (M + 1)121Aembedded image180121Bembedded image180121Cembedded image210


EXAMPLE 36



embedded image


Step 1: Trans-4-hydroxy-L-proline 122A (10.48 g, 80 mmol) was refluxed in a 5-6 M solution of HCl in 2-propanol (200 ml) for 2 h. The solvent was evaporated to give 16.33 g of the product 123A as a white solid (97% yield). MS (M+1) 174.


Step 2: 123A (16.33 g, 78.1 mmol) was suspended in dichloromethane (460 ml). Et3N (30 ml) and di-tert-butyl dicarbonate (20.33 g) were added, and the mixture was stirred for 20 h at RT. The reaction mixture was washed twice with equivolume 1 N HCl, once with saturated NaHCO3, and once with saturated NaCl. The organic solution was dried (anhydrous Na2SO4), filtered, and concentrated to give the product 124A as an amber oil (19.7 g, 92% yield). MS (M+1): m/e 274.


Step 3: Using the procedure of step 5 from Example 32, compound 125A was synthesized. MS (M+1): m/e 272.


Step 4: A 5-gram vial of CeCl3 from Aldrich was cracked open and quickly added to a flame-dried, 125-ml, round-bottomed flask under an Ar atmosphere. Anhydrous THF was added, and the mixture was sonicated for 1 h and stirred an additional 1 h. The ketone 125A was dissolved in dry THF (5 ml) and added to the CeCl3/THF mixture and stirred at RT for 1 h. In a separate round bottom flask, 2-pyrimidyl tri-n-butylstannane was dissolved in dry THF (18 ml) under an Ar atmosphere and cooled to −78° C. A 2.5M solution of n-butyllithium in hexanes (4 ml) was added dropwise to the pyrimidyl stannane, and the mixture turned thick and brown. After stirring for 1 h at −78° C., this cold mixture was transferred via cannula to the ketone 125A/CeCl3 mixture also cooled to −78° C. The resulting reaction mixture was stirred at −78° C. for 3 h and then stirred at −50° C. for 30 min. The mixture was again cooled to −78° C. and quenched dropwise with 1 M citric acid (200 ml). The aqueous solution was extracted with hexane and then Et2O. The combined organic extract was dried (MgSO4), filtered, and concentrated. Purification by silica gel chromatography gave 0.95 g of the product 126A (27% yield). MS (M+1): m/e 352.


The following intermediates were synthesized by using a similar procedure:

NumberCompoundMS (M + 1)126Bembedded image351126Cembedded image280


Step 5: Using the procedure of step 3 from Example 31, the following intermediates were synthesized:

NumberCompoundMS (M + 1)127Aembedded image252127Bembedded image251127Cembedded image180


EXAMPLE 37



embedded image


2,4,6-Trifluorobenzylamine 128 was prepared according to the literature procedure of A. Marfat et al, WO 9845268.


EXAMPLE 38



embedded image


Step 1: Compound 129 (0.24 g, 0.5 mmol) was mixed with Et3N (0.1 ml, 0.7 mmol) in dry THF (4 ml) and cooled to −78° C. Trimethylacetyl chloride (0.08 ml, 0.6 mmol) was added, and the resulting mixture was stirred at 0° C. for 20 min, then cooled to −78° C. again. In a separate flask, oxazolidinone (0.07 g, 0.8 mmol) was dissolved in dry THF (2 ml), cooled to −78° C., and 1.6 ml of a 1.6 M n-BuLi solution in hexane was added. After stirring at −78° C. for 15 min, the mixture was cannulated into the above mixed anhydride solution. The resulting solution was then slowly warmed up to RT. The reaction mixture was quenched with saturated NH4Cl solution (2 ml). EtOAc (50 ml) was added, and the organic solution was washed with 1 N HCl solution, saturated NaHCO3 solution, and brine. The organic solution was dried (Na2SO4), filtered, and concentrated. Purification by flash chromatography gave the product which was treated with 2 N HCl in ether (50 ml) at RT overnight. The precipitate was collected by filtration and dried in a vacuum oven at 50° C. overnight to give 0.15 gram of the product 130 as the HCl salt. MS (M+1): m/e 451.


EXAMPLE 39



embedded image


Step 1: Compound 131 (1.15 g, 6 mmol) was mixed with Et3N (0.9 ml, 6.4 mmol) in dry THF (20 ml), and cooled to −30° C. Trimethylacetyl chloride (0.75 ml, 6 mmol) was added, and the resulting mixture was stirred at −10° C. for 20 min. Pyrrolidine (0.85 ml, 10 mmol) was added, and the resulting mixture was stirred at 0° C. for 30 min. The reaction mixture was diluted with EtOAc (150 ml) and washed with 1 N HCl solution, saturated NaHCO3 solution, and brine. The organic solution was dried (MgSO4), filtered, and concentrated to give the product 132.


Step 2: Using the procedure of step 3 from Example 31, intermediate 133 was synthesized.


Step 3: To a solution of compound 129 (0.48 g, 1 mmol) dissolved in DMF (4 ml) and CH2Cl2 (10 ml) at RT was added DIPEA (1 ml) and HATU (0.6 g). After 5 min, compound 133 (HCl salt, 0.23 g, 1.3 mmol) was added. The reaction mixture was stirred at RT for 30 min, then the mixture was diluted with EtOAc (75 ml) and washed with 1 N HCl (50 ml), saturated NaHCO3 (50 ml), and brine. The organic solution was dried (Na2SO4), filtered, and concentrated. Purification by silica gel chromatography gave the product 134.


Step 4: Using the procedure of step 3 from Example 31, compound 135 was synthesized. MS (M+1): m/e 506.


EXAMPLE 40



embedded image


Step 1: Using the procedure for step 3 from Example 39, compound 136 was synthesized.


Step 2: To a solution of compound 136 (0.2 g, 0.35 mmol) dissolved in dry CH2Cl2 (6 ml) was added DAST (0.1 ml, 0.7 mmol). The reaction mixture was stirred at RT for 2 days, then quenched with saturated NaHCO3 (2 ml). The mixture was diluted with CH2Cl2 (75 ml) and washed with water then 1 N HCl solution. The organic solution was dried (MgSO4), filtered, and concentrated. Purification by silica gel chromatography gave the product 137.


Step 3: Using the procedure of step 3 from Example 31, compound 138 was synthesized. MS (M+1): m/e 467


EXAMPLE 41



embedded image


Step 1: Using the procedure of step 2 from Example 32, intermediate 140 was synthesized. MS (M+1): m/e 281.


Step 2: Using the procedure of step 3 from Example 31, intermediate 141 was synthesized. MS (M+1): m/e 181.


Step 3: To a solution of compound 141 (1.9 g, 8.2 mmol, a TFA salt) and Et3N (2.5 g, 24.6 mmol) in CH2Cl2 (32 ml) at 0° C. was added a solution of 2-nitrophenylsulphonyl chloride (1.99 g, 9 mmol) in CH2Cl2 (8 ml) over a period of 5 min. The reaction mixture was stirred at 0° C. for 2 h, and then saturated NaHCO3 solution was added. The product was extracted with CH2Cl2, washed with brine (1×70 ml), dried over Na2SO4, filtered, and concentrated to give an oily residue. Purification by silica gel chromatography (Biotage System, eluant: 40:1 CH2Cl2:MeOH) gave 3.11 g (8.4 mmol, 100%) of the product 142 as an off white solid. MS (M+1): m/e 366.


Step 4: The combined reaction mixture of compound 142 (730 mg, 2 mmol), K2CO3 (2.76 g, 20 mmol) and 1,2-dibromoethane (3.74 g, 20 mmol) in DMF (6 ml) was heated at 60° C. for 17 h, and then quenched with water. The product was extracted with EtOAc (3×30 ml), and the combined extract was washed with brine (3×60 ml), dried over Na2SO4, filtered, and concentrated to give an oily residue. Purification by preparative silica gel chromatography (eluant: EtOAc) gave 640 mg (1.64 mmol, 82%) of the product 143 as an oil. MS (M+1): m/e 392.


Step 5: To a solution of compound 143 (640 mg, 1.64 mmol) in CH3CN (13 ml) was added Cs2CO3 (1.6 g, 4.92 mmol) and PhSH (216 mg, 1.97 mmol). The reaction mixture was stirred at RT for 1 h, filtered, and the solid was washed with CH2Cl2. The filtrate was concentrated to give a yellow oil. Purification by silica gel chromatography (Biotage System, eluant: 20:1 CH2Cl2:MeOH (with 4% NH3) gave 210 mg (1 mmol, 61%) of the product 144A as a colorless oil. MS (M+1): m/e 207.


The following intermediates were synthesized by using a similar procedure:

NumberCompoundMS144Bembedded image242144Cembedded image209


EXAMPLE 42



embedded image


Step 1: To a solution of amine 145 (400 mg, 2 mmol) and Et3N (202 mg, 2 mmol) in EtOH (10 ml) was added 1-bromo-2-fluoroethane (1.27 g, 10 mmol). The reaction mixture, charged in a pressurized tube, was heated at 70° C. for 3 days. Mass spectroscopy was used to monitor the reaction. The reaction mixture was concentrated, and then water was added. The product was extracted with CH2Cl2 (3×40 ml), washed with brine (3×50 ml), dried over Na2SO4, filtered, and concentrated to give of the product 146 (1.75 mmol, 87%) as an oil, which was used without further purification. MS (M+1): m/e 247.


Step 2: Using the procedure of step 3 from Example 31, the following compounds were synthesized:


EXAMPLE 43



embedded image


Step 1: To a solution of amide 148 (1.4 g, 7 mmol) in DMF (28 ml) was added NaH (554 mg, 23.1 mmol, 60% in oil) in portions over a period of 8 min. The reaction mixture was stirred at RT for 50 min, then Etl (3.28 g, 21 mmol) was added over a period of 2 min. The reaction mixture was stirred at RT for 15 h and then quenched with ice-water. The product was extracted with EtOAc/CH2Cl2, washed with brine (3×30 ml), dried over Na2SO4, filtered, and concentrated to give an oily residue. Purification by silica gel chromatography (Biotage System, eluant: 100:1 CH2Cl2:MeOH) gave 1.19 g of the product 149 (5.2 mmol, 74%) as an oil. MS (M+1): m/e 229.


Step 2: Using the procedure of step 3 from Example 31, the following compounds were synthesized:

NumberCompoundMS150Aembedded image129150Bembedded image115150Cembedded image143150Dembedded image157150Eembedded image191150Fembedded image143150Gembedded image155150Hembedded image159150Iembedded image247


EXAMPLE 44



embedded image


Step 1: Using the procedure of step 1 from Example 2, intermediate 152 was synthesized.


Step 2: Using the procedure of step 2 from Example 2, intermediate 153 was synthesized.


Step 3: Using the procedure of step 2 from Example 3, intermediate 154 was synthesized. MS (M+1): m/e 174.


EXAMPLE 45



embedded image


Step 1: 3,5-Dichloro-4-pyridinecarboxaldehyde (155, 0.44 g, 2.5 mmol) was mixed with allylamine (0.56 ml, 7.5 mmol), NaB(OAc)3H (1.1 g, 5 mmol) and HOAc (0.15 ml) in 1,2-dichloroethane (10 ml). The reaction mixture was stirred at RT for 20 h and then poured into saturated NaHCO3 solution (10 ml). The resulting-mixture was stirred at RT for 30 min, and the product was extracted with ether (3×40 ml). The combined organic extract was dried (Na2SO4), filtered, concentrated, and then purified by silica gel chromatography to give 0.46 g of the product 156 as an oil. MS (M+1): m/e 217.


Step 2: Compound 156 (0.32 g, 1.47 mmol) was mixed with tetrakis (triphenylphosphine) palladium (0) (20 mg) and N,N-dimethylbarbituric acid (0.73 g, 4.4 mmol) in CH2Cl2 (35 ml). The reaction mixture was heated at reflux for 15 h. CH2Cl2 (35 ml) was added, and the organic solution was washed with saturated NaHCO3 solution, dried (MgSO4), filtered, and concentrated. Purification by silica gel chromatography gave 0.25 g of the product 157 as an oil. MS (M+1): m/e 177.


EXAMPLE 46



embedded image


Step 1: To a solution of N-Boc-L-hydroxyproline ethyl ester 158 (7.0 g, 27 mmol) dissolved in CH2Cl2 (20 ml) was added 15% Dess-Martin reagent in CH2Cl2 solution (112 g). The reaction mixture was stirred at RT for 15 h. CH2Cl2 (100 ml) was added, and the organic solution was washed with 6% NaHCO3 solution, dried, filtered, and concentrated. Purification by silica gel chromatography gave 6.5 g of the product 159 as an oil. MS (M+1): m/e 258.


Step 2: To a solution of compound 159 (1.1 g, 4.28 mmol) dissolved in dry THF (25 ml) and cooled to −78° C. was added CH3MgBr solution (3.7 ml, 1.7 M in toluene/THF) dropwise. The reaction mixture was stirred at −78° C. for 1 h, then slowly warmed up to −25° C. The reaction was quenched by the addition of 5% HCl solution and then warmed up to RT. The resulting mixture was extracted with EtOAc (2×40 ml). The combined organic extract was dried (Na2SO4), filtered, and concentrated. Purification by silica gel chromatography gave 0.30 g of the product 160 as an oil. MS (M+1): m/e 274.


Step 3: Using the procedure of step 3 from Example 31, compound 161 was synthesized. MS (M+1): m/e 174.


EXAMPLE 47



embedded image


Anhydrous CeCl3 (1.85 g, 7.5 mmol) was suspended in THF (25 ml) under N2 and stirred overnight at RT. EtMgBr (2.5 ml of 3.0 M in THF, 7.5 mmol) was added dropwise, and the reaction mixture was stirred at RT for 1 h. A solution of ketone 162 (463 mg, 2.5 mmol) dissolved in THF (5 ml) was added dropwise to the suspension, and the resulting mixture was stirred at RT for 2 h. The reaction mixture was treated with EtOAc (5 ml) for 30 min at 20° C. and 2 M HCl, respectively, followed by extraction with EtOAc (2×100 ml). The combined organic extract was washed with brine, dried (MgSO4), filtered, and concentrated to give the crude intermediate. This intermediate was dissolved in minimal EtOAc and HCl (10 ml of 2 M in Et2O) was added. The reaction mixture was stirred at RT overnight to give the product 163 as a precipitate. The precipitate was filtered, washed with EtOAc, and dried in vacuo to give the product 163 as brown solid (276 mg, 73%). (M+1): m/e 116.


EXAMPLE 48



embedded image


Step 1: Compound 164 was synthesized according to the procedure of Cowden, Organic Letters (2003), 5(23), 4497-4499.


Step 2: Using the procedure of step 3 from Example 31, compound 166 was synthesized. MS (M+1): m/e 178.


EXAMPLE 49



embedded image


Step 1: To a suspension of compound 164 (9.95 g, 107 mmol) in H2O (100 ml) and EtOH (10 ml) was added KOH (28 g, 500 mmol). The resulting mixture was heated at reflux for 3.5 h and then cooled to 0° C. Concentrated HCl (50 ml) was added with caution. The resulting mixture was concentrated, and the remaining aqueous layer was extracted with Et2O. The combined organic extract was washed with brine, dried (MgSO4), filtered, and concentrated to give the product 165 (12.6 g, 88%) as a yellow liquid.


Step 2: To a solution of compound 165 (10.2 g, 89.2 mmol) dissolved in t-BuOH (150 ml) was added Et3N (14 ml, 100.6 mmol) and diphenylphosphoryl azide (21 ml, 97.4 mmol). The reaction mixture was heated at reflux overnight and then cooled to RT. The resulting mixture was concentrated, diluted with EtOAc, washed with 1 N HCl (150 ml), satd. NaHCO3 (50 ml) and brine, dried (MgSO4), filtered, and concentrated. Purification by silica gel chromatography (eluant: 1:6 EtOAc:hexane) gave the product 166 (4.05 g, 25%) as a white solid.


Step 3: To a solution of compound 166 (3.0 g, 16.4 mmol) dissolved in MeOH (200 ml), and cooled to −78° C. was bubbled ozone until the light blue color persisted. Triphenyl phosphine (9.3 g, 35.5 mmol) was added, and the reaction mixture was stirred at RT overnight. The resulting mixture was concentrated. Purification by silica gel chromatography (eluant: 1:3 EtOAc:hexane) gave the product 167 (2.95 g, 97%) as a white solid. MS (M+1): m/e 186.


Step 4: To a solution of compound 167 (3.4 g, 18.4 mmol) dissolved in THF (70 ml), and cooled to −78° C. was added L-selectride (1.0 M in THF, 22.4 ml, 22.4 mmol) dropwise. The reaction mixture was stirred at −78° C. for 2 h. Water was added, and the resulting mixture was warmed up to RT. The solution was concentrated, and water was added. The aqueous solution was extracted with EtOAc. The combined organic extract was washed with brine, dried (MgSO4), filtered, and concentrated. Purification by silica gel chromatography (eluant: 1:1 EtOAc:hexane) gave the product 168 (2.74 g, 80%) as a white foam. MS (M+1): m/e 188.


Step 5: To a solution of compound 168 (1.0 g, 5.35 mmol) and p-nitrobenzoic acid (0.98 g, 5.88 mmol) dissolved in THF (25 ml) was added triphenylphosphine (2.1 g, 8.0 mmol) and DEAD (1.27 ml, 8.0 mmol) sequentially. The reaction mixture was stirred at RT overnight. The resulting solution was concentrated. Purification by silica gel chromatography (eluant: 1:5 EtOAc:hexane) gave the product 169 (1.53 g, 85%) as a white solid. MS (M+1): m/e 237.


Step 6: To a solution of compound 169 (1.53 g, 4.55 mmol) dissolved in MeOH (30 ml) at 0° C. was added K2CO3 (0.24 g, 1.8 mmol). The resulting suspension was stirred at 0° C. for 2 h and then concentrated. Purification by silica gel chromatography (eluant: 1:5 EtOAc:hexane) gave the product 170 (0.71 g, 83%) as a white solid. MS (M+Na+): m/e 210.


Step 7: To a solution of compound 170 (0.85 g, 4.5 mmol) dissolved in CH2Cl2 (40 ml) at 0° C. was added Et3N (0.94 ml g, 6.7 mmol) and mesyl chloride (0.45 ml, 5.8 mmol). The resulting solution was stirred at 0° C. for 2 h. Water was added, and the resulting mixture warmed up to RT. The aqueous layer was extracted with CH2Cl2. The combined organic extract was washed with brine, dried (MgSO4), filtered, and concentrated to give the product 171 (1.0 g, 83%) as a white solid. MS (M+Na+): m/e 288.


Step 8: To a solution of compound 171 (1.0 g, 3.8 mmol) dissolved in DMF (4 ml) was added NaN3 (378 mg, 5.8 mmol). The reaction mixture was heated at 85° C. overnight. The resulting solution was cooled to RT, concentrated, and water was added. The aqueous layer was extracted with EtOAc. The combined organic extract was washed with brine, dried (MgSO4), filtered, and concentrated to give the product 172 (0.78 g, 98%) as a white solid. MS (M+H+): m/e 213.


Step 9: To a solution of compound 172 (0.78 g, 3.8 mmol) dissolved in THF (30 ml) and H2O (3 ml) was added triphenylphosphine (3.86 g, 14.7 mmol). The resulting solution was heated at reflux for 2 h, cooled to RT, and then concentrated. Purification by silica gel chromatography (eluant: 1:10 4% NH3MeOH:CH2Cl2 then 1:2 4% NH3-MeOH:CH2Cl2) gave the product 173 (0.68 g, 100%) as a white foam. MS (M+1): m/e 187.


EXAMPLE 50



embedded image


Step 1: To compound 166 (1.0 g, 5.46 mmol was added 9-BBN (0.5 N in THF, 16.4 ml, 8.2 mmol) dropwise. The reaction mixture was stirred at RT overnight. The resulting mixture was cooled to 0° C., and 2-bromopyrimidine (1.3 g, 9.2 mmol), Pd(dppf)2Cl2 (446 mg, 0.55 mmol), K2CO3 (1.13 g, 8.19 mmol), DMF (6 ml), and water (0.44 ml) were added. The reaction mixture was stirred at RT overnight. 0.5 N NaOH (50 ml) was added and the mixture extracted with CH2Cl2. The combined organic extract was washed with brine, dried (MgSO4), filtered, and concentrated. Purification by silica gel chromatography (eluant: 1:3 EtOAc:hexane) gave a 4:1 mixture of 174A and 174B (0.8 g, 56%) as a white solid.


Step 2: Using the procedure of step 3 from Example 31, compounds 175A and 175B were synthesized.


EXAMPLE 51



embedded image


Step 1: To a solution of compound 168 (374 mg, 2.0 mmol) dissolved in DMF (5 ml) was added NaH (60% dispersion in mineral oil, 0.2 g, 5 mmol). The reaction mixture was stirred at RT for 30 min. 2-Bromopyrimidine (350 g, 2.2 mmol) was added, and the resulting solution was stirred at RT for 4 h. The reaction mixture was concentrated, and EtOAc and satd. NaHCO3 (aq) were added. The aqueous layer was separated and extracted with EtOAc. The combined organic extract was washed with brine, dried (MgSO4), filtered, and concentrated. Purification by silica gel chromatography (eluant: 1:1 EtOAc:hexane) gave the product 176 (0.25 g, 47%) as a white solid. MS (M+1): m/e 266.


Step 2: Using the procedure of step 3 from Example 31, compound 177 was synthesized.


EXAMPLE 52



embedded image


Step 1: To a solution of compound 168 (374 mg, 2.0 mmol) dissolved in CH3CN (8 ml) was added N,N′-disuccinimidyl carbonate (769 mg, 3.0 mmol) and Et3N (0.84 ml, 6.0 mmol). The reaction mixture was heated at 85° C. for 1 h. The resulting solution was concentrated, and EtOAc and satd. NaHCO3 (aq) were added. The aqueous layer was separated and extracted with EtOAc. The combined organic extract was washed with brine, dried (MgSO4), filtered, and concentrated to give the product 178 (0.25 g, 47%) as a white solid. MS (M+Na+): m/e 288.


Step 2: To a solution of compound 178 (164 mg, 0.5 mmol) dissolved in CH3CN (8 ml) was added methylamine hydrochloride salt (68 mg, 1.0 mmol), Et3N (0.45 ml, 3.3 mmol), and DMAP (2 mg). The reaction mixture was stirred at RT overnight. EtOAc and satd. NaHCO3 (aq) were added. The aqueous layer was separated and extracted with EtOAc. The combined organic extract was washed with brine, dried (MgSO4), filtered, and concentrated. Purification by silica gel chromatography (eluant: 1:50 MeOH:CH2Cl2) gave the product 179 (60 mg, 49%) as a white solid. MS(M+H+−100): m/e 145.


Step 3: Using the procedure of step 3 from Example 31, compound 177 was synthesized.


EXAMPLE 53



embedded image


Step 1: To a suspension of compound 165 (6.22 g, 55.5 mmol) in DMF (60 ml) was added Etl (26.0 g, 166 mmol) and Cs2CO3 (36 g, 111 mmol). The reaction mixture was stirred at RT overnight, then diluted with Et2O (200 ml) and washed with water (60 ml×3). The aqueous layer was extracted with Et2O. The combined organic extract was washed with brine, dried (MgSO4), filtered, and concentrated to give the product 181 (7.2 g, 93%) as a light yellow oil.


Step 2: Using the procedure for step 3 from Example 49, intermediate 182 was synthesized.


Step 3: Using the procedure for step 1 from Example 45, intermediate 183 was synthesized. Purification of 183 by silica gel chromatography (eluant: 1:20 EtOAc:hexane) gave the product 183A, cis-isomer (2.07 g, 29%) as a colorless liquid; a mixture of cis and trans isomer (183A and 183B) (2.54 g, 35%) as a colorless liquid.


MS (M+1): m/e 233.


Step 4: To a solution of compound 183A (2.0 g, 6.5 mmol) dissolved in EtOH (25 ml) was added 4 N HCl in dioxane (0.25 ml) and Pd(OH)2 catalyst (1.1 g). The reaction mixture was placed on a Parr shaker under 50 psi of hydrogen pressure overnight. The resulting mixture was filtered through celite. The filtrate was concentrated to give the amine HCl salt (2.3 g). The amine HCl salt (1.04 g) was suspended in CH2Cl2 (20 ml), and Et3N (3.2 ml, 23.2 mmol) and Boc2O (0.76 g, 3.48 mmol) were added. The resulting mixture was stirred at RT overnight, diluted with EtOAc and washed with 1 N HCl. The aqueous layer was separated and extracted with EtOAc. The combined organic extract was washed with brine, dried (MgSO4), filtered, and concentrated. Purification by silica gel chromatography (eluant: 1:6 EtOAc:hexane) gave the product 184A (0.34 g, 48%, two steps) as a white solid. MS (M+Na+): m/e 266.


Step 5: To a solution of compound 184A (0.15 g, 0.64 mmol) dissolved in CH2Cl2 (6 ml), and cooled to −78° C. was added a solution of DIBAL (1.0 M in CH2Cl2, 1.6 ml, 1.6 mmol) dropwise. The reaction mixture was stirred at −78° C. to −40° C. for 2 h. The resulting solution was warmed to RT, 10% potassium sodium tartrate solution (4 ml) was added, and stirred for 30 min. The mixture was filtered, and the filter cake was washed with CH2Cl2. The filtrate was washed with brine, dried (MgSO4), filtered, and concentrated. Purification by silica gel chromatography (eluant: 1:6 EtOAc:hexane) gave the product 185A (60 mg, 47%) as a colorless film. MS (M+Na+): m/e 222.


Step 6: Using the procedure for step 6 from Example 32, intermediate 186A was synthesized. MS (M+1): m/e 215.


Step 7: To a solution of compound 186A dissolved in THF (2 ml) was added 1 M. LAH (0.3 ml, 0.3 mmol) dropwise under a N2 atmosphere. The reaction mixture was stirred at RT overnight. The resulting solution was cooled to 0° C., and H2O (50 μl), 15% NaOH (aq) (30 μl), and H2O (0.5 ml) were added. The resulting slurry was stirred at RT for 30 min and filtered through a pad of celite. The filtrate was diluted with CH2Cl2 and washed with brine, dried (MgSO4), filtered, and concentrated to give the product 187A (34 mg, 97%) as a white solid. MS (M+1): m/e 201.


EXAMPLE 54



embedded image


Step 1: Compound 188 (8.80 g, 32 mmol) and ethyl 2-chloroacetoacetate (27.2 g, 23 ml, 160 mmol) were mixed together and heated at 180° C. for 7 h. Excess ethyl 2-chloroacetoacetate was removed by vacuum distillation. The residue was suspended in MeOH (200 ml) and stirred at 60° C. for 40 min, then at RT overnight. The solid was collected by vacuum filtration, washed with MeOH, and dried under vacuum to give 8.5 g (74%) of the product 189 as a beige solid. MS (M+1): m/e 381.


Step 2: Using the procedure for step 1 from Example 2, intermediate 190 was synthesized. MS (M+1): m/e 459.


Step 3: Compound 190 (0.20 g, 0.44 mmol) was suspended in 7 M NH3 in MeOH (10 ml) and heated at 55° C. for 16 h. The reaction mixture was cooled to RT and concentrated. Purification by reverse phase chromatography gave 35 mg (22%) of the title compound 191. MS (M+1): m/e 367.


EXAMPLE 55



embedded image


Step 1: Using the procedure for step 1 from Example 50, intermediate 192 was synthesized. MS (M+1): m/e 381.


Step 2: Using the procedure for step 1 from Example 2, intermediate 193 was synthesized.


Step 3: To a solution of compound 193 (2.0 g, 4 mmol) dissolved in DMSO (20 ml) was added NaN3 (0.29 g, 4.4 mmol). The reaction mixture was stirred at RT for 24 h. Water was added and a precipitate formed. The solid was collected by vacuum filtration, washed with water, and dried under vacuum to give 1.7 g (92%) of the product 194. MS (M+1): m/e 422.


Step 4: To a solution of compound 194 (1.7 g, 4 mmol) dissolved in toluene (30 ml) was added trimethylphosphine (1 M in toluene, 4.4 ml, 4.4 mmol). The reaction mixture was stirred at RT for 1 h and then cooled to −20° C. 2-(tert-butoxycarbonyl-oxyimino)-2-phnylacetonitrile (BOC-ON) (1.18 g, 4.8 mmol) was added. The reaction mixture was warmed to RT and stirred for 16 h. CH2Cl2 was added and the organic solution was washed with water. The organic solution was dried (MgSO4), filtered, and concentrated. Purification by silica gel chromatography gave 1.26 g (64%) of the product 195. MS (M+1): m/e 496.


Step 5: Using the procedure for step 1 from Example 32, intermediate 196 was synthesized. MS (M+1): m/e 482.


Step 6 and Step 7: Using the procedure for step 2 from Example 32 and then step 3 from Example 31, the following compounds were synthesized.

NumberCompoundMS (M + 1)197Aembedded image541197Bembedded image575


EXAMPLE 56



embedded image


Step 1: Using the procedure for step 1 from Example 30, the compound 198 was synthesized.


Step 2: To compound 198 (1.6 g, 5.6 mmol) dissolved in EtOH (50 ml) was added ethyl 2-chloroacetoacetate (2.7 g, 2.3 ml, 16.8 mmol). The reaction mixture was heated at 65° C. for 16 h and then cooled to RT. The solid was collected by vacuum filtration and washed with MeOH. Purification by silica gel chromatography gave the product 199.


Step 3: Using the procedure for step 1 from Example 2, intermediate 200 was synthesized. MS (M+1): m/e 477.


Step 4: Using the procedure for step 3 from Example 54, title compound 201 was synthesized. MS (M+1): m/e 383.


EXAMPLE 57



embedded image


Step 1: Using the procedure for step 1 from Example 54, compound 202 was synthesized.


Step 2: Using the procedure for step 1 from Example 2, compound 203 was synthesized.


Step 3: Using the procedure for step 3 from Example 55, compound 204 was synthesized.


Step 4: Using the procedure for step 4 from Example 55, compound 205 was synthesized.


Step 5: Using the procedure for step 1 from Example 32, intermediate 206 was synthesized.


Step 6 and Step 7: Using the procedure for step 2 from Example 32 and then step 3 from Example 31, the following compounds were synthesized.

NumberCompoundMS (M + 1)207Aembedded image557207Bembedded image591207Cembedded image611207Dembedded image397


EXAMPLE 58



embedded image


Step 1: To a suspension of threonine-OMe-HCl (10.2 g, 0.06 mol) in CH2Cl2 (200 ml) was added Hunig's base (14.1 g, 19 ml, 0.11 mol) and the mixture cooled to 0° C. Compound 2 (15.0 g, 0.05 mol) dissolved in CH2Cl2 (150 ml) was added dropwise via addition funnel. The reaction mixture was stirred at 0° C. for 15 min, then at RT for 60 min. The solvent was evaporated and dilute HCl solution was added. The solid was collected by vacuum filtration and washed with MeOH. A second crop was collected by vacuum filtration of the filtrate. The combined solid was dried under vacuum to give 19.3 g (100%) of the product 208.


Step 2: To a solution of compound 208 (7.7 g, 20 mmol) dissolved in DMSO (50 ml) and toluene (50 ml) and cooled to 0° C. was added EDCI (9.6 g, 50 mmol) and dichloroacetic acid (3.3 g, 2.1 ml, 25 mmol). The reaction mixture was stirred at 0° C. for 5 min, then at RT for 45 min. Na2S2O3 (7 g) dissolved in water (600 ml) and hexane (300 ml) was added. The reaction mixture was stirred at RT for 15 min. The solid was collected by vacuum filtration and washed with water, 1:1 water:MeOH, and then 1:1 ether:hexane. The filtrate was filtered to give additional solid. The combined solid was dried under vacuum to give 7.2 g (94%) of the product 209.


Step 3: Using the procedure for step 1 from Example 30, the compound 210 was synthesized.


Step 4: Using the procedure for step 1 from Example 2, the compound 211 was synthesized.


Step 5: Using the procedure for step 2 from Example 2, the compound 212 was synthesized.


Step 6: Using the procedure for step 3 from Example 2, the compound 213 was synthesized.


Step 7 and Step 8: Using the procedures for step 1 and step 2 from Example 3, the following compounds were synthesized.

NumberCompoundMS (M + 1)214Aembedded image543214Bembedded image577214Cembedded image383


EXAMPLE 59



embedded image


Step 1: To a solution of compound 215 (1.89 g, 10 mmol) in anhydrous CH2Cl2 (25 ml) at −20° C. was added pyridine (790 mg, 10 mmol), followed by the addition of cyanuric fluoride (3.6 ml, 40 mmol) over a period of 5 min. After 2 h at −20° C., the reaction mixture was quenched with ice-water and extracted with CH2Cl2. The combined extract was washed with brine, dried over Na2SO4, filtered, and concentrated to give 1.15 g (6 mmol, 60%) of the product 216 as a colorless liquid.


Step 2: To a solution of compound 217 (1.54 g, 3.98 mmol) and 216 (920 mg, 4.81 mmol) in anhydrous THF (16 ml) at −78° C. was added KN(TMS)2 (20 ml, 20 mmol) over a period of 5 min. After 1 h at −78° C., the cold bath was removed and the reaction mixture was stirred for another 30 min, quenched with water, and extracted with EtOAc. The combined extract was washed with brine, dried over Na2SO4, filtered, and concentrated to give an oily residue. Purification by silica gel chromatography (Biotage System, eluant: 3:1 hexane:EtOAc) gave 0.89 g (2.1 mmol, 54%) of the product 218 as a white powder. MS (M+1): m/e 510.


Step 3: Using the procedure for step 1 from Example 32, intermediate 219 was synthesized. MS (M+1): m/e 482.


Step 4 and Step 5: Using the procedure for step 2 from Example 32 and then step 3 from Example 31, the following compounds were synthesized:

NumberCompoundMS220Aembedded image507220Bembedded image558220Cembedded image605220Dembedded image572220Eembedded image537


EXAMPLE 60



embedded image


Step 1: To a solution of compound 221 (6.01 g, 42.9 mmol) dissolved in DMF (50 ml) was added N-iodosuccinimide (10.27 g, 45.6 mmol). The solution was heated at 40° C. overnight. The reaction was followed by taking 1H NMR of small amounts of the reaction mixture. Additional N-iodosuccinimide (1.34 g, 5.96 mmol) was added, and the resulting solution was stirred at RT for 2 days. The solution was diluted with EtOAc (150 ml) and washed with 0.5 N Na2S2O3 (50 ml×2). The combined aqueous wash was extracted with EtOAc (100 ml×2). The combined organic extract was dried (MgSO4), filtered, and concentrated. The residue was purified by silica gel chromatography (eluant: 1:20 EtOAc:hexane) to give the product 222 (8.35 g, 73%) as a light yellow liquid. MS (M+1): m/e 367.


Step 2 and Step 3: To a solution of compound 222 (8.33 g, 31.3 mmol) dissolved in CCl4 (100 ml) was added NBS (11.1 g, 62.3 mmol) and benzoylperoxide (1.3 g, 5.36 mmol). The reaction mixture was heated at reflux for 16 h and then cooled to RT. CH2Cl2 was added (400 ml) and the organic solution was washed with 0.5 N Na2S2O3 (150 ml×2). The aqueous washes were combined and extracted with CH2Cl2 (100 ml×3). The combined organic extract was washed with brine, dried (MgSO4), filtered, and concentrated. The residue was dissolved in acetone (300 ml) and water (150 ml), and Ag2CO3 (10.3 g, 37.4 mmol) was added. The reaction mixture was heated at reflux overnight and then cooled to RT. The mixture was filtered through a pad of celite. The filtrate was concentrated, and the remaining aqueous solution was extracted with EtOAc. The combined organic extract was washed with brine, dried (MgSO4), filtered, and concentrated. The residue was purified by silica gel chromatography (eluant: 1:3 EtOAc:hexane) to give the product 224 (5.25 g, 60%) as a light yellow liquid. MS (M+1): m/e 283.


Step 4: To a solution of compound 224 (4.57 g, 16.2 mmol) dissolved in CH2Cl2 (100 ml) was added Dess-Martin reagent (14 g, 33 mmol). The reaction mixture was stirred at RT overnight. The resulting solution was washed with 1 N NaOH (150 ml). The aqueous layer was separated and extracted with CH2Cl2. The combined organic extract was washed with brine, dried (MgSO4), filtered, and concentrated. The residue was purified by silica gel chromatography (eluant: 1:5 EtOAc:hexane) to give the product 225 (5.25 g, 60%) as a white solid. MS (M+1): m/e 281.


Step 5: To a solution of compound 226 (14 g, 51.7 mmol) dissolved in quinoline (100 ml) was added copper (17 g, 268 mmol). The reaction mixture was heated at 180° C. for 6 h and then cooled to RT. The resulting mixture was filtered through a pad of celite and the filter cake was washed with EtOAc. The filtrate was washed with 4 N HCl (800 ml). The aqueous layer was separated and extracted with EtOAc. The combined organic extract was washed with brine, dried (MgSO4), filtered, and concentrated. The residue was purified by silica gel chromatography (eluant: 1:10 EtOAc:hexanes) to give the product 227 (9.25 g, 79%) as a white solid. MS (M+1): m/e 228.


Step 6: To a solution of compound 227 (9.1 g, 40.0 mmol) dissolved in MeOH (200 ml) was added bromine (2.1 ml, 41.0 mmol). The reaction mixture was heated at 40° C. for 2 h and then cooled to RT and concentrated. The residue was purified by silica gel chromatography (eluant: 1:6 EtOAc:hexane) to give the product 228 (12.1 g, 99%) as a white solid. MS (M+1): m/e 306.


Step 7: Pd2(dba)3 (1.69 g, 1.85 mmol) and 1.0 M PCy3 in THF (3.87 ml, 3.87 mmol) were added to a 500 ml three-neck reaction flask (evacuated and backfilled with N2). Dioxane (200 ml) was added and the mixture was evacuated and refilled with N2 again. The resulting mixture was stirred at RT for 30 min. Bromide 228 (5.91 g, 19.4 mmol), bis(pinocolo)diboron (6.88 g, 27.1 mmol), and KOAc (6.89 g, 70.0 mmol) were added sequentially. The reaction mixture was heated at 85° C. overnight and then cooled to RT. The resulting mixture was filtered through a pad of celite and the filter cake was washed with EtOAc. The filtrate was washed with H2O (100 ml). The aqueous layer was separated and extracted with EtOAc. The combined organic extract was washed with brine, dried (MgSO4), filtered, and concentrated. The residue was purified by silica gel chromatography (eluant: 1:15 EtOAc:hexane) to give the product 229 (5.35 g, 78%) as a white solid. MS (M+1): m/e 354.


Step 8: Boronic ester 229 (5.35 g, 15.15 mmol), 2-iodofuran 225 (4.27 g, 1.5.25 mmol), palladium acetate (172 mg, 0.77 mmol), S-Phos (682 mg, 1.65 mmol), and K3PO4 (12.5 g, 54.3 mmol) were combined in a 100 ml round bottom flask. The mixture was suspended in THF (100 ml), degassed, and refilled with N2. Water (0.55 ml, 30 mmol) was added. The resulting mixture was stirred at RT under a N2 atmosphere overnight. The reaction mixture was filtered through celite and the filter cake was washed with EtOAc. The filtrate was concentrated, and the residue was purified by silica gel chromatography (eluant 1:3 EtOAc:hexane) to give the product 230 (3.00 g, 46%) as a yellow solid. MS (M+1): m/e 433.


Step 9: To a solution of compound 230 (1.1 g, 2.90 mmol) dissolved in CH3CN (60 ml) and CH2Cl2 (15 ml) was added BocNH2 (1.02 g, 8.71 mmol), Et3SiH (1.4 ml, 8.76 mmol), and TFA (0.43 ml, 5.79 mmol) sequentially. The reaction mixture was stirred at RT overnight. The resulting solution was diluted with CH2Cl2 and washed with 1 N NaOH (40 ml). The aqueous layer was separated and extracted with CH2Cl2. The combined organic extract was washed with brine, dried (MgSO4), filtered, and concentrated. The residue was purified by silica gel chromatography (eluant: 1:3 EtOAc:hexane) to give the product 231 (0.95 g, 68%) as a yellow solid. MS (M+1): m/e 481.


Step 10: Using the procedure for step 1 from Example 32, compound 232 was synthesized. MS (M+1): m/e 467.


Step 11 and Step 12: Using the procedure for step 2 from Example 32 and for step 3 from Example 31, the following compounds were synthesized:

NumberCompoundMS233Aembedded image492233Bembedded image525233Cembedded image496233Dembedded image512233Eembedded image506233Fembedded image508233Gembedded image520233Hembedded image482


EXAMPLE 61



embedded image


embedded image


Step 1: Starting aldehyde 230 (1.21 g, 2.79 mmol), t-(R)-butanesulfinylamide (400 mg, 3.30 mmol), and titanium ethoxide (5.6 ml, 27 mmol) were mixed in dry THF (40 ml), degassed, and refluxed under a N2 atmosphere overnight. The reaction mixture was cooled to RT and poured into brine (40 ml) with vigorous stirring. The resulting mixture was filtered through celite. The filtrate was extracted with EtOAc. The combined organic extract was washed with brine, dried (MgSO4), filtered, and concentrated. The residue was purified by silica gel chromatography (Biotage, 40S+, eluant: 1:3 EtOAc:hexane) to give the product 234 (1.05 g, 76%) as a yellow solid. MS (M+1): m/e 497.


Step 2: To a solution of compound 234 (0.60 g, 1.2 mmol) dissolved in dry THF (40 ml) under a N2 atmosphere and cooled to −40° C. was added a solution of MeMgBr (3 M in Et2O, 0.5 ml, 1.5 mmol) dropwise. The reaction mixture was stirred at −40° C. for 5 h and warmed up overnight. The mixture was diluted with EtOAc, poured into saturated NH4Cl (aq) and filtered through celite. The aqueous layer was separated and extracted with CH2Cl2. The combined organic extract was washed with brine, dried (MgSO4), filtered, and concentrated. The residue was purified by silica gel chromatography (Biotage, 40S+, eluant: 1:1 EtOAc:hexane) to give the separated isomer 235A (0.41 g, 66%) as a yellow solid MS (M+1): m/e 513, and isomer 235B (0.10 g, 16%) as a yellow solid MS: (M+1): m/e 513.


Step 3: Using the procedure of step 1 from Example 32, the isomers 236A (from 235A) and 236B (from 235B) were synthesized. MS (M+1): m/e 485.


Step 4 and Step 5: Using the procedure of step 2 from Example 32 and then step 3 from Example 31, the compounds 237A (from 236A) and 237B (from 236B) were synthesized. MS (M+1): m/e 472.


EXAMPLE 62



embedded image


embedded image


Step 1: Solid t-BuOK (2.20 g, 20 mmol) was dissolved in dry THF (50 ml) and cooled to −78° C. Compound 239 (5.34 g, 20 mmol) dissolved in dry THF (20 ml) was added while the reaction mixture was maintained at −78° C. After stirring at −78° C. for 30 min, the solution was cannulated into a vigorously stirred solution of compound 238 (20 mmol) dissolved in dry THF (50 ml) and also cooled to −78° C. The reaction mixture was stirred at −78° C. for 30 min, then 3 N aqueous HCl solution (50 ml) was added, and the reaction mixture was stirred at RT for 1 h. The resulting mixture was concentrated, and the aqueous solution was washed with Et2O (2×75 ml). The aqueous solution was concentrated by co-evaporation with toluene at temperature <40° C. The residue was dried under vacuum overnight, then suspended in MeOH (500 ml) and stirred at RT. The insoluble salt was removed by filtration. The filtrate was concentrated, and dried in a vacuum oven at 50° C. overnight to give the product 240 (6.6 g, 76%, HCl salt) as a solid. MS (M+1): m/e 397.


Step 2: To a solution of compound 241 (10 mmol) dissolved in dry THF (60 ml) and cooled to −78° C. was added compound 240 (4.3 g, 10 mmol) dissolved in dry DMF (30 ml) and then Et3N (2.7 ml, 20 mmol). The reaction mixture was stirred at RT for 3 days. The resulting mixture was concentrated and the residue was dissolved in EtOAc/Et2O. The organic solution was washed with 1 N HCl, 10% NaHCO3, and brine, dried (Na2SO4), filtered, and concentrated. Purification by silica gel chromatography gave 242 (4.2 g, 65%) as pale solid. MS (M+1): m/e 650.


Step 3: Compound 242 (2.0 g, 3 mmol) was dissolved in dry p-xylene (60 ml) and 7 N NH3/MeOH (2 ml) and TFA (2.2 ml) was added. The reaction mixture was heated at 150° C. for 2 h and then 0.5 N NH3/dioxane (15 ml) and AcOH (2 ml) were added. The resulting mixture was heated at 160° C. with azeotropic removal of water overnight, cooled to RT, and concentrated. Purification by silica gel chromatography (20% EtOAc in CH2Cl2) gave the product 243 (0.51 g, 27%) as a light-yellow solid. MS (M+1): m/e 631.


Step 4: Compound 243 (0.46 g, 0.73 mmol) was dissolved in AcOH (20 ml) and concentrated HCl (10 ml) and was heated to reflux for 24 h. The resulting mixture was concentrated and water (50 ml) was added. The precipitate was collected by filtration, washed with water, and dried in a vacuum oven at 50° C. overnight, to give the product 244 (0.41 g, 93%). MS (M+1): m/e 603.


Step 5: To a solution of compound 244 (0.12 g, 0.2 mmol) dissolved in dry DMF (0.5 ml) and CH2Cl2 (3 ml) was added 2,4-difluorobenzylamine (0.05 ml, 0.4 mmol), DIPEA (0.07 ml, 0.4 mmol), and HATU (0.114 g, 0.3 mmol). The resulting mixture was stirred at RT overnight and then concentrated. The residue was dissolved in DMF (2 ml) and purified by Gilson reverse phase prep HPLC to give the product 245 (0.081 g, 56%).


MS (M+1): m/e 728.


Step 6: Compound 245 (0.080 g, 0.11 mmol) was dissolved in Et2NH (2 ml) and CH3CN (2 ml) and stirred at RT for 30 min. The resulting mixture was concentrated, and the residue was purified by Gilson reverse phase prep HPLC. The product was treated with HCl in ether, then dried in a vacuum oven at 50° C. overnight to give the product 246 (0.052 g, 94%) as a di-HCl salt. MS (M+1): m/e 506.


EXAMPLE 63



embedded image


Step 1: To a solution of compound 247 (38 g, 0.19 mol) dissolved in CH2Cl2 (450 ml) and cooled to 0° C. was added Et3N (35 ml, 0.25 mol) and t-Boc anhydride (54 g, 0.25 mol). The reaction mixture was stirred at RT overnight. The resulting mixture was diluted with CH2Cl2, washed with 1 N HCl solution, dried (Na2SO4), filtered, and concentrated. Purification by silica gel chromatography gave the product 248 (47 g, 96%). MS (M+1): m/e 260.


Step 2: To a solution of compound 248 (1.55 g, 6 mmol) dissolved in dry THF (60 ml) and cooled to 0° C. was added triphenylphosphine (2.0 g, 7.8 mmol), diethyl azodicarboxylate (1.3 ml, 7.8 mmol) dropwise, and then diphenylphosphoryl azide (1.7 ml, 7.8 mmol). The reaction mixture was stirred at RT overnight, then diluted with ether. The organic solution was washed with saturated NaHCO3 and brine, dried (Na2SO4), filtered, and concentrated. Purification by silica gel chromatography (eluant: 15-20% EtOAc in hexane) gave compound 249 (1.7 g, 100%). MS (M+1): m/e 285.


Step 3: To a solution of compound 249 (0.5 g, 1.76 mmol) dissolved in THF (40 ml) was added 10% Pd/C catalyst (0.25 g). The reaction mixture was stirred under H2 (1 atm) at RT overnight. The resulting mixture was filtered, and the filtrate was concentrated to give the product 250 (0.45 g, 100%). MS (M+1): m/e 259.


Step 4 and 5: To a solution of compound 250 (0.13 g, 0.5 mmol) dissolved in CH2Cl2 (1 ml) was added DIPEA (0.2 ml) and cyclopropanecarbonyl chloride (0.053 ml, 0.5 mmol). The reaction mixture was stirred at RT for 2 h. The resulting mixture was diluted with EtOAc. The organic solution was washed with 1 N HCl, saturated NaHCO3, and brine, dried, filtered, and concentrated. Purification by silica gel chromatography gave the product 251. Compound 251 was treated with 4 N HCl in dioxane at RT for 4 h. The resulting mixture was concentrated, and the residue was dried under vacuum for 2 days to give the product 252 as the HCl salt (0.1 g, 76%). MS (M+1): m/e 227.


Step 6: To a solution of compound 248 (3.1 g, 12 mmol) dissolved in dry THF (100 ml) and cooled to 0° C. was added triphenylphosphine (4.0 g, 15 mmol), DEAD (2.5 ml, 15 mmol) dropwise, and LiBr (5 g, 57 mmol). Within 2 min, all the LiBr dissolved. The resulting clear yellow solution was stirred at RT overnight. The reaction mixture was diluted with EtOAc, washed with water, dried (Na2SO4), filtered, and concentrated. Purification by silica gel chromatography gave the product 253 (2.15 g, 56%). MS (M+1): m/e 323.


Step 7: To a solution of compound 253 (2.1 g, 6.5 mmol) dissolved in DMSO (15 ml) was added NaN3 (0.46 g, 7 mmol). The resulting mixture was stirred at RT for 2 days. Water was added to the mixture and product was extracted with ether (3×40 ml). The combined organic layer was washed with brine, dried (Na2SO4), filtered, and concentrated to give the product 254.


Step 8: Using the procedure of step 3, compound 255 was synthesized. MS (M+1): m/e 259.


Step 9: To a solution of compound 255 (0.26 g, 1 mmol) dissolved in DMF (2 ml) was added Et3N (0.28 ml, 2 mmol) and 2-bromopyrimidine (0.16 g, 1 mmol). The reaction mixture was heated at 100° C. overnight then cooled to RT. The resulting mixture was diluted with DMSO (3 ml) and purification by reverse phase Gilson prep HPLC gave the product 256 (0.18 g, 54%). MS (M+1): m/e 337.


Step 10: Using the procedure of step 5, compound 257 was synthesized. MS (M+1): m/e 237.


EXAMPLE 64



embedded image


embedded image


Step 1: Compound 258 (4.14 g, 13.6 mmol), CuI (288 mg, 0.37 mmol), NaI (4.32 g, 28.8 mmol), and sym-dimethylethylenediamine (0.38 ml, 0.72 mmol) were suspended in toluene (12 ml). The reaction mixture was heated in a sealed tube at 125° C. for 48 h. The resulting mixture was cooled to RT and filtered through celite. The filtrate was concentrated, and the residue was purified by silica gel chromatography (eluant: 1:10 EtOAc:hexane) to give the product 259 (4.06 g, 85%) as a beige liquid. MS (M+1): m/e 354.


Step 2: Compound 259 (3.55 g, 10.0 mmol), pyrazole 260 (2.31 g, 15 mmol), trans-1,2-di(methylamine)cyclohexane (450 mg, 3.17 mmol), CuI (190 mg, 1.0 mmol), and K2CO3 (4.14 g, 30 mmol) were suspended in toluene (40 ml). The reaction mixture was heated in a sealed tube at 125° C. for 10 days. The resulting mixture was cooled to RT and filtered through celite. The filtrate was concentrated and the residue was purified by silica gel chromatography (eluant: 1:1 EtOAc:hexane) to give the starting compound 259 (2.1 g, 46%) and the product 261 (1.29 g, 45%) as a white solid. MS (M+1): m/e 380.


Steps 3, 4, and 5: Using procedures similar to that of step 1 from Example 2, step 3 from Example 55, and step 4 from Example 55, intermediate 262 was synthesized.


MS (M+1): m/e 495.


Step 6: Using a procedure similar to that of step 1 from Example 32, compound 263 was synthesized. MS (M+1): m/e 467.


Steps 7 and 8: Using procedures similar to that of step 2 from Example 32 and step 3 from Example 31, the following compounds were synthesized.

NumberCompoundMS264Aembedded image492264Bembedded image506


EXAMPLE 65



embedded image


Using procedures from Examples 5 and 6, compound 266 was synthesized. MS (M+1): m/e 439.


The pharmacological activity of the compounds of the invention was measured by the following assays.


PDE4 Screening Assay


1. Human PDE4 Enzyme


The neutrophils were isolated from human blood using a standard procedure, then homogenized with a glass-glass homogenizer in a buffer containing 20 mM Tris/HCl (pH 8.0), protease inhibitor cocktail tablet (Cat. No. 1836145/Boehringer Mannheim), 2 mM EDTA, 1% Triton X-100 and 0.5% deoxycholate. After stirring for 2 h at 4° C., the samples were centrifuged at 100,000 g for 1 h. The supernatants were collected, filtered and applied to Mono Q column chromatography. The fractions containing the activity of hydrolyzing cAMP were determined and pooled as the enzymatic source of the PDE4 screening assay.


2. PDE4 Assay and Compound Screening


The PDE4 assays were performed using Phosphodiesterase [3H]cAMP SPA enzyme assay kits and its procedures (Cat. No. TRKQ 7090, Amersham). The assay procedures are described briefly as follows. The diluted PDE4 enzyme, 10× assay buffer and water were mixed at a ratio of 1:1:6 (10 μl/10 μl/60 μl). 80 μl aliquots of this mixture were added into the test wells of a 96-well Microlite plate (Cat. No. 7416, ThermoLabsystems). Enzyme dilution buffer, instead of the diluted enzyme, and water were added into the wells of negative control (background). 10 μl test compounds in 10% DMSO, standard inhibitor in 10% DMSO or 10% DMSO (for positive and negative controls) were added into the corresponding wells, respectively. After a 10 min incubation at RT, the reactions were initiated by addition of 10 μl pre-diluted [3H]cAMP into each well, then incubated at 30° C. for 30 min. The reactions were stopped by addition of 50 μl SPA beads into the test wells, then counted in a β-counter over 30 min ˜24 hr.


10× Assay Buffer: 500 mM Tris/HCl pH 7.5, 83 mM MgCl2, 17 mM EGTA


[3H]cAMP: [3H] cAMP (40-60 Ci/mmol) is diluted at a 1:200 ratio with water. The final concentration is 0.005 μCi/μl


Yttrium SPA Beads: 500 mg of beads was reconstituted with 28 ml of water, stored at 4-° C.


PDE10 and 11 Screening Assay


PDE10 (human recombinant PDE10A2, expressed in Sf9 insect cells by the baculovirus expression technique) was assayed using [3H]cGMP PDE SPA Assay kit (Amersham) at a final concentration of cGMP of 0.7 μM. PDE11 (human recombinant PDE11A3, expressed in Sf9 insect cells by the baculovirus expression technique) was assayed using [3H]cAMP PDE SPA Assay kit (Amersham) at a final concentration of cAMP of 0.0125 μM. Compounds were evaluated at 0.1-10,000 nM in 2% DMSO and 0.1% BSA from a stock solution of 4 mM in 100% DMSO. All assays were performed in duplicate, and each set of experiments was performed at least twice. Analysis of dose-response data and calculation of IC50 values were performed using GraphPad Prism.


PBMC (Peripheral Blood Mononuclear Cell) Preparation and TNF Inhibition Assay


This protocol was modified from Prabhaker et al. (Int. J. Immunopharmac, Vol 16, No 10 pp 805-816, 1994. Smithkline Beecham Pharmaceuticals).


1. Human blood was collected from internal donors. The plasma was separated from red blood cells by mixing with 6% dextran (4 ml for a 15-ml blood) and a 40 min-incubation at 37° C.


2. 10 ml plasma was then layered on 9 ml Ficoll-paque (Cat. No. 17-1440-03, Amersham) in a centrifuge tube.


3. After a centrifugation at 1500 rpm for 45 min, PBMC was removed from the interface.


4. PBMC was washed twice with PBS and counted.


5. PBMC was suspended in RPMI medium containing 2.5% heat-inactivated FCS (Hyclone laboratories Inc. Logan, Utah, USA), Penicillin and streptomycin, and the cell volume was adjusted to 1×106 cell/ml.


6. 0.5 ml cells were transferred into each well of a 24 well plate.


7. After one hour incubation at 37° C., the cells were pre-treated for 1 h with 5 μl 10% DMSO (control) and 5 μl test compounds at various concentrations (100 fold stock solutions in 10% DMSO).


8. LPS was added to stimulate TNF production at a final concentration of 100 ng/ml (E. coli 055:13S, SIGMA).


9. The cells were stimulated for 14-16 h at 37° C.


10. The supernatants were removed and transferred to new tubes. TNF alpha levels were assayed by ELISA using Human TNF-α ELISA kit (Cat. No. KHC3012, Biosource) and its procedures with an optimal dilution. (1:10→1:100 dilution).


In Vivo TNFα Assay


C57BI/6 mice were injected with 25 ug of LPS (LPS O55-B5, Sigma: L2880) by the intraperitoneal route. One hour prior to injection of the LPS, mice were treated orally with the PDE4 compounds at the selected doses. Ninety min after the LPS challenge, the mice were euthanized, and blood was collected through a heparinized syringe tip into Capijet T-MGA tubes. The blood was centrifuged for 10 min in a microcentrifuge at maximum speed (−13,000 rpm), and the serum was collected and analyzed for TNFα protein using an R&D ELISA kit.


Lipopolysaccharide (LPS) In Vivo Assay


Male Sprague/Dawley rats (200-250 g) were purchased from Charles River Laboratories. Prior to use, the animals were permitted unrestricted access to food and water. Test compounds were delivered by gavage 5 hours prior to LPS-challenge. Compounds were suspended in a 0.4% methylcellulose vehicle with the same vehicle being given to control animals.


LPS-treatment: Animals were anethesized by inhalation of isoflurane, supplemented with oxygen (flow rate 1.0 ml/min). Once anesthetized, animals were placed supine and the trachea visualized using a small laryngoscope. Animals then received either 0.1 ml of saline or 0.1 ml of a 100 μg/ml lipopolysaccharide solution (LPS; E. coli) in saline by use of a Penn-Century Microspray needle (Penn-Century, Philadelphia, Pa.). Animals were allowed to recover on a heat pad, returned to housing and permitted access to food and water ad libitium. Sixteen hours after LPS-challenge, animals were anesthetized with an intra-peritoneal injection of the combination of ketamine/xylazine (10:1, 200 mg/kg ketamine, 20 mg/kg xylazine). After reaching anesthesia, animals were surgically prepared for bronchial lavage by inserting a tracheal cannula. Animals were lavaged with 2×2 ml of phosphate buffered saline, pH 7.2 (PBS). Routine recovery of BAL fluids did not significantly differ between animals with >80% of instilled volume recovered. Afterwards, animals were euthanized by surgically opening the thoracic cavity and cutting the diaphragm to assure lung collapse. Bronchial lavage (BAL) fluid was analyzed for cellular contents as described below.


BAL samples: Bronchial lavage (BAL) fluid was spun at 350×g for 10 min at 4° C. One ml of supernatant was removed and stored at −20° C. until analyzed for cytokine levels. Remaining fluid was aspirated and the cell pellet lysed for residual erythrocytes and resuspended in PBS, pH 7.2 containing 10 ug/ml of DNase I. Afterwards, the cell suspension was centrifuged at 350×g for 10 mins at 4° C., the supernatant aspirated and the cell pellet resuspended in 1 ml of PBS with 10 ug/ml DNase 1 and 5% heat inactivated fetal bovine serum. Cytospin slide preparations were made and stained with Hema3™ staining system (Fisher Scientific, Springfield N.J.). Differential cell counts were performed using standard histological parameters and at least 200 cells were enumerated. Total cell counts were performed using a Neubauer chamber.


Assay Procedure for Testing of Dermatitis in Dogs:


Five dogs are selected for each treatment group. Administration of experimental medications begins and continues through the end of the animal phase of the experiment. After three days, all dogs are sedated using medetomadine intravenously. An approximately 5 cm by 13 cm area is shaved on the lateral thorax of each dog. 1 cc of lidocaine is injected subcutaneously, and then two 8 mm punch biopsies are taken to act as Time 0 controls. Biopsy sites are closed with simple interrupted sutures of 3-0 Nylon suture.


Ten intradermal injections are given (five rows of two injections)—two injections are of phosphate buffered saline (PBS), and the remaining eight injections are of rabbit IgG antibody to dog IgE. Each injection is 0.05 ml. The total dose of anti-IgE per injection is 7 μg, as previously determined to be optimal. After injection, sites are observed and sampled. After injection and between all future samples, all dogs wear a protective garment (Quick Cover incision cover, Four Flags over Aspen) to prevent disturbance of the injection and/or biopsy sites.


The test compounds are compounds of formula I; the negative control is phosphate buffered saline (PBS); the positive control is commercially available prednisone tablets. Tablets are given orally by placement in the back of the mouth. Liquids are given by syringe to place the test article toward the back of the mouth. The dog's mouth may be held closed to ensure that all of the test article is swallowed. Plasma samples are analyzed for the concentration of test compound from the dogs treated with the active compounds. Samples from the negative control and prednisone treated dogs need not be analyzed.


Anti-IgE Site Observations: Sites of anti-IgE injection are examined and evaluated for erythema and wheal formation. At the 20 min observation time, the two PBS sites and the two 6 hr. biopsy sites are measured. At the other post-injection times, the two PBS sites and the corresponding biopsy sites are measured. If the size of the reaction is not consistent across sites in the same dog, then all sites that have not been previously biopsied will be measured. Wheals will be measured by calipers in two orthogonal dimensions as well as measured for thickness.


Collection of Skin Samples: Two 8 mm punch biopsies are taken of the sites injected with anti-IgE. One biopsy is placed in RNA isolation buffer and the other biopsy is bisected. One half goes into a standard 10% formalin solution for routine histopathological analysis and the other is deposited in Optimal Cutting Temperature Medium and quick frozen in liquid nitrogen, then maintained at −70° C. for immunohistochemical staining with Luna's stain for eosinophils, and Alcian Blue with Nuclear Fast Red counterstain for mast cells. Using manual or computerized morphometric analysis, the extent of infiltration by the following specific leukocytes is quantitated: CD 1a+c, IgE, CD3, 4+8, TCR alpha/beta and gamma/delta, TNF alpha, and TSLP. Cytokine analysis is to determine the presence of the following: TNF alpha, IL4, IL13, IL2, IFN gamma, and Thymic stromal lymphopoietin.


Allergic Brown Norway (BN) Rat Model:


Inbred male BN rats weighing 150 to 200 g were obtained from Charles River Laboratory (Wilmington, Mass.). Prior to use, the animals were allowed food and water ad libitum. The test compounds were administered 5 h prior to antigen challenge either by oral or inhalational route, as detailed in the “delivery of test compounds” section.


Sensitization and Antigen Bronchoprovocation


The animals were divided into two main groups viz. an alum group and an antigen group. In the antigen group, animals were sensitized by an intra-peritoneal (i.p.) injection of 1 ml alum-precipitated antigen containing 20 μg of ovalbumin (OVA, grade III; Sigma chemical Co., St Louis, Mo.) and 8 mg of Al(OH)3 suspended in 0.9% saline vehicle. A booster injection of this alum-OVA mixture was given again 7 days later. Animals belonging to the alum group received injections containing alum only. Seven days after the second injection, animals were exposed to aerosolized antigen bronchoprovocation which was performed by placing the rats in an enclosed plexiglass chamber (21 liters) and exposing the rats to aerosolized OVA (1%) for 30 min. The aerosolized OVA was produced by an ultrasonic nebulizer (DeVilbiss, Somerset, Pa., USA; Model Ultra-Neb 99) at a flow rate of approximately 8 liters/min. Twenty four hours after aerosolized OVA challenge, the animals were euthanized with an overdose of pentobarbital sodium. The trachea was exteriorized and intubated, and the lungs were lavaged with two aliquots of 3 ml of physiological saline. The bronchoalveolar lavage fluid (BALF) thus collected was subjected to cell enumeration. Ten microliter of the BALF was utilized to manually enumerate the total white cells using a hemocytometer. One hundred microliter of BALF was used to prepare cytocentrifuge which was stained with Hema3™ staining system (Fisher Scientific, Springfield, N.J.) to identify and enumerate differential white blood cells such as eosinophils, neutrophils, mononuclear cells and epithelial cells. A total of 200 cells were enumerated from each cytocentrifuge. The ability of the compound to inhibit recruitment of inflammatory cells into the airways is reported.


Delivery of Test Compounds:


Oral administration: the compounds were dissolved in 0.4% methylcellulose and delivered to animals orally @ 3 ml/kg. An equivalent volume of 0.4% methylcellulose was given to both negative (alum group) and positive (antigen) control groups.


Intra-tracheal administration: the appropriate dose of the compound was mixed with lactose powder to achieve a final amount of 3 mg, which was delivered intra-tracheally to anesthetized animals. Animals were held in an upright position for 3-4 min and were allowed to recover from anesthesia before returning to their cages.


Using the procedures described above in the PDE 4, PDE10 and PDE11 screening assays, compounds of formula I were found to have IC50 values for PDE4 in a range of 0.01 to 500 nM, with preferred compounds having a range of 0.01 to 100 nM, more preferably 0.01 to 10 nM, and most preferably 0.01 to 3 nM. Compounds of formula I are preferably selective PDE4 inhibitors compared to PDE10 and PDE11: preferably the IC50 values for PDE10 and PDE 11 are 100 to 300 times the values for PDE4.


Representative compounds of formula I have the following IC50 values for PDE4:

CompoundIC50No.(nM)13-1060.1426-420.0726-920.0126-177326-2410.226-2930.526-4171.426-4440.0338-31.8


For preparing pharmaceutical compositions from the compounds described by this invention, inert, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, dispersible granules, capsules, cachets and suppositories. The powders and tablets may be comprised of from about 5 to about 70 percent active ingredient. Suitable solid carriers are known in the art, e.g. magnesium carbonate, magnesium stearate, talc, sugar, lactose. Tablets, powders, cachets and capsules can be used as solid dosage forms suitable for oral administration.


For preparing suppositories, a low melting wax such as a mixture of fatty acid glycerides or cocoa butter is first melted, and the active ingredient is dispersed homogeneously therein as by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool and thereby solidify.


Liquid form preparations include solutions, suspensions and emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral injection.


Liquid form preparations may also include solutions for intranasal administration.


Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier, such as an inert compressed gas.


Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration. Such liquid forms include solutions, suspensions and emulsions.


The compounds of the invention may also be deliverable transdermally. The transdermal compositions can take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.


Preferably the compound is administered orally or via inhalation.


Preferably, the pharmaceutical preparation is in unit dosage form. In such form, the preparation is subdivided into unit doses containing appropriate quantities of the active component, e.g., an effective amount to achieve the desired purpose.


The quantity of active compound of formula I in a unit dose of preparation may be varied or adjusted from about 0.1 mg to 1000 mg, more preferably from about 1 mg to 300 mg, according to the particular application.


The actual dosage employed may be varied depending upon the requirements of the patient and the severity of the condition being treated. Determination of the proper dosage for a particular situation is within the skill of the art. Generally, treatment is initiated with smaller dosages which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day if desired.


The amount and frequency of administration of the compounds of the invention and the pharmaceutically acceptable salts thereof will be regulated according to the judgment of the attending clinician considering such factors as age, condition and size of the patient as well as severity of the symptoms being treated. A typical recommended dosage regimen for compounds of formula I is oral administration of from 10 mg to 2000 mg/day preferably 10 to 1000 mg/day, in two to four divided doses to provide relief from allergic and inflammatory diseases or the other disease or conditions listed above.


The doses and dosage regimen of the additional agents administered in the combinations of the invention will be determined by the attending clinician in view of the approved doses and dosage regimen in the literature, e.g., the package insert, taking into consideration the age, sex and condition of the patient and the severity of the disease.


While the present invention has been described in conjunction with the specific embodiments set forth above, many alternatives, modifications and variations thereof will be apparent to those of ordinary skill in the art. All such alternatives, modifications and variations are intended to fall within the spirit and scope of the present invention.

Claims
  • 1. A compound represented by the structural formula
  • 2. A compound of claim 1 wherein X is O.
  • 3. A compound of claim 2 wherein
  • 4. A compound of claim 3 wherein R10, R11 and R13 are each H; R1 is H, alkyl, cycloalkyl or —CF3; and R9 is H, alkyl or —CF3.
  • 5. A compound of claim 4 wherein R10, R11 and R13 are each H, R1 is alkyl, and R9 is —CF3
  • 6. A compound of claim 5 wherein t is 1, R5 is H, R6 is H, alkyl or hydroxyalkyl, and R3 and R4 are each H or alkyl.
  • 7. A compound of claim 6 wherein R7 is H, alkyl, cycloalkyl, hydroxyalkyl or alkoxyalkyl, and R8 is R12-cycloalkyl, (R12-cycloalkyl)alkyl, R45-hydroxyalkyl, R17-phenyl, (R17-phenyl)alkyl, R23-heteroaryl, (R23-heteroaryl)alkyl, -alkyl-N(R30)—C(O)—NR18R19, -alkyl-N(R30)—C(O)alkyl, -alkyl-N(R30)—C(O)—(R17-phenyl), -alkyl-N(R30)—C(O)—(R23-heteroaryl), -alkyl-N(R30)—(R23-heteroaryl),
  • 8. A compound of claim 7 wherein R8 is R12-cycloalkyl, R45-hydroxyalkyl, (R17-phenyl)alkyl, R23-heteroaryl, (R23-heteroaryl)alkyl, -alkyl-N(R30)—(R23-heteroaryl), -alkyl-N(R30)—C(O)alkyl,
  • 9. A compound of claim 8 wherein R12 is OH, —(CH2)n—N(R30)—C(O)-cycloalkyl or —(CH2)n—N(R30)—(R23-heteroaryl), R45 is R17-phenyl, or R29 is heteroaryl, —C(O)alkyl or —C(O)cycloalkyl.
  • 10. A compound of claim 6 wherein R7 and R8 and the nitrogen to which they are attached form
  • 11. A compound of claim 10 wherein R7 and R8 form
  • 12. A compound of claim 10 wherein R7 and R8 form
  • 13. A compound of claim 10 wherein R7 and R8 form
  • 14. A compound of claim 10 wherein R7 and R8 form
  • 15. A compound of claim 7 wherein R7 is H or alkyl and R8 is (R17-phenyl)alkyl, R45-hydroxyalkyl or -alkyl-N(R30)—(R23-heteroaryl), wherein R45 is R17-phenyl; heteroaryl is pyridinyl, pyrimidinyl, pyrazinyl, indolyl, benzothienyl or benzofuranyl; R17 is 1 to 3 substituents independently selected from the group consisting of halogen, OH, alkoxy and alkyl; and R23 is 1 or 2 substituents Independently selected from the group consisting of H, alkyl, alkoxy and halogen.
  • 16. A compound of claim 1 selected from the group consisting of
  • 17. The compound of claim 1 having the formula
  • 18. The compound of claim 1 having the formula
  • 19. The compound of claim 1 having the formula
  • 20. The compound of claim 1 having the formula
  • 21. The compound of claim 1 having the formula
  • 22. The compound of claim 1 having the formula
  • 23. The compound of claim 1 having the formula
  • 24. The compound of claim 1 having the formula
  • 25. The compound of claim 1 having the formula
  • 26. A pharmaceutical composition comprising an effective amount of a compound of claim 1 and a pharmaceutically acceptable carrier.
  • 27. A method of treating a PDE4 mediated disease comprising administering an effective amount of a compound of claim 1 to a patient In need of such treatment.
  • 28. The method of claim 27 wherein the PDE4 mediated disease is selected from the group consisting of allergic and inflammatory diseases, CNS diseases, and diabetes.
  • 29. The method of claim 28 for treating COPD, asthma, inflammatory bowel disease, dermatitis, multiple sclerosis, arthritis, Parkinson's disease, Alzheimer's disease, mild cognitive impairment, depression or anxiety.
  • 30. The method of claim 27 for treating dermatitis in dogs or recurrent airway disease In horses.
  • 31. The method of claim 27 further comprising administering to said patient the compound of formula I in combination with at least one other medicament selected from the group consisting of disease modifying antirheumatic drugs, nonsteroidal anitinflammatory drugs, COX-2 selective inhibitors, COX-1 inhibitors, Immunosuppressives, steroids, biological response modifiers and other anti-inflammatory agents or therapeutics useful for the treatment of PDE4 mediated diseases.
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application 60/572,266, filed May 18, 2004.

Provisional Applications (1)
Number Date Country
60572266 May 2004 US