SUBSTITUTED ARYLSULPHONYLGLYCINES, THE PREPARATION THEREOF AND THE USE THEREOF AS PHARMACEUTICAL COMPOSITIONS

Information

  • Patent Application
  • 20100093703
  • Publication Number
    20100093703
  • Date Filed
    February 15, 2008
    16 years ago
  • Date Published
    April 15, 2010
    14 years ago
Abstract
The present invention relates to substituted arylsulphonylglycines of general formula wherein R, R4, X, Y, Z and m are defined as in claim 1, the tautomers, enantiomers, diastereomers, mixtures thereof and salts thereof, which have valuable pharmacological properties, particularly the suppression of the interaction of glycogen phosphorylase a with the GL subunit of glycogen-associated protein phosphatase 1 (PP1), and their use as pharmaceutical compositions.
Description

The present invention relates to substituted arylsulphonylglycines of general formula I







wherein the groups R, R4, m, X, Y and Z are defined as hereinafter, including the tautomers, stereoisomers, mixtures thereof and salts thereof. This invention further relates to pharmaceutical compositions containing a compound of formula I according to the invention as well as the use of a compound according to the invention for preparing a pharmaceutical composition for the treatment of metabolic disorders, particularly type 1 or type 2 diabetes mellitus. The invention also relates to processes for preparing a pharmaceutical composition as well as a compound according to the invention.


Compounds of formula I are suitable for preventing the inhibiting effect of glycogen phosphorylase on the activity of glycogen synthase by stopping the interaction of glycogen phosphorylase a with the GL subunit of glycogen-associated protein phosphatase 1 (PP1). Compounds with these properties stimulate glycogen synthesis and are proposed for the treatment of metabolic disorders, particularly diabetes (P. Cohen, Nature Reviews Molecular Cell Biology 2006, 7, 867-874).


AIM OF THE INVENTION

The aim of the present invention is to provide new arylsulphonylglycines that suppress the interaction of glycogen phosphorylase a with the GL subunit of glycogen-associated protein phosphatase 1 (PP1).


A further aim of the present invention is to provide new pharmaceutical compositions that are suitable for the prevention and/or treatment of metabolic disorders, particularly diabetes.


Another aim of this invention is to provide a process for preparing the compounds according to the invention.


Other aims of the present invention will become directly apparent to the skilled man from the foregoing remarks and those that follow.


OBJECT OF THE INVENTION

In a first aspect the present invention relates to new substituted arylsulphonylglycines of general formula







wherein

  • R denotes a group of formula







wherein

    • R1 denotes H, C1-6-alkyl or a group of formula











      • wherein the C1-6-alkyl group mentioned hereinbefore for R1 may be substituted by C1-6-alkyl-carbonyloxy, C1-6-alkoxy-carbonyloxy, C1-6-alkoxy, hydroxy, amino, C1-3-alkyl-amino, di-(C1-3-alkyl)-amino, pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, piperazin-1-yl, 4-(C1-3-alkyl)-piperazin-1-yl, aminocarbonyl, C1-3-alkyl-aminocarbonyl, di-(C1-3-alkyl)-aminocarbonyl, pyrrolidin-1-yl-carbonyl, piperidin-1-yl-carbonyl, morpholin-4-yl-carbonyl, piperazin-1-yl-carbonyl, 4-(C1-3-alkyl)-piperazin-1-yl-carbonyl, tetrahydrofuran-3-yl-oxy, C1-3-alkylamino-C1-3-alkyloxy, di-(C1-3-alkyl)-amino-C1-3-alkyloxy, pyrrolidin-1-yl-C1-3-alkyloxy, piperidin-1-yl-C1-3-alkyloxy, morpholin-4-yl-C1-3-alkyloxy, piperazin-1-yl-C1-3-alkyloxy or 4-(C1-3-alkyl)-piperazin-1-yl-C1-3-alkyloxy,

      • R2 and R3 independently of one another denote H, halogen, C1-3-alkyl, C1-3-perfluoralkyl, C1-3-perfluoralkoxy, C1-3-alkoxy, cyano, nitro or hydroxy,

      • and

      • A denotes CH or N,





  • m denotes 0, 1 or 2,

  • R4 denotes halogen, C1-3-alkyl, C1-3-perfluoroalkyl, C1-3-perfluoroalkoxy, cyano, hydroxy or C1-3-alkoxy, while, if m denotes the number 2, the groups R4 may be identical or different,


    and the heterocyclic group








which may be substituted by R4 as described hereinbefore denotes a group of formula









    • wherein the above-mentioned heterocycles of formulae (Ia), (Ic), (Id), (Ie), (Ig) and (Ij) may each optionally be substituted at the carbon atoms of the 5-ring by one or two groups selected from among halogen, C1-3-alkyl, cyano, C1-3-perfluoroalkyl, C3-6-cycloalkyl, C2-4-alkynyl, C2-4-alkenyl, C1-3-alkyl-carbonyl, C1-3-perfluoroalkyl-carbonyl, carboxyl, aminomethyl, C1-3-alkyl-aminomethyl, di-(C1-3-alkyl)-aminomethyl, aminocarbonyl, C1-3-alkyl-aminocarbonyl or di-(C1-3-alkyl)-aminocarbonyl, wherein the groups may be identical or different and each carbon atom may carry only one group, and

    • R5 denotes a 1H-pyrimidin-2,4-dionyl, 2H-pyridazin-3-onyl or 1H-pyridin-2-onyl group optionally mono- or disubstituted by one or two methyl groups or

    • a mono- or bicyclic 5- to 14-membered ring system which may contain 0 to 4 heteroatoms selected from among N, O or S, wherein not more than one oxygen atom and/or one sulphur atom may be present, is aromatic, saturated or partially unsaturated and may be mono-, di- or trisubstituted independently of one another by a group selected from among
      • halogen, cyano, nitro,
      • C1-6-alkyl, C3-6-cycloalkyl, C1-3-perfluoroalkyl, C2-6-alkynyl, C2-6-alkenyl,
      • hydroxy, C1-6-alkoxy, C3-6-cycloalkoxy, C1-3-perfluoroalkoxy,
      • carboxyl, C1-3-alkyl-carbonyl, C1-4-alkoxy-carbonyl, C3-6-cycloalkoxy-carbonyl, aminocarbonyl, C1-6-alkyl-aminocarbonyl, di-(C1-6-alkyl)-aminocarbonyl, N—(C1-6-alkyl)-N—(C1-6-alkoxy)-amino-carbonyl, C3-6-cycloalkyl-aminocarbonyl, N—(C3-6-cycloalkyl)-N—(C1-6-alkyl)-aminocarbonyl, pyrrolidin-1-yl-carbonyl, piperidin-1-yl-carbonyl, morpholin-4-yl-carbonyl, piperazin-1-yl-carbonyl, 4-(C1-3-alkyl)-piperazin-1-yl-carbonyl, 4-(C1-3-alkyl-carbonyl)-piperazin-1-yl-carbonyl, 4-(C3-6-cycloalkyl-carbonyl)-piperazin-1-yl-carbonyl, 4-(C1-3-alkylsulphonyl)-piperazin-1-yl-carbonyl, 4-(C3-6-cycloalkylsulphonyl)-piperazin-1-yl-carbonyl,
      • C1-3-alkylsulphanyl, C3-6-cycloalkylsulphanyl, C1-3-alkylsulphinyl, C3-6-cycloalkylsulphinyl, C1-3-alkylsulphonyl, C3-6-cycloalkylsulphonyl,
      • amino, C1-6-alkyl-amino, di-(C1-6-alkyl)-amino, C3-6-cycloalkyl-amino, N—(C3-6-cycloalkyl)-N—(C1-6-alkyl)-amino, (C1-4-alkyl-carbonyl)-amino, (C3-6-cycloalkyl-carbonyl)-amino, (C1-4-alkyl-carbonyl)-(C1-3-alkyl)-amino, (C3-6-cycloalkyl-carbonyl)-(C1-3-alkyl)-amino,
      • pyrrolidin-1-yl, piperidin-1-yl, 3-amino-piperidin-1-yl, 4-amino-piperidin-1-yl, morpholin-4-yl, thiomorpholin-4-yl, 1-oxo-1λ4-thiomorpholin-4-yl, 1,1-dioxo-1λ6-thiomorpholin-4-yl, piperazin-1-yl, homopiperazin-1-yl, 4-(C1-3-alkyl)-piperazin-1-yl, 4-(C1-3-alkyl-carbonyl)-piperazin-1-yl, 4-(C3-6-cycloalkyl-carbonyl)-piperazin-1-yl, 4-(C1-3-alkylsulphonyl)-piperazin-1-yl, 4-(C3-6-cycloalkyl-sulphonyl)-piperazin-1-yl,
      • tetrahydrofuran-3-yl-oxy, tetrahydrofuran-3-yl-amino, tetrahydropyran-4-yl-oxy, tetrahydropyran-4-yl-amino, N-tetrahydropyran-4-yl-N-methyl-amino, 2-oxo-imidazolidin-1-yl, 2-oxo-tetrahydropyrimidin-1-yl and heteroaryl,
        • wherein the C1-6-alkyl, C3-6-cycloalkyl, C2-6-alkynyl, C2-6-alkenyl, C1-3-alkylsulphanyl, C3-6-cycloalkylsulphanyl, C1-3-alkylsulphinyl, C3-6-cycloalkylsulphinyl, C1-3-alkylsulphonyl, C3-6-cycloalkylsulphonyl, C1-6-alkoxy, C3-6-cycloalkoxy, C1-6-alkyl-amino, di-(C1-6-alkyl)-amino, C3-6-cycloalkyl-amino-N—(C3-6-cycloalkyl)-N—(C1-6-alkyl)-amino, (C1-4-alkyl-carbonyl)-amino, (C3-6-cycloalkyl-carbonyl)-amino, (C1-4-alkyl-carbonyl)-(C1-3-alkyl)-amino- and (C3-6-cycloalkyl-carbonyl)-(C1-3-alkyl)-amino groups mentioned above in the definition of R5 may each be mono- or disubstituted independently of one another in the carbon skeleton by a group selected from among
        • cyano, hydroxy, C1-3-alkoxy, tetrahydro-pyran-2-yloxy,
        • amino, C1-6-alkyl-amino, di-(C1-6-alkyl)-amino, C3-6-cycloalkyl-amino, N—(C3-6-cycloalkyl)-N—(C1-6-alkyl)-amino, (C1-4-alkyl-carbonyl)-amino, (C3-6-cycloalkyl-carbonyl)-amino, (C1-4-alkyl-carbonyl)-(C1-3-alkyl)-amino, (C3-6-cycloalkyl-carbonyl)-(C1-3-alkyl)-amino, (C1-4-alkylsulphonyl)-amino, (C3-6-cycloalkylsulphonyl)-amino, (C1-4-alkylsulphonyl)-(C1-3-alkyl)-amino, (C3-6-cycloalkylsulphonyl)-(C1-3-alkyl)-amino, pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, piperazin-1-yl, 4-(C1-3-alkyl)-piperazin-1-yl,
        • carboxyl, aminocarbonyl, C1-6-alkyl-aminocarbonyl, di-(C1-6-alkyl)-aminocarbonyl, C1-2-alkoxy-carbonyl, C3-6-cycloalkyl-aminocarbonyl, N—(C3-6-cycloalkyl)-N—(C1-6-alkyl)-amino-carbonyl, pyrrolidin-1-yl-carbonyl, piperidin-1-yl-carbonyl, morpholin-4-yl-carbonyl, piperazin-1-yl-carbonyl, 4-(C1-3-alkyl)-piperazin-1-yl-carbonyl,
        • C1-3-alkylsulphanyl, C3-6-cycloalkylsulphanyl, C1-3-alkylsulphinyl, C3-6-cycloalkylsulphinyl, C1-3-alkylsulphonyl, and C3-6-cycloalkylsulphonyl, wherein the substituents must not be bound to a common carbon atom, and
      • wherein the pyrrolidin-1-yl and piperidin-1-yl groups mentioned above in the definition of R5 may be substituted by amino or hydroxy, and
      • wherein the C1-6-alkyl-aminocarbonyl, di-(C1-6-alkyl)-aminocarbonyl, C3-6-cycloalkyl-aminocarbonyl, N—(C3-6-cycloalkyl)-N—(C1-6-alkyl)-aminocarbonyl groups mentioned hereinbefore for R5 may each be mono- or disubstituted independently of one another in the carbon skeleton by a group selected from among
        • cyano, hydroxy, C1-3-alkoxy,
        • amino, C1-3-alkyl-amino, di-(C1-3-alkyl)-amino, C3-6-cycloalkyl-amino, N—(C3-6-cycloalkyl)-N—(C1-6-alkyl)-amino, (C1-4-alkyl-carbonyl)-amino, (C3-6-cycloalkyl-carbonyl)-amino, (C1-4-alkyl-carbonyl)-(C1-3-alkyl)-amino, (C3-6-cycloalkyl-carbonyl)-(C1-3-alkyl)-amino, (C1-4-alkylsulphonyl)-amino, (C3-6-cycloalkylsulphonyl)-amino, (C1-4-alkylsulphonyl)-(C1-3-alkyl)-amino, (C3-6-cycloalkylsulphonyl)-(C1-3-alkyl)-amino
        • pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, piperazin-1-yl, 4-(C1-3-alkyl)-piperazin-1-yl,
        • C1-3-alkylsulphanyl, C3-6-cycloalkylsulphanyl, C1-3-alkylsulphinyl, C3-6-cycloalkylsulphinyl, C1-3-alkylsulphonyl and C3-6-cycloalkylsulphonyl, wherein the substituents must not be bound to a common carbon atom, and

    • wherein the heteroaryl group mentioned hereinbefore for R5 denotes a monocyclic five-membered aromatic system with 1 to 4 heteroatoms selected from among N, O or S, wherein not more than one oxygen atom and/or one sulphur atom may be present, or a six-membered aromatic system with 1 to 3 nitrogen atoms, and may be mono- or disubstituted independently of one another by halogen, cyano, hydroxy, amino, C1-3-alkyl or C1-3-alkyloxycarbonyl, and

    • wherein in the above-mentioned morpholin-4-yl and piperazin-1-yl groups in each case a methylene unit may be replaced by a carbonyl or sulphonyl group.





The invention also relates to the tautomers, stereoisomers, mixtures and salts, particularly the physiologically acceptable salts, of the compounds according to the invention.


The compounds of general formula I according to the invention and the physiologically acceptable salts thereof have valuable pharmacological properties, in particular they suppress the interaction of glycogen phosphorylase a with the GL-subunit of glycogen-associated protein phosphatase 1 (PP1).


Therefore this invention also relates to the use of the compounds according to the invention, including the physiologically acceptable salts, as pharmaceutical compositions.


This invention further relates to pharmaceutical compositions containing at least one compound according to the invention or a physiologically acceptable salt according to the invention, optionally together with one or more inert carriers and/or diluents.


A further object of this invention is the use of at least one compound according to the invention or a physiologically acceptable salt of such a compound for preparing a pharmaceutical composition that is suitable for the treatment or prevention of diseases or conditions that can be influenced by suppressing the interaction of glycogen phosphorylase a with the GL-subunit of glycogen-associated protein phosphatase 1 (PP1).


The invention also relates to the use of at least one compound according to the invention for preparing a pharmaceutical composition which is suitable for the treatment of metabolic disorders, for example type I or II diabetes mellitus.


The invention also relates to the use of at least one compound according to the invention for preparing a pharmaceutical composition for suppressing the interaction of glycogen phosphorylase a with the GL-subunit of glycogen-associated protein phosphatase 1 (PP1).


A further object of this invention is a process for preparing a pharmaceutical composition according to the invention, characterised in that a compound according to the invention is incorporated in one or more inert carriers and/or diluents by a non-chemical method.


The present invention also relates to a process for preparing the compounds of general formula I according to the invention.







DETAILED DESCRIPTION OF THE INVENTION

Unless stated otherwise, the groups, radicals and substituents, particularly R, R1 to R5, m, X, Y, Z and A have the meanings given hereinbefore and hereinafter.


If groups, substituents or radicals occur more than once in a compound, they may have the same or different meanings.


Preferred compounds of the above general formula I are those wherein

  • R denotes a group of the above-mentioned formula wherein
    • R1 denotes H, C1-6-alkyl or a group of formula











      • wherein the C1-6-alkyl group mentioned hereinbefore for R1 may be substituted by C1-6-alkyl-carbonyloxy, C1-6-alkoxy-carbonyloxy, C1-6-alkoxy, hydroxy, amino, C1-3-alkyl-amino, di-(C1-3-alkyl)-amino, pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, piperazin-1-yl, 4-(C1-3-alkyl)-piperazin-1-yl, aminocarbonyl, C1-3-alkyl-aminocarbonyl, di-(C1-3-alkyl)-aminocarbonyl, pyrrolidin-1-yl-carbonyl, piperidin-1-yl-carbonyl, morpholin-4-yl-carbonyl, piperazin-1-yl-carbonyl or 4-(C1-3-alkyl)-piperazin-1-yl-carbonyl,



    • R2 and R3 independently of one another denote halogen, C1-3-alkyl, C1-3-perfluoroalkyl, C1-2-alkoxy or cyano and

    • A denotes CH or N,



  • m denotes 0, 1 or 2,

  • R4 denotes halogen, C1-3-alkyl, trifluoromethyl or cyano, while, if m denotes the number 2, the groups R4 may be identical or different,


    and the heterocyclic group








which may be substituted by R4 as described hereinbefore, denotes a group of formula









    • wherein the above-mentioned heterocycles of formulae (Ia), (Ic), (Id), (Ie), (Ig) and (Ij) may optionally be substituted at the carbon atoms of the 5 ring by one or two groups selected from among halogen, C1-3-alkyl, cyano, C1-3-perfluoroalkyl, C3-6-cycloalkyl, C1-3-alkyl-carbonyl, C1-3-perfluoroalkyl-carbonyl, aminocarbonyl, C1-3-alkyl-aminocarbonyl or di-(C1-3-alkyl)-aminocarbonyl, wherein the groups may be identical or different and each carbon atom carries at most one group, and

    • wherein R5 denotes 1,3-dimethyl-1H-pyrimidin-2,4-dion-5-yl, 1H-pyrimidin-2,4-dion-6-yl, 1H-pyrimidin-2,4-dion-5-yl, 2H-pyridazin-3-on-6-yl, 1H-pyridin-2-on-3-yl, 1H-pyridin-2-on-5-yl, 1H-pyridin-2-on-4-yl or

    • a mono- or bicyclic 5- to 14-membered ring system which may contain 0 to 4 heteroatoms selected from among N, O or S, wherein not more than one oxygen atom and/or one sulphur atom may be present, is aromatic, saturated or partially unsaturated and may be mono-, di- or trisubstituted independently of one another by a group selected from among
      • halogen, cyano,
      • C1-6-alkyl, C3-6-CyCloalkyl, C1-3-perfluoroalkyl, C2-6-alkynyl, C2-6-alkenyl,
      • hydroxy, C1-6-alkoxy, C3-6-cycloalkoxy, trifluoromethoxy,
      • carboxyl, C1-3-alkyl-carbonyl, C1-4-alkoxy-carbonyl, cyclopropoxy-carbonyl, aminocarbonyl, C1-6-alkyl-aminocarbonyl, di-(C1-6-alkyl)-aminocarbonyl, N—(C1-3-alkyl)-N—(C1-3-alkoxy)-aminocarbonyl, C3-6-cycloalkyl-aminocarbonyl, N—(C3-6-cycloalkyl)-N—(C1-3-alkyl)-aminocarbonyl, pyrrolidin-1-yl-carbonyl, piperidin-1-yl-carbonyl, morpholin-4-yl-carbonyl, piperazin-1-yl-carbonyl, 4-(C1-3-alkyl)-piperazin-1-yl-carbonyl, 4-(C1-3-alkyl-carbonyl)-piperazin-1-yl-carbonyl, 4-(C3-6-cycloalkyl-carbonyl)-piperazin-1-yl-carbonyl, 4-(C1-3-alkylsulphonyl)-piperazin-1-yl-carbonyl, 4-(C3-6-cycloalkyl-sulphonyl)-piperazin-1-yl-carbonyl,
      • C1-3-alkylsulphanyl, C3-6-cycloalkylsulphanyl, C1-3-alkylsulphinyl, C3-6-cycloalkylsulphinyl, C1-3-alkylsulphonyl, C3-6-cycloalkylsulphonyl,
      • amino, C1-6-alkyl-amino, di-(C1-6-alkyl)-amino, C3-6-cycloalkyl-amino, N—(C3-6-cycloalkyl)-N—(C1-3-alkyl)-amino, (C1-4-alkyl-carbonyl)-amino, (C3-6-cycloalkyl-carbonyl)-amino, (C1-4-alkyl-carbonyl)-(C1-3-alkyl)-amino, (C3-6-cycloalkyl-carbonyl)-(C1-3-alkyl)-amino, pyrrolidin-1-yl, piperidin-1-yl, 3-amino-piperidin-1-yl, 4-amino-piperidin-1-yl, morpholin-4-yl, thiomorpholin-4-yl, 1-oxo-1λ4-thiomorpholin-4-yl, 1,1-dioxo-1λ6-thiomorpholin-4-yl, piperazin-1-yl, homopiperazin-1-yl, 4-(C1-3-alkyl)-piperazin-1-yl, 4-(C1-3-alkyl-carbonyl)-piperazin-1-yl, 4-(C3-6-cycloalkyl-carbonyl)-piperazin-1-yl, 4-(C1-3-alkylsulphonyl)-piperazin-1-yl, 4-(C3-6-cycloalkylsulphonyl)-piperazin-1-yl,
      • tetrahydrofuran-3-yl-oxy, tetrahydrofuran-3-yl-amino, tetrahydropyran-4-yl-oxy, tetrahydropyran-4-yl-amino, N-tetrahydropyran-4-yl-N-methyl-amino, 2-oxo-imidazolidinyl, 2-oxo-tetrahydropyrimidinyl and heteroaryl,
      • wherein the C1-6-alkyl, C3-6-cycloalkyl, C2-6-alkynyl, C2-6-alkenyl, C1-3-alkylsulphanyl, C3-6-cycloalkylsulphanyl, C1-3-alkylsulphinyl, C3-6-cycloalkylsulphinyl, C1-3-alkylsulphonyl, C3-6-cycloalkylsulphonyl, C1-6-alkoxy, C3-6-cycloalkoxy, C1-6-alkyl-amino, di-(C1-6-alkyl)-amino, C3-6-cycloalkyl-amino, N—(C3-6-cycloalkyl)-N—(C1-3-alkyl)-amino, (C1-4-alkyl-carbonyl)-amino, (C3-6-cycloalkyl-carbonyl)-amino, (C1-4-alkyl-carbonyl)-(C1-3-alkyl)-amino- and (C3-6-cycloalkyl-carbonyl)-(C1-3-alkyl)-amino groups mentioned above in the definition of R5 may each be mono- or disubstituted independently of one another in the carbon skeleton by a group selected from among
        • cyano, hydroxy, C1-3-alkoxy, tetrahydro-pyran-2-yloxy, amino, C1-6-alkyl-amino, di-(C1-6-alkyl)-amino, C3-6-cycloalkyl-amino, N—(C3-6-cycloalkyl)-N—(C1-3-alkyl)-amino, (C1-4-alkyl-carbonyl)-amino, (C3-6-cycloalkyl-carbonyl)-amino, (C1-4-alkyl-carbonyl)-(C1-3-alkyl)-amino, (C3-6-cycloalkyl-carbonyl)-(C1-3-alkyl)-amino, (C1-4-alkylsulphonyl)-amino, (C3-6-cycloalkylsulphonyl)-amino, (C1-4-alkylsulphonyl)-(C1-3-alkyl)-amino, (C3-6-cycloalkylsulphonyl)-(C1-3-alkyl)-amino
        • pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, piperazin-1-yl, 4-(C1-3-alkyl)-piperazin-1-yl,
        • carboxyl, C1-2-alkoxy-carbonyl, aminocarbonyl, C1-6-alkyl-aminocarbonyl, di-(C1-6-alkyl)-aminocarbonyl, C3-6-cycloalkyl-aminocarbonyl, N—(C3-6-cycloalkyl)-N—(C1-3-alkyl)-amino-carbonyl, pyrrolidin-1-yl-carbonyl, piperidin-1-yl-carbonyl, morpholin-4-yl-carbonyl, piperazin-1-yl-carbonyl, 4-(C1-3-alkyl)-piperazin-1-yl-carbonyl,
        • C1-3-alkylsulphanyl, C3-6-cycloalkylsulphanyl, C1-3-alkylsulphinyl, C3-6-cycloalkylsulphinyl, C1-3-alkylsulphonyl and C3-6-cycloalkylsulphonyl, wherein the substituents must not be bound to a common carbon atom, and
      • wherein the pyrrolidin-1-yl and piperidin-1-yl groups mentioned above in the definition of R5 may be substituted by amino or hydroxy, and
      • wherein the C1-6-alkyl-aminocarbonyl, di-(C1-6-alkyl)-aminocarbonyl, C3-6-cycloalkyl-aminocarbonyl, N—(C3-6-cycloalkyl)-N—(C1-3-alkyl)-aminocarbonyl groups mentioned above in the definition of R5 may each be mono- or disubstituted independently of one another in the carbon skeleton by a group selected from among
        • amino, hydroxy, C1-3-alkoxy, C1-3-alkyl-amino, di-(C1-3-alkyl)-amino, C3-6-cycloalkyl-amino, N—(C3-6-cycloalkyl)-N-(methyl)-amino, (C1-4-alkyl-carbonyl)-amino, (C3-6-cycloalkyl-carbonyl)-amino, (C1-4-alkyl-carbonyl)-(methyl)-amino, (C3-6-cycloalkyl-carbonyl)-(methyl)-amino, (C1-4-alkylsulphonyl)-amino, (C3-6-cycloalkylsulphonyl)-amino, (C1-4-alkylsulphonyl)-(methyl)-amino or (C3-6-cycloalkylsulphonyl)-(methyl)-amino,
        • pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, piperazin-1-yl, 4-(C1-3-alkyl)-piperazin-1-yl,
        • C1-3-alkylsulphanyl, C3-6-cycloalkylsulphanyl, C1-3-alkylsulphinyl, C3-6-cycloalkylsulphinyl, C1-3-alkylsulphonyl and C3-6-cycloalkylsulphonyl, wherein the substituents must not be bound to a common carbon atom, and
      • wherein the heteroaryl group mentioned hereinbefore for R5 denotes a monocyclic five-membered aromatic system with 1 to 3 heteroatoms selected from among N, O or S, wherein not more than one oxygen atom and/or one sulphur atom may be present, or denotes a monocyclic five-membered aromatic system with 4 nitrogen atoms or a six-membered aromatic system with 1 to 3 nitrogen atoms and may be mono- or disubstituted independently of one another by fluorine, chlorine, cyano, C1-3-alkyl or C1-3-alkyloxy-carbonyl, and

    • wherein in the above-mentioned morpholin-4-yl and piperazin-1-yl groups in each case a methylene unit may be replaced by a carbonyl or sulphonyl group.





Particularly preferred are those compounds of the above general formula I, wherein

  • R denotes a group of the above-mentioned formula wherein
    • R1 denotes H, C1-4-alkyl or a group of formula











      • wherein the C1-4-alkyl group mentioned hereinbefore for R1 may be substituted by C1-4-alkoxy, hydroxy, di-(C1-3-alkyl)-amino, pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, piperazin-1-yl or 4-(methyl)-piperazin-1-yl,



    • R2 and R3 independently of one another denote chlorine, bromine or C1-2-alkyl and
      • A denotes CH or N,



  • m denotes 0 or 1,

  • R4 denotes fluorine, chlorine, methyl or ethyl,


    and the heterocyclic group








which may be substituted by R4 as described hereinbefore, denotes a group of formula









    • while the heterocycles mentioned hereinbefore may optionally be substituted at the carbon atoms of the 5-ring by one or two groups selected from among chlorine, bromine, iodine, C1-3-alkyl, cyano and trifluoromethyl, wherein the groups may be identical or different and each carbon atom carries at most one group, and

    • wherein R5 denotes 1,3-dimethyl-1H-pyrimidin-2,4-dion-5-yl, 1H-pyrimidin-2,4-dion-6-yl, 1H-pyrimidin-2,4-dion-5-yl, 2H-pyridazin-3-on-6-yl, 1H-pyridin-2-on-3-yl, 1H-pyridin-2-on-5-yl or 1H-pyridin-2-on-4-yl,

    • phenyl, pyridazin-3-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl, 1.3,5-triazin-2-yl, pyridin-2-yl, pyridin-4-yl, imidazol-2-yl, imidazol-4-yl, pyrazol-3-yl, pyrazol-4-yl, thiazol-2-yl, [1.3.4]thiadiazol-2-yl, thiophen-2-yl, thiophen-3-yl, naphthalin-1-yl, naphthalin-2-yl, purin-6-yl, purin-2-yl, 1-imidazo[1,2-a]pyrazin-6-yl, quinolin-6-yl, quinolin-8-yl, quinolin-2-yl or isoquinolin-1-yl, which may each be mono- or disubstituted independently of one another by a group selected from among
      • fluorine, chlorine, C1-4-alkyl, cyclopropyl, trifluoromethyl, cyano, hydroxy, C1-3-alkoxy, cyclopropoxy,
      • carboxyl, C1-2-alkyl-carbonyl, C1-2-alkoxy-carbonyl, aminocarbonyl, C1-4-alkyl-aminocarbonyl, di-(C1-2-alkyl)-aminocarbonyl, N-methoxy-N-methyl-aminocarbonyl, cyclopropyl-aminocarbonyl, N-(cyclopropyl)-N-(methyl)-aminocarbonyl, pyrrolidin-1-yl-carbonyl, piperidin-1-yl-carbonyl, morpholin-4-yl-carbonyl, piperazin-1-yl-carbonyl, 4-(methyl)-piperazin-1-yl-carbonyl, 4-(C1-3-alkyl-carbonyl)-piperazin-1-yl-carbonyl, 4-(C3-6-cycloalkyl-carbonyl)-piperazin-1-yl-carbonyl, 4-(C1-3-alkylsulphonyl)-piperazin-1-yl-carbonyl, 4-(C3-6-cycloalkylsulphonyl)-piperazin-1-yl-carbonyl,
      • C1-2-alkylsulphanyl, cyclopropylsulphanyl, C1-2-alkylsulphinyl, cyclopropylsulphinyl, C1-2-alkylsulphonyl, cyclopropylsulphonyl,
      • amino, C1-4-alkyl-amino, di-(C1-3-alkyl)-amino, cyclopropyl-amino, N-(cyclopropyl)-N-(methyl)-amino, C1-3-alkyl-carbonyl-amino,
      • pyrrolidin-1-yl, piperidin-1-yl, 3-amino-piperidin-1-yl, 4-amino-piperidin-1-yl, morpholin-4-yl, thiomorpholin-4-yl, 1-oxo-1λ4-thiomorpholin-4-yl, 1,1-dioxo-1λ6-thiomorpholin-4-yl, piperazin-1-yl, homopiperazin-1-yl, 4-(methyl)-piperazin-1-yl, 4-(C1-2-alkyl-carbonyl)-piperazin-1-yl, 4-(C1-2-alkylsulphonyl)-piperazin-1-yl,
      • tetrahydrofuran-3-yl-oxy, tetrahydrofuran-3-yl-amino, tetrahydropyran-4-yl-oxy, tetrahydropyran-4-yl-amino, N-tetrahydropyran-4-yl-N-methyl-amino, 2-oxo-imidazolidinyl, 2-oxotetrahydropyrimidinyl, imidazol-2-yl, 1-methyl-imidazol-2-yl, thiazol-2-yl, 4-ethoxycarbonyl-thiazol-2-yl, 3-ethoxycarbonyl-isoxazol-5-yl, oxazol-2-yl, 2,4-dihydroxy-pyrimidin-5-yl.1.2,4-triazol-3-yl and tetrazol-5-yl, or
      • wherein the C1-4-alkyl, C1-3-alkoxy, C1-4-alkyl-amino, di-(C1-3-alkyl)-amino- and C1-3-alkyl-carbonyl-amino groups mentioned hereinbefore for R5 may each be mono- or disubstituted independently of one another in the carbon skeleton by a group selected from among
        • cyano, hydroxy, C1-2-alkoxy, tetrahydro-pyran-2-yloxy,
        • amino, C1-3-alkyl-amino, di-(C1-3-alkyl)-amino, (C1-3-alkyl-carbonyl)-amino, (C1-3-alkylsulphonyl)-amino,
        • pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, piperazin-1-yl, 4-(methyl)-piperazin-1-yl,
        • carboxyl, C1-2-alkoxy-carbonyl, aminocarbonyl, C1-3-alkyl-aminocarbonyl, di-(C1-3-alkyl)-aminocarbonyl and C3-6-cycloalkyl-aminocarbonyl, wherein the substituents must not be bound to a common carbon atom, and
      • wherein the mentioned hereinbefore for R5 erwähnten C1-4-alkyl-aminocarbonyl- and di-(C1-2-alkyl)-aminocarbonyl groups in the carbon skeleton may each be mono- or disubstituted independently of one another by amino, hydroxy, C1-3-alkoxy, C1-3-alkyl-amino or di-(C1-3-alkyl)-amino, wherein the substituents must not be bound to a common carbon atom, and

    • wherein in the above-mentioned morpholin-4-yl and piperazin-1-yl groups in each case a methylene unit may be replaced by a carbonyl group, but particularly those compounds of the above general formula I wherein



  • R denotes a group of the above-mentioned formula wherein
    • R1 denotes H or a C1-3-alkyl group optionally substituted by a di-(C1-3-alkyl)-amino group,
    • R2 and R3 independently of one another denote chlorine, bromine or methyl and
    • A denotes CH or N,

  • m denotes 0 or 1,

  • R4 denotes chlorine, methyl or ethyl,


    and the heterocyclic group








which may be substituted by R4 as described hereinbefore may be substituted, denotes a group of formula









    • while the heterocycles mentioned hereinbefore may optionally be substituted at the carbon atoms of the 5 ring by one or two groups selected from among chlorine, bromine, iodine, C1-2-alkyl, cyano and trifluoromethyl, wherein the groups may be identical or different and each carbon atom carries at most one group, and

    • R5 is as hereinbefore defined.





Most particularly preferred are those compounds of the above general formula I, wherein

  • R denotes a group of the above-mentioned formula wherein
    • R1 denotes H, methyl, ethyl or 2-dimethylamino-ethyl,
    • R2 and R3 independently of one another denote chlorine, bromine or methyl and
    • A denotes CH or N,
  • m denotes 0 or 1,
  • R4 denotes chlorine, methyl or ethyl,


    and the heterocyclic group







which may be substituted by R4 as described hereinbefore denotes a group of formula









    • while the heterocycles mentioned hereinbefore may optionally be substituted at the carbon atoms of the 5 ring by one or two methyl or ethyl groups, wherein the groups may be identical or different and each carbon atom carries at most one group, and

    • wherein R5 denotes 1,3-dimethyl-1H-pyrimidin-2,4-dion-5-yl, 1H-pyrimidin-2,4-dion-6-yl, 1H-pyrimidin-2,4-dion-5-yl, 2H-pyridazin-3-on-6-yl, 1H-pyridin-2-on-3-yl, 1H-pyridin-2-on-5-yl, 1H-pyridin-2-on-4-yl or phenyl, pyridazin-3-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl, pyridin-2-yl, pyridin-4-yl, imidazol-2-yl, imidazol-4-yl, pyrazol-3-yl, pyrazol-4-yl, 1.3,5-triazin-2-yl, thiazol-2-yl, [1.3.4]thiadiazol-2-yl, thiophen-2-yl, thiophen-3-yl, purin-6-yl, purin-2-yl or 1-imidazo[1,2-a]pyrazin-6-yl, which may be mono- or disubstituted independently of one another by a group selected from among
      • chlorine, cyano, methyl, aminomethyl, morpholin-4-ylmethyl, hydroxymethyl, 3-hydroxypropyl, trifluoromethyl,
      • hydroxy, methoxy, 2-hydroxyethoxy, 2-aminoethoxy, 2-dimethylaminoethoxy, 2-methylsulphonylamino-ethoxy, 2-acetylamino-ethoxy, 2,3-dihydroxy-propoxy, carboxyl, acetyl, ethylcarbonyl, aminocarbonyl, methyl-aminocarbonyl, dimethyl-aminocarbonyl, N-methoxy-N-methyl-aminocarbonyl, 2-dimethylamino-ethyl-aminocarbonyl, 2-hydroxy-ethyl-aminocarbonyl, 2-methoxy-ethyl-aminocarbonyl, cyclopropyl-aminocarbonyl,
      • morpholin-4-yl-carbonyl, piperazin-1-yl-carbonyl, methoxy-carbonyl,
      • methylsulphanyl, methylsulphinyl, ethylsulphinyl, methylsulphonyl,
      • amino, methyl-amino, acetylamino, 2-aminoethyl-amino, 2-dimethylaminoethyl-amino, 2-hydroxyethyl-amino, 2-(methylamino)-ethyl-amino, N-carboxymethyl-N-(2-dimethylamino-ethyl)-amino, 2-(acetylamino)ethyl-amino, 2-(methylsulphonylamino)-ethyl-amino, 2-(pyrrolidin-1-yl)-ethyl-amino, 2-(piperidin-1-yl)-ethyl-amino, 2-(tetrahydro-pyran-2-yloxy)-ethylamino, 3-aminopropyl-amino, 3-(methylamino)-propyl-amino, 2-amino-2-methyl-propyl-amino, 1,3-dihydroxy-2-propyl-amino, 3-acetylaminopropyl-amino, 3-(methylsulphonylamino)-propyl-amino, dimethyl-amino, N-methyl-N-2-aminoethyl-amino, N,N-bis-2-(hydroxyethyl)-amino, N-methyl-N-(3-aminopropyl)-amino, N-methyl-N-[3-(acetylamino)-propyl]-amino, N-methyl-N-[3-(methylsulphonylamino)-propyl]-amino, cyclopropyl-amino,
      • morpholin-4-yl, thiomorpholin-4-yl, 1-oxo-1λ4-thiomorpholin-4-yl, 1,1-dioxo-1λ6-thiomorpholin-4-yl, 3-amino-piperidin-1-yl, piperazin-1-yl, homopiperazin-1-yl, 4-acetyl-piperazin-1-yl, 4-methylsulphonyl-piperazin-1-yl,
      • tetrahydrofuran-3-yl-oxy, tetrahydrofuran-3-yl-amino, tetrahydropyran-4-yl-oxy, tetrahydropyran-4-yl-amino, N-tetrahydropyran-4-yl-N-methyl-amino, 2-oxo-imidazolidinyl, imidazol-2-yl, 1-methyl-imidazol-2-yl, thiazol-2-yl, 4-ethoxycarbonyl-thiazol-2-yl, 3-ethoxycarbonyl-isoxazol-5-yl, and oxazol-2-yl,

    • wherein in the above-mentioned morpholin-4-yl and piperazin-1-yl groups in each case a methylene unit may be replaced by a carbonyl group,


      but particularly those compounds of the above general formula I wherein



  • R denotes a group of the above-mentioned formula wherein
    • R1 denotes hydrogen,
    • R2 and R3 in each case denote chlorine and
    • A denotes CH,

  • m denotes 0 and


    and the heterocyclic group








denotes a group of formula









    • while the heterocycles mentioned hereinbefore may optionally be substituted at the carbon atoms of the 5-ring by one or two methyl groups, while each carbon atom carries at most one group, and wherein

    • R5 denotes phenyl, pyridazin-3-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl, pyridin-2-yl or pyridin-4-yl, which may be substituted by a group selected from among
      • cyano, methyl, aminomethyl, hydroxymethyl, 3-hydroxypropyl, trifluoromethyl,
      • hydroxy, methoxy, 2-hydroxyethoxy, 2-aminoethoxy, 2-(dimethylamino)-ethoxy, 2-(methylsulphonylamino)-ethoxy, 2-(acetylamino)-ethoxy, 2,3-dihydroxy-propoxy,
      • carboxyl, acetyl, ethylcarbonyl, aminocarbonyl, methyl-aminocarbonyl, dimethyl-aminocarbonyl, N-methoxy-N-methyl-aminocarbonyl, 2-(dimethylamino)-ethyl-aminocarbonyl, 2-hydroxy-ethyl-aminocarbonyl, 2-methoxy-ethyl-aminocarbonyl, cyclopropyl-aminocarbonyl, morpholin-4-yl-carbonyl, piperazin-1-yl-carbonyl, methoxy-carbonyl,
      • methylsulphanyl, methylsulphinyl, ethylsulphinyl, methylsulphonyl,
      • amino, methyl-amino, acetylamino, 2-aminoethyl-amino, 2-(dimethylamino)-ethyl-amino, 2-hydroxyethyl-amino, 2-(methylamino)-ethyl-amino, N-carboxymethyl-N-[2-(dimethylamino)-ethyl]-amino, 2-(acetylamino)-ethyl-amino, 2-(methylsulphonylamino)-ethyl-amino, 2-(pyrrolidin-1-yl)-ethyl-amino, 2-(piperidin-1-yl)-ethyl-amino, 3-aminopropyl-amino, 3-(methylamino)-propyl-amino, 3-(acetylamino)-propyl-amino, 3-(methylsulphonylamino)-propyl-amino, dimethyl-amino, N-methyl-N-2-aminoethyl-amino, N,N-bis-2-(hydroxyethyl)-amino, N-methyl-N-3-aminopropyl-amino, N-methyl-N-[3-(acetylamino)-propyl]-amino, N-methyl-N-[3-(methylsulphonylamino)-propyl]-amino, cyclopropyl-amino,
      • morpholin-4-yl, thiomorpholin-4-yl, 1-oxo-1λ4-thiomorpholin-4-yl, 1,1-dioxo-1λ6-thiomorpholin-4-yl, 3-amino-piperidin-1-yl, piperazin-1-yl, homopiperazin-1-yl, 4-acetyl-piperazin-1-yl, 4-methylsulphonyl-piperazin-1-yl,
      • tetrahydrofuran-3-yl-oxy, tetrahydrofuran-3-yl-amino, tetrahydropyran-4-yl-oxy, tetrahydropyran-4-yl-amino, N-tetrahydropyran-4-yl-N-methyl-amino, 2-oxo-imidazolidinyl, imidazol-2-yl, 1-methyl-imidazol-2-yl, thiazol-2-yl, 4-ethoxycarbonyl-thiazol-2-yl, 3-ethoxycarbonyl-isoxazol-5-yl and oxazol-2-yl.





The following preferred compounds are mentioned by way of example:

  • (1) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(2-dimethylamino-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid
  • (2) {(3,5-dichloro-phenylsulphonyl)-[1-(6-piperazin-1-yl-pyridazin-3-yl)-2,3-dihydro-1H-indol-5-yl]-amino}-acetic acid
  • (3) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid
  • (4) {(3,5-dichloro-phenylsulphonyl)-[1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid
  • (5) ((3-bromo-5-methyl-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid
  • (6) {(3,5-dichloro-phenylsulphonyl)-[1-(6-piperazin-1-yl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid
  • (7) [[1-(6-[1,4]diazepan-1-yl-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid
  • (8) {(3,5-dichloro-phenylsulphonyl)-[1-(4-methyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid
  • (9) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-3-methyl-1H-indol-5-yl}-amino)-acetic acid
  • (10) [(3,5-dichloro-phenylsulphonyl)-(1-{6-[methyl-(tetrahydro-pyran-4-yl)-amino]-pyridazin-3-yl}-1H-indol-5-yl)-amino]-acetic acid
  • (11) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(3-oxo-piperazin-1-yl)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid
  • (12) [[6-ethyl-1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid
  • (13) [[1-(4-amino-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid
  • (14) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(3-hydroxy-propyl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid
  • (15) [{1-[6-(4-acetyl-piperazin-1-yl)-pyridazin-3-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid
  • (16) {(3,5-dichloro-phenylsulphonyl)-[1-(4-methylcarbamoyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid
  • (17) {(3,5-dichloro-phenylsulphonyl)-[3-methyl-1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid
  • (18) {(3,5-dichloro-phenylsulphonyl)-[1-(4-methanesulphinyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid
  • (19) [[1-(4-cyclopropylcarbamoyl-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid
  • (20) {(2,6-dichloro-pyridin-4-sulphonyl)-[1-(4-methylcarbamoyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid


    the enantiomers, the mixtures thereof and the salts thereof.


Some terms used hereinbefore and hereinafter to describe the compounds according to the invention are defined more specifically below.


The term halogen denotes an atom selected from among F, Cl, Br and I, particularly F, Cl and Br.


The term C1-n-alkyl, wherein n may have a value as defined hereinbefore or hereinafter, denotes a saturated, branched or unbranched hydrocarbon group with 1 to n C atoms. Examples of such groups include methyl, ethyl, n-propyl, iso-propyl, butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, neo-pentyl, tert-pentyl, n-hexyl, iso-hexyl, etc.


The term C2-n-alkynyl, wherein n has a value as defined hereinbefore, denotes a branched or unbranched hydrocarbon group with 2 to n C atoms and a C≡C triple bond. Examples of such groups include ethynyl, 1-propynyl, 2-propynyl, iso-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 2-methyl-1-propynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 3-methyl-2-butynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl etc.


The term C2-n-alkenyl, wherein n has a value as defined hereinbefore, denotes a branched or unbranched hydrocarbon group with 2 to n C atoms and a C═C double bond. Examples of such groups include ethenyl, 1-propenyl, 2-propenyl, iso-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methyl-1-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 3-methyl-2-butenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl etc.


The term C1-n-alkoxy or C1-n-alkyloxy denotes a C1-n-alkyl-O group, wherein C1-n-alkyl is as hereinbefore defined. Examples of such groups include methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, iso-pentoxy, neo-pentoxy, tert-pentoxy, n-hexoxy, iso-hexoxy etc.


The term C1-n-alkyl-carbonyl denotes a C1-n-alkyl-C(═O) group, wherein C1-n-alkyl is as hereinbefore defined. Examples of such groups include methylcarbonyl, ethylcarbonyl, n-propylcarbonyl, iso-propylcarbonyl, n-butylcarbonyl, iso-butylcarbonyl, sec-butylcarbonyl, tert-butylcarbonyl, n-pentylcarbonyl, iso-pentylcarbonyl, neo-pentylcarbonyl, tert-pentylcarbonyl, n-hexylcarbonyl, iso-hexylcarbonyl, etc.


The term C3-n-cycloalkyl denotes a saturated mono-, bi-, tri- or spirocarbocyclic group with 3 to n C atoms. Examples of such groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclododecyl, bicyclo[3.2.1.]octyl, spiro[4.5]decyl, norpinyl, norbornyl, norcaryl, adamantyl, etc. Preferably the term C3-7-cycloalkyl includes saturated monocyclic groups.


The term C3-n-cycloalkyloxy or C3-n-cycloalkoxy d a C3-n-cycloalkyl-O group, wherein C3-n-cycloalkyl is as hereinbefore defined. Examples of such groups include cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, cycloheptyloxy, etc.


The term C1-n-alkoxy-carbonyl denotes a C1-n-alkyl-O—C(═O) group, wherein C1-n-alkyl is as hereinbefore defined.


The term C3-n-cycloalkyl-carbonyl denotes a C3-n-cycloalkyl-C(═O) group, wherein C3-n-cycloalkyl is as hereinbefore defined.


The terms C1-n-alkyl-amino and di-(C1-n-alkyl)-amino denote a C1-n-alkyl-NH— or a di-(C1-n-alkyl)-N group, respectively, wherein C1-n-alkyl is as hereinbefore defined.


The term C3-n-cycloalkyl-amino denotes a C3-n-cycloalkyl-NH group, wherein C3-n-cycloalkyl is as hereinbefore defined.


The term N—(C3-n-cycloalkyl)-N—(C1-n-alkyl)-amino denotes an N—(C3-n-cycloalkyl)-N—(C1-n-alkyl)-N group, wherein C3-n-cycloalkyl and C1-n-alkyl are as hereinbefore defined.


The terms C1-n-alkyl-aminocarbonyl and di-(C1-n-alkyl)-aminocarbonyl denote a C1-n-alkyl-NH—C(═O)— or a di-(C1-n-alkyl)-N—C(═O) group, respectively, wherein C1-n-alkyl is as hereinbefore defined.


The term C3-n-cycloalkyl-aminocarbonyl denotes a C3-n-cycloalkyl-NH—C(═O) group, wherein C3-n-cycloalkyl is as hereinbefore defined.


The term N—(C3-n-cycloalkyl)-N—(C1-n-alkyl)-amino denotes an N—(C3-n-cycloalkyl)-N—(C1-n-alkyl)-N—C(═O) group, wherein C3-n-cycloalkyl and C1-n-alkyl are as hereinbefore defined.


The terms di-(C1-n-alkyl)amino and di-(C1-n-alkyl)aminocarbonyl, wherein n has a value as defined hereinbefore, encompass amino groups which have the same or two different alkyl groups.


The term C1-n-perfluoroalkyl denotes a F—(CF2)n group. Examples of such groups include trifluoromethyl, pentafluoroethyl, heptafluoro-n-propyl, heptafluoro-iso-propyl etc., but preferably trifluoromethyl, pentafluoroethyl.


The term C1-n-perfluoroalkoxy denotes a F—(CF2)n—O group. Examples of such groups include trifluoromethoxy, pentafluoroethoxy, heptafluoro-n-propoxy, heptafluoro-iso-propoxy etc., but preferably trifluoromethoxy, pentafluoroethoxy.


The term C1-n-alkylsulphanyl denotes a C1-n-alkyl-S group, wherein C1-n-alkyl is as hereinbefore defined.


The term C1-n-alkylsulphinyl denotes a C1-n-alkyl-S(═O) group, wherein C1-n-alkyl is as hereinbefore defined.


The term C1-n-alkylsulphonyl denotes a C1-n-alkyl-S(═O)2 group, wherein C1-n-alkyl is as hereinbefore defined.


The term C3-n-cycloalkylsulphanyl denotes a C3-n-cycloalkyl-S group, wherein C3-n-cycloalkyl is as hereinbefore defined.


The term C3-n-cycloalkylsulphinyl denotes a C3-n-cycloalkyl-S(═O) group, wherein C3-n-cycloalkyl is as hereinbefore defined.


The term C3-n-cycloalkylsulphonyl denotes a C3-n-cycloalkyl-S(═O)2 group, wherein C3-n-cycloalkyl is as hereinbefore defined.


The compounds according to the invention may be obtained using methods of synthesis that are known in principle. Preferably the compounds are obtained by methods of preparation according to the invention that are described more fully hereinafter.


The preparation of compounds of general formula I may be carried out according to Process a) according to the invention shown in Scheme 1, wherein X, Y, Z, R1, R2, R3, A, m and R4 are as hereinbefore defined, starting from a compound of general formula II.







Here, compounds of general formula III are obtained by reacting a compound of general formula II with a reducing agent.


A suitable reducing agent is for example hydrogen in the presence of a catalyst, such as palladium on charcoal, palladium hydroxide on charcoal or Raney nickel, while palladium on charcoal is particularly suitable. The hydrogenation is carried out in a suitable solvent such as methanol, ethanol, isopropanol, tetrahydrofuran, dichloromethane or ethyl acetate, but preferably methanol, ethanol or tetrahydrofuran, at a pressure between 0.5 and 7 bar, but preferably at a pressure between 0.5 and 3 bar, and at a temperature between 0° C. and 60° C., but preferably at a temperature between 15° C. and 40° C.


Also suitable for the reduction is tin dichloride hydrate in lower alcoholic solvents such as methanol or ethanol at a temperature between ambient temperature and 80° C.


Alternatively titanium trichloride may be used as reducing agent. Suitable solvents are mixtures of acetone and water. The reaction is carried out between 0° C. and 60° C., but preferably between 15° C. and 40° C. and in the presence of ammonium acetate.


Compounds of general formula IV are obtained by sulphonylation of compounds of general formula III.


The sulphonylation is carried out with aromatic sulphonyl chlorides in the presence of a base, such as triethylamine, N,N-diisopropyl-N-ethyl-amine, pyridine, or 4-dimethylamino-pyridine, but preferably pyridine. The reaction may be carried out in suitable solvents, such as diethyl ether, tetrahydrofuran, toluene, pyridine, dichloromethane, or chloroform, but preferably dichloromethane. The temperature may be between 0° C. and 60° C., but preferably between 15° C. and 40° C.


Compounds of general formula I are obtained from compounds of general formula IV by alkylation.


Suitable alkylating agents are acetic acid derivatives that contain a leaving group such as chlorine, bromine, iodine, p-tolylsulphonate, methylsulphonate, or trifluoromethylsulphonate in the 2-position. The alkylation is carried out in a solvent such as dimethylformamide, dimethylacetamide, tetrahydrofuran, acetonitrile, N-methylpyrrolidone or dimethylsulphoxide, but preferably in dimethylformamide, in the presence of a base such as sodium carbonate, potassium carbonate or caesium carbonate, but preferably potassium carbonate, and at a temperature between 0° C. and 100° C., but preferably between 15° C. and 50° C.


If acetic acid derivatives with a tert.-butyl ester unit are used as alkylating agents, compounds of general formula I are obtained wherein R1=tert.-butyl. The cleaving of the tert.-butyl group is preferably carried out by treatment with an acid such as trifluoroacetic acid or hydrochloric acid or by treatment with iodotrimethylsilane optionally using a solvent such as methylene chloride, dioxane, methanol or diethyl ether.


Compounds of general formula II, wherein R5 is bound to X and X denotes nitrogen may be obtained by Process b) according to the invention shown in Scheme 2 from compounds of general formula V, wherein m and R4 are as hereinbefore defined and —Y . . . Z→ has the meaning —CH═CH→, —CH2—CH2→ or —N═CH→, but preferably has the meaning —CH═CH→ or —CH2—CH2→, while the carbon atoms therein may be substituted as hereinbefore defined and R5 denotes an aryl group.







Aryl groups may be introduced by reacting with nitrogen-containing aromatic groups which contain at the carbon atom adjacent to the nitrogen a leaving group such as fluorine, chlorine, bromine, iodine, alkylsulphanyl, arylsulphanyl, alkylsulphinyl, arylsulphinyl, alkylsulphonyl or arylsulphonyl, but preferably chlorine, bromine or iodine. The reaction may be carried out without a solvent, at temperatures between 70° C. and 220° C., but preferably between 120° C. and 190° C.


Alternatively the reaction may be carried out in a dipolar-aprotic solvent such as dimethylformamide, dimethylacetamide, tetrahydrofuran, acetonitrile, N-methylpyrrolidone or dimethylsulphoxide, but preferably in dimethylformamide or N-methylpyrrolidone, in the presence of a base such as triethylamine, N,N-diisopropyl-N-ethyl-amine, sodium carbonate, potassium carbonate, caesium carbonate, sodium hydride, potassium-tert.-butoxide or potassium-hexamethyl-disilazide, but preferably sodium hydride, potassium carbonate or potassium-tert.-butoxide, and at a temperature between 0° C. and 150° C., but preferably between 15° C. and 100° C.


The arylation reaction may also be carried out for compounds of general formula V wherein —Y . . . Z→ has the meaning —CH═CH→, while the carbon atoms therein may be substituted as hereinbefore defined, according to the process described in J. Am. Chem. Soc. 2002, 124, 11684-11688, to obtain compounds of general formula II wherein —Y . . . Z→ has the meaning —CH═CH→, wherein the carbon atoms therein may be substituted as hereinbefore defined. Compounds of general formula V are reacted with arylbromides or aryliodides. The reaction is carried out in toluene or dioxane in the presence of potassium phosphate as base, catalytic amounts of a copper-(I) salt, but preferably copper-(I)-iodide and catalytic amounts of a 1,2-diamino ligand such as for example ethylenediamine, N,N-ethylenediamine, N,N′-ethylenediamine, cis-cyclohexane-1,2-diamine, trans-cyclohexane-1,2-diamine, N,N′-dimethyl-cis-cyclohexane-1,2-diamine or N,N′-dimethyl-trans-cyclohexane-1,2-diamine, but preferably N,N′-dimethyl-trans-cyclohexane-1,2-diamine, at a temperature between 70° C. and 130° C., but preferably between 90° C. and 110° C.


End compounds of general formula VII which contain an indole scaffold may be obtained according to Process c) according to the invention shown in Scheme 3, wherein R1, R2, R3, A, R4 and m are as hereinbefore defined and the carbon atoms of the 5 ring may be substituted as hereinbefore defined, from compounds of general formula VI.







The arylation reaction is carried out according to methods known from the literature, as described for example in J. Am. Chem. Soc. 2002, 124, 11684-11688. Compounds of general formula V are reacted with arylbromides or aryliodides. The reaction is carried out in toluene or dioxane in the presence of potassium phosphate as base, catalytic amounts of a copper-(I) salt, but preferably copper-(I)-iodide and catalytic amounts of a 1,2-diamino ligand such as for example ethylenediamine, N,N-ethylenediamine, N,N′-ethylenediamine, cis-cyclohexane-1,2-diamine, trans-cyclohexane-1,2-diamine, N,N′-dimethyl-cis-cyclohexane-1,2-diamine or N,N′-dimethyl-trans-cyclohexane-1,2-diamine, but preferably N,N′-dimethyl-trans-cyclohexane-1,2-diamine, at a temperature between 70° C. and 130° C., but preferably between 90° C. and 110° C.


If compounds of general formula VI wherein R1=tert.-butyl are used, compounds of general formula VII are obtained wherein R1=tert.-butyl. The cleaving of the tert.-butyl group is then preferably carried out by treatment with an acid such as trifluoroacetic acid or hydrochloric acid or by treatment with iodotrimethylsilane, optionally using a solvent such as methylene chloride, dioxane, methanol or diethyl ether.


Central scaffold components of the general formulae II or III, which are not commercially obtainable, may be obtained by methods known from the literature. Indoles, for example, may be obtained by converting 4-nitrophenyl-hydrazine into a hydrazone with subsequent Fischer indole synthesis as described in Organic Preparations and Procedures International 1991, 23(3), 357-363. Alternatively, indole components may be obtained starting from substituted 4-nitroanilines analogously to a process as described in Tetrahedron 2003, 59, 1571-1587. The starting compounds of general formula II may also be prepared by nitration (Houben-Weyl, Methoden der organischen Chemie, Volume X/1, 463-890) using methods known per se, from commercially obtainable compounds.


Indoline components may be obtained starting from the indoles. The indole is dissolved in acetic acid, optionally with the addition of trifluoroacetic acid, or in trifluoroacetic acid and reacted with a reducing agent such as for example sodium cyanoborohydride or sodium triacetoxyborohydride at temperatures between −20° C. and 100° C., but preferably at between 0° C. and 60° C.


Cyano functionalities may in each case be prepared from primary amides obtained in the syntheses. Suitable methods for this transformation are, for example, reaction with thionyl chloride and optionally catalytic amounts of dimethylformamide in a solvent such as dichloromethane, 1,2-dichloroethane, toluene or acetone at temperatures between 0° C. and 100° C., reaction with trifluoroacetic anhydride or trichloroacetic anhydride, a base such as for example pyridine, triethylamine or N,N-diisopropyl-N-ethyl-amine in a solvent such as for example dichloromethane, 1,2-dichloroethane, tetrahydrofuran, 1,4-dioxane or toluene at temperatures between −10° C. and 100° C., as well as reaction with phosphorus oxychloride and optionally a base such as pyridine or N,N-dimethylaniline in the presence or absence of a solvent such as for example dichloromethane, 1,2-dichloroethane, tetrahydrofuran, 1,4-dioxane or toluene, at temperatures between −10° C. and 120° C.


Sulphonyl chlorides may be prepared from anilines. For this, the aniline is first diazotised by reacting with sodium nitrite in hydrochloric acid at temperatures between −30° C. and 10° C. The diazonium salt solution thus prepared is then added dropwise to copper-II-chloride and water in a 30% sulphur dioxide solution in glacial acetic acid at temperatures between −30° C. and 10° C. Then it is left to warm up to temperatures between 5° C. and 50° C. Alternatively the sulphonyl chlorides may be prepared from aryl metal compounds such as aryl lithium or aryl magnesium chloride compounds. Aryl lithium compounds are obtained from the aryl bromides or aryl iodides by reacting with n-butyllithium, sec-butyllithium or tert.-butyllithium in a solvent such as diethyl ether or tetrahydrofuran at temperatures between −60° C. and −85° C. Arylmagnesium chloride compounds are obtained by a process as described in Angew. Chem. 2006, 118, 3024-3027. The aryl metal compounds thus obtained are further reacted at temperatures between −78° C. and −20° C. by piping sulphur dioxide through. This produces metal sulphinates, which can optionally be precipitated by the addition of hexane. The metal sulphinates are dissolved in dichloromethane and combined with N-chlorosuccinimide at temperatures between −20° C. and 30° C. After the reaction the solid is filtered off, to obtain a dichloromethane solution of the sulphonyl chloride.


Heteroaryliodides, which are needed for the synthesis of the compounds of general formula I, may be prepared from the corresponding heteroaryl chlorides or heteroaryl bromides. For this the heteroaryl chlorides or heteroaryl bromides are reacted with concentrated hydriodic acid at temperatures between ambient temperature between 50° C. and 180° C. Alternatively heteroarylbromides may be reacted with sodium iodide, potassium iodide or tetrabutylammonium iodide in a solvent such as tetrahydrofuran, dioxane, dimethylethyleneglycol or toluene in the presence of catalytic amounts of copper-I-iodide as well as a ligand such as N,N′-dimethyl-trans-cyclohexandiamine at temperatures between 60° C. and 150° C. to obtain the heteroaryl iodides.


In the reactions described hereinbefore, any reactive groups present such as carboxy, hydroxy, amino or alkylamino groups may be protected during the reaction by conventional protecting groups which are cleaved again after the reaction.


For example, a protecting group for a carboxy group may be a methyl, ethyl, tert.butyl or benzyl group.


For example, a protecting group for a hydroxy group may be an acetyl, benzyl or tetrahydropyranyl group.


Protecting groups for an amino or alkylamino may be a formyl, acetyl, trifluoroacetyl, ethoxycarbonyl, tert.butoxycarbonyl, benzyloxycarbonyl, benzyl, methoxybenzyl or 2,4-dimethoxybenzyl group.


A carboxymethyl or carboxyethyl unit is cleaved for example by hydrolysis in an aqueous solvent, e.g. In water, methanol/water, isopropanol/water, acetic acid/water, tetrahydrofuran/water or dioxane/water, but preferably in methanol/water, in the presence of an acid such as trifluoroacetic acid, hydrochloric acid or sulphuric acid or in the presence of an alkali metal base such as lithium hydroxide, sodium hydroxide or potassium hydroxide, but preferably sodium hydroxide, or aprotically, e.g. In the presence of iodotrimethylsilane, at temperatures between 0 and 120° C., preferably at temperatures between 10 and 100° C.


A benzyl, methoxybenzyl or benzyloxycarbonyl group is advantageously cleaved by hydrogenolysis, e.g. with hydrogen in the presence of a catalyst such as palladium on charcoal in a suitable solvent such as methanol, ethanol, ethyl acetate or glacial acetic acid, optionally with the addition of an acid such as hydrochloric acid, at temperatures between 0 and 100° C., but preferably at temperatures between 20 and 60° C., and under a hydrogen pressure of 1 to 7 bar, but preferably 1 to 3 bar. However, a 2,4-dimethoxybenzyl group is preferably cleaved in trifluoroacetic acid in the presence of anisole.


A tert.-butyl or tert.-butyloxycarbonyl group is preferably cleaved by treating with an acid such as trifluoroacetic acid or hydrochloric acid or by treating with iodotrimethylsilane, optionally using a solvent such as methylene chloride, dioxane, methanol or diethyl ether.


Moreover, the compounds of general formula I obtained, or intermediate products from the synthesis of compounds of general formula I, as already mentioned hereinbefore, may be resolved into their enantiomers and/or diastereomers. Thus, for example, cis/trans mixtures may be resolved into their cis and trans isomers, and compounds with at least one stereocentre may be resolved into their enantiomers.


Thus, for example, the cis/trans mixtures may be resolved by chromatography into the cis and trans isomers thereof, the compounds of general formula I obtained, or intermediate products from the synthesis of compounds of general formula I, which occur as racemates may be separated by methods known per se (cf. Allinger N. L. And Eliel E. L. In “Topics in Stereochemistry”, Vol. 6, Wiley Interscience, 1971) into their optical antipodes and compounds of general formula I, or intermediate products from the synthesis of compounds of general formula I, with at least 2 asymmetric carbon atoms may be resolved into their diastereomers on the basis of their physical-chemical differences using methods known per se, e.g. by chromatography and/or fractional crystallisation, and, if these compounds are obtained in racemic form, they may subsequently be resolved into the enantiomers as mentioned above.


The enantiomers are preferably separated by chromatography on chiral phases or by recrystallisation from an optically active solvent or by reacting with an optically active substance which forms salts or derivatives such as e.g. esters or amides with the racemic compound, particularly acids and the activated derivatives or alcohols thereof, and separating the diastereomeric mixture of salts or derivatives thus obtained, e.g. on the basis of their differences in solubility, whilst the free antipodes may be released from the pure diastereomeric salts or derivatives by the action of suitable agents. Optically active acids in common use are e.g. The D- and L-forms of tartaric acid or dibenzoyltartaric acid, di-O-p-toluoyltartaric acid, malic acid, mandelic acid, camphorsulphonic acid, glutamic acid, aspartic acid or quinic acid. An optically active alcohol may be for example (+) or (−)-menthol and an optically active acyl group in amides, for example, may be a (+)- or (−)-menthyloxycarbonyl.


Furthermore, the compounds of formula I obtained, or intermediate products from the synthesis of compounds of general formula I, may be converted into the salts thereof, particularly for pharmaceutical use into the physiologically acceptable salts thereof with inorganic or organic acids. Acids which may be used for this purpose include for example hydrochloric acid, hydrobromic acid, sulphuric acid, methanesulphonic acid, phosphoric acid, fumaric acid, succinic acid, lactic acid, citric acid, tartaric acid or maleic acid.


Moreover, the new compounds of general formula I obtained, or intermediate products from the synthesis of compounds of general formula I, if they contain a carboxy group, may subsequently, if desired, be converted into the salts thereof with inorganic or organic bases, particularly for pharmaceutical use into the physiologically acceptable salts thereof. Suitable bases for this purpose include for example sodium hydroxide, potassium hydroxide, arginine, cyclohexylamine, ethanolamine, diethanolamine and triethanolamine.


The compounds of general formula I are inhibitors of the interaction between human liver glycogen phosphorylase (HLGP) and protein PPP1R3 (GL-subunit of glycogen-associated protein phosphatase 1 (PP1)). The effect of the compounds on the binding of the protein PPP1R3 and the glycogen phosphorylase activated by phosphorylation is determined in a binding test based on SPA technology (Amersham Pharmacia). The binding of the substances inhibits the interaction of the glycogen phosphorylase with the protein PPP1R3B. All measurements were made in triplicate in the 384-well format (Optiplate, Perkin Elmer).


Human glycogen phosphorylase is recombinantly expressed in E. Coli and purified. The isolated non-phosphorylated HLGP is radioactively labelled in a marking reaction with phosphorylase kinase (200-500 U/mg, P2014, Sigma) and 33P-gamma ATP (110 TBq/mmol, Hartmann Analytic) (Ref.: Cohen et al., Methods Enzymol. 1988, Vol 159 pp 390). In a binding test, in a volume of 100 μl (test buffer: 50 mM Tris/HCl pH 7.0, 0.1 mM EGTA, 0.1% mercaptoethanol), different amounts of a test substance (final concentration: 1 nM to 30 μM) are incubated at ambient temperature for 16 hours with 100000 cpm of labelled HLGP, 375 μg streptavidin-SPA Beads (RPNQ 0007, Amersham Pharmacia), 0.1 μg GL-peptide (Biotin-FPEWPSYLGYEKLGPYY). After centrifuging for 5 minutes at 500 g the plate is measured (Topcount, Packard). The cpm values measured are used to calculate the IC50 values specified. The basal value is determined in the absence of the peptide and the maximum value is determined in the absence of the test substance.


The compounds of general formula I have IC50 values in the range from 9 nM to 15 μM.


In view of their ability to suppress the interaction of glycogen phosphorylase a with the GL-subunit of glycogen-associated protein phosphatase 1 (PP1), the compounds of general formula I according to the invention and the corresponding pharmaceutically acceptable salts thereof are theoretically suitable for treating and/or preventatively treating all those conditions or diseases that can be influenced by inhibiting the interaction of glycogen phosphorylase a with the GL-subunit of glycogen-associated protein phosphatase 1 (PP1). Therefore the compounds according to the invention are particularly suitable for the prevention or treatment of diseases, particularly metabolic disorders, or conditions such as type 1 and type 2 diabetes mellitus, complications of diabetes (such as e.g. retinopathy, nephropathy or neuropathies, diabetic foot, ulcers, macroangiopathies), metabolic acidosis or ketosis, reactive hypoglycaemia, hyperinsulinaemia, glucose metabolic disorder, insulin resistance, metabolic syndrome, dyslipidaemias of different origins, atherosclerosis and related diseases, obesity, high blood pressure, chronic heart failure, oedema and hyperuricaemia. These substances are also suitable for preventing beta-cell degeneration such as e.g. Apoptosis or necrosis of pancreatic beta cells. The substances are also suitable for improving or restoring the functionality of pancreatic cells, and also for increasing the number and size of pancreatic beta cells. The compounds according to the invention may also be used as diuretics or antihypertensives and are suitable for the prevention and treatment of acute renal failure.


In particular, the compounds according to the invention, including the physiologically acceptable salts thereof, are suitable for the prevention or treatment of diabetes, particularly type 1 and type 2 diabetes mellitus, and/or diabetic complications.


The dosage required to achieve the corresponding activity for treatment or prevention usually depends on the compound which is to be administered, the patient, the nature and gravity of the illness or condition and the method and frequency of administration and is for the patient's doctor to decide. Expediently, the dosage may be from 0.1 to 1000 mg, preferably 0.5 to 500 mg, by intravenous route, and 1 to 1000 mg, preferably 10 to 500 mg, by oral route, in each case administered 1 to 4 times a day. For this purpose, the compounds of formula I prepared according to the invention may be formulated, optionally together with other active substances, together with one or more inert conventional carriers and/or diluents, e.g. with corn starch, lactose, glucose, microcrystalline cellulose, magnesium stearate, polyvinylpyrrolidone, citric acid, tartaric acid, water, water/ethanol, water/glycerol, water/sorbitol, water/polyethylene glycol, propylene glycol, cetylstearyl alcohol, carboxymethylcellulose or fatty substances such as hard fat or suitable mixtures thereof, to produce conventional galenic preparations such as plain or coated tablets, capsules, powders, suspensions or suppositories.


The compounds according to the invention may also be used in conjunction with other active substances, particularly for the treatment and/or prevention of the diseases and conditions mentioned above. Other active substances which are suitable for such combinations include in particular those which potentiate the therapeutic effect of an inhibitor of the interaction of glycogen phosphorylase a with the GL subunit of glycogen-associated protein phosphatase 1 (PP1) according to the invention with respect to one of the indications mentioned and/or which allow the dosage of an inhibitor of the interaction of glycogen phosphorylase a with the GL subunit of glycogen-associated protein phosphatase 1 (PP1) according to the invention to be reduced. Therapeutic agents which are suitable for such a combination include, for example, antidiabetic agents such as metformin, sulphonylureas (e.g. glibenclamide, tolbutamide, glimepiride), nateglinide, repaglinide, thiazolidinediones (e.g. rosiglitazone, pioglitazone), PPAR-gamma-agonists (e.g. GI 262570) and antagonists, PPAR-gamma/alpha modulators (e.g. KRP 297), alpha-glucosidase inhibitors (e.g. miglitol, acarbose, voglibose), DPPIV inhibitors (e.g. sitagliptine, vildagliptine), SGLT2-inhibitors, alpha2-antagonists, insulin and insulin analogues, GLP-1 and GLP-1 analogues (e.g. exendin-4) or amylin. Other active substances suitable as combination partners are inhibitors of protein tyrosinephosphatase 1, substances that affect deregulated glucose production in the liver, such as e.g. inhibitors of glucose-6-phosphatase, or fructose-1,6-bisphosphatase, glycogen phosphorylase, glucagon receptor antagonists and inhibitors of phosphoenol pyruvate carboxykinase, glycogen synthase kinase or pyruvate dehydrokinase, lipid lowering agents such as for example HMG-CoA-reductase inhibitors (e.g. simvastatin, atorvastatin), fibrates (e.g. bezafibrate, fenofibrate), nicotinic acid and the derivatives thereof, PPAR-alpha agonists, PPAR-delta agonists, ACAT inhibitors (e.g. avasimibe) or cholesterol absorption inhibitors such as, for example, ezetimibe, bile acid-binding substances such as, for example, cholestyramine, inhibitors of ileac bile acid transport, HDL-raising compounds such as CETP inhibitors or ABC1 regulators or active substances for treating obesity, such as sibutramine or tetrahydrolipostatin, dexfenfluramine, axokine, antagonists of the cannabinoid1 receptor, MCH-1 receptor antagonists, MC4 receptor agonists, NPY5 or NPY2 antagonists or β3-agonists such as SB-418790 or AD-9677 and agonists of the 5HT2c receptor.


Moreover, combinations with drugs for influencing high blood pressure, chronic heart failure or atherosclerosis such as e.g. A-II antagonists or ACE inhibitors, ECE inhibitors, diuretics, β-blockers, Ca-antagonists, centrally acting antihypertensives, antagonists of the alpha-2-adrenergic receptor, inhibitors of neutral endopeptidase, thrombocyte aggregation inhibitors and others or combinations thereof are suitable. Examples of angiotensin II receptor antagonists are candesartan cilexetil, potassium losartan, eprosartan mesylate, valsartan, telmisartan, irbesartan, EXP-3174, L-158809, EXP-3312, olmesartan, medoxomil, tasosartan, KT-3-671, GA-0113, RU-64276, EMD-90423, BR-9701, etc. Angiotensin II receptor antagonists are preferably used for the treatment or prevention of high blood pressure and complications of diabetes, often combined with a diuretic such as hydrochlorothiazide.


A combination with uric acid synthesis inhibitors or uricosurics is suitable for the treatment or prevention of gout.


A combination with GABA-receptor antagonists, Na-channel blockers, topiramat, protein-kinase C inhibitors, advanced glycation end product inhibitors or aldose reductase inhibitors may be used for the treatment or prevention of complications of diabetes.


The dosage for the combination partners mentioned above is usefully 1/5 of the lowest dose normally recommended up to 1/1 of the normally recommended dose.


Therefore, in another aspect, this invention relates to the use of a compound according to the invention or a physiologically acceptable salt of such a compound combined with at least one of the active substances described above as a combination partner, for preparing a pharmaceutical composition which is suitable for the treatment or prevention of diseases or conditions which can be affected by inhibiting the interaction of glycogen phosphorylase a with the GL subunit of glycogen-associated protein phosphatase 1 (PP1). These are preferably metabolic diseases, particularly one of the diseases or conditions listed above, most particularly diabetes or diabetic complications.


The use of the compound according to the invention, or a physiologically acceptable salt thereof, in combination with another active substance may take place simultaneously or at staggered times, but particularly within a short space of time. If they are administered simultaneously, the two active substances are given to the patient together; if they are used at staggered times the two active substances are given to the patient within a period of less than or equal to 12 hours, but particularly less than or equal to 6 hours.


Consequently, in another aspect, this invention relates to a pharmaceutical composition which comprises a compound according to the invention or a physiologically acceptable salt of such a compound and at least one of the active substances described above as combination partners, optionally together with one or more inert carriers and/or diluents.


Thus, for example, a pharmaceutical composition according to the invention comprises a combination of a compound of formula I according to the invention or a physiologically acceptable salt of such a compound and at least one angiotensin II receptor antagonist optionally together with one or more inert carriers and/or diluents.


The compound according to the invention, or a physiologically acceptable salt thereof, and the additional active substance to be combined therewith may both be present together in one formulation, for example a tablet or capsule, or separately in two identical or different formulations, for example as a so-called kit-of-parts.


In the foregoing and following text, H atoms of hydroxyl groups are not explicitly shown in every case in structural formulae. The Examples that follow are intended to illustrate the present invention without restricting it:


Preparation of the Starting Compounds
Example I






tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1-pyrimidin-2-yl-2,3-dihydro-1H-indol-5-yl)-amino]-acetate

50 mg 3,5-dichloro-N-(1-pyrimidin-2-yl-2,3-dihydro-1H-indol-5-yl)-phenylsulphonamide are dissolved in 2 ml dimethylformamide. To this are added 50 mg potassium carbonate and 50 μl tert.butyl bromoacetate. The mixture is stirred for 3 hours at ambient temperature, diluted with ethyl acetate and washed once with 10% citric acid solution and once with saturated sodium sulphate solution. The organic phase is dried on magnesium sulphate. The solvents are eliminated in vacuo and the residue is purified by chromatography on silica gel (cyclohexane/ethyl acetate 95:5 to 50:50).


Yield: 50 mg (79% of theory)


Rf value: 0.67 (silica gel, petroleum ether/ethyl acetate 1:1)


The following compounds are obtained analogously to Example I:


(1) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(1-methyl-1H-imidazol-2-yl)-2,3-dihydro-1H-indol-5-yl]-amino}-acetate






Mass spectrum (ESI+): m/z=537 [M+H]+


(2) tert-butyl 2-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-2,3-dihydro-indol-1-yl}-imidazole-1-carboxylate






The crude product is further reacted directly in Example 3.


(3) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1-pyridin-4-yl-2,3-dihydro-1H-indol-5-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=534 [M+H]+


(4) tert-butyl 4-(2-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-2,3-dihydro-indol-1-yl}-pyrimidin-4-yl)-piperazine-1-carboxylate






Mass spectrum (ESI+): m/z=719 [M+H]+


(5) tert-butyl 4-(2-{5-[(3,5-dichloro-phenylsulphonyl)-ethoxycarbonylmethyl-amino]-2,3-dihydro-indol-1-yl}-pyrimidin-4-yl)-piperazine-1-carboxylate






Instead of tert.butyl bromoacetate ethyl bromoacetate is used.


Mass spectrum (ESI+): m/z=691 [M+H]+


(6) tert-butyl 4-(2-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-pyrimidin-4-yl)-piperazine-1-carboxylate






Mass spectrum (ESI+): m/z=717 [M+H]+


(7) tert-butyl 4-(2-{5-[(3,5-dichloro-phenylsulphonyl)-ethoxycarbonylmethyl-amino]-indol-1-yl}-pyrimidin-4-yl)-piperazine-1-carboxylate






Instead of tert.butyl bromoacetate ethyl bromoacetate is used.


Mass spectrum (ESI+): m/z=689 [M+H]+


(8) tert-butyl 4-(5-{5-[tert-butoxycarbonyl methyl-(3,5-dichloro-phenylsulphonyl)-amino]-2,3-dihydro-indol-1-yl}-pyrazine-2-carbonyl)-piperazine-1-carboxylate






Mass spectrum (ESI+): m/z=747 [M+H]+


(9) tert-butyl 4-(5-{5-[tert-butoxycarbonyl methyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-pyrazine-2-carbonyl)-piperazine-1-carboxylate






Mass spectrum (ESI+): m/z=745 [M+H]+


(10) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1-pyrimidin-2-yl-1H-indol-4-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=533 [M+H]+


(11) tert-butyl 6′-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-2,3,5,6-tetrahydro-[1,2′]bipyrazinyl-4-carboxylate






Mass spectrum (ESI+): m/z=717 [M+H]+


(12) tert-butyl 6′-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-2,3-dihydro-indol-1-yl}-2,3,5,6-tetrahydro-[1,2′]bipyrazinyl-4-carboxylate






Mass spectrum (ESI+): m/z=719 [M+H]+


(13) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1-pyrimidin-2-yl-2,3-dihydro-1H-indol-4-yl)-amino]-acetate






Rf value: 0.68 (silica gel, petroleum ether/ethyl acetate 1:1)


(14) tert.butyl[(1-{4-[tert-butoxycarbonylmethyl-(2-dimethylamino-ethyl)-amino]-pyrimidin-2-yl}-2,3-dihydro-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Starting from 3,5-dichloro-N-{1-[4-(2-dimethylamino-ethylamino)-pyrimidin-2-yl]-2,3-dihydro-1H-indol-5-yl}-phenylsulphonamide.


Mass spectrum (ESI+): m/z=735 [M+H]+


(15) tert-butyl 4-(6-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-2,3-dihydro-indol-1-yl}-pyridazin-3-yl)-piperazine-1-carboxylate






Mass spectrum (ESI+): m/z=719 [M+H]+


(16) tert.butyl[(1-{4-[tert-butoxycarbonyl-(2-dimethylamino-ethyl)-amino]-pyrimidin-2-yl}-2,3-dihydro-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Mass spectrum (ESI+): m/z=721 [M+H]+


(17) {2-[tert-butoxycarbonyl-(6-{5-[tert-butoxycarbonyl methyl-(3,5-dichloro-phenylsulphonyl)-amino]-2,3-dihydro-indol-1-yl}-pyridazin-3-yl)-amino]-ethyl}-tert-butoxycarbonylmethyl-dimethyl-ammonium-bromide






Mass spectrum (ESI+): m/z=835 [M]+


(18) {2-[tert-butoxycarbonyl-(2-{5-[tert-butoxycarbonyl methyl-(3,5-dichloro-phenylsulphonyl)-amino]-2,3-dihydro-indol-1-yl}-pyrimidin-4-yl)-amino]-ethyl}-tert-butoxycarbonylmethyl-dimethyl-ammonium-bromide






Mass spectrum (ESI+): m/z=835 [M]+


(19) tert.butyl[(3,5-dimethyl-phenylsulphonyl)-(1H-indol-5-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=415 [M+H]+


(20) tert.butyl[(1-{6-[tert-butoxycarbonyl-(2-(bis-tert-butoxycarbonyl)-amino-ethyl)-amino]-pyridazin-3-yl}-2,3-dihydro-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Mass spectrum (ESI+): m/z=893 [M+H]+


(21) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1H-indol-5-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=472 [M+NH4]+


(22) ethyl [(3,5-dichloro-phenylsulphonyl)-(1H-indol-5-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=427 [M+H]+


(23) tert.butyl[(1-{6-[tert-butoxycarbonyl-(2-(bis-tert-butoxycarbonyl)-amino-ethyl)-amino]-pyridazin-3-yl}-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Mass spectrum (ESI+): m/z=891 [M+H]+


(24) tert-butyl 3-(6-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-2,3-dihydro-indol-1-yl}-pyridazin-3-yl)-2-oxo-imidazolidine-1-carboxylate






Mass spectrum (ESI+): m/z=719 [M+H]+


(25) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(2,3-dimethyl-1H-indol-5-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=500 [M+NH4]+


(26) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(2-methyl-1H-indol-5-yl)-amino]-acetate






Mass spectrum (ESI): m/z=467 [M−H]


(27) tert.butyl[(3-bromo-5-methyl-phenylsulphonyl)-(1H-indol-5-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=498 [M+NH4]+


(28) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(7-methyl-1H-indol-5-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=486 [M+NH4]+


(29) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(6-methyl-1H-indol-5-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=486 [M+NH4]+


(30) tert-butyl 5′-{5-[tert-butoxycarbonyl methyl-(3,5-dichloro-phenylsu Iphonyl)-amino]-indol-1-yl}-2,3,5,6-tetrahydro-[1,2′]bipyrazinyl-4-carboxylate






Mass spectrum (ESI+): m/z=734 [M+NH4]+


(31) tert.butyl[(3-chloro-5-methyl-phenylsulphonyl)-(1H-indol-5-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=435 [M+H]+


(32) tert.butyl[(3,5-dibromo-phenylsulphonyl)-(1H-indol-5-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=560 [M+NH4]+


(33) tert.butyl[(1-{4-[tert-butoxycarbonyl-(2-(bis-tert-butoxycarbonyl)-amino-ethyl)-amino]-pyrimidin-2-yl}-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Mass spectrum (ESI+): m/z=908 [M+NH4]+


(34) tert-butyl 4-(6-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-pyridazin-3-yl)-piperazine-1-carboxylate






Mass spectrum (ESI+): m/z=717 [M+H]+


(35) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(2-methylamino-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetate






Mass spectrum (ESI+): m/z=562 [M+H]+


(36) tert.butyl[(3-bromo-5-chloro-phenylsulphonyl)-(1H-indol-5-yl)-amino]-acetate






Mass spectrum (ESI): m/z=497 [M−H]


(37) tert.butyl[(1-{2-[tert-butoxycarbonyl-(2-(bis-tert-butoxycarbonyl)-amino-ethyl)-amino]-pyrimidin-4-yl}-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Mass spectrum (ESI+): m/z=891 [M+H]+


(38) tert-butyl 4-(6-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-5-cyano-pyridazin-3-yl)-piperazine-1-carboxylate






Mass spectrum (ESI+): m/z=891 [M+H-tert.-butyl]+


(39) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(3-methyl-1H-indol-5-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=486 [M+NH4]+


(40) tert.butyl[(3-cyano-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Mass spectrum (ESI+): m/z=497 [M+NH4]+


(41) tert.butyl[[1-(6-chloro-pyridazin-3-yl)-2,3-dihydro-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Mass spectrum (ESI+): m/z=569 [M+H]+


(42) tert.butyl[(3-chloro-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Mass spectrum (ESI): m/z=487 [M−H]


(43) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(3-trifluoromethyl-1H-indol-5-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=521 [M+H]+


(44) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(4,6-dimethoxy-[1,3,5]triazin-2-yl)-2,3-dihydro-1H-indol-5-yl]-amino}-acetate






Mass spectrum (ESI+): m/z=596 [M+H]+


(45) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1H-indazol-5-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=294 [M+H]+


Rf value: 0.53 (silica gel:ethyl acetate/petroleum ether 1:1)


(46) tert.butyl[[6-chloro-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Mass spectrum (ESI): m/z=487 [M−H]


Rf value: 0.35 (silica gel: petroleum ether/ethyl acetate/conc. Aqueous ammonia solution 70:30:0.1)


(47) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(3-methyl-1H-indazol-5-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=470 [M+H]+


Rf value: 0.32 (silica gel: petroleum ether/ethyl acetate 2:1)


(48) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(6-ethyl-1H-indol-5-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=500 [M+NH4]+


Rf value: 0.75 (silica gel: cyclohexane/ethyl acetate 1:1)


(49) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(4-methyl-1H-indol-5-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=486 [M+NH4]+


(50) tert.butyl[[1-(2-chloro-9H-purin-6-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Mass spectrum (ESI+): m/z=607 [M+H]+


(51) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(3-ethyl-1H-indol-5-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=500 [M+NH4]+


(52) tert.butyl[[1-(5-carbamoyl-pyrazin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Rf value: 0.75 (silica gel:ethyl acetate)


(53) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(5-methylcarbamoyl-pyrazin-2-yl)-1H-indol-5-yl]-amino}-acetate






Mass spectrum (ESI+): m/z=590 [M+H]+


(54) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[5-(morpholine-4-carbonyl)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetate






Mass spectrum (ESI+): m/z=646 [M+H]+


(55) tert.butyl[[1-(5-cyano-pyrazin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Mass spectrum (ESI+): m/z=575 [M+NH4]+


(56) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(morpholine-4-carbonyl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






Mass spectrum (ESI+): m/z=646 [M+H]+


(57) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-dimethylcarbamoyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






The product is reacted further directly (1 (190)).


(58) tert.butyl[(3-bromo-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Mass spectrum (ESI): m/z=533 [M−H]


Rf value: 0.65 (silica gel: cyclohexane/ethyl acetate 2:1)


(59) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(3-pyrimidin-2-yl-3H-benzoimidazol-5-yl)-amino]-acetate






The product is reacted directly without any further purification.


(60) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1-pyrimidin-2-yl-1H-benzoimidazol-5-yl)-amino]-acetate






The product is reacted directly without any further purification.


(61) tert.butyl[(2,6-dimethyl-pyridin-4-sulphonyl)-(1H-indol-5-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=416 [M+H]+


(62) tert.butyl[(2,6-dichloro-pyridin-4-sulphonyl)-(1H-indol-5-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=456 [M+H]+


Example II






3,5-dichloro-N-(1H-indol-5-yl)-phenylsulphonamide

100 mg 5-aminoindole are dissolved in 10 ml of pyridine. To this are added 186 mg 3,5-dichlorophenylsulphonyl chloride and the mixture is left for 4 hours at ambient temperature with stirring. The solvent is eliminated in vacuo and the residue is divided between water and ethyl acetate. The aqueous phase is extracted with ethyl acetate and the combined organic phases are washed with saturated sodium chloride solution. After drying with magnesium sulphate the solvents are eliminated in vacuo and the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 10:1 to 1:5).


Yield: 240 mg (93% of theory)


Mass spectrum (ESI+): m/z=341 [M+H]+


The following compounds are obtained analogously to Example II:


(1) 3,5-dichloro-N-(1-pyrimidin-2-yl-2,3-dihydro-1H-indol-5-yl)-phenylsulphonamide






Mass spectrum (ESI+): m/z=421 [M+H]+


(2) 3,5-dichloro-N-[1-(1-methyl-1H-imidazol-2-yl)-2,3-dihydro-1H-indol-5-yl]-phenylsulphonamide






The crude product is extracted from dichloromethane/diisopropylether.


Mass spectrum (ESI+): m/z=423 [M+H]+


(3) tert-butyl 2-[5-(3,5-dichloro-phenylsulphonylamino)-2,3-dihydro-indol-1-yl]-imidazole-1-carboxylate






Mass spectrum (ESI+): m/z=509 [M+H]+


(4) 3,5-dichloro-N-(1-pyridin-4-yl-2,3-dihydro-1H-indol-5-yl)-phenylsulphonamide






The crude product is extracted from dichloromethane.


Mass spectrum (ESI+): m/z=420 [M+H]+


(5) 3,5-dichloro-N-(1-pyrimidin-2-yl-1H-indol-4-yl)-phenylsulphonamide






Mass spectrum (ESI+): m/z=436 [M+NH4]+


(6) tert-butyl 6′-[5-(3,5-dichloro-phenylsulphonylamino)-indol-1-yl]-2,3,5,6-tetrahydro-[1,2′]bipyrazinyl-4-carboxylate






Mass spectrum (ESI+): m/z=603 [M+H]+


(7) tert-butyl 6′-[5-(3,5-dichloro-phenylsulphonylamino)-2,3-dihydro-indol-1-yl]-2,3,5,6-tetrahydro-[1,2′]bipyrazinyl-4-carboxylate






Mass spectrum (ESI+): m/z=605 [M+H]+


(8) 3,5-dichloro-N-(1-pyrimidin-2-yl-2,3-dihydro-1H-indol-4-yl)-phenylsulphonamide






The reaction is carried out in dichloromethane/pyridine 2:1. The crude product is further reacted directly in Example VI (24).


(9) 3,5-dichloro-N-{1-[4-(2-dimethylamino-ethylamino)-pyrimidin-2-yl]-2,3-dihydro-1H-indol-5-yl}-phenylsulphonamide






The reaction is carried out in dichloromethane/pyridine 2:1.


Mass spectrum (ESI+): m/z=507 [M+H]+


(10) tert-butyl 4-{6-[5-(3,5-dichloro-phenylsulphonylamino)-2,3-dihydro-indol-1-yl]-pyridazin-3-yl}-piperazine-1-carboxylate






The reaction is carried out in dichloromethane/pyridine 3:1.


Mass spectrum (ESI+): m/z=605 [M+H]+


(11) tert-butyl {2-[5-(3,5-dichloro-phenylsulphonylamino)-2,3-dihydro-indol-1-yl]-pyrimidin-4-yl}-(2-dimethylamino-ethyl)-carbamate






The reaction is carried out in dichloromethane/pyridine 3:1.


Mass spectrum (ESI+): m/z=607 [M+H]+


(12) tert-butyl 6-[5-(3,5-dichloro-phenylsulphonylamino)-2,3-dihydro-indol-1-yl]-pyridazin-3-yl}-(2-dimethylamino-ethyl)-carbamate






The reaction is carried out in dichloromethane/pyridine 3:1.


Mass spectrum (ESI+): m/z=607 [M+H]+


(13) N-(1H-indole-5-yl)-3,5-dimethyl-phenylsulphonamide






The reaction is carried out in dichloromethane/pyridine 5:1.


Mass spectrum (ESI+): m/z=301 [M+H]+


(14) tert-butyl(2-(bis-tert-butoxycarbonyl)-amino-ethyl)-{6-[5-(3,5-dichloro-phenylsulphonylamino)-2,3-dihydro-indol-1-yl]-pyridazin-3-yl}-carbamate






The reaction is carried out in dichloromethane/pyridine 3:1.


Mass spectrum (ESI+): m/z=779 [M+H]+


(15) tert-butyl(2-(bis-tert-butoxycarbonyl)-amino-ethyl)-{6-[5-(3,5-dichloro-phenylsulphonylamino)-indol-1-yl]-pyridazin-3-yl}-carbamate






The reaction is carried out in dichloromethane/pyridine 3:1.


Mass spectrum (ESI+): m/z=777 [M+H]+


(16) tert-butyl 3-{6-[5-(3,5-dichloro-phenylsulphonylamino)-2,3-dihydro-indol-1-yl]-pyridazin-3-yl}-2-oxo-imidazolidine-1-carboxylate






The reaction is carried out in dichloromethane/pyridine 3:1.


Mass spectrum (ESI+): m/z=605 [M+H]+


(17) 3,5-dichloro-N-(2,3-dimethyl-1H-indol-5-yl)-phenylsulphonamide






Mass spectrum (ESI): m/z=367 [M−H]


(18) 3,5-dichloro-N-(2-methyl-1H-indol-5-yl)-phenylsulphonamide






Mass spectrum (ESI): m/z=353 [M−H]


(19) 3-bromo-N-(1H-indol-5-yl)-5-methyl-phenylsulphonamide






The reaction is carried out in dichloromethane with 3 equivalents of pyridine.


Mass spectrum (ESI+): m/z=365 [M+H]+


(20) tert-butyl 5′-[5-(3,5-dichloro-phenylsulphonylamino)-indol-1-yl]-2,3,5,6-tetrahydro-[1,2′]bipyrazinyl-4-carboxylate






The reaction is carried out in dichloromethane/pyridine 3:1.


Mass spectrum (ESI+): m/z=603 [M+H]+


(21) 3-chloro-N-(1H-indol-5-yl)-5-methyl-phenylsulphonamide






The reaction is carried out in dichloromethane with 3 equivalents of pyridine.


Mass spectrum (ESI+): m/z=321 [M+H]+


(22) 3,5-dibromo-N-(1H-indol-5-yl)-phenylsulphonamide






The reaction is carried out in dichloromethane with 3 equivalents of pyridine.


Mass spectrum (ESI): m/z=429 [M−H]


(23) tert-butyl(2-(bis-tert-butoxycarbonyl)-amino-ethyl)-{2-[5-(3,5-dichloro-phenylsulphonylamino)-indol-1-yl]-pyrimidin-4-yl}-carbamate






The reaction is carried out in dichloromethane/pyridine 3:1.


Mass spectrum (ESI+): m/z=777 [M+H]+


(24) tert-butyl 4-{6-[5-(3,5-dichloro-phenylsulphonylamino)-indol-1-yl]-pyridazin-3-yl}-piperazine-1-carboxylate






The reaction is carried out in dichloromethane/pyridine 3:1.


Mass spectrum (ESI+): m/z=603 [M+H]+


(25) 3,5-dichloro-N-[1-(2-methylamino-pyrimidin-4-yl)-1H-indol-5-yl]-phenylsulphonamide






The reaction is carried out in dichloromethane/pyridine 3:1.


Mass spectrum (ESI+): m/z=448 [M+H]+


(26) 3-bromo-5-chloro-N-(1H-indol-5-yl)-phenylsulphonamide






The reaction is carried out in dichloromethane with 3 equivalents of pyridine.


Mass spectrum (ESI+): m/z=385 [M+H]+


(27) tert-butyl(2-(bis-tert-butoxycarbonyl)-amino-ethyl)-{4-[5-(3,5-dichloro-phenylsulphonylamino)-indol-1-yl]-pyrimidin-2-yl}-carbamate






The reaction is carried out in dichloromethane/pyridine 3:1.


Mass spectrum (ESI+): m/z=777 [M+H]+


(28) 3,5-dichloro-N-(3-methyl-1H-indol-5-yl)-phenylsulphonamide






The reaction is carried out in dichloromethane/pyridine 5:1.


Mass spectrum (ESI+): m/z=355 [M+H]+


(29) 3,5-dichloro-N-(3-cyano-1H-indol-5-yl)-phenylsulphonamide






The reaction is carried out in dichloromethane/pyridine 5:1.


Mass spectrum (ESI+): m/z=383 [M+NH4]+


(30) 3,5-dichloro-N-[1-(6-chloro-pyridazin-3-yl)-2,3-dihydro-1H-indol-5-yl]-phenylsulphonamide






The reaction is carried out in dichloromethane/pyridine 5:1.


Mass spectrum (ESI+): m/z=455 [M+H]+


(31) 3,5-dichloro-N-(3-chloro-1H-indol-5-yl)-phenylsulphonamide






The reaction is carried out in dichloromethane/pyridine 5:1.


Mass spectrum (ESI+): m/z=373 [M+H]+


(32) 3,5-dichloro-N-(3-trifluoromethyl-1H-indol-5-yl)-phenylsulphonamide






The reaction is carried out in dichloromethane/pyridine 5:1.


Mass spectrum (ESI+): m/z=409 [M+H]+


(33) 3,5-dichloro-N-[1-(4,6-dimethoxy-[1,3,5]triazin-2-yl)-2,3-dihydro-1H-indol-5-yl]-phenylsulphonamide






The reaction is carried out in dichloromethane/pyridine 5:1.


Mass spectrum (ESI+): m/z=482 [M+H]+


(34) 3,5-dichloro-N-(1H-indazol-5-yl)-phenylsulphonamide






Mass spectrum (ESI): m/z=340 [M−H]


Rf value: 0.60 (silica gel:ethyl acetate/petroleum ether 2:1)


(35) 3,5-dichloro-N-(6-chloro-1H-indol-5-yl)-phenylsulphonamide






Mass spectrum (ESI): m/z=373 [M−H]


Rf value: 0.65 (silica gel: cyclohexane/ethyl acetate 1:1)


(36) 3,5-dichloro-N-(3-methyl-1H-indazol-5-yl)-phenylsulphonamide






Mass spectrum (ESI): m/z=354 [M−H]


(37) 3,5-dichloro-N-(6-ethyl-1H-indol-5-yl)-phenylsulphonamide






Mass spectrum (ESI+): m/z=368 [M+H]+


Rf value: 0.65 (silica gel: cyclohexane/ethyl acetate 1:1)


(38) 3,5-dichloro-N-(3-ethyl-1H-indol-5-yl)-phenylsulphonamide






Mass spectrum (ESI+): m/z=369 [M+H]+


(39) 5-[5-(3,5-dichloro-phenylsulphonylamino)-indol-1-yl]-pyrazin-2-carboxylic acid-amide






Mass spectrum (ESI): m/z=460 [M−H]


(40) 5-[5-(3,5-dichloro-phenylsulphonylamino)-indol-1-yl]-pyrazin-2-carboxylic acid-methyl-amide






Mass spectrum (ESI): m/z=474 [M−H]


(41) 3,5-dichloro-N-{1-[5-(morpholine-4-carbonyl)-pyrazin-2-yl]-1H-indol-5-yl}-phenyl-sulphonamide






Mass spectrum (ESI): m/z=530 [M−H]


(42) 3,5-dichloro-N-[1-(5-cyano-pyrazin-2-yl)-1H-indol-5-yl]-phenylsulphonamide






Mass spectrum (ESI): m/z=442 [M−H]


(43) 3,5-dichloro-N-{1-[6-(morpholine-4-carbonyl)-pyridazin-3-yl]-1H-indol-5-yl}-phenylsulphonamide






The crude product is further reacted directly (VI (80)).


(44) 6-[5-(3,5-dichloro-phenylsulphonylamino)-indol-1-yl]-pyridazine-3-carboxylic acid-dimethylamide






The crude product is further reacted directly (VI (81)).


(45) N-(3-bromo-1H-indol-5-yl)-3,5-dichloro-phenylsulphonamide






Mass spectrum (ESI): m/z=419 [M−H]


Rf value: 0.75 (silica gel: cyclohexane/ethyl acetate 1:1)


(46) 3,5-dichloro-N-(3-pyrimidin-2-yl-3H-benzoimidazol-5-yl)-phenylsulphonamide






Mass spectrum (ESI): m/z=418 [M−H]


(47) 3,5-dichloro-N-(1-pyrimidin-2-yl-1H-benzoimidazol-5-yl)-phenylsulphonamide






Mass spectrum (ESI): m/z=418 [M−H]


Example III






1-(1-methyl-1H-imidazol-2-yl)-2,3-dihydro-1H-indol-5-ylamine

170 mg 1-(1-methyl-1H-imidazol-2-yl)-5-nitro-2,3-dihydro-1H-indole are dissolved in 20 ml of tetrahydrofuran. To this are added 20 mg palladium on charcoal (10%) and the mixture is hydrogenated for 1 hour at ambient temperature. Then the catalyst is filtered off and the solvent is eliminated in vacuo. The crude product is extracted from diethyl ether.


Yield: 95 mg (64% of theory)


Mass spectrum (ESI+): m/z=215 [M+H]+


The following compounds are obtained analogously to Example III:


(1) 1-pyrimidin-2-yl-2,3-dihydro-1H-indol-5-ylamine






The reaction is carried out in dichloromethane/methanol 1:1. The crude product is further reacted directly in Example XXX.


(2) tert-butyl 2-(5-amino-2,3-dihydro-indol-1-yl)-imidazole-1-carboxylate






The reaction is carried out in tetrahydrofuran.


Rf value: 0.60 (Aluminiumoxyd, petroleum ether/ethyl acetate 1:4)


(3) 1-pyridin-4-yl-2,3-dihydro-1H-indol-5-ylamine






The reaction is carried out in tetrahydrofuran.


Mass spectrum (ESI+): m/z=212 [M+H]+


(4) 1-pyrimidin-2-yl-1H-indol-4-ylamine






Mass spectrum (ESI+): m/z=211 [M+H]+


(5) tert-butyl 6′-(5-amino-indol-1-yl)-2,3,5,6-tetrahydro-[1,2′]bipyrazinyl-4-carboxylate






Mass spectrum (ESI+): m/z=395 [M+H]+


(6) tert-butyl 6′-(5-amino-2,3-dihydro-indol-1-yl)-2,3,5,6-tetrahydro-[1,2′]bipyrazinyl-4-carboxylate






Tetrahydrofuran is used as solvent. The crude product is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=397 [M+H]+


(7) 1-pyrimidin-2-yl-2,3-dihydro-1H-indol-4-ylamine






Tetrahydrofuran is used as solvent. The crude product is chromatographed on silica gel and is further reacted directly in Example XI (17).


(8) N-[2-(5-amino-2,3-dihydro-indol-1-yl)-pyrimidin-4-yl]-N′,N′-dimethyl-ethan-1,2-diamine






Tetrahydrofuran is used as solvent. The crude product is chromatographed on aluminium oxide.


Mass spectrum (ESI+): m/z=299 [M+H]+


(9) tert-butyl 4-[6-(5-amino-2,3-dihydro-indol-1-yl)-pyridazin-3-yl]-piperazine-1-carboxylate






Tetrahydrofuran is used as solvent. The crude product is extracted from diisopropyl ether.


Mass spectrum (ESI+): m/z=397 [M+H]+


(10) tert-butyl[2-(5-amino-2,3-dihydro-indol-1-yl)-pyrimidin-4-yl]-(2-dimethylamino-ethyl)-carbamate






Tetrahydrofuran is used as solvent. The crude product is further reacted directly in Example XI (20).


Rf value: 0.18 (aluminium oxide, petroleum ether/ethyl acetate=1:4)


(11) tert-butyl[6-(5-amino-2,3-dihydro-indol-1-yl)-pyridazin-3-yl]-(2-dimethylamino-ethyl)-carbamate






Tetrahydrofuran is used as solvent.


Mass spectrum (ESI+): m/z=399 [M+H]+


(12) tert-butyl[6-(5-amino-2,3-dihydro-indol-1-yl)-pyridazin-3-yl]-(2-(bis-tert-butoxycarbonyl)-amino-ethyl)-carbamate






Tetrahydrofuran is used as solvent. The crude product is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=571 [M+H]+


(13) tert-butyl[6-(5-amino-indol-1-yl)-pyridazin-3-yl]-(2-(bis-tert-butoxycarbonyl)-amino-ethyl)-carbamate






Tetrahydrofuran is used as solvent. The crude product is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=569 [M+H]+


(14) tert-butyl 3-[6-(5-amino-2,3-dihydro-indol-1-yl)-pyridazin-3-yl]-2-oxo-imidazolidine-1-carboxylate






Tetrahydrofuran is used as solvent. The crude product is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=397 [M+H]+


(15) 2,3-dimethyl-1H-indol-5-ylamine






Mass spectrum (ESI+): m/z=161 [M+H]+


(16) tert-butyl 5′-(5-amino-indol-1-yl)-2,3,5,6-tetrahydro-[1,2′]bipyrazinyl-4-carboxylate






Tetrahydrofuran is used as solvent. The crude product is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=395 [M+H]+


(17) tert-butyl[2-(5-amino-indol-1-yl)-pyrimidin-4-yl]-(2-(bis-tert-butoxycarbonyl)-amino-ethyl)-carbamate






Tetrahydrofuran is used as solvent. The crude product is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=569 [M+H]+


(18) tert-butyl 4-[6-(5-amino-indol-1-yl)-pyridazin-3-yl]-piperazine-1-carboxylate






Tetrahydrofuran is used as solvent.


Mass spectrum (ESI+): m/z=395 [M+H]+


(19) 1-(2-methylamino-pyrimidin-4-yl)-1H-indol-5-ylamine






Tetrahydrofuran is used as solvent. The crude product is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=240 [M+H]+


(20) tert-butyl[4-(5-amino-indol-1-yl)-pyrimidin-2-yl]-(2-(bis-tert-butoxycarbonyl)-amino-ethyl)-carbamate






Tetrahydrofuran is used as solvent. The crude product is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=569 [M+H]+


(21) 3-methyl-1H-indol-5-ylamine






Tetrahydrofuran is used as solvent. The crude product is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=147 [M+H]+


(22) 5-amino-1H-indole-3-carbonitrile






Tetrahydrofuran is used as solvent.


Mass spectrum (ESI+): m/z=158 [M+H]+


(23) 1-(6-chloro-pyridazin-3-yl)-2,3-dihydro-1H-indol-5-ylamine






Tetrahydrofuran/methanol 20:15 is used as solvent and Raney nickel is used as catalyst. The mixture is hydrogenated for 24 hours at 2 bar. The crude product is chromatographed on silica gel (dichloromethane/methanol 99:1 to 70:30).


Mass spectrum (ESI+): m/z=247 [M+H]+


(24) 3-trifluoromethyl-1H-indol-5-ylamine






Tetrahydrofuran is used as solvent and the mixture is hydrogenated for 8 hours at 50° C.


Rf value: 0.5 (silica gel; cyclohexane/ethyl acetate 1:1)


(25) 1-(4,6-dimethoxy-[1,3,5]triazin-2-yl)-2,3-dihydro-1H-indol-5-ylamine






Dichloromethane is used as solvent and the mixture is hydrogenated for 7 hours at 2 bar. The crude product is extracted from diethyl ether.


Mass spectrum (ESI+): m/z=274 [M+H]+


(26) 6-chloro-1H-indol-5-ylamine






Tetrahydrofuran is used as solvent and Raney nickel as catalyst.


Mass spectrum (ESI+): m/z=167 [M+H]+


Rf value: 0.57 (silica gel; cyclohexane/ethyl acetate 1:1)


(27) 6-ethyl-1H-indol-5-ylamine






Tetrahydrofuran is used as solvent and Raney nickel as catalyst.


Mass spectrum (ESI+): m/z=161 [M+H]+


Rf value: 0.45 (silica gel; cyclohexane/ethyl acetate 1:1)


(28) 3-ethyl-1H-indol-5-ylamine






The crude product is chromatographed on silica gel (cyclohexane/ethyl acetate 50:50 to 0:100).


Mass spectrum (ESI+): m/z=161 [M+H]+


(29) 5-(5-amino-indol-1-yl)-pyrazin-2-carboxylic acid-amide






Mass spectrum (ESI+): m/z=254 [M+H]+


(30) 5-(5-amino-indol-1-yl)-pyrazin-2-carboxylic acid-methyl-amide






Mass spectrum (ESI+): m/z=268 [M+H]+


(31) [5-(5-amino-indol-1-yl)-pyrazin-2-yl]-morpholin-4-yl-methanone






Mass spectrum (ESI+): m/z=324 [M+H]+


(32) 5-(5-amino-indol-1-yl)-pyrazine-2-carbonitrile






The hydrogenation is carried out in tetrahydrofuran. The crude product is chromatographed on silica gel (cyclohexane/ethyl acetate 50:50 to 0:100).


Mass spectrum (ESI+): m/z=236 [M+H]+


(33) [6-(5-amino-indol-1-yl)-pyridazin-3-yl]-morpholin-4-yl-methanone






The hydrogenation is carried out in tetrahydrofuran. The crude product is further reacted directly (XI (60)).


(34) 6-(5-amino-indol-1-yl)-pyridazine-3-carboxylic acid-dimethylamide






The hydrogenation is carried out in tetrahydrofuran. The crude product is further reacted directly (XI (61)).


(35) 6-amino-1-pyrimidin-2-yl-1H-benzoimidazole






The crude product is further reacted directly.


(36) 5-amino-1-pyrimidin-2-yl-1H-benzoimidazole






The crude product is further reacted directly.


Example IV






tert-butyl 4-{5-[5-(3,5-dichloro-phenylsulphonylamino)-indol-1-yl]-pyrazine-2-carbonyl}-piperazine-1-carboxylate

206 mg tert-butyl 4-[5-(5-nitro-indol-1-yl)-pyrazin-2-carbonyl]-piperazine-1-carboxylate are dissolved in 10 ml of methanol. 30 mg palladium on charcoal (10%) are added and the mixture is hydrogenated for 4 hours at ambient temperature. The catalyst is suction filtered and washed with methanol. The solvent is eliminated in vacuo and the residue is taken up in 5 ml of pyridine. 81 mg of 3,5-dichlorophenylsulphonyl chloride are added and the mixture is stirred for 12 hours at ambient temperature. Then the pyridine is eliminated in vacuo and the residue is divided between semisaturated sodium chloride solution and ethyl acetate. The aqueous phase is extracted once with ethyl acetate and the combined organic phases are dried on magnesium sulphate. Then the solvent is eliminated in vacuo.


Yield: 230 mg (80% of theory)


Mass spectrum (ESI): m/z=629 [M−H]


The following compounds are obtained analogously to Example IV:


(1) tert-butyl 4-{2-[5-(3,5-dichloro-phenylsulphonylamino)-2,3-dihydro-indol-1-yl]-pyrimidin-4-yl}-piperazine-1-carboxylate






Mass spectrum (ESI+): m/z=605 [M+H]+


(2) tert-butyl 4-{2-[5-(3,5-dichloro-phenylsulphonylamino)-indol-1-yl]-pyrimidin-4-yl}-piperazine-1-carboxylate






(3) tert-butyl 4-{5-[5-(3,5-dichloro-phenylsulphonylamino)-2,3-dihydro-indol-1-yl]-pyrazin-2-carbonyl}-piperazine-1-carboxylate






Mass spectrum (ESI+): m/z=633 [M+H]+


(4) 3,5-dichloro-N-(7-methyl-1H-indol-5-yl)-phenylsulphonamide






Mass spectrum (ESI): m/z=353 [M−H]


(5) 3,5-dichloro-N-(6-methyl-1H-indol-5-yl)-phenylsulphonamide






Mass spectrum (ESI+): m/z=355 [M+H]+


(6) tert-butyl 4-{5-cyano-6-[5-(3,5-dichloro-phenylsulphonylamino)-indol-1-yl]-pyridazin-3-yl}-piperazine-1-carboxylate






The product is further reacted directly in Example VI (63).


(7) 3,5-dichloro-N-(4-methyl-1H-indol-5-yl)-phenylsulphonamide






Mass spectrum (ESI+): m/z=355 [M+H]+


(8) 3,5-dichloro-N-[1-(2-chloro-9H-purin-6-yl)-1H-indol-5-yl]-phenylsulphonamide






The crude product is further reacted directly (VI (73)).


Example V






{(3,5-dichloro-phenylsulphonyl)-[1-(2,6-dichloro-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetic acid

162 mg tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(2,6-dichloro-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetate are dissolved in 3 ml dichloromethane. 0.64 ml trifluoroacetic acid are added thereto and the solution is stirred for 12 hours at ambient temperature. The solvents are eliminated in vacuo, the residue is twice taken up in dichloromethane and this is again eliminated in vacuo. The residue is extracted from diethyl ether.


Yield: 31 mg (18% of theory)


Mass spectrum (ESI+): m/z=545 [M+H]+


Example VI






tert.butyl[[1-(2-cyano-phenyl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate

300 mg tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1H-indol-5-yl)-amino]-acetate, 12 mg copper iodide and 307 mg potassium phosphate are placed in a flask. It is evacuated twice and filled with argon. Then 1 ml of toluene and 166 mg 2-iodo-benzonitrile are added. After the addition of 21 μl N,N′-dimethyl-trans-cyclohexanediamine the mixture is heated to 110° C. for 8 hours. Then it is divided between water and ethyl acetate. The aqueous phase is extracted with ethyl acetate and the combined organic phases are dried on magnesium sulphate. The solvents are eliminated in vacuo and the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 10:1 to 1:2).


Yield: 266 mg (73% of theory)


Mass spectrum (ESI+): m/z=573 [M+NH4]+


The following compounds are obtained analogously to Example VI:


(1) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1-pyrimidin-2-yl-1H-indol-5-yl)-amino]-acetate






2-Iodopyrimidine is used instead of 2-iodo-benzonitrile

Mass spectrum (ESI+): m/z=550 [M+NH4]+


(2) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1-pyrazin-2-yl-1H-indol-5-yl)-amino]-acetate






2-Iodopyrazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=550 [M+NH4]+


(3) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1-pyrimidin-5-yl-1H-indol-5-yl)-amino]-acetate






5-Iodopyrimidine is used instead of 2-iodo-benzonitrile

Mass spectrum (ESI+): m/z=533 [M+H]+


(4) benzyl 3-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-benzoate






Benzyl 5-iodobenzoate is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=682 [M+NH4]+


(5) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(4-morpholin-4-yl-phenyl)-1H-indol-5-yl]-amino}-acetate






4-Morpholino-iodobenzene is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=616 [M+H]+


(6) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(4-morpholin-4-ylmethyl-phenyl)-1H-indol-5-yl]-amino}-acetate






4-Morpholinomethyl-iodobenzene is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=630 [M+H]+


(7) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1-pyridin-4-yl-1H-indol-5-yl)-amino]-acetate






4-iodopyridine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=532 [M+H]+


(8) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[5-(2-dimethylamino-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetate






5-dimethylaminoethylamino-2-bromo-pyrazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=619 [M+H]+


(9) tert-butyl 4-(3-{5-[tert-butoxycarbonyl methyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-benzoyl)-piperazine-1-carboxylate






Tert-butyl 4-(3-iodo-benzoyl)-piperazine-1-carboxylate is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=760 [M+NH4]+


(10) tert-butyl 4-(4-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-benzoyl)-piperazine-1-carboxylate






Tert-butyl 4-(4-iodo-benzoyl)-piperazine-1-carboxylate is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=760 [M+NH4]+


(11) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1-pyridin-2-yl-1H-indol-5-yl)-amino]-acetate






2-iodo-pyridine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=532 [M+H]+


(12) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(3-trifluoromethyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate






2-bromo-3-trifluoromethyl-pyridine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=617 [M+NH4]+


(13) tert-butyl 4-(6-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-5-methyl-pyridazin-3-yl)-piperazine-1-carboxylate






Tert-butyl 4-(6-iodo-5-methyl-pyridazin-3-yl)-piperazine-1-carboxylate is used instead of 2-iodo-benzonitrile. The reaction lasts 5 hours at 100° C.


Mass spectrum (ESI+): m/z=731 [M+H]+


(14) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






N′-(6-bromo-pyridazin-3-yl)-N,N-dimethyl-ethan-1,2-diamine is used instead of 2-iodo-benzonitrile. The reaction lasts 5 hours at 10° C.


Mass spectrum (ESI+): m/z=619 [M+H]+


(15) tert.butyl[{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-(3,5-dimethyl-phenylsulphonyl)-amino]-acetate






N′-(6-bromo-pyridazin-3-yl)-N,N-dimethyl-ethan-1,2-diamine is used instead of 2-iodo-benzonitrile. The reaction lasts 5 hours at 10° C.


Mass spectrum (ESI+): m/z=579 [M+H]+


(16) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(2-piperazin-1-yl-quinolin-8-yl)-1H-indol-5-yl]-amino}-acetate






8-bromo-2-piperazin-1-yl-quinoline is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=666 [M+H]+


(17) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






and

  • tert.butyl{(3,5-dichloro-phenylsulphonyl)-[3-iodo-1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate







3-Iodo-6-methyl-pyridazine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=547 [M+H]+ (tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate) and


Mass spectrum (ESI+): m/z=673 [M+H]+ (tert.butyl{(3,5-dichloro-phenylsulphonyl)-[3-iodo-1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate)


(18) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-2,3-dimethyl-1H-indol-5-yl}-amino)-acetate






N′-(6-bromo-pyridazin-3-yl)-N,N-dimethyl-ethan-1,2-diamine is used instead of 2-iodo-benzonitrile. The reaction lasts 5 hours at 10° C.


Mass spectrum (ESI+): m/z=647 [M+H]+


(19) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-2-methyl-1H-indol-5-yl}-amino)-acetate






N′-(6-bromo-pyridazin-3-yl)-N,N-dimethyl-ethan-1,2-diamine is used instead of 2-iodo-benzonitrile. The reaction lasts 5 hours at 10° C.


Mass spectrum (ESI+): m/z=633 [M+H]+


(20) tert.butyl((3-bromo-5-methyl-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






N′-(6-bromo-pyridazin-3-yl)-N,N-dimethyl-ethan-1,2-diamine is used instead of 2-iodo-benzonitrile. The reaction lasts 5 hours at 100° C.


Mass spectrum (ESI+): m/z=643 [M+H]+


(21) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[4-(2-dimethylamino-ethylcarbamoyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate






2-bromo-N-(2-dimethylamino-ethyl)-isonicotinamid is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=646 [M+H]+


(22) tert-butyl 4-(2-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-pyridin-4-carbonyl)-piperazine-1-carboxylate






4-(2-bromo-pyridin-4-carbonyl)-piperazine-1-carboxylate tert-butyl is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=744 [M+H]+


(23) tert.butyl((3-chloro-5-methyl-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






N′-(6-bromo-pyridazin-3-yl)-N,N-dimethyl-ethan-1,2-diamine is used instead of 2-iodo-benzonitrile. The reaction lasts 5 hours at 10° C.

Mass spectrum (ESI+): m/z=599 [M+H]+


(24) tert.butyl[{1-[5-(2-dimethylamino-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-(3,5-dimethyl-phenylsulphonyl)-amino]-acetate






N′-(5-bromo-pyrazin-2-yl)-N,N-dimethyl-ethan-1,2-diamine is used instead of 2-iodo-benzonitrile. The reaction lasts 5 hours at 10° C.


Mass spectrum (ESI+): m/z=579 [M+H]+


(25) tert.butyl((3-bromo-5-methyl-phenylsulphonyl)-{1-[5-(2-dimethylamino-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetate






N′-(5-bromo-pyrazin-2-yl)-N,N-dimethyl-ethan-1,2-diamine is used instead of 2-iodo-benzonitrile. The reaction lasts 5 hours at 10° C.


Mass spectrum (ESI+): m/z=643 [M+H]+


(26) tert.butyl((3,5-dibromo-phenylsulphonyl)-{1-[5-(2-dimethylamino-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetate






N′-(5-bromo-pyrazin-2-yl)-N,N-dimethyl-ethan-1,2-diamine is used instead of 2-iodo-benzonitrile. The reaction lasts 5 hours at 10° C.


Mass spectrum (ESI): m/z=707 [M−H]


(27) tert.butyl((3-chloro-5-methyl-phenylsulphonyl)-{1-[5-(2-dimethylamino-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetate






N′-(5-bromo-pyrazin-2-yl)-N,N-dimethyl-ethan-1,2-diamine is used instead of 2-iodo-benzonitrile. The reaction lasts 5 hours at 10° C.


Mass spectrum (ESI+): m/z=599 [M+H]+


(28) tert.butyl((3,5-dibromo-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






N′-(6-bromo-pyridazin-3-yl)-N,N-dimethyl-ethan-1,2-diamine is used instead of 2-iodo-benzonitrile. The reaction lasts 5 hours at 10° C.


Mass spectrum (ESI): m/z=707 [M−H]


(29) tert.butyl[[1-(6-amino-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






3-bromo-6-amino-pyridazine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=548 [M+H]+


(30) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1-naphthalin-2-yl-1H-indol-5-yl)-amino]-acetate






2-Iodo-naphthalene is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=598 [M+NH4]+


(31) tert.butyl((3-bromo-5-chloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






N′-(6-bromo-pyridazin-3-yl)-N,N-dimethyl-ethan-1,2-diamine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 100° C.


Rf value: 0.4 (dichloromethane/(methanol/water/acetic acid 8:1:1) 4:1)


(32) tert.butyl((3-bromo-5-chloro-phenylsulphonyl)-{1-[5-(2-dimethylamino-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetate






N′-(5-bromo-pyrazin-2-yl)-N,N-dimethyl-ethan-1,2-diamine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 100° C.


Rf value: 0.5 (dichloromethane/(methanol/water/acetic acid 8:1:1) 4:1)


(33) tert-butyl[[1-(5-amino-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






2-iodo-5-amino-pyridine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=547 [M+H]+


(34) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(2-methyl-quinolin-6-yl)-1H-indol-5-yl]-amino}-acetate






6-bromo-2-methyl-quinoline is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=596 [M+H]+


(35) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1-naphthalin-1-yl-1H-indol-5-yl)-amino]-acetate






1-iodo-naphthalene is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=598 [M+NH4]+


(36) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(3-methyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate






2-bromo-3-methyl-pyridine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=546 [M+H]+


(37) tert-butyl 4-(6-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-pyridin-2-carbonyl)-piperazine-1-carboxylate






Tert-butyl 4-(6-bromo-pyridine-2-carbonyl)-piperazine-1-carboxylate is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=761 [M+NH4]+


(38) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylcarbamoyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate






6-bromo-pyridin-2-carboxylic acid-(2-dimethylamino-ethyl)-amide is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=646 [M+H]+


(39) tert-butyl 4-(6-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-pyridazin-3-yl)-[1,4]diazepan-1-carboxylate






Tert-butyl 4-(6-iodo-pyridazin-3-yl)-[1,4]diazepan-1-carboxylate is used instead of 2-iodo-benzonitrile. The reaction lasts 5 hours at 100° C.


Mass spectrum (ESI+): m/z=731 [M+H]+


(40) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-methyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate






2-bromo-6-methyl-pyridine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=546 [M+H]+


(41) tert.butyl[(1-{6-[tert-butoxycarbonyl-(3-(bis-tert-butoxycarbonyl)-amino-propyl)-amino]-pyridazin-3-yl}-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Tert-butyl(3-(bis-tert-butoxycarbonyl)-amino-propyl)-(6-iodo-pyridazin-3-yl)-carbamate is used instead of 2-iodo-benzonitrile. The reaction lasts 5 hours at 100° C.


Mass spectrum (ESI+): m/z=922 [M+NH4]+


(42) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(4-methyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate






2-bromo-4-methyl-pyridine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=546 [M+H]+


(43) tert.butyl[[1-(6-cyclopropylamino-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






3-iodo-6-cyclopropylamino-pyridazine is used instead of 2-iodo-benzonitrile. The reaction lasts 5 hours at 100° C.


Mass spectrum (ESI+): m/z=588 [M+H]+


(44) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(5-methyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate






3-iodo-6-cyclopropylamino-pyridazine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=546 [M+H]+


(45) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1-isoquinolin-1-yl-1H-indol-5-yl)-amino]-acetate






1-bromo-isoquinoline is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=582 [M+H]+


(46) tert.butyl[[1-(3-amino-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






1-bromo-isoquinoline is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=547 [M+H]+


(47) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-3-methyl-1H-indol-5-yl}-amino)-acetate






N′-(6-bromo-pyridazin-3-yl)-N,N-dimethyl-ethan-1,2-diamine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 100° C.


Mass spectrum (ESI+): m/z=633 [M+H]+


(48) tert.butyl[(1-{6-[(2-(bis-tert-butoxycarbonyl)-amino-ethyl)-methyl-amino]-pyridazin-3-yl}-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






{3-[(2-(bis-tert-butoxycarbonyl)-amino-ethyl)-methyl-amino]}-6-iodo-pyridazine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 100° C.


Mass spectrum (ESI+): m/z=805 [M+H]+


(49) tert.butyl[[1-(6-{tert-butoxycarbonyl-[2-(tert-butoxycarbonyl-methyl-amino)-ethyl]-amino}-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Tert-butyl[2-(tert-butoxycarbonyl-methyl-amino)-ethyl]-(6-iodo-pyridazin-3-yl)-carbamate is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 100° C.


Mass spectrum (ESI+): m/z=805 [M+H]+


(50) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[3-(2-dimethylamino-ethylamino)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate






N*3*-(2-dimethylamino-ethyl)-pyridin-2,3-diamine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=618 [M+H]+


(51) tert.butyl[{1-[6-(2-amino-2-methyl-propylamino)-pyridazin-3-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






N*1*-(6-iodo-pyridazin-3-yl)-2-methyl-propane-1,2-diamine is used instead of 2-iodo-benzonitrile. The reaction lasts 24 hours at 100° C.


Mass spectrum (ESI+): m/z=619 [M+H]+


(52) tert.butyl[{1-[6-(3-tert-butoxycarbonylamino-piperidin-1-yl)-pyridazin-3-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Tert-butyl[1-(6-iodo-pyridazin-3-yl)-piperidin-3-yl]-carbamate is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 100° C.


Mass spectrum (ESI+): m/z=731 [M+H]+


(53) ethyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






3-iodo-6-methyl-pyridazine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=519 [M+H]+


(54) tert.butyl[{3-cyano-1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






N′-(6-bromo-pyridazin-3-yl)-N,N-dimethyl-ethan-1,2-diamine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 100° C.


Rf value: 0.5 (dichloromethane/(methanol/33% ammonia in water 9:1) 9:1)


(55) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-morpholin-4-yl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






4-(6-iodo-pyridazin-3-yl)-morpholine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 100° C.


Mass spectrum (ESI+): m/z=618 [M+H]+


(56) tert.butyl[[1-(5-amino-pyrazin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






2-amino-5-bromo-pyrazine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=565 [M+NH4]+


(57) tert.butyl[{3-chloro-1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






N′-(6-bromo-pyridazin-3-yl)-N,N-dimethyl-ethan-1,2-diamine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 100° C.


Mass spectrum (ESI+): m/z=655 [M+H]+


(58) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-3-trifluoromethyl-1H-indol-5-yl}-amino)-acetate






N′-(6-bromo-pyridazin-3-yl)-N,N-dimethyl-ethan-1,2-diamine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 100° C.


Mass spectrum (ESI+): m/z=687 [M+H]+


(59) tert-butyl 4-(6-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-pyridin-3-carbonyl)-piperazine-1-carboxylate






Tert-butyl 4-(6-bromo-pyridin-3-carbonyl)-piperazine-1-carboxylate is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=744 [M+H]+


(60) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[5-(2-dimethylamino-ethylcarbamoyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate






6-bromo-N-(2-dimethylamino-ethyl)-nicotinamide is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 90° C.


Mass spectrum (ESI+): m/z=646 [M+H]+


(61) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-dimethylamino-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






3-dimethylamino-6-iodo-pyridazine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 100° C.


Mass spectrum (ESI+): m/z=576 [M+H]+


(62) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-hydroxy-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






3-(2-hydroxyethyl)-amino-6-iodo-pyridazine is used instead of 2-iodo-benzonitrile. The reaction lasts 5 hours at 100° C.


Mass spectrum (ESI+): m/z=592 [M+H]+


(63) tert.butyl[(1-{6-[tert-butoxycarbonyl-(2-piperidin-1-yl-ethyl)-amino]-pyridazin-3-yl}-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Tert-butyl(6-iodo-pyridazin-3-yl)-(2-piperidin-1-yl-ethyl)-carbamate is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 100° C.


Mass spectrum (ESI+): m/z=759 [M+H]+


(64) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(4-morpholin-4-yl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate






4-(2-bromo-pyridin-4-yl)-morpholine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=617 [M+H]+


Rf value: 0.40 (silica gel:ethyl acetate/petroleum ether 1:1)


(65) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(5-morpholin-4-yl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate






4-(6-bromo-pyridin-3-yl)-morpholine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=617 [M+H]+


Rf value: 0.35 (silica gel: dichloromethane/ethyl acetate 9:1)


(66) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[5-(3-oxo-morpholin-4-yl)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetate






4-(5-bromo-pyrazin-2-yl)-morpholin-3-one is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=632 [M+H]+


Rf value: 0.38 (silica gel:ethyl acetate/petroleum ether 1:1)


(67) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[5-(tetrahydro-pyran-4-yloxy)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetate






2-bromo-5-(tetrahydro-pyran-4-yloxy)-pyrazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=650 [M+NH4]+


Rf value: 0.20 (silica gel: petroleum ether/ethyl acetate 8:2)


(68) tert.butyl(S)-((3,5-dichloro-phenylsulphonyl)-{1-[5-(tetrahydro-furan-3-yloxy)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetate






(S)-2-bromo-5-(tetrahydro-furan-3-yloxy)-pyrazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=636 [M+NH4]+


Rf value: 0.20 (silica gel: petroleum ether/ethyl acetate 8:2)


(69) tert.butyl(R)-((3,5-dichloro-phenylsulphony)-{1-[6-(tetrahydro-furan-3-ylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






(R)-(6-iodo-pyridazin-3-yl)-(tetrahydro-furan-3-yl)-amine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=618 [M+H]+


Rf value: 0.24 (silica gel: dichloromethane/ethyl acetate 7:3)


(70) tert.butyl((3,5-dichloro-phenylsulphony)-{1-[6-(3-oxo-morpholin-4-yl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






4-(6-bromo-pyridazin-3-yl)-morpholin-3-one is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=632 [M+H]+


Rf value: 0.22 (silica gel: petroleum ether/ethyl acetate 1:1)


(71) tert.butyl(R)-((3,5-dichloro-phenylsulphonyl)-{1-[5-(tetrahydro-furan-3-yloxy)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetate






(R)-2-bromo-5-(tetrahydro-furan-3-yloxy)-pyrazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=636 [M+NH4]+


Rf value: 0.25 (silica gel: petroleum ether/ethyl acetate 7:3)


(72) tert.butyl(S)-((3,5-dichloro-phenylsulphony)-{1-[6-(tetrahydro-furan-3-yloxy)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






(S)-3-iodo-6-(tetrahydro-furan-3-yloxy)-pyridazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=619 [M+H]+


Rf value: 0.15 (silica gel: petroleum ether/ethyl acetate 7:3)


(73) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(tetrahydro-pyran-4-yloxy)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






3-iodo-6-(tetrahydro-pyran-4-yloxy)-pyridazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=633 [M+H]+


Rf value: 0.20 (silica gel: petroleum ether/ethyl acetate 7:3)


(74) tert.butyl(R)-((3,5-dichloro-phenylsulphonyl)-{1-[6-(tetrahydro-furan-3-yloxy)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






(R)-3-iodo-6-(tetrahydro-furan-3-yloxy)-pyridazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=619 [M+H]+


Rf value: 0.45 (silica gel: cyclohexane/ethyl acetate 1:1)


(75) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[5-(3-oxo-morpholin-4-yl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate






4-(6-bromo-pyridin-3-yl)-morpholin-3-one is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=631 [M+H]+


Rf value: 0.45 (silica gel: dichloromethane/ethyl acetate 7:3)


(76) tert.butyl(R)-((3,5-dichloro-phenylsulphonyl)-{1-[5-(tetrahydro-furan-3-ylamino)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetate






(R)-(5-bromo-pyrazin-2-yl)-(tetrahydro-furan-3-yl)-amine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=618 [M+H]+


Rf value: 0.48 (silica gel: dichloromethane/ethyl acetate 7:3)


(77) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[4-(3-oxo-morpholin-4-yl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate






4-(2-bromo-pyridin-4-yl)-morpholin-3-one is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=631 [M+H]+


Rf value: 0.57 (silica gel: dichloromethane/ethyl acetate 7:3)


(78) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1-{6-[methyl-(tetrahydro-pyran-4-yl)-amino]-pyridazin-3-yl}-1H-indol-5-yl)-amino]-acetate






(6-iodo-pyridazin-3-yl)-methyl-(tetrahydro-pyran-4-yl)-amine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=646 [M+H]+


Rf value: 0.57 (silica gel: dichloromethane/ethyl acetate 7:3)


(79) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[5-(3-oxo-piperazin-1-yl)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetate






4-(5-bromo-pyrazin-2-yl)-piperazin-2-one is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=631 [M+H]+


Rf value: 0.40 (silica gel: cyclohexane/ethyl acetate 1:1)


(80) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[5-(tetrahydro-pyran-4-ylamino)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetate






(5-bromo-pyrazin-2-yl)-(tetrahydro-pyran-4-yl)-amine is used instead of 2-iodo-benzonitrile.


Rf value: 0.40 (silica gel: dichloromethane/ethyl acetate 7:3)


(81) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(tetrahydro-pyran-4-ylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






(6-iodo-pyridazin-3-yl)-(tetrahydro-pyran-4-yl)-amine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=632 [M+H]+


Rf value: 0.24 (silica gel: dichloromethane/ethyl acetate 7:3)


(82) (114) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-methyl-pyridazin-3-yl)-1H-indazol-5-yl]-amino}-acetate






Tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1H-indazol-5-yl)-amino]-acetate and 3-iodo-6-methylpyridazine are used.


Mass spectrum (ESI+): m/z=548 [M+H]+


Rf value: 0.80 (silica gel: dichloromethane/ethyl acetate 7:3)


(83) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[5-(tetrahydro-furan-3-yloxy)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate






2-bromo-5-(tetrahydro-furan-3-yloxy)-pyridine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=618 [M+H]+


Rf value: 0.50 (silica gel: cyclohexane/ethyl acetate 1:1)


(84) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[5-(tetrahydro-pyran-4-yloxy)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate






2-bromo-5-(tetrahydro-pyran-4-yloxy)-pyridine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=632 [M+H]+


Rf value: 0.60 (silica gel: cyclohexane/ethyl acetate 1:1)


(85) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[4-(tetrahydro-furan-3-yloxy)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate






2-bromo-4-(tetrahydro-furan-3-yloxy)-pyridine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=618 [M+H]+


Rf value: 0.45 (silica gel: cyclohexane/ethyl acetate 1:1)


(86) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1-{5-[methyl-(tetrahydro-pyran-4-yl)-amino]-pyrazin-2-yl}-1H-indol-5-yl)-amino]-acetate






(5-bromo-pyrazin-2-yl)-methyl-(tetrahydro-pyran-4-yl)-amine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=646 [M+H]+


Rf value: 0.75 (silica gel: dichloromethane/ethyl acetate 7:3)


(87) tert.butyl((3,5-dichloro-phenylsulphonyl)-{3-iodo-1-[6-(3-oxo-piperazin-1-yl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






4-(6-iodo-pyridazin-3-yl)-piperazin-2-one is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=631 [M+H]+


(88) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(3-oxo-piperazin-1-yl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






4-(6-iodo-pyridazin-3-yl)-piperazin-2-one is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=757 [M+H]+


(89) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[4-(tetrahydro-pyran-4-yloxy)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate






2-bromo-4-(tetrahydro-pyran-4-yloxy)-pyridine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=632 [M+H]+


Rf value: 0.45 (silica gel: cyclohexane/ethyl acetate 1:1)


(90) tert.butyl[[6-chloro-1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






3-iodo-6-methyl-pyridazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=581 [M+H]+


Rf value: 0.75 (silica gel: dichloromethane/methanol 98:2)


(91) tert.butyl[[3-methyl-1-(6-methyl-pyridazin-3-yl)-1H-indazol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






3-iodo-6-methyl-pyridazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=562 [M+H]+


Rf value: 0.58 (silica gel: petroleum ether/ethyl acetate 1:1)


(92) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(5-trifluoromethyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






3-Iodo-5-trifluoromethyl-pyridazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=601 [M+H]+


Rf value: 0.31 (silica gel: petroleum ether/ethyl acetate 5:1)


(93) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[3-iodo-1-(5-trifluoromethyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






3-Iodo-5-trifluoromethyl-pyridazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=744 [M+NH4]+


Rf value: 0.38 (silica gel: petroleum ether/ethyl acetate 5:1)


(94) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-iodo-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetate






4,6-diiodo-pyrimidine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=676 [M+NH4]+


Rf value: 0.67 (silica gel: petroleum ether/ethyl acetate 2:1)


(95) (128) tert.butyl[[6-ethyl-1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






3-iodo-6-methyl-pyridazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=575 [M+H]+


Rf value: 0.40 (silica gel: cyclohexane/ethyl acetate 1:1)


(96) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-methylamino-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






and


(97) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[3-iodo-1-(6-methylamino-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






are obtained by reacting tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1H-indol-5-yl)-amino]-acetate with 3-iodo-6-methylamino-pyridazine. The products are separated by preparative HPLC.


Mass spectrum (ESI+): m/z=562 [M+H]+ tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-methylamino-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate and


Mass spectrum (ESI+): m/z=688 [M+H]+ tert.butyl{(3,5-dichloro-phenylsulphonyl)-[3-iodo-1-(6-methylamino-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate


(98) tert.butyl((3,5-dichloro-phenylsulphonyl)-{3-iodo-1-[6-(2-oxo-imidazolidin-1-yl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






1-(6-iodo-pyridazin-3-yl)-imidazolidin-2-one is used instead of 2-iodo-benzonitrile. The reaction lasts 4 hours at 100° C. The product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=743 [M+H]+


(99) tert.butyl[[1-(5-cyano-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






2-bromo-5-cyano-pyridine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=574 [M+NH4]+


(100) tert.butyl[[1-(4-amino-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






2-bromo-4-amino-pyridine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=547 [M+H]+


(101) tert.butyl[[1-(6-cyano-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






2-bromo-6-cyano-pyridine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=574 [M+NH4]+


(102) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethoxy)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






3-iodo-6-(2-dimethylamino)-ethoxy-pyridine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=620 [M+H]+


(103) tert-butyl 4-(6-{5-[(3,5-dichloro-phenylsulphonyl)-ethoxycarbonylmethyl-amino]-indol-1-yl}-pyridazin-3-yl)-[1,4]diazepan-1-carboxylate






Tert-butyl 4-(6-iodo-pyridazin-3-yl)-[1,4]diazepan-1-carboxylate is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=703 [M+H]+


(104) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(2,4-dimethoxy-pyrimidin-5-yl)-1H-indol-5-yl]-amino}-acetate






2,4-dimethoxy-5-iodo-pyrimidine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=593 [M+H]+


(105) tert.butyl[[1-(6-{tert-butoxycarbonyl-[3-(tert-butoxycarbonyl-methyl-amino)-propyl]-amino}-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






tert-butyl 3-(tert-butoxycarbonyl-methyl-amino)-propyl]-(6-iodo-pyridazin-3-yl)-carbamate is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=819 [M+H]+


(106) tert.butyl[(1-{6-[(3-(bis-tert-butoxycarbonyl)-amino-propyl)-methyl-amino]-pyridazin-3-yl}-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






{3-[(3-(bis-tert-butoxycarbonyl)-amino-propyl)-methyl-amino]}-6-iodo-pyridazine is used instead of 2-iodo-benzonitrile. The reaction lasts 12 hours at 100° C.


Mass spectrum (ESI+): m/z=805 [M+H]+


(107) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydro-pyrimidin-5-yl)-1H-indol-5-yl]-amino}-acetate






5-bromo-1,3-dimethyl-uracil is used instead of 2-iodo-benzonitrile. Mass spectrum (ESI+): m/z=610 [M+NH4]+


(108) tert.butyl[[1-(6-benzyloxy-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






3-iodo-5-benzyloxy-pyridazine is used instead of 2-iodo-benzonitrile. Mass spectrum (ESI+): m/z=639 [M+H]+


(109) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[4-(morpholine-4-carbonyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate






(2-Bromo-pyridin-4-yl)-morpholin-4-yl-methanone is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=645 [M+H]+


(110) tert.butyl[[1-(3-cyano-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






2-iodo-3-cyano-pyridine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=574 [M+NH4]+


(111) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[4-methyl-1-(6-morpholin-4-yl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






3-iodo-6-morpholin-4-yl-pyridazine is used instead of 2-iodo-benzonitrile and tert.butyl[(3,5-dichloro-phenylsulphonyl)-(4-methyl-1H-indol-5-yl)-amino]-acetate is used instead of tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1H-indol-5-yl)-amino]-acetate.


Mass spectrum (ESI+): m/z=632 [M+H]+


(112) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[4-(2-hydroxy-ethylcarbamoyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate






2-bromo-N-(2-hydroxy-ethyl)-isonicotinamide is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=619 [M+H]+


(113) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1-{6-[2-(tetrahydro-pyran-2-yloxy)-ethoxy]-pyridazin-3-yl}-1H-indol-5-yl)-amino]-acetate






3-iodo-6-[2-(tetrahydro-pyran-2-yloxy)-ethoxy]-pyridazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=677 [M+H]+


(114) tert.butyl[(1-{5-[2-(tert-butyl-dimethyl-silanyloxy)-ethylamino]-pyridin-2-yl}-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






(6-bromo-pyridin-3-yl)-[2-(tert-butyl-dimethyl-silanyloxy)-ethyl]-amine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=705 [M+H]+


(115) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(5-hydroxymethyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate






(6-bromo-pyrimidin-3-yl)-methanol is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=562 [M+H]+


(116) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-iodo-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






3,6-diido-pyridazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=659 [M+H]+


(117) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-pyrrolidin-1-yl-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






(6-iodo-pyridazin-3-yl)-(2-pyrrolidin-1-yl-ethyl)-amine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=645 [M+H]+


(118) tert-butyl 3-(6-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-pyridazin-3-yl)-2-oxo-imidazolidine-1-carboxylate






Tert-butyl 3-(6-iodo-pyridazin-3-yl)-2-oxo-imidazolidine-1-carboxylate is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=717 [M+H]+


(119) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-methylsulphanyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






3-iodo-6-methylsulphanyl-pyridazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=579 [M+H]+


(120) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[5-(2.2-dimethyl-[1.3]dioxan-5-ylamino)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate






(6-bromo-pyridin-3-yl)-(2.2-dimethyl-[1.3]dioxan-5-yl)-amine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=661 [M+H]+


(121) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(4-methylcarbamoyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate






2-bromo-N-methyl-isonicotinamide is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=589 [M+H]+


(122) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[4-(2-methoxy-ethylcarbamoyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate






2-bromo-N-(2-methoxyethyl)-isonicotinamid is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=633 [M+H]+


(123) tert.butyl[[1-(4-cyano-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






2-bromo-4-cyano-pyridine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=574 [M+NH4]+


(124) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[3-methyl-1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






3-Iodo-6-methyl-pyridazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=561 [M+H]+


(125) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-thiomorpholin-4-yl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






4-(6-iodo-pyridazin-3-yl)-thiomorpholine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=634 [M+H]+


(126) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-methanesulphinyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






3-iodo-6-methanesulphinyl-pyridazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=595 [M+H]+


(127) tert.butyl[[3-chloro-1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






3-iodo-6-methyl-pyridazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=581 [M+H]+


(128) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-phenyl-[1.3]dioxan-5-yloxy)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






3-iodo-6-(2-phenyl-[1.3]dioxan-5-yloxy)-pyridazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=711 [M+H]+


(129) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(5-methylsulphanyl-pyrazin-2-yl)-1H-indol-5-yl]-amino}-acetate






2-iodo-5-methylsulphanyl-pyrazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=596 [M+NH4]+


(130) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(5-methylsulphanyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate






2-bromo-5-methylsulphanyl-pyridine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=578 [M+H]+


(131) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-methanesulphonyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






3-iodo-6-methanesulphonyl-pyridazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=628 [M+NH4]+


(132) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[5-(2-phenyl-[1.3]dioxan-5-yloxy)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetate






2-bromo-5-(2-phenyl-[1.3]dioxan-5-yloxy)-pyrazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=728 [M+NH4]+


(133) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1-{5-[2-(tetrahydro-pyran-2-yloxy)-ethylamino]-pyrazin-2-yl}-1H-indol-5-yl)-amino]-acetate






(5-bromo-pyrazin-2-yl)-[2-(tetrahydro-pyran-2-yloxy)-ethyl]-amine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=676 [M+H]+


(134) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[5-(2-dimethylamino-ethoxy)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetate






[2-(5-bromo-pyrazin-2-yloxy)-ethyl]-dimethyl-amine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=620 [M+H]+


(135) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(4-methylsulphanyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate






2-iodo-4-methylsulphanyl-pyridine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=578 [M+H]+


(136) tert.butyl[{1-[5-(2-tert-butoxycarbonylamino-ethoxy)-pyrazin-2-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Tert-butyl[2-(5-bromo-pyrazin-2-yloxy)-ethyl]-carbamate is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=692 [M+H]+


(137) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(1-oxo-1λ4-thiomorpholin-4-yl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






4-(6-iodo-pyridazin-3-yl)-thiomorpholine-1-oxide is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=650 [M+H]+


(138) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[3-ethyl-1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






3-iodo-6-methyl-pyridazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=575 [M+H]+


(139) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[5-(1-oxo-1λ4-thiomorpholin-4-yl)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetate






4-(5-bromo-pyrazin-2-yl)-thiomorpholin-1-oxide is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=650 [M+H]+


(140) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[5-(2-hydroxy-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetate






2-(5-bromo-pyrazin-2-ylamino)-ethanol is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=592 [M+H]+


(141) 2-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-isonicotinic acid






2-bromo-isonicotinic acid is used instead of 2-iodo-benzonitrile.


Rf value: 0.18 (silica gel: dichloromethane/methanol 9:1)


(142) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(4-iodo-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate






2,4-diiodo-pyridine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=658 [M+H]+


(143) tert.butyl[{1-[5-(2-tert-butoxycarbonylamino-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Tert-butyl[2-(5-bromo-pyrazin-2-ylamino)-ethyl]-carbamate is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=691 [M+H]+


(144) tert.butyl[[1-(4-cyclopropylcarbamoyl-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






[2-Bromo-N-cyclopropyl-isonicotinamide is used instead of 2-iodo-benzonitrile.


Rf value: 0.39 (aluminium oxide: petroleum ether/ethyl acetate 6:4)


(145) methyl 2-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-isonicotinate






Methyl 2-bromo-isonicotinate is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=590 [M+H]+


(146) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[4-(methoxy-methyl-carbamoyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate






2-bromo-N-methoxy-N-methyl-isonicotinamide is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=619 [M+H]+


(147) tert-butyl 5′-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-2,3,5,6-tetrahydro-[1,2′]bipyrazinyl-4-carboxylate






Tert-butyl 5′-bromo-2,3,5,6-tetrahydro-[1,2′]bipyrazinyl-4-carboxylate is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=717 [M+H]+


(148) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(4-ethansulphinyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate






2-bromo-4-ethansulphinyl-pyridine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=608 [M+H]+


(149) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1-imidazo[1,2-a]pyrazin-6-yl-1H-indol-5-yl)-amino]-acetate






6-bromo-imidazo[1,2-a]pyrazine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=572 [M+H]+


(150) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(4-oxazol-2-yl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate






2-bromo-4-oxazol-2-yl-pyridine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=599 [M+H]+


(151) tert.butyl[[1-(4-acetyl-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






1-(2-bromo-pyridin-4-yl)-ethanone is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=574 [M+H]+


(152) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(4-propionyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate






1-(2-bromo-pyridin-4-yl)-propanone is used instead of 2-iodo-benzonitrile. The crude product is further reacted directly (1 (188)).


(153) tert.butyl[[1-(4-cyclopropylcarbamoyl-pyridin-2-yl)-3-methyl-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






2-bromo-N-cyclopropyl-isonicotinamide is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=629 [M+H]+


(154) tert.butyl[{1-[4-(tert-butoxycarbonylamino-methyl)-pyridin-2-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Tert-butyl(2-bromo-pyridin-4-ylmethyl)-carbamate is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=661 [M+H]+


(155) tert.butyl[(1-{5-[tert-butoxycarbonyl-(2-dimethylamino-ethyl)-amino]-pyrazin-2-yl}-3-methyl-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Tert.butyl(5-bromo-pyrazin-2-yl)-(2-dimethylamino-ethyl)-carbamate is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=733 [M+H]+


(156) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(5-morpholin-4-yl-pyrazin-2-yl)-1H-indol-5-yl]-amino}-acetate






4-(5-bromo-pyrazin-2-yl)-morpholine is used instead of 2-iodo-benzonitrile.


Mass spectrum (ESI+): m/z=618 [M+H]+


(157) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(1-methyl-1H-pyrazol-4-yl)-1H-indol-5-yl]-amino}-acetate






Mass spectrum (ESI+): m/z=535 [M+H]+


(158) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(5-thiazol-2-yl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






Mass spectrum (ESI+): m/z=616 [M+H]+


Rf value: 0.38 (silica gel petroleum ether/ethyl acetate 1:1)


(159) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(1-methyl-1H-imidazol-4-yl)-1H-indol-5-yl]-amino}-acetate






Mass spectrum (ESI+): m/z=535 [M+H]+


Rf value: 0.15 (silica gel: cyclohexane/ethyl acetate 1:1)


(160) tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1-thiazol-2-yl-1H-indol-5-yl)-amino]-acetate






Mass spectrum (ESI+): m/z=538 [M+H]+


Rf value: 0.75 (silica gel: cyclohexane/ethyl acetate 1:1)


(161) tert.butyl[[1-(2-cyano-thiophen-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Mass spectrum (ESI+): m/z=579 [M+NH4]+


Rf value: 0.75 (silica gel: dichloromethane/methanol 99:1)


(162) tert.butyl[[1-(5-acetyl-thiophen-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Mass spectrum (ESI+): m/z=579 [M+H]+


Rf value: 0.35 (silica gel: petroleum ether/ethyl acetate 7:3)


(163) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(2,6-dimethyl-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetate






Mass spectrum (ESI+): m/z=561 [M+H]+


Rf value: 0.35 (silica gel: cyclohexane/ethyl acetate 1:1)


(164) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(5-methyl-[1.3.4]thiadiazol-2-yl)-1H-indol-5-yl]-amino}-acetate






Mass spectrum (ESI+): m/z=553 [M+H]+


Rf value: 0.50 (silica gel: cyclohexane/ethyl acetate 1:1)


(165) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-methoxy-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetate






Mass spectrum (ESI+): m/z=563 [M+H]+


Rf value: 0.73 (silica gel: cyclohexane/ethyl acetate 1:1)


(166) ethyl 2-(5-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-thiophen-2-yl)-thiazole-4-carboxylate






Mass spectrum (ESI+): m/z=692 [M+H]+


Rf value: 0.13 (silica gel: petroleum ether/ethyl acetate 5:1)


(167) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-iodo-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetate






Mass spectrum (ESI+): m/z=676 [M+NH4]+


Rf value: 0.34 (silica gel: petroleum ether/ethyl acetate 5:1)


(168) ethyl 5-(5-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-thiophen-2-yl)-isoxazole-3-carboxylate






Mass spectrum (ESI+): m/z=693 [M+NH4]+


Rf value: 0.58 (silica gel: petroleum ether/ethyl acetate 2:1)


(169) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[3-methyl-1-(4-methyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate






Mass spectrum (ESI+): m/z=560 [M+H]+


Rf value: 0.53 (silica gel: petroleum ether/ethyl acetate 3:1)


(170) tert.butyl[{3-bromo-1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Rf value: 0.30 (silica gel: dichloromethane/methanol/water/acetic acid 40:8:1:1)


(171) tert.butyl{(2,6-dimethyl-pyridin-4-sulphonyl)-[1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






Mass spectrum (ESI+): m/z=508 [M+H]+


(172) tert.butyl{(2,6-dichloro-pyridin-4-sulphonyl)-[1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






The product is further reacted directly in 1(181).


(173) tert.butyl{(2,6-dichloro-pyridin-4-sulphonyl)-[1-(4-methylcarbamoyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate






Mass spectrum (ESI+): m/z=590 [M+H]+


Example VII






3-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-benzoic acid and 3-{5-[tert-butoxycarbonylmethyl-(3-chloro-phenylsulphonyl)-amino]-indol-1-yl}-benzoic acid

120 mg benzyl 3-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-benzoate are dissolved in 5 ml of tetrahydrofuran and 4 ml of methanol. 10 mg palladium on charcoal (10%) are added and the mixture is hydrogenated for 2 hours at ambient temperature and 1 bar pressure. Then the catalyst is filtered off and the remainder is washed twice with 10 ml of methanol. The solvents are eliminated in vacuo. The crude product is a mixture of 3-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-benzoic acid and 3-{5-[tert-butoxycarbonylmethyl-(3-chloro-phenylsulphonyl)-amino]-indol-1-yl}-benzoic acid and is further reacted directly in Example XVIII.


The following compounds are obtained analogously to Example VII:


(1) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-oxo-1,6-dihydro-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






Tert.butyl[[1-(6-benzyloxy-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate is used instead of benzyl 3-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-benzoate. The reaction is carried out in methanol. The crude product is chromatographed on silica gel (cyclohexane/ethyl acetate 50:50 to 0:100).


Mass spectrum (ESI): m/z=547 [M−H]


(2) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(3-hydroxy-propyl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






Obtained by hydrogenation of tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(3-hydroxy-prop-1-ynyl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate in tetrahydrofuran. The crude product is chromatographed on silica gel (ethyl acetate).


Mass spectrum (ESI+): m/z=591 [M+H]+


(3) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[4-(3-hydroxy-propyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate






Obtained by hydrogenation of tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[4-(3-hydroxy-prop-1-ynyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate in tetrahydrofuran. The crude product is chromatographed on silica gel (ethyl acetate).


Mass spectrum (ESI+): m/z=590 [M+H]+


Example VIII






tert.butyl[[1-(3-carbamoyl-phenyl)-1H-indol-5-yl]-(3,5-dichloro-phenylesulphonyl)-amino]-acetate and tert.butyl[1-(3-carbamoyl-phenyl)-1H-indol-5-yl]-(3-chloro-phenylsulphonyl)-amino]-acetate

52 mg of a mixture of 3-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenyl-sulphonyl)-amino]-indol-1-yl}-benzoic acid and 3-{5-[tert-butoxycarbonylmethyl-(3-chloro-phenylsulphonyl)-amino]-indol-1-yl}-benzoic acid from Example VII are dissolved in 8 ml of tetrahydrofuran. 16 mg carbonyldiimidazole are added and the mixture is heated to 60° C. for 2 hours. Ammonia gas is piped into this solution first of all at ambient temperature and then at 50° C. over a total of 2 hours. Then 100 ml of water are added, the tetrahydrofuran is largely eliminated in vacuo and then the remainder is adjusted to pH 2 with 2 N HCl. The mixture is extracted 3 times with ethyl acetate, dried with sodium sulphate and the solvents are eliminated in vacuo. The residue is purified by preparative HPLC and further reacted directly.


Yield: 13 mg (25% of theory) (tert.butyl[[1-(3-carbamoyl-phenyl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate)


Mass spectrum (ESI+): m/z=518 [M+H-tert-butyl]+


and


9 mg (19% of theory) (tert.butyl[[1-(3-carbamoyl-phenyl)-1H-indol-5-yl]-(3-chloro-phenylsulphonyl)-amino]-acetate)


Mass spectrum (ESI+): m/z=484 [M+H-tert-butyl]+


The following compounds are obtained analogously to Example VIII:


(1) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(3-methylcarbamoyl-phenyl)-1H-indol-5-yl]-amino}-acetate






and tert.butyl{(3-chloro-phenylsulphonyl)-[1-(3-methylcarbamoyl-phenyl)-1H-indol-5-yl]-amino}-acetate







Instead of ammonia gas methylamine gas is used.


Mass spectrum (ESI+): m/z=532 [M+H-tert-butyl]+ (tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(3-methylcarbamoyl-phenyl)-1H-indol-5-yl]-amino}-acetate) and


Mass spectrum (ESI+): m/z=498 [M+H-tert-butyl]+ (tert.butyl{(3-chloro-phenylsulphonyl)-[1-(3-methylcarbamoyl-phenyl)-1H-indol-5-yl]-amino}-acetate)


(2) 3.6-dichloro-pyridazin-4-carboxylic acid-amide






After elimination of the tetrahydrofuran in vacuo the mixture is adjusted to pH 1 with 2 N HCl. It is extracted twice with ethyl acetate and the combined organic phases are washed with saturated sodium chloride solution. After drying with magnesium sulphate the solvent is eliminated in vacuo.


Mass spectrum (ESI): m/z=190 [M−H]


Example IX






2-iodopyrimidine

500 mg of 2-bromopyrimidine are dissolved in 5 ml dioxane under argon. 943 mg sodium iodide, 60 mg copper iodide and 45 mg N,N′-dimethyl-trans-cyclohexanediamine are added. Then the mixture is refluxed for 8 hours. It is divided between water and ethyl acetate, the aqueous phase is extracted with ethyl acetate and the combined organic phases are dried on sodium sulphate. The solvents are eliminated in vacuo and the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 10:1 to 1:2). The product (235 mg, 36% of theory) is further reacted directly in Example XVI (1).


Example X






benzyl 3-iodo-benzoate

1.5 g 3-iodo-benzoic acid are dissolved in 10 ml acetonitrile. 919 mg potassium carbonate are added and then 647 μl benzylbromide are added dropwise thereto. Then the mixture is heated to 50° C. for 4 hours. The solvent is eliminated in vacuo and the residue is divided between ethyl acetate and saturated sodium hydrogen carbonate solution. The aqueous phase is extracted with ethyl acetate and the combined organic phases are dried on sodium sulphate. The solvents are eliminated in vacuo.


Yield: 2 g (98% of theory)


Mass spectrum (ESI+): m/z=356 [M+NH4]+


Example XI






5-nitro-1-pyrimidin-2-yl-2,3-dihydro-1H-indole

300 mg 5-nitro-2,3-dihydro-1H-indole are dissolved in 4 ml N-methyl-pyrrolidine. 80 mg NaH (60% suspension in mineral oil) are added and the mixture is stirred for another 15 minutes at ambient temperature. Then 380 mg of 2-bromopyrimidine are added and the mixture is then heated to 60° C. for 3 hours. It is then diluted with diethyl ether and washed with dilute citric acid solution and saturated sodium chloride solution. After drying with magnesium sulphate the solvents are eliminated in vacuo.


Yield: 410 mg (95% of theory)


Rf value: 0.61 (silica gel:ethyl acetate/petroleum ether 1:1)


Example XII






3-iodo-6-methanesulphinyl-pyridazine

400 mg 3-iodo-6-methylsulphanyl-pyridazine are dissolved in 5 ml dichloromethane and 310 mg 3-chloro-perbenzoic acid are added. The mixture is stirred for 1 hour at ambient temperature, diluted with ethyl acetate and washed with dilute sodium hydroxide solution. After drying with magnesium sulphate the solvents are eliminated in vacuo and the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 50:50 to 0:100).


Yield: 140 mg (52% of theory)


Mass spectrum (ESI+): m/z=269 [M+H]+


The following compounds are obtained analogously to Example XII:


(1) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(1,1-dioxo-1λ6-thiomorpholin-4-yl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate






Obtained from the oxidation of tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-thiomorpholin-4-yl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate.


Mass spectrum (ESI+): m/z=666 [M+H]+


(2) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(5-methanesulphinyl-pyrazin-2-yl)-1H-indol-5-yl]-amino}-acetate






and


tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(5-methanesulphonyl-pyrazin-2-yl)-1H-indol-5-yl]-amino}-acetate






The products are separated by chromatography on silica gel (cyclohexane/ethyl acetate 60:40 to 0:100).


Mass spectrum (ESI+): m/z=595 [M+H]+ tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(5-methanesulphinyl-pyrazin-2-yl)-1H-indol-5-yl]-amino}-acetate and


Mass spectrum (ESI+): m/z=628 [M+NH4]+ tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(5-methanesulphonyl-pyrazin-2-yl)-1H-indol-5-yl]-amino}-acetate


(3) 3-iodo-6-methanesulphonyl-pyridazine






Obtained from the oxidation of 3-iodo-6-methanesulphinyl-pyridazine.


Mass spectrum (ESI+): m/z=285 [M+H]+


(4) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(5-methanesulphinyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate






Obtained from the oxidation of tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(5-methylsulphanyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate with 1 equivalent of metachloro-perbenzoic acid.


Mass spectrum (ESI+): m/z=594 [M+H]+


(5) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(5-methanesulphonyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate






Obtained from the oxidation of tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(5-methylsulphanyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate with 2.1 equivalents of metachloro-perbenzoic acid.


Mass spectrum (ESI+): m/z=610 [M+H]+


(6) 4-(6-iodo-pyridazin-3-yl)-thiomorpholin-1-oxide






Obtained from the oxidation of 4-(6-iodo-pyridazin-3-yl)-thiomorpholine in admixture with the sulphone.


Mass spectrum (ESI+): m/z=324 [M+H]+


(7) 4-(5-bromo-pyrazin-2-yl)-thiomorpholin-1-oxide






Obtained from the oxidation of 4-(5-bromo-pyrazin-2-yl)-thiomorpholine.


Mass spectrum (ESI+): m/z=276 [M+H]+


(8) 2-bromo-4-ethanesulphinyl-pyridine






Obtained from the oxidation of 2-bromo-4-ethylsulphanyl-pyridine.


Mass spectrum (ESI+): m/z=234 [M+H]+


Example XIII






5-bromo-pyrazin-2-ylamine

24.5 g of 2-aminopyrazine are dissolved in 750 ml dichloromethane and cooled to 0° C. 45.8 g N-bromosuccinimide are added and the mixture is stirred for 24 hours at 0° C. The solid is suction filtered and the mother liquor is washed 3 times with semisaturated sodium carbonate solution and 3 times with water. The organic phase is dried on magnesium sulphate, filtered through activated charcoal and evaporated down in vacuo. The residue is extracted from diisopropyl ether. Further product is obtained by evaporating the mother liquor down in vacuo and chromatographing the residue on silica gel (petroleum ether/ethyl acetate 1:1 to 1:2).


Yield: 20.8 g (47% of theory)


Rf value: 0.5 (silica gel, petroleum ether/ethyl acetate 1:1)


Example XIV






N′-(5-bromo-pyrazin-2-yl)-N,N-dimethyl-ethan-1,2-diamine

24 g 5-bromo-pyrazin-2-ylamine are dissolved in 300 ml dimethylformamide. 20 g of 2-chloroethyl-dimethylamine hydrochloride are added and the mixture is cooled to 0° C. Then 13.8 g NaH (60% suspension in mineral oil) are added in batches. After the end of the addition the mixture is stirred for 10 minutes at 0° C. and then heated for 2 hours to 80° C. Then it is divided between semisaturated sodium chloride solution and ethyl acetate, the aqueous phase is extracted twice with ethyl acetate and the combined organic phases are dried on magnesium sulphate. The solvents are eliminated in vacuo and the residue is chromatographed on silica gel (dichloromethane/methanol 9:1 to 1:1). The product thus obtained is taken up in ethyl acetate and combined with activated charcoal. It is stirred for 1 hour and then the activated charcoal is filtered off. The mother liquor is evaporated down in vacuo and petroleum ether is added to the residue. This is incubated for 1 hour in the deep-freeze, the petroleum ether is decanted off and the solid is dried under a high vacuum.


Yield: 11 g (33% of theory)


Mass spectrum (ESI+): m/z=245 [M+H]+


The following compounds are obtained analogously to Example XXIV:


(1) N′-(2-bromo-pyridin-3-yl)-N,N-dimethyl-ethan-1,2-diamine






Potassium-hexamethyldisilazide is used as base. The reaction is heated to 70° C. for 6 hours.


Mass spectrum (ESI+): m/z=244 [M+H]+


Example XV






tert-butyl 4-(4-iodo-benzoyl)-piperazine-1-carboxylate

1 g 4-iodo-benzoic acid is dissolved in 10 ml of tetrahydrofuran, 726 mg carbonyldiimidazole are added and the mixture is stirred for 3 hours at ambient temperature. To this are added 820 mg tert-butyl piperazine-1-carboxylate and the mixture is stirred overnight at ambient temperature. The solvent is eliminated in vacuo and the residue is taken up in ethyl acetate. It is washed with water, 1 N HCl, saturated sodium hydrogen carbonate solution and saturated sodium chloride solution. After drying with magnesium sulphate the solvent is eliminated in vacuo.


Yield: 1.65 g (98% of theory)


Mass spectrum (ESI+): m/z=417 [M+H]+


The following compounds are obtained analogously to Example XV:


(1) tert-butyl 4-(3-iodo-benzoyl)-piperazine-1-carboxylate






Mass spectrum (ESI+): m/z=417 [M+H]+


(2) 6-bromo-pyridin-2-carboxylic acid-(2-dimethylamino-ethyl)-amide






After stirring overnight in tetrahydrofuran the mixture is diluted with toluene and heated to 90° C. for 5 hours. Then it is evaporated to dryness, the residue is divided between water and diethyl ether and the aqueous phase is extracted twice with diethyl ether. The combined organic phases are washed with saturated sodium chloride solution and dried on magnesium sulphate. The solvent is eliminated in vacuo and the residue is chromatographed on aluminium oxide with ethyl acetate.


Mass spectrum (ESI+): m/z=272 [M+H]+


(3) tert-butyl 4-(6-bromo-pyridin-3-carbonyl)-piperazine-1-carboxylate






After stirring overnight in tetrahydrofuran the mixture is diluted with toluene and heated to 90° C. for 5 hours. Then it is evaporated to dryness, the residue is triturated with water and the solid is suction filtered. Then it is taken up in ethyl acetate, dried on magnesium sulphate and the solvent is eliminated in vacuo. The residue is extracted from diethyl ether.


Mass spectrum (ESI+): m/z=370 [M+H]+


(4) 6-bromo-N-(2-dimethylamino-ethyl)-nicotinamide






After stirring overnight in tetrahydrofuran the mixture is diluted with toluene and heated to 90° C. for 5 hours. Then it is evaporated to dryness, the residue is divided between water and diethyl ether and the aqueous phase is extracted twice with diethyl ether. The aqueous phase is saturated with potassium carbonate and extracted another 3 times with diethyl ether. The combined organic phases are dried on magnesium sulphate. The solvent is eliminated in vacuo and the residue is chromatographed on aluminium oxide with ethyl acetate.


Mass spectrum (ESI+): m/z=272 [M+H]+


Example XVI






tert-butyl 4-[2-(5-nitro-2,3-dihydro-indol-1-yl)-pyrimidin-4-yl]-piperazine-1-carboxylate

500 mg tert-butyl 4-(2-chloro-pyrimidin-4-yl)-piperazine-1-carboxylate and 302 mg 5-nitro-2,3-dihydro-1H-indole are mixed and heated to 150° C. for 1 hour. The mixture is divided between water and ethyl acetate, the aqueous phase is extracted twice with ethyl acetate and the combined organic phases are dried with magnesium sulphate. The solvent is eliminated in vacuo and the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 10:1 to 1:2).


Yield: 143 mg (20% of theory)


Mass spectrum (ESI+): m/z=427 [M+H]+


The following compounds are obtained analogously to Example XVI:


(1) 5-nitro-1-pyridin-4-yl-2,3-dihydro-1H-indole






The reaction lasts 10 minutes at 180° C. Then the mixture is dissolved in methanol and this is then eliminated again in vacuo. The residue is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=242 [M+H]+


(2) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-morpholin-4-yl-pyridazin-3-yl)-2,3-dihydro-1H-indol-5-yl]-amino}-acetate






Obtained from the reaction of tert.butyl[[1-(6-chloro-pyridazin-3-yl)-2,3-dihydro-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate and morpholine. The reaction is carried out in the presence of 1 equivalent of N-methylpyrrolidine at 150° C. for 12 hours. The crude product thus obtained is chromatographed on silica gel with dichloromethane/methanol (99:1 to 80:20).


Mass spectrum (ESI+): m/z=620 [M+H]+


Example XVII






tert-butyl 4-(2-chloro-pyrimidin-4-yl)-piperazine-1-carboxylate

1 g 2,4-dichloropyrimidine is dissolved in 30 ml of tetrahydrofuran and cooled to 0° C. A solution of 1.25 g tert-butyl piperazine-1-carboxylate and 1.2 ml triethylamine in 30 ml of tetrahydrofuran is added dropwise thereto. The mixture is stirred for 1 hour at 0° C. and 2 hours at ambient temperature. Then the solvent is eliminated in vacuo, the residue is divided between water and dichloromethane and the aqueous phase is extracted twice with dichloromethane. The combined organic phases are dried on magnesium sulphate, the solvent is eliminated in vacuo and the residue is extracted from diisopropyl ether.


Yield: 1.5 g (75% of theory)


Mass spectrum (ESI+): m/z=299 [M+H]+


Example XVIII






tert-butyl 4-[2-(5-nitro-indol-1-yl)-pyrimidin-4-yl]-piperazine-1-carboxylate


298 mg 5-nitro-1H-indole are dissolved in 10 ml dimethylformamide and 74 mg NaH (60% suspension in mineral oil) are added. The mixture is stirred for 1 h at ambient temperature and then 500 mg tert-butyl 4-(2-chloro-pyrimidin-4-yl)-piperazine-1-carboxylate are added. The solution is heated to 70° C. for 5 hours, divided between water and ethyl acetate and the aqueous phase is extracted twice with ethyl acetate. The combined organic phases are dried on magnesium sulphate and the solvent is eliminated in vacuo. The residue is chromatographed on silica gel (cyclohexane/ethyl acetate 10:1 to 1:2).


Yield: 390 mg (55% of theory)


Mass spectrum (ESI+): m/z=425 [M+H]+


The following compounds are obtained analogously to Example XVIII:


(1) tert-butyl 4-[5-(5-nitro-2,3-dihydro-indol-1-yl)-pyrazin-2-carbonyl]-piperazine-1-carboxylate






After heating to 70° C. the solvent is eliminated in vacuo and the residue is extracted from water.


Mass spectrum (ESI+): m/z=455 [M+H]+


(2) tert-butyl 4-[5-(5-nitro-indol-1-yl)-pyrazin-2-carbonyl]-piperazine-1-carboxylate






After heating to 70° C. the solvent is eliminated in vacuo and the residue is extracted from water.


Mass spectrum (ESI+): m/z=453 [M+H]+


(3) 4-nitro-1-pyrimidin-2-yl-1H-indole






The reaction is carried out for 3 hours at 70° C. Then it is diluted with dichloromethane and washed with semisaturated sodium chloride solution. After drying with magnesium sulphate the solvent is eliminated in vacuo and the residue is extracted from ethyl acetate/diisopropylether.


Mass spectrum (ESI+): m/z=241 [M+H]+


(4) tert-butyl 6′-(5-nitro-2,3-dihydro-indol-1-yl)-2,3,5,6-tetrahydro-[1,2′]bipyrazinyl-4-carboxylate






and


tert-butyl 6′-(5-nitro-indol-1-yl)-2,3,5,6-tetrahydro-[1,2′]bipyrazinyl-4-carboxylate






The reaction is carried out for 48 hours at 10° C.


Mass spectrum (ESI+): m/z=427 [M+H]+ (tert-butyl 6′-(5-nitro-2,3-dihydro-indol-1-yl)-2,3,5,6-tetrahydro-[1,2′]bipyrazinyl-4-carboxylate) and


Mass spectrum (ESI+): m/z=425 [M+H]+ (tert.butyl 6′-(5-nitro-indol-1-yl)-2,3,5,6-tetrahydro-[1,2′]bipyrazinyl-4-carboxylate)


(5) N,N-dimethyl-N′-[2-(5-nitro-2,3-dihydro-indol-1-yl)-pyrimidin-4-yl]-ethan-1,2-diamine






The reaction is carried out for 48 hours at 120° C. Then it is diluted with dichloromethane and washed with semisaturated sodium chloride solution. After drying with magnesium sulphate the solvent is eliminated in vacuo and the residue is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=329 [M+H]+


(6) 1-(6-chloro-pyridazin-3-yl)-5-nitro-2,3-dihydro-1H-indole






The reaction lasts 2 hours. The crude product is extracted from diethyl ether.


Rf value: 0.55 (silica gel, petroleum ether/ethyl acetate 1:4)


(7) 1-(2-chloro-pyrimidin-4-yl)-5-nitro-2,3-dihydro-1H-indole






and


1-(4-chloro-pyrimidin-2-yl)-5-nitro-2,3-dihydro-1H-indole






The reaction lasts 2 hours. The crude product is extracted from ethyl acetate/diisopropylether, the products being obtained as a mixture of isomers. The isomers can be separated in the next step (Example XXXIX (1)).


Mass spectrum (ESI+): m/z=277 [M+H]+


(8) 1-(6-chloro-pyridazin-3-yl)-5-nitro-2,3-dihydro-1H-indole






The reaction lasts 2 hours. The crude product is extracted from diethyl ether.


Mass spectrum (ESI+): m/z=277 [M+H]+


(9) 1-(6-chloro-pyridazin-3-yl)-5-nitro-1H-indole






The reaction lasts 12 hours at ambient temperature. The reaction mixture is added to water. The solid is suction filtered, washed with water, ethyl acetate and diethyl ether and then dried.


Mass spectrum (ESI+): m/z=275 [M+H]+


(10) 5-nitro-1-(4-oxy-pyrazin-2-yl)-1H-indole






The reaction lasts 12 hours at ambient temperature. The reaction mixture is added to water. The solid is suction filtered, washed with water, ethyl acetate and diethyl ether and then dried.


Mass spectrum (ESI+): m/z=257 [M+H]+


(11) 1-(4-chloro-pyrimidin-2-yl)-5-nitro-1H-indole






and


1-(2-chloro-pyrimidin-4-yl)-5-nitro-1H-indole






The reaction lasts 48 hours at ambient temperature. The reaction mixture is added to water. The solid is suction filtered and separated into the regioisomers by chromatography on silica gel.


Mass spectrum (ESI+): m/z=292 [M+NH4]+ (1-(4-chloro-pyrimidin-2-yl)-5-nitro-1H-indole)


and


Mass spectrum (ESI): m/z=319 [M+HCOO] (1-(2-chloro-pyrimidin-4-yl)-5-nitro-1H-indole)


(12) 1-(4,6-dimethoxy-[1,3,5]triazin-2-yl)-5-nitro-2,3-dihydro-1H-indole






Mass spectrum (ESI+): m/z=304 [M+H]+


(13) 2-chloro-6-(5-nitro-indol-1-yl)-9H-purine






The reaction is carried out for 3 hours at 10° C. Then the mixture is added to water, the solid is suction filtered and dried.


Mass spectrum (ESI): m/z=313 [M−H]


(14) 5-(5-nitro-indol-1-yl)-pyrazin-2-carboxylic acid-amide






The reaction is carried out for 12 hours at ambient temperature. Then the mixture is added to water, the solid is suction filtered and dried.


Mass spectrum (ESI+): m/z=284 [M+H]+


(15) 5-(5-nitro-indol-1-yl)-pyrazin-2-carboxylic acid-methyl-amide






The reaction is carried out for 12 hours at ambient temperature. Then the mixture is added to water, the solid is suction filtered and dried.


Mass spectrum (ESI+): m/z=298 [M+H]+


(16) morpholin-4-yl-[5-(5-nitro-indol-1-yl)-pyrazin-2-yl]-methanone






The reaction is carried out for 12 hours at ambient temperature. Then the mixture is added to water, the solid is suction filtered and dried.


Mass spectrum (ESI+): m/z=354 [M+H]+


(17) 5-(5-nitro-indol-1-yl)-pyrazin-2-carbonitrile






The reaction is carried out for 12 hours at ambient temperature. Then the mixture is added to water, the solid is suction filtered and dried.


Mass spectrum (ESI): m/z=310 [M+HCOO]


(18) 6-(5-nitro-indol-1-yl)-pyridazine-3-carboxylic acid






The reaction is carried out for 4 days at 120° C. Then the mixture is added to 2 N hydrochloric acid, the solid is suction filtered and dried.


Mass spectrum (ESI+): m/z=285 [M+H]+


(19) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-trifluoromethyl-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetate






The reaction is carried out with 4-bromo-6-trifluoromethyl-pyrimidine in the presence of caesium carbonate in N,N-dimethylformamide at 80° C.


Mass spectrum (ESI+): m/z=618 [M+NH4]+


Rf value: 0.85 (silica gel: cyclohexane/ethyl acetate 1:1)


(20) tert.butyl[[1-(2-bromo-pyrimidin-4-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






The reaction is carried out with 2,4-dibromo-pyridine in the presence of potassium carbonate in N,N-dimethylformamide at 70° C.


Mass spectrum (ESI+): m/z=628 [M+NH4]+


Rf value: 0.33 (silica gel: petroleum ether/ethyl acetate 2:1)


(21) 6-nitro-1-pyrimidin-2-yl-1H-benzimidazole






Mass spectrum (ESI+): m/z=242 [M+H]+


(22) 5-nitro-1-pyrimidin-2-yl-1H-benzimidazole






Mass spectrum (ESI+): m/z=242 [M+H]+


Example IXX






tert-butyl 4-(5-chloro-pyrazin-2-carbonyl)-piperazine-1-carboxylate

1 g 5-oxo-4,5-dihydro-pyrazine-2-carboxylic acid is dissolved in 10 ml phosphorus oxychloride, heated to 90° C. for 3 hours and then freed from the solvent in vacuo. The residue is taken up in 10 ml dichloromethane and a solution of 1.3 g tert-butyl piperazine-1-carboxylate and 3 ml triethylamine in 10 ml dichloromethane is added dropwise thereto. The mixture is stirred for 3 hours at ambient temperature, divided between 1 N HCl and dichloromethane and the aqueous phase is extracted with dichloromethane. The combined organic phases are washed with saturated sodium hydrogen carbonate solution and saturated sodium chloride solution. After drying with magnesium sulphate the solvent is eliminated in vacuo and the residue is taken up in 20 ml diisopropylether. The mixture is decanted from the solid, left to cool to ambient temperature and the precipitated solid is suction filtered. The product thus obtained is purified by chromatography on silica gel (cyclohexane/ethyl acetate 10:1 to 1:2).


Yield: 380 mg (16% of theory)


Mass spectrum (ESI+): m/z=327 [M+H]+


The following compounds are obtained analogously to Example IXX:


(1) 5-chloro-pyrazine-2-carboxylic acid-amide






To prepare the acid chloride thionyl chloride with 1 drop of dimethylformamide is used. The amide is prepared in tetrahydrofuran with 10 equivalents of a 32% solution of ammonia in water.


Mass spectrum (ESI+): m/z=158 [M+H]+


(2) 5-chloro-pyrazin-2-carboxylic acid-methyl-amide






To prepare the acid chloride thionyl chloride with 1 drop of dimethylformamide is used. The amide is prepared in tetrahydrofuran.


Mass spectrum (ESI+): m/z=172 [M+H]+


(3) (5-chloro-pyrazin-2-yl)-morpholin-4-yl-methanone






To prepare the acid chloride thionyl chloride with 1 drop of dimethylformamide is used. The amide is prepared in tetrahydrofuran.


Mass spectrum (ESI+): m/z=228 [M+H]+


(4) morpholin-4-yl-[6-(5-nitro-indol-1-yl)-pyridazin-3-yl]-methanone






To prepare the acid chloride thionyl chloride in toluene with 1 drop of dimethylformamide is used. To prepare the amide pyridine is used instead of triethylamine. The crude product is taken up in dichloromethane/methanol 10:1, combined with activated charcoal, filtered through kieselgur, freed from the solvents in vacuo and extracted from diethyl ether.


Mass spectrum (ESI+): m/z=354 [M+H]+


(5) methyl 6-chloro-pyridazine-3-carboxylate






This is obtained by reacting methyl 6-oxo-1,6-dihydro-pyridazine-3-carboxylate with thionyl chloride in toluene in the presence of 1 drop of dimethylformamide. After heating for 12 hours to 10° C. this mixture is added to water and the solid is suction filtered. After the solid has been taken up in dichloromethane/methanol 10:1 activated charcoal is added, the mixture is filtered through kieselgur, the solvents are eliminated in vacuo and the residue is extracted from diethyl ether.


Mass spectrum (ESI+): m/z=155 [M+H]+


(6) 6-(5-nitro-indol-1-yl)-pyridazine-3-carboxylic acid-dimethylamide






The acid chloride is prepared using thionyl chloride in toluene with 1 drop of dimethylformamide. To prepare the amide pyridine is used instead of triethylamine. The crude product is taken up in dichloromethane/methanol 10:1, combined with activated charcoal, filtered through kieselguhr, freed from the solvents in vacuo and extracted from diethyl ether.


Mass spectrum (ESI+): m/z=312 [M+H]+


Example XX






tert-butyl 6′-chloro-2,3,5,6-tetrahydro-[1,2′]bipyrazinyl-4-carboxylate

630 mg tert-butyl piperazine-1-carboxylate are dissolved in 12 ml dimethylformamide. 500 mg potassium carbonate and 500 mg 2,6-dichloropyrazine are added. Then the mixture is stirred overnight at ambient temperature. It is diluted with dichloromethane, the solid is filtered off and the mother liquor is evaporated down in vacuo. The residue is chromatographed on silica gel (cyclohexane/ethyl acetate 10:1 to 1:2).


Yield: 525 mg (53% of theory)


Mass spectrum (ESI+): m/z=299 [M+H]+


The following compounds are obtained analogously to Example XX:


(1) N′-(2-chloro-pyrimidin-4-yl)-N,N-dimethyl-ethan-1,2-diamine






Mass spectrum (ESI+): m/z=201 [M+H]+


(2) tert-butyl 4-(6-iodo-5-methyl-pyridazin-3-yl)-piperazine-1-carboxylate






The reaction lasts 5 hours at 60° C. The crude product is further reacted directly in Example XVI (13).


(3) N′-(6-chloro-pyridazin-3-yl)-N,N-dimethyl-ethan-1,2-diamine






The reaction lasts 12 hours at 60° C.


Mass spectrum (ESI+): m/z=201 [M+H]+


(4) tert-butyl 4-(6-iodo-pyridazin-3-yl)-[1,4]diazepan-1-carboxylate






The reaction is carried out in dioxane for 24 hours at 120° C. in a pressurised vessel.


Mass spectrum (ESI+): m/z=405 [M+H]+


(5) N*1*-(6-iodo-pyridazin-3-yl)-propane-1,3-diamine






The reaction is carried out in dioxane for 24 hours at 120° C. in a pressurised vessel. The crude product is further reacted directly.


Rf value: 0.08 (aluminium oxide; dichloromethane/methanol 9:1)


(6) cyclopropyl-(6-iodo-pyridazin-3-yl)-amine






The reaction is carried out in dioxane for 24 hours at 120° C. in a pressurised vessel. Then another 3 equivalents cyclopropylamine are added and the mixture is heated for 2 hours in the microwave.


Mass spectrum (ESI+): m/z=262 [M+H]+


(7) N*1*-(6-iodo-pyridazin-3-yl)-N*1*-methyl-ethan-1,2-diamine






and

  • N-(6-iodo-pyridazin-3-yl)-N′-methyl-ethan-1,2-diamine







The reaction is carried out in dioxane for 24 hours at 120° C. in a pressurised vessel. The two regiosiomers may be separated from one another in the next step (cf Example XXXVII (12)).


Mass spectrum (ESI+): m/z=279 [M+H]+


(8) N*1*-(6-iodo-pyridazin-3-yl)-2-methyl-propane-1,2-diamine






The reaction is carried out in dioxane for 10 minutes at 180° C. in a pressurised vessel in the microwave.


Mass spectrum (ESI+): m/z=293 [M+H]+


(9) tert-butyl[1-(6-iodo-pyridazin-3-yl)-piperidin-3-yl]-carbamate






Caesium carbonate is used instead of potassium carbonate. The reaction is carried out in dioxane for 48 hours at 120° C. in a pressurised vessel.


Mass spectrum (ESI+): m/z=405 [M+H]+


(10) 4-(6-iodo-pyridazin-3-yl)-morpholine






The reaction is carried out in dioxane for 12 hours at 120° C. in a pressurised vessel.


Mass spectrum (ESI+): m/z=292 [M+H]+


(11) (6-iodo-pyridazin-3-yl)-dimethyl-amine






The reaction is carried out in 2 M solution of dimethylamine in tetrahydrofuran. It is heated for 10 minutes to 160° C. in a pressurised vessel in the microwave. Then it is diluted with ethyl acetate and washed with saturated sodium chloride solution. After drying with magnesium sulphate the mixture is chromatographed on silica gel with cyclohexane/ethyl acetate (80:20 to 0:100).


Mass spectrum (ESI+): m/z=250 [M+H]+


(12) 2-(6-iodo-pyridazin-3-ylamino)-ethanol






The reaction is carried out in dioxane for 12 hours at 120° C. in a pressurised vessel.


Mass spectrum (ESI+): m/z=266 [M+H]+


(13) (6-iodo-pyridazin-3-yl)-(2-piperidin-1-yl-ethyl)-amine






The reaction is carried out in dioxane for 12 hours at 120° C. in a pressurised vessel. The crude product is chromatographed on aluminium oxide with cyclohexane/ethyl acetate (70:30 to 0:100).


Mass spectrum (ESI+): m/z=333 [M+H]+


(14) (R)-(6-iodo-pyridazin-3-yl)-(tetrahydro-furan-3-yl)-amine






The reaction is carried out in dioxane at 180° C. in a pressurised vessel in the microwave.


Mass spectrum (ESI+): m/z=292 [M+H]+


(15) (R)-(5-bromo-pyrazin-2-yl)-(tetrahydro-furan-3-yl)-amine






The reaction is carried out with triethylamine in dioxane at 175° C. in a pressurised vessel in the microwave.


Rf value: 0.32 (silica gel: petroleum ether/ethyl acetate 1:1)


(16) (6-iodo-pyridazin-3-yl)-methyl-(tetrahydro-pyran-4-yl)-amine






The reaction is carried out with triethylamine in dioxane at 170° C. in a pressurised vessel in the microwave.


Mass spectrum (ESI+): m/z=320 [M+H]+


Rf value: 0.20 (silica gel: petroleum ether/ethyl acetate 1:1)


(17) 4-(5-bromo-pyrazin-2-yl)-piperazin-2-one






The reaction lasts 15 minutes at 140° C.


Mass spectrum (ESI+): m/z=257 [M+H]+


Rf value: 0.25 (silica gel: dichloromethane/methanol 95:5)


(18) (5-bromo-pyrazin-2-yl)-(tetrahydro-pyran-4-yl)-amine






The reaction is carried out with triethylamine in dioxane at 120° C. in a pressurised vessel.


Mass spectrum (ESI): m/z=256 [M−H]


Rf value: 0.35 (silica gel: petroleum ether/ethyl acetate 1:1)


(19) (6-iodo-pyridazin-3-yl)-(tetrahydro-pyran-4-yl)-amine






The reaction is carried out with triethylamine in dioxane at 170° C. in a pressurised vessel in the microwave.


Rf value: 0.12 (silica gel: petroleum ether/ethyl acetate 1:1)


(20) 2-bromo-4-(tetrahydro-furan-3-yloxy)-pyridine






The reaction is carried out with triethylamine in dioxane at 140° C. in a pressurised vessel in the microwave.


Mass spectrum (ESI+): m/z=272 [M+H]+


Rf value: 0.35 (silica gel: petroleum ether/ethyl acetate 2:1)


(21) 4-(6-iodo-pyridazin-3-yl)-piperazin-2-one






The reaction is carried out at 140° C.


Mass spectrum (ESI+): m/z=305 [M+H]+


Rf value: 0.18 (silica gel: methylene chloride/methanol 95:5)


(22) 3-bromo-6-morpholin-4-yl-pyrazine






The reaction is carried out for 12 hours at 10° C.


Mass spectrum (ESI): m/z=243 [M−H]


(23) N-(6-iodo-pyridazin-3-yl)-N′-methyl-propane-1,3-diamine






and


N*1*-(6-iodo-pyridazin-3-yl)-N*1*-methyl-propane-1,3-diamine






The reaction is carried out in dioxane for 5 hours at 120° C. in a pressurised vessel. The two regioisomers may be separated from one another in the next step (cf. Example XXXVII (14)).


Mass spectrum (ESI+): m/z=293 [M+H]+


(24) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(2,6-dichloro-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetate






Obtained by reacting tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1H-indol-5-yl)-amino]-acetate with 2,4,6-trichloro-pyrimidine. The reaction is carried out for 4 hours at 80° C. Then the solvent is eliminated in vacuo, the residue is taken up in ethyl acetate and washed once with water. After drying with magnesium sulphate the solvent is eliminated in vacuo and the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 100:0 to 66:34).


Mass spectrum (ESI+): m/z=618 [M+NH4]+


(25) (6-iodo-pyridazin-3-yl)-(2-pyrrolidin-1-yl-ethyl)-amine






The reaction is carried out in dioxane for 24 hours at 140° C. in a pressurised vessel.


Mass spectrum (ESI+): m/z=319 [M+H]+


(26) 4-(6-iodo-pyridazin-3-yl)-thiomorpholine






The reaction is carried out in dioxane for 12 hours at 140° C. in a pressurised vessel.


Mass spectrum (ESI+): m/z=308 [M+H]+


(27) 2-(5-bromo-pyrazin-2-ylamino)-ethanol






The reaction is carried out in dioxane for 12 hours at 120° C. in a pressurised vessel.


Mass spectrum (ESI): m/z=216 [M−H]


(28) 4-(5-bromo-pyrazin-2-yl)-thiomorpholin






The reaction is carried out in dioxane for 24 hours at 150° C. in a pressurised vessel.


Mass spectrum (ESI+): m/z=260 [M+H]+


(29) 2-(5-bromo-pyrazin-2-ylamino)-ethanol






The reaction is carried out in dioxane for 12 hours at 150° C. in a pressurised vessel.


Mass spectrum (ESI+): m/z=218 [M+H]+


(30) N*1*-(5-bromo-pyrazin-2-yl)-ethan-1,2-diamine






The reaction is carried out in dioxane for 12 hours at 120° C. in a pressurised vessel. The crude product is further reacted directly (XXXVII (16)).


(31) tert-butyl 5′-bromo-2,3,5,6-tetrahydro-[1,2′]bipyrazinyl-4-carboxylate






The reaction is carried out in dioxane for 12 hours at 120° C. in a pressurised vessel. The crude product is further reacted directly (XVI (147)).


Example XXI






4-nitro-1-pyrimidin-2-yl-2,3-dihydro-1H-indole

280 mg 4-nitro-1-pyrimidin-2-yl-1H-indole are dissolved in 1 ml acetic acid and 4 ml trifluoroacetic acid. To this are added 160 mg sodium cyanoborohydride and the solution is stirred for 48 hours at ambient temperature. Then the solvents are eliminated in vacuo and the residue is divided between ethyl acetate and saturated sodium hydrogen carbonate solution. The organic phase is washed with saturated sodium chloride solution and dried with magnesium sulphate. After elimination of the solvents in vacuo the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 10:1 to 1:3).


Yield: 30 mg (11% of theory)


Mass spectrum (ESI+): m/z=243 [M+H]+


Example XXII






1-(1-methyl-1H-imidazol-2-yl)-5-nitro-2,3-dihydro-1H-indole

230 mg 1-(1H-imidazol-2-yl)-5-nitro-2,3-dihydro-1H-indole are dissolved in 6 ml DMF. 200 mg potassium carbonate and 75 μl methyl iodide are added and the mixture is stirred overnight at ambient temperature. Then it is diluted with ethyl acetate and extracted twice with 2 N HCl. The combined aqueous phases are washed with dichloromethane, adjusted to pH 12 with 40% sodium hydroxide solution and extracted with dichloromethane. This organic phase is washed with saturated sodium chloride solution and dried on magnesium sulphate. The solvent is eliminated in vacuo and the residue is chromatographed on silica gel (dichloromethane/methanol 99:1 to 9:1).


Yield: 170 mg (70% of theory)


Mass spectrum (ESI+): m/z=245 [M+H]+


Example XXIII






1-(1H-imidazol-2-yl)-5-nitro-2,3-dihydro-1H-indole

150 mg N-(2,2-diethoxy-ethyl)-5-nitro-2,3-dihydro-indol-1-carboxamidine are heated to 60° C. in 8 ml trifluoroacetic acid for 3 hours. The solvent is then eliminated in vacuo and the residue is chromatographed on aluminium oxide (dichloromethane/methanol 99:1 to 7:3).


Yield: 230 mg (69% of theory)


Mass spectrum (ESI): m/z=229 [M−H]


Example XXIV






N-(2,2-diethoxy-ethyl)-5-nitro-2,3-dihydro-indol-1-carboxamidine

410 mg methyl 5-nitro-2,3-dihydro-indol-1-carboximidothioate are dissolved in 4 ml dimethylformamide and 350 μl aminoacetaldehyde-diethylacetal are added thereto. The mixture is heated for 4 hours to 100° C. Then the solvent is eliminated in vacuo and the residue is chromatographed on aluminium oxide (dichloromethane/methanol 99:1 to 7:3).


Yield: 330 mg (91% of theory)


Mass spectrum (ESI+): m/z=323 [M+H]+


Example XXV






methyl 5-nitro-2,3-dihydro-indol-1-carboximidothioate

3.5 g 5-nitro-2,3-dihydro-indol-1-carbothioic acidamide are dissolved in 50 ml dimethylformamide and 1.2 ml methyl iodide are added. The mixture is stirred overnight at ambient temperature, the solvent is eliminated in vacuo and the residue is extracted from diethyl ether.


Yield: 4.85 g (85% of theory)


Mass spectrum (ESI+): m/z=238 [M+H]+


Example XXVI






5-nitro-2,3-dihydro-indol-1-carbothioic acid amide

5 g 5-nitro-2,3-dihydro-1H-indole are dissolved in 100 ml dichloromethane under argon and cooled to 0° C. 298 μl N,N-diisopropyl-ethylamine and 2.4 ml thio-phosgene are added and the mixture is stirred for another 1.5 hours. Then 300 ml of tetrahydrofuran are added, then ammonia gas is piped in for 2 hours and the mixture is stirred overnight at ambient temperature. The solvents are eliminated in vacuo and the residue is extracted from 1 N HCl.


Yield: 6.35 g (96% of theory)


Mass spectrum (ESI+): m/z=224 [M+H]+


Example XXVII






tert-butyl 2-(5-nitro-2,3-dihydro-indol-1-yl)-imidazole-1-carboxylate

500 mg 1-(1H-imidazol-2-yl)-5-nitro-2,3-dihydro-1H-indole are dissolved in 10 ml of tetrahydrofuran, 10 mg N,N-dimethylaminopyridine and 500 mg di-tert-butyl-dicarbonate are added and the mixture is stirred for 1 hour at ambient temperature. Then the solvent is eliminated in vacuo and the residue is chromatographed on aluminium oxide with dichloromethane.


Yield: 590 mg (82% of theory)


Mass spectrum (ESI+): m/z=331 [M+H]+


The following compounds are obtained analogously to Example XXXVII:


(1) tert-butyl 4-[6-(5-nitro-2,3-dihydro-indol-1-yl)-pyridazin-3-yl]-piperazine-1-carboxylate






The crude product is extracted from diisopropylether.


Mass spectrum (ESI+): m/z=427 [M+H]+


(2) tert-butyl(2-dimethylamino-ethyl)-[2-(5-nitro-2,3-dihydro-indol-1-yl)-pyrimidin-4-yl]-carbamate






The crude product is extracted from diisopropylether/petroleum ether.


Mass spectrum (ESI+): m/z=429 [M+H]+


(3) tert-butyl(2-dimethylamino-ethyl)-[6-(5-nitro-2,3-dihydro-indol-1-yl)-pyridazin-3-yl]-carbamate






The crude product is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=429 [M+H]+


(4) tert-butyl(2-(bis-tert-butoxycarbonyl)-amino-ethyl)-[6-(5-nitro-2,3-dihydro-indol-1-yl)-pyridazin-3-yl]-carbamate






and


tert-butyl 3-[6-(5-nitro-2,3-dihydro-indol-1-yl)-pyridazin-3-yl]-2-oxo-imidazolidine-1-carboxylate






The crude product is extracted from diethyl ether, to obtain tert-butyl 3-[6-(5-nitro-2,3-dihydro-indol-1-yl)-pyridazin-3-yl]-2-oxo-imidazolidine-1-carboxylate. The mother liquor is evaporated down in vacuo and the residue is chromatographed on aluminium oxide, to obtain tert-butyl(2-(bis-tert-butoxycarbonyl)-amino-ethyl)-[6-(5-nitro-2,3-dihydro-indol-1-yl)-pyridazin-3-yl]-carbamate.


Mass spectrum (ESI+): m/z=601 [M+H]+ (tert-butyl(2-(bis-tert-butoxycarbonyl)-amino-ethyl)-[6-(5-nitro-2,3-dihydro-indol-1-yl)-pyridazin-3-yl]-carbamate)


and


Mass spectrum (ESI+): m/z=427 [M+H]+ (tert-butyl 3-[6-(5-nitro-2,3-dihydro-indol-1-yl)-pyridazin-3-yl]-2-oxo-imidazolidine-1-carboxylate)


(5) tert-butyl(2-(bis-tert-butoxycarbonyl)-amino-ethyl)-[6-(5-nitro-indol-1-yl)-pyridazin-3-yl]-carbamate






The crude product is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=599 [M+H]+


(6) tert-butyl 5′-(5-nitro-indol-1-yl)-2,3,5,6-tetrahydro-[1,2′]bipyrazinyl-4-carboxylate






The crude product is extracted from diethyl ether.


Mass spectrum (ESI+): m/z=425 [M+H]+


(7) tert-butyl(2-tert-butoxycarbonylamino-ethyl)-[2-(5-nitro-indol-1-yl)-pyrimidin-4-yl]-carbamate






The crude product is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=599 [M+H]+


(8) tert-butyl 4-[6-(5-nitro-indol-1-yl)-pyridazin-3-yl]-piperazine-1-carboxylate






The crude product is extracted from diethyl ether.


Mass spectrum (ESI+): m/z=425 [M+H]+


(9) tert-butyl(2-(bis-tert-butoxycarbonyl)-amino-ethyl)-[4-(5-nitro-indol-1-yl)-pyrimidin-2-yl]-carbamate






The crude product is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=599 [M+H]+


(10) tert-butyl(3-(bis-tert-butoxycarbonyl)-amino-propyl)-(6-iodo-pyridazin-3-yl)-carbamate






The crude product is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=579 [M+H]+


(11) tert-butyl[2-(tert-butoxycarbonyl-methyl-amino)-ethyl]-(6-iodo-pyridazin-3-yl)-carbamate






and


3-{[2-(bis-tert.-butoxycarbonyl)-amino)-ethyl]-methyl}-amino-6-iodo-pyridazine






are obtained by reacting a mixture of N-(6-iodo-pyridazin-3-yl)-N′-methyl-ethan-1,2-diamine and N*1*-(6-iodo-pyridazin-3-yl)-N*1*-methyl-ethan-1,2-diamine (cf. Example XXX (7)). The products may be separated by chromatography on silica gel.


Mass spectrum (ESI+): m/z=479 [M+H]+ (tert-butyl[2-(tert-butoxycarbonyl-methyl-amino)-ethyl]-(6-iodo-pyridazin-3-yl)-carbamate)


and


Mass spectrum (ESI+): m/z=479 [M+H]+ (3-{[2-(bis-tert.-butoxycarbonyl)-amino)-ethyl]-methyl}-amino-6-iodo-pyridazine)


(12) tert-butyl(6-iodo-pyridazin-3-yl)-(2-piperidin-1-yl-ethyl)-carbamate






The crude product is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=433 [M+H]+


(13) tert-butyl[3-(tert-butoxycarbonyl-methyl-amino)-propyl]-(6-iodo-pyridazin-3-yl)-carbamate






and


3-{[3-(bis-tert.-butoxycarbonyl)-amino)-propyl]-methyl}-amino-6-iodo-pyridazine






are obtained by reacting a mixture of N-(6-iodo-pyridazin-3-yl)-N′-methyl-propane-1,3-diamine and N*1*-(6-iodo-pyridazin-3-yl)-N*1*-methyl-propane-1,3-diamine (cf. Example XXX (23)). The products may be separated by chromatography on silica gel.


Mass spectrum (ESI+): m/z=493 [M+H]+ tert-butyl[3-(tert-butoxycarbonyl-methyl-amino)-propyl]-(6-iodo-pyridazin-3-yl)-carbamate


and


Mass spectrum (ESI+): m/z=493 [M+H]+ 3-{[3-(bis-tert.-butoxycarbonyl)-amino)-propyl]-methyl}-amino-6-iodo-pyridazine


(14) tert-butyl[2-(6-iodo-pyridazin-3-ylamino)-ethyl]-carbamate






The reaction is carried out in the absence of 4-dimethylamino-pyridine at 60° C. After the reaction has ended the solvent is eliminated in vacuo and the residue is extracted from diethyl ether.


Mass spectrum (ESI+): m/z=365 [M+H]+


(15) tert-butyl[2-(5-bromo-pyrazin-2-ylamino)-ethyl]-carbamate






The reaction is carried out in the absence of 4-dimethylamino-pyridine at 60° C. After the reaction has ended the solvent is eliminated in vacuo and the residue is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=317 [M+H]+


(16) tert-butyl(5-bromo-pyrazin-2-yl)-(2-dimethylamino-ethyl)-carbamate






The reaction is carried out in the absence of 4-dimethylamino-pyridin at 60° C. After the reaction has ended the solvent is eliminated in vacuo and the residue is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=345 [M+H]+


Example XXVIII






3-iodo-6-methylamino-pyridazine

500 mg 3,6-diiodo-pyridazine are dissolved in 2 ml dioxane, 1.5 ml methylamine (2 N in tetrahydrofuran are added and the mixture is heated for 48 hours to 120° C. in a pressurised vessel. Then it is diluted with ethyl acetate and washed once with semisaturated sodium chloride solution. The organic phase is dried on magnesium sulphate, the solvents are eliminated in vacuo and the residue is chromatographed on silica gel (dichloromethane/methanol 99:1 to 90:10).


Yield: 35 mg (10% of theory)


Mass spectrum (ESI+): m/z=236 [M+H]+


Example XXIX






5-nitro-1-(6-piperazin-1-yl-pyridazin-3-yl)-2,3-dihydro-1H-indole


250 mg 1-(6-chloro-pyridazin-3-yl)-5-nitro-2,3-dihydro-1H-indole and 500 mg piperazine are mixed in a microwave vessel and heated to 180° C. for 2 hours in a microwave oven. After cooling to ambient temperature the mixture is stirred with dichloromethane and methanol. The solvents are eliminated in vacuo and the residue is divided between water and dichloromethane. The organic phase is washed with saturated sodium chloride solution and dried on magnesium sulphate. The solvent is eliminated in vacuo and the residue is extracted from diethyl ether/diisopropylether.


Yield: 245 mg (83% of theory)


Mass spectrum (ESI+): m/z=327 [M+H]+


The following compounds are obtained analogously to Example XXIX:


(1) N,N-dimethyl-N′-[2-(5-nitro-2,3-dihydro-indol-1-yl)-pyrimidin-4-yl]-ethan-1,2-diamine






and


N,N-dimethyl-N′-[4-(5-nitro-2,3-dihydro-indol-1-yl)-pyrimidin-2-yl]-ethan-1,2-diamine






Obtained by reacting a mixture of 1-(4-chloro-pyrimidin-2-yl)-5-nitro-2,3-dihydro-1H-indole and 1-(2-chloro-pyrimidin-4-yl)-5-nitro-2,3-dihydro-1H-indole (Example XXVIII (7)). The reaction lasts 30 minutes. The crude product is separated into the two products by chromatography on aluminium oxide.


Mass spectrum (ESI+): m/z=329 [M+H]+ (N,N-dimethyl-N′-[2-(5-nitro-2,3-dihydro-indol-1-yl)-pyrimidin-4-yl]-ethan-1,2-diamine)


and


Mass spectrum (ESI+): m/z=329 [M+H]+ (N,N-dimethyl-N′-[4-(5-nitro-2,3-dihydro-indol-1-yl)-pyrimidin-2-yl]-ethan-1,2-diamine)


(2) N,N-dimethyl-N′-[6-(5-nitro-2,3-dihydro-indol-1-yl)-pyridazin-3-yl]-ethan-1,2-diamine






The reaction lasts 30 minutes. The crude product is purified by chromatography on aluminium oxide.


Mass spectrum (ESI+): m/z=329 [M+H]+


(3) N*1*-[6-(5-nitro-2,3-dihydro-indol-1-yl)-pyridazin-3-yl]-ethan-1,2-diamine






The reaction lasts 30 minutes. The crude product is added to water. The solid is suction filtered, dissolved in methanol and diluted with dichloromethane. After drying with magnesium sulphate the solvents are eliminated in vacuo.


Mass spectrum (ESI+): m/z=301 [M+H]+


(4) N*1-[6-(5-nitro-indol-1-yl)-pyridazin-3-yl]-ethan-1,2-diamine






The reaction lasts 30 minutes. The crude product is added to water. The solid is suction filtered, dissolved in methanol and diluted with dichloromethane. After drying with magnesium sulphate the solvents are eliminated in vacuo.


Mass spectrum (ESI+): m/z=299 [M+H]+


(5) 5′-(5-nitro-indol-1-yl)-3,4,5,6-tetrahydro-2H-[1,2′]bipyrazinyl






Mass spectrum (ESI+): m/z=325 [M+H]+


(6) N*1*-[2-(5-nitro-indol-1-yl)-pyrimidin-4-yl]-ethan-1,2-diamine






The reaction lasts 30 minutes. The crude product is added to water. The solid is suction filtered, dissolved in methanol and diluted with dichloromethane. After drying with magnesium sulphate the solvents are eliminated in vacuo.


Mass spectrum (ESI+): m/z=299 [M+H]+


(7) 5-nitro-1-(6-piperazin-1-yl-pyridazin-3-yl)-1H-indole






Mass spectrum (ESI+): m/z=325 [M+H]+


(8) methyl-[4-(5-nitro-indol-1-yl)-pyrimidin-2-yl]-amine






The reaction lasts 20 minutes at 120° C. The crude product is extracted from dichloromethane.


Mass spectrum (ESI+): m/z=270 [M+H]+


(9) N*1-[4-(5-nitro-indol-1-yl)-pyrimidin-2-yl]-ethan-1,2-diamine






The reaction lasts 10 minutes at 80° C. The crude product is added to water. The solid is suction filtered and dried.


Mass spectrum (ESI+): m/z=299 [M+H]+


Example XXX






3,6-diiodo-4-methyl-pyridazine

5 g 3,6-dichloro-4-methyl-pyridazine are dissolved in 60 ml of a 67% solution of HI in water. The mixture is heated to 150° C. for 45 minutes, cooled to ambient temperature and then the solution is added to 600 ml of 4 N NaOH. Then it is decanted from the insoluble oil. The oil is taken up in 100 ml of ethyl acetate and 100 ml petroleum ether are added thereto. After brief treatment in the ultra-sound bath the solid formed is suction filtered (1.5 g). The mother liquor is evaporated down in vacuo and the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 10:1 to 1:3), to obtain another 220 mg product.


Yield: 1.72 g (16% of theory)


Mass spectrum (ESI+): m/z=347 [M+H]+


Example XXXI






N′-(6-bromo-pyridazin-3-yl)-N,N-dimethyl-ethan-1,2-diamine

483 mg N′-(6-chloro-pyridazin-3-yl)-N,N-dimethyl-ethan-1,2-diamine are dissolved in 5.5 ml HBr solution (48% in water). The mixture is heated for 12 hours to 10° C. It is carefully diluted with water and then adjusted to pH 9 with 1 N NaOH. Then it is extracted 3 times with ethyl acetate and the combined organic phases are then washed with saturated sodium chloride solution. After drying with magnesium sulphate the solvents are eliminated in vacuo.


Yield: 314 mg (53% of theory)


Mass spectrum (ESI+): m/z=245 [M+H]+


Example XXXII






8-bromo-2-piperazin-1-yl-quinoline

670 mg 8-bromo-2-chloro-quinoline and 920 mg piperazine are dissolved in 9 ml of n-butanol and refluxed for 4 hours. Then the solvent is eliminated in vacuo, the residue is dissolved in ethyl acetate and the organic phase is washed with saturated sodium hydrogen carbonate solution and saturated sodium chloride solution. After drying with magnesium sulphate the solvent is eliminated in vacuo and the residue is chromatographed on silica gel with dichloromethane/methanol 5:1.


Yield: 625 mg (77% of theory)


Mass spectrum (ESI+): m/z=292 [M+H]+


Example XXXIII






8-bromo-2-chloro-quinoline

2.8 g 8-bromo-1H-quinolin-2-one are dissolved in 20 ml phosphorus oxychloride and refluxed for 90 minutes. Sufficient concentrated ammonia solution is added to give an alkaline pH. The solid is suction filtered, washed with water and dried.


Yield: 2.8 g (92% of theory)


melting point: 115° C.


The following compounds are obtained analogously to Example XLIII:


(1) 3-chloro-5-trifluoromethyl-pyridazine






Mass spectrum (ESI+): m/z=183 [M+H]+


Rf value: 0.75 (silica gel; petroleum ether/ethyl acetate 2:1)


Example XXXIV






8-bromo-1H-quinolin-2-one

6 g N-(2-bromo-phenyl)-3-ethoxy-acrylamide are added batchwise to 30 ml concentrated sulphuric acid. After the addition has ended the mixture is stirred for 1 hour and then poured onto ice water. The solid is suction filtered and dried. The product thus obtained is chromatographed on silica gel (dichloromethane/ethyl acetate 3:1 to 1:1).


Yield: 2.95 g (59% of theory)


melting point: 186° C.


Example XXXV






N-(2-bromo-phenyl)-3-ethoxy-acrylamide

20 g ethyl 3-ethoxy-acrylate are dissolved in 160 ml of 2 N sodium hydroxide solution and refluxed for 4 hours. The mixture is cooled to ambient temperature and then adjusted to pH 3 with 4 N HCl. The precipitated solid is filtered off and dried. The mother liquor is extracted with ethyl acetate. The organic phase is treated with activated charcoal and sodium sulphate, filtered and evaporated down in vacuo. A total of 9.2 g product are thus obtained, which are dissolved in 120 ml of toluene. 6.9 ml of thionyl chloride are added and the mixture is refluxed for 3 hours. The solvents are eliminated in vacuo, the crude product is taken up in 60 ml of pyridine and cooled to 0° C. 11.6 g of 2-bromoaniline are added, the mixture is stirred for 1 hour at 0° C. and for 2 hours at ambient temperature. Then it is diluted with water and the aqueous phase is extracted with ethyl acetate.


The organic phase is washed twice with water and twice with 1 N hydrochloric acid. Activated charcoal and sodium sulphate are added, the mixture is filtered and the solvents are eliminated in vacuo. The residue is recrystallised from isopropanol/water.


Yield: 6.5 g (36% of theory)


melting point: 98° C.


Example XXXVI






3-iodo-6-methyl-pyridazine

2.5 g 3-chloro-6-methyl-pyridazine are suspended in 10 ml of 67% HI solution. The mixture is heated to 120° C. for 2 hours, cooled to ambient temperature and neutralised with 1 N NaOH solution. Then it is extracted with ethyl acetate and the organic phase is washed twice with water and once with saturated sodium chloride solution. After drying with magnesium sulphate the solvent is eliminated in vacuo.


Yield: 3.6 g (84% of theory)


Mass spectrum (ESI+): m/z=221 [M+H]+


The following compounds are obtained analogously to Example XXXVI:


(1) 3,6-diiodo-pyridazine






The reaction is carried out for 30 minutes at 150° C. Then the mixture is added to ice water, neutralised with 40% sodium hydroxide solution and the precipitated solid is suction filtered. The solid is dissolved in dichloromethane, dried on magnesium sulphate and the solvent is eliminated in vacuo. The crude product thus obtained is extracted from diethyl ether.


Mass spectrum (ESI+): m/z=333 [M+H]+


(2) 3-iodo-5-trifluoromethyl-pyridazine






3-chloro-5-trifluoromethyl-pyridazine is refluxed in acetone in the presence of 2.9 equivalents of sodium iodide and two drops of conc. hydriodic acid for approx. 20 minutes.


Rf value: 0.53 (silica gel; petroleum ether/ethyl acetate 5:1)


(3) 3-iodo-5-(thiazol-2-yl)-pyridazine






3-chloro-5-(thiazol-2-yl)-pyridazine is refluxed in acetone in the presence of 2.6 equivalents of sodium iodide and one drop of conc. hydriodic acid for approx. 20 minutes.


Example XXXVII






3-bromo-5-methyl-phenylsulphonyl-chloride

1.3 g 3-bromo-5-methyl-phenylamine are dissolved in 3 ml concentrated HCl and cooled to 0° C. To this a solution of 560 mg sodiumnitrite in 1 ml of water is added dropwise. The solution thus prepared is added dropwise at 0° C. to a solution of 280 mg of copper-II-chloride, 0.6 ml of water and 7 ml of sulphur dioxide in glacial acetic acid (30%). The cooling bath is removed and the mixture is stirred for 15 minutes at ambient temperature. Then it is diluted with ice water, the solid is suction filtered and dried in the desiccator. The product is further reacted directly in Example XI without further purification.


Yield: 1.354 g (72% of theory)


The following compounds are obtained analogously to Example XXXVII:


(1) 3-chloro-5-methyl-phenylsulphonyl-chloride






The product is further reacted directly in Example XI without further purification.


(2) 3,5-dibromo-phenylsulphonyl-chloride






The product is further reacted directly in Example XI without further purification.


(3) 3-bromo-5-chloro-phenylsulphonyl-chloride






The aqueous phase is extracted with ethyl acetate. The organic phase is washed with saturated sodium chloride solution. After drying with magnesium sulphate the solvent is eliminated in vacuo, the residue is taken up in toluene and this is in turn eliminated in vacuo.


The product is further reacted directly in Example XI without further purification.


Example XXXVIII






2-bromo-N-(2-dimethylamino-ethyl)-isonicotinamide

5 g 2-bromopyridine-4-carboxylic acid are dissolved in 40 ml of tetrahydrofuran. 4.4 g of carbonyldiimidazole are added thereto and the mixture is stirred for 3 hours at ambient temperature and for 1 hour at 40° C. Then 20 ml of this solution are added dropwise to a solution of 1.2 ml N,N-dimethylethylenediamine in 10 ml of tetrahydrofuran. After stirring overnight the mixture is evaporated down in vacuo and the residue is divided between ethyl acetate and saturated sodium hydrogen carbonate solution. The organic phase is washed with saturated sodium chloride solution and dried on magnesium sulphate. After elimination of the solvents in vacuo the residue is chromatographed on silica gel with dichloromethane/methanol 5:1. The product thus obtained is chromatographed on aluminium oxide with ethyl acetate.


Yield: 1.7 g (62% of theory)


Mass spectrum (ESI+): m/z=272 [M+H]+


The following compounds are obtained analogously to Example XXXVIII:


(1) tert-butyl 4-(2-bromo-pyridin-4-carbonyl)-piperazine-1-carboxylate






The crude product is extracted from a little diethyl ether. The product thus obtained is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=370 [M+H]+


(2) (2-bromo-pyridin-4-yl)-morpholin-4-yl-methanone






Mass spectrum (ESI+): m/z=271 [M+H]+


(3) 2-bromo-N-(2-hydroxy-ethyl)-isonicotinamide






Mass spectrum (ESI+): m/z=245 [M+H]+


(4) 2-bromo-N-methyl-isonicotinamide






The reaction is carried out at ambient temperature.


Mass spectrum (ESI+): m/z=215 [M+H]+


(5) 2-bromo-N-(2-methoxy-ethyl)-isonicotinamide






The reaction is carried out at ambient temperature.


Mass spectrum (ESI): m/z=257 [M−H]


(6) 2-bromo-isonicotinamide






The reaction is carried out at ambient temperature.


Mass spectrum (ESI): m/z=199 [M−H]


(7) 2-bromo-N-cyclopropyl-isonicotinamide






The reaction is carried out at ambient temperature. After the reaction has ended the mixture is diluted with ethyl acetate, washed once with 1 N hydrochloric acid, dried on magnesium sulphate and the solvent is eliminated in vacuo.


Mass spectrum (ESI+): m/z=241 [M+H]+


(8) 2-bromo-N-methoxy-N-methyl-isonicotinamide






N,O-dimethylhydroxylamine-hydrochloride is used. The reaction is carried out at ambient temperature in the presence of 0.9 equivalents triethylamine. After the reaction has ended the mixture is diluted with ethyl acetate, washed once with 1 N hydrochloric acid, dried on magnesium sulphate and the solvent is eliminated in vacuo.


Mass spectrum (ESI+): m/z=245 [M+H]+


(9) 2-bromo-N-(2,2-dimethoxy-ethyl)-isonicotinamide






The coupling with the amine is carried out in tetrahydrofuran/toluene 2:1 at 100° C. for 4 hours.


Mass spectrum (ESI+): m/z=289 [M+H]+


Example XXXIX






7-methyl-5-nitro-1H-indole

113 mg 2-ethynyl-6-methyl-4-nitro-phenylamine are dissolved in 5 ml N-methyl-pyrrolidone. To this are added 180 mg potassium-tert.-butoxide and the mixture is stirred for 8 hours at ambient temperature. Then it is divided between water and ethyl acetate, the aqueous phase is extracted once with ethyl acetate and the combined organic phases are dried on magnesium sulphate. The solvents are eliminated in vacuo and the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 10:1 to 1:2).


Yield: 65 mg (58% of theory)


Mass spectrum (ESI): m/z=175 [M−H]


The following compounds are obtained analogously to Example XXXIX:


(1) 6-methyl-5-nitro-1H-indole






Mass spectrum (ESI): m/z=175 [M−H]


Example XL






2-ethynyl-6-methyl-4-nitro-phenylamine

160 mg 2-methyl-4-nitro-6-trimethylsilanylethynyl-phenylamine are dissolved in 3 ml of methanol. 142 mg potassium carbonate are added to this and the mixture is stirred for 5 hours at ambient temperature. Then it is divided between water and ethyl acetate, the aqueous phase is extracted once with ethyl acetate and the combined organic phases are dried on magnesium sulphate. The solvents are eliminated in vacuo.


Yield: 113 mg (100% of theory)


Mass spectrum (ESI+): m/z=177 [M+H]+


The following compounds are obtained analogously to Example XL:


(1) 2-ethynyl-5-methyl-4-nitro-phenylamine






Mass spectrum (ESI+): m/z=177 [M+H]+


Example XLI






2-methyl-4-nitro-6-trimethylsilanylethynyl-phenylamine

250 mg 2-iodo-6-methyl-4-nitro-phenylamine are dissolved in 5 ml of tetrahydrofuran. 17 mg copper-1-iodide and 63 mg bis-triphenylphosphine-palladium dichloride are added under argon. Then 635 μl trimethylsilylacetylene and 626 μl triethylamine are added. The mixture is stirred for 2 hours at ambient temperature, diluted with diethyl ether and the insoluble constituents are filtered off. Then the solvents are eliminated in vacuo and the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 10:1 to 1:1).


Yield: 172 mg (73% of theory)


Mass spectrum (ESI+): m/z=249 [M+H]+


The following compounds are obtained analogously to Example XLI:


(1) 5-methyl-4-nitro-2-trimethylsilanylethynyl-phenylamine






Mass spectrum (ESI+): m/z=249 [M+H]+


Example XLII






2-iodo-6-methyl-4-nitro-phenylamine

2.3 g iodine are dissolved in 20 ml of ethanol, 2 g silver sulphate and 1 g 2-methyl-4-nitro-phenylamine are added. The mixture is stirred for 4 hours at ambient temperature, the solvent is eliminated in vacuo and divided between saturated sodium thiosulphate solution and dichloromethane. The organic phase is washed once with saturated sodium chloride solution and dried on magnesium sulphate. Then the solvents are eliminated in vacuo and the residue is extracted from diisopropylether/petroleum ether.


Yield: 1.62 g (89% of theory)


Mass spectrum (ESI+): m/z=279 [M+H]+


The following compounds are obtained analogously to Example XLII:


(1) 2-iodo-5-methyl-4-nitro-phenylamine






The crude product is purified by chromatography on silica gel.


Mass spectrum (ESI+): m/z=279 [M+H]+


Example XLIII






1-(5-chloro-pyrazin-2-yl)-5-nitro-1H-indole

600 mg 5-nitro-1-(4-oxy-pyrazin-2-yl)-1H-indole are added batchwise to 4 ml of phosphorus oxychloride warmed to 60° C. After the addition has ended the mixture is heated to 100° C. for 3 hours. After cooling to ambient temperature it is added to ice water and the aqueous phase is extracted once with dichloromethane. The organic phase is washed with saturated sodium chloride solution and then dried on magnesium sulphate. After elimination of the solvent in vacuo the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 10:1 to 1:1).


Yield: 140 mg (22% of theory)


Mass spectrum (ESI+): m/z=275 [M+H]+


Example XLIV






2-chloro-pyrazin-4-oxide

10 ml chloropyrazine are dissolved in 10 ml of peracetic acid (39% in glacial acetic acid) and heated to 80° C. for 24 hours. Then 10 ml of 35% hydrogen peroxide solution are added and the mixture is heated to 80° C. for another 24 hours. After cooling to ambient temperature, sufficient sodium sulphide is carefully added until there is no further development of gas. Then the mixture is diluted with 500 ml dichloromethane. After drying with magnesium sulphate the solvent is eliminated in vacuo and the residue is chromatographed on silica gel with dichloromethane/methanol 99:1. The product thus obtained is extracted from petroleum ether.


Yield: 5.8 g (40% of theory)


Mass spectrum (ESI+): m/z=131 [M+H]+


Example XLV






3,5-dibromo-phenylamine

5.95 g 1,3-dibromo-5-nitrobenzene are dissolved in 40 ml of ethanol. 23.9 g of tin-II-chloride dihydrate are added and the mixture is slowly heated to reflux temperature. Once reflux temperature has been reached it is maintained for another 30 minutes. Then the solvent is eliminated in vacuo and the residue is made alkaline with 4 N NaOH. Ethyl acetate is added and the mixture is filtered through kieselguhr. The filter cake is washed thoroughly with ethyl acetate. Then the aqueous phase is extracted 3 times with ethyl acetate and the combined organic phases are washed with saturated sodium chloride solution. After drying with magnesium sulphate the solvent is eliminated in vacuo and the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 85:15 to 70:30).


Yield: 4.53 g (85% of theory)


Rf value: 0.35 (silica gel, petroleum ether/ethyl acetate 5:1)


Example XLVI






6-chloro-3-(5-nitro-indol-1-yl)-pyridazin-4-carbonitrile

200 mg 5-nitro-1H-indole are dissolved in 3 ml N-methylpyrrolidone and combined with 131 mg of potassium-tert.-butoxide. The mixture is stirred for 10 minutes at ambient temperature and then 214 mg 3,6-dichloro-pyridazine-4-carbonitrile in 2 ml N-methylpyrrolidone are added dropwise. The reaction mixture is heated to 65° C. for 2 hours, divided between water and ethyl acetate and the aqueous phase is extracted twice with ethyl acetate. The combined organic phases are washed with saturated sodium chloride solution and dried on magnesium sulphate. Then the solvents are eliminated in vacuo and the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 10:1 to 1:3). The product thus obtained is extracted from ethyl acetate.


Yield: 105 mg (28% of theory)


Mass spectrum (ESI+): m/z=317 [M+NH4]+


The following compounds are obtained analogously to Example XLVI:


(1) tert-butyl 4-[5-cyano-6-(5-nitro-indol-1-yl)-pyridazin-3-yl]-piperazine-1-carboxylate






Obtained by reacting 6-chloro-3-(5-nitro-indol-1-yl)-pyridazin-4-carbonitrile and tert-butyl piperazine-1-carboxylate. The reaction lasts 2 hours at 70° C.


Mass spectrum (ESI+): m/z=450 [M+H]+


Example XLVII






3,6-dichloro-pyridazin-4-carbonitrile

2.6 g 3,6-dichloro-pyridazine-4-carboxylic acid-amide are dissolved in 40 ml dichloromethane and cooled to 0° C. 7.6 ml triethylamine and then 3.9 ml trifluoroacetic anhydride are added. Then the mixture is stirred for 1 hour at 0° C. and for 1 hour at ambient temperature. It is then divided between dichloromethane and saturated sodium hydrogen carbonate solution. The aqueous phase is extracted once with dichloromethane and the combined organic phases are washed once with saturated sodium chloride solution. After drying with magnesium sulphate the solvents are eliminated in vacuo and the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 10:1 to 1:2).


Yield: 1.9 g (81% of theory)


Mass spectrum (EI): m/z=173 [M]+


The following compounds are obtained analogously to Example XLVII:


(1) 2-bromo-4-cyano-pyridine






Rf value: 0.7 (silica gel: cyclohexane/ethyl acetate 2:1)


Example XLVIII






3-bromo-5-chloro-phenylamine

10.4 g 1-bromo-3-chloro-5-nitro-benzene are dissolved in 200 ml of tetrahydrofuran and 50 ml of methanol. 1 g Raney nickel is added and the mixture is hydrogenated for 32 hours at 50 psi and ambient temperature. Then the catalyst is suction filtered and the solvent is eliminated in vacuo.


Yield: 9.25 g (102% of theory)


Rf value: 0.40 (silica gel, petroleum ether/ethyl acetate 5:1)


Example XLIX






3-methyl-5-nitro-1H-indole

1.75 g N-(4-nitro-phenyl)-N′-propylidene-hydrazine are dissolved in 50 ml of toluene and to this are added 10 ml of an 85% phosphoric acid solution. The mixture is heated to 100° C. for 3 hours and then the toluene phase is decanted off. Then another 50 ml of toluene are added and the mixture is heated to 100° C. for 12 hours. The toluene phase is decanted off again and combined with the first toluene phase. The combined toluene phases are washed successively with water and saturated sodium chloride solution. After drying with magnesium sulphate the solvent is eliminated in vacuo and the residue is chromatographed on silica gel with cyclohexane/ethyl acetate (100:0 to 50:50).


Yield: 509 mg (32% of theory)


Mass spectrum (ESI+): m/z=177 [M+H]+


The following compounds are obtained analogously to Example XLIX:


(1) 3-ethyl-5-nitro-1H-indole






Mass spectrum (ESI+): m/z=191 [M+H]+


Example L






N-(4-nitro-phenyl)-N′-propylidene-hydrazine

2 g 4 nitrophenylhydrazine are suspended in 8 ml of ethanol and 1 ml of propionaldehyde is added. The mixture is stirred for 12 hours at ambient temperature, the solvent is eliminated in vacuo and the residue is extracted from diisopropylether.


Yield: 1.75 g (69% of theory)


Mass spectrum (ESI+): m/z=194 [M+H]+


The following compounds are obtained analogously to Example L:


(1) N-butyliden-N′-(4-nitro-phenyl)-hydrazine






Mass spectrum (ESI+): m/z=208 [M+H]+


Example Li






5-nitro-1H-indol-3-carbonitrile

1 g 5-nitroindole-3-carboxaldehyde is suspended in 40 ml formic acid and to this are added 510 mg hydroxylamine hydrochloride. The mixture is refluxed for 12 hours, allowed to cool to ambient temperature and adjusted to pH 5 with 4 N sodium hydroxide solution. Then the mixture is extracted with ethyl acetate and the organic phase is washed successively with water and saturated sodium chloride solution. After drying with magnesium sulphate the solvent is eliminated in vacuo and the residue is chromatographed on silica gel with cyclohexane/ethyl:acetate (50:50 to 0:100).


Yield: 226 mg (23% of theory)


Mass spectrum (ESI): m/z=186 [M−H]


Example LII






3-chloro-1H-indol-5-ylamine

2.17 g 3-chloro-5-nitro-1H-indole are dissolved in 120 ml acetone and 20 ml of water. 17 g of ammonium acetate are added and then within 0.5 hours 60 ml of a 20% solution of titanium-(III)-chloride in 3% hydrochloric acid are added dropwise. Then the mixture is stirred for another hour, added to 300 ml of water and neutralised with 4 N sodium hydroxide solution. Then it is extracted 3 times with ethyl acetate and the combined organic phases are washed with saturated sodium chloride solution. After drying with magnesium sulphate the solvent is eliminated in vacuo.


Yield: 2.12 g (115% of theory)


Mass spectrum (ESI+): m/z=167 [M+H]+


Example LIII






3-chloro-5-nitro-1H-indole

2 g 5-nitroindole are dissolved in 20 ml dimethylformamide. 2 g N-bromo-succinimide are added batchwise thereto and the mixture is stirred for 12 hours at ambient temperature. Then it is added to 200 ml of water, the precipitate is suction filtered and washed with a little diethyl ether. The solid is dried in vacuo.


Yield: 2.17 g (90% of theory)


Mass spectrum (ESI+): m/z=197 [M+H]+


The following compounds are obtained analogously to Example LIII:


(1) tert.butyl[(3-chloro-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Mass spectrum (ESI+): m/z=506 [M+NH4]+


(2) 3-iodo-5-nitro-1H-indole






Mass spectrum (ESI+): m/z=289 [M+H]+


Example LIV






5-nitro-3-trifluoromethyl-1H-indole

1.7 g 3-iodo-5-nitro-1H-indole are dissolved in 20 ml dimethylformamide. To this are added 1.5 ml of methyl fluorosulphonyl-2,2-difluoroacetate and 150 mg copper-1-iodide. Then the mixture is heated to 80° C. for 4 hours. After cooling to ambient temperature it is divided between water and ethyl acetate. The aqueous phase is extracted with ethyl acetate and the combined organic phases are dried on magnesium sulphate. The solvents are eliminated in vacuo and the residue is chromatographed on silica gel with cyclohexane/ethyl acetate (100:0 to 50:50).


Yield: 612 mg (45% of theory)


Mass spectrum (ESI): m/z=229 [M−H]


Example LV






4-(2-bromo-pyridin-4-yl)-morpholine 1 g of 4-amino-2-bromo-pyridine is combined with 0.59 g sodium hydride (approx. 60% in mineral oil) under an argon atmosphere in dry N,N-dimethylformamide while cooling with an ice bath. After five minutes 0.70 ml of bis(2-chloroethyl)ether are pipetted in. The reaction mixture is heated to ambient temperature overnight, combined with ethyl acetate and washed with water. The organic phase is dried on magnesium sulphate and evaporated down. The resin-like flask residue is stirred with a little ethyl acetate and suction filtered. The crude product is chromatographed through a silica gel column with cyclohexane/ethyl acetate (60:40 to 40:60).

Yield: 870 mg (62% of theory)


Mass spectrum (ESI+): m/z=243 [M+H]+


Rf value: 0.32 (silica gel:ethyl acetate/petroleum ether 1:1)


The following compounds are obtained analogously to Example LV:


(1) 4-(6-bromo-pyridin-3-yl)-morpholine






Mass spectrum (ESI+): m/z=243 [M+H]+


Rf value: 0.47 (silica gel:ethyl acetate/petroleum ether 1:1)


Example LVI






4-(5-bromo-pyrazin-2-yl)-morpholin-3-one

160 mg N-(5-bromo-pyrazin-2-yl)-2-(2-chloro-ethoxy)-acetamide and 323 mg caesium carbonate are stirred in 5 ml acetonitrile overnight at ambient temperature. Then the reaction mixture is evaporated down, combined with ethyl acetate and washed with semisaturated sodium chloride solution. The organic phase is dried on magnesium sulphate and evaporated down. The flask residue is stirred with a little tert-butylmethylether, suction filtered and dried.


Yield: 110 mg (79% of theory)


Mass spectrum (ESI+): m/z=258 [M+H]+


Rf value: 0.52 (silica gel:ethyl acetate/petroleum ether 1:1)


The following compounds are obtained analogously to Example LVI:


(1) 4-(6-bromo-pyridazin-3-yl)-morpholin-3-one






Mass spectrum (ESI+): m/z=258 [M+H]+


Rf value: 0.35 (silica gel:ethyl acetate/petroleum ether 1:1)


(2) 4-(6-bromo-pyridin-3-yl)-morpholin-3-one






Mass spectrum (ESI+): m/z=257 [M+H]+


Rf value: 0.17 (silica gel:ethyl acetate/petroleum ether 1:1)


(3) 4-(2-bromo-pyridin-4-yl)-morpholin-3-one






Mass spectrum (ESI+): m/z=257 [M+H]+


Rf value: 0.24 (silica gel:ethyl acetate/petroleum ether 1:1)


Example LVII






N-(5-bromo-pyrazin-2-yl)-2-(2-chloro-ethoxy)-acetamide

5 ml of a 0.5 M solution of (2-chloroethoxy)-acetyl chloride in tetrahydrofuran are added dropwise to 500 mg 2-amino-5-bromo-pyrazine and 1 ml triethylamine in 5 ml of tetrahydrofuran while cooling with an ice bath. The reaction mixture is stirred overnight at ambient temperature, then a total of 5 ml (2-chloroethoxy)-acetyl chloride (0.5 M in tetrahydrofuran) and 1 ml triethylamine are added again. After another 48 h at ambient temperature the reaction mixture is combined with ethyl acetate and washed with 1 N hydrochloric acid, saturated sodium hydrogen carbonate solution and saturated sodium chloride solution. The organic phase is dried on magnesium sulphate, evaporated down and chromatographed through a silica gel column with cyclohexane/ethyl acetate (70:30 to 60:40).


Yield: 165 mg (20% of theory)


Rf value: 0.58 (silica gel:ethyl acetate/petroleum ether 1:1)


The following compounds are obtained analogously to Example LVII:


(1) N-(6-bromo-pyridazin-3-yl)-2-(2-chloro-ethoxy)-acetamide






Mass spectrum (ESI+): m/z=294 [M+H]+


Rf value: 0.46 (silica gel:ethyl acetate/petroleum ether 1:1)


(2) N-(6-bromo-pyridin-3-yl)-2-(2-chloro-ethoxy)-acetamide






Rf value: 0.70 (silica gel: dichloromethane/methanol 95:5)


(3) N-(2-bromo-pyridin-4-yl)-2-(2-chloro-ethoxy)-acetamide






Rf value: 0.68 (silica gel: dichloromethane/methanol 95:5)


Example LVIII






2-bromo-5-(tetrahydro-pyran-4-yloxy)-pyrazine

66 mg sodium hydride (55% in mineral oil) are added at ambient temperature to 300 mg 2,5-dibromo-pyrazine and 135 mg 4-hydroxy-tetrahydro-pyran in 6 ml of tetrahydrofuran and the reaction mixture is stirred for five hours at ambient temperature. Then it is diluted with copious amounts of tert-butylmethylether, washed with saturated sodium chloride solution, dried on magnesium sulphate and evaporated down. The solid flask residue is gently heated with petroleum ether, cooled in the ice bath cooled, suction filtered and washed with a little petroleum ether. The filtrate is evaporated down, the residue is stirred with a little n-hexane, cooled in the ice bath, suction filtered and washed with a little n-hexane. The combined filter cakes are dried.


Yield: 246 mg (75% of theory)


Mass spectrum (EI): m/z=258 [M]+


Rf value: 0.50 (silica gel: petroleum ether/ethyl acetate 8:2)


The following compounds are obtained analogously to Example LVIII:


(1) (S)-2-bromo-5-(tetrahydro-furan-3-yloxy)-pyrazine






Rf value: 0.40 (silica gel: petroleum ether/ethyl acetate 8:2)


(2) (R)-2-bromo-5-(tetrahydro-furan-3-yloxy)-pyrazine






Mass spectrum (ESI+): m/z=245 [M+H]+


Rf value: 0.40 (silica gel: petroleum ether/ethyl acetate 8:2)


(3) (S)-3-iodo-6-(tetrahydro-furan-3-yloxy)-pyridazine






Mass spectrum (ESI+): m/z=293 [M+H]+


Rf value: 0.35 (silica gel: cyclohexane/ethyl acetate 7:3)


(4) 3-iodo-6-(tetrahydro-pyran-4-yloxy)-pyridazine






Mass spectrum (ESI+): m/z=307 [M+H]+


Rf value: 0.40 (silica gel: cyclohexane/ethyl acetate 7:3)


(5) (R)-3-iodo-6-(tetrahydro-furan-3-yloxy)-pyridazine






Mass spectrum (ESI+): m/z=293 [M+H]+


Rf value: 0.30 (silica gel: cyclohexane/ethyl acetate 7:3)


(6) 3-iodo-6-(2-dimethylamino)-ethoxy-pyridazine






Once the reaction has ended the solvent is eliminated in vacuo and the residue is chromatographed on aluminium oxide.


Mass spectrum (ESI+): m/z=294 [M+H]+


(7) 3-iodo-6-benzyloxy-pyridazine






Mass spectrum (ESI+): m/z=313 [M+H]+


(8) 3-iodo-6-[2-(tetrahydro-pyran-2-yloxy)-ethoxy]-pyridazine






The reaction is carried out for 12 hours at ambient temperature and 3 hours at 60° C. After the reaction has ended the solvent is eliminated in vacuo and the residue is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=351 [M+H]+


(9) 3-iodo-6-methylsulphanyl-pyridazine






This is obtained analogously by reacting 3,6-diiodo-pyridazine with sodium thiomethoxide.


Mass spectrum (ESI+): m/z=253 [M+H]+


(10) 3-iodo-6-(2-phenyl-[1.3]dioxan-5-yloxy)-pyridazine






The reaction is carried out for 24 hours at ambient temperature. After the reaction has ended the solvent is eliminated in vacuo and the residue is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=385 [M+H]+


(11) 2-bromo-5-methylsulphanyl-pyrazine






Is obtained analogously by reacting 2,5-dibromo-pyrazine with sodium thiomethoxide.


Rf value: 0.43 (silica gel: cyclohexane/ethyl acetate 20:1)


(12) 2-bromo-5-(2-phenyl-[1.3]dioxan-5-yloxy)-pyrazine






Is obtained in admixture with the cis-isomer by reacting 2,5-dibromopyrazine with 2-phenyl-[1,3]dioxan-5-ol. The stereoisomers are separated from one another by chromatography on silica gel (cyclohexane/ethyl acetate 90:10 to 50:50).


Mass spectrum (ESI+): m/z=337 [M+H]+


(13) [2-(5-bromo-pyrazin-2-yloxy)-ethyl]-dimethyl-amine






Rf value: 0.48 (aluminium oxide: cyclohexane/ethyl acetate 4:1)


(14) 2-iodo-4-methylsulphanyl-pyridine






is obtained analogously by reacting 2,4-diiodo-pyridine with sodium thiomethoxide in dimethylformamide at 60° C.


Mass spectrum (ESI+): m/z=252 [M+H]+


(15) tert-butyl[2-(5-bromo-pyrazin-2-yloxy)-ethyl]-carbamate






Mass spectrum (ESI+): m/z=318 [M+H]+


(16) 2-bromo-4-ethylsulphanyl-pyridine






is obtained analogously by reacting 2-bromo-4-iodo-pyridine with sodium thiomethoxide in dimethylformamide at 80° C. for 3 days.


Mass spectrum (ESI+): m/z=218 [M+H]+


Example LIX






2-bromo-5-(tetrahydro-furan-3-yloxy)-pyridine


A mixture of 500 mg 2-bromo-5-hydroxy-pyridine and tetrahydro-furan-3-yl-toluene-4-sulphonate in 5 ml N,N-dimethylformamide is stirred for five hours in an oil bath warmed to 60° C., then another 0.2 ml tetrahydro-furan-3-yl-toluene-4-sulphonate is added and the mixture is stirred for another five hours at 80° C. For working up the reaction mixture is evaporated down and combined with ice water. The precipitate formed is suction filtered, washed with water and dried. The crude product is stirred with a little methanol, suction filtered, washed with a little methanol and dried in the desiccator.


Yield: 496 mg (71% of theory)


Mass spectrum (ESI+): m/z=244 [M+H]+


The following compounds are obtained analogously to Example LIX:


(1) 2-bromo-5-(tetrahydro-pyran-4-yloxy)-pyridine






Mass spectrum (ESI+): m/z=258 [M+H]+


Rf value: 0.50 (silica gel: cyclohexane/ethyl acetate 1:1)


(2) 2-bromo-4-(tetrahydro-furan-3-yloxy)-pyridine






Mass spectrum (ESI+): m/z=244 [M+H]+


Rf value: 0.35 (silica gel: cyclohexane/ethyl acetate 1:1)


(3) 2-bromo-4-(tetrahydro-pyran-4-yloxy)-pyridine






Mass spectrum (ESI+): m/z=258 [M+H]+


Rf value: 0.48 (silica gel: cyclohexane/ethyl acetate 1:1)


Example LX






tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-thiazol-2-yl-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetate

1.30 ml of a 0.5 M solution of 2-thiazolyl-zinc bromide in tetrahydrofuran and 20 mg tetrakis(triphenylphosphine)palladium(0) are added under argon to 150 mg tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-iodo-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetate. The reaction mixture refluxed for 15 minutes at reflux temperature and after cooling evaporated down in vacuo. The flask residue is chromatographed through a silica gel column with cyclohexane/ethyl acetate (80:20 to 60:40) as eluant.


Yield: 110 mg (78% of theory)


Mass spectrum (ESI+): m/z=616 [M+H]+


Rf value: 0.55 (silica gel: petroleum ether/ethyl acetate 2:1)


The following compounds are obtained analogously to Example LX:


(1) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(4-thiazol-2-yl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate






After the reaction has ended the mixture is divided between 1 N hydrochloric acid and ethyl acetate. The aqueous phase is extracted twice with ethyl acetate and the combined organic are washed once with saturated sodium hydrogen carbonate solution and once with saturated sodium chloride solution. After drying with magnesium sulphate the solvents are eliminated in vacuo and the residue is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=615 [M+H]+


(2) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[4-(1-ethoxymethyl-1H-imidazol-2-yl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate






In order to prepare 1-ethoxymethyl-1H-imidazol-2yl-zinc chloride, 1-ethoxy-methyl-2-iodo-1H-imidazole in tetrahydrofuran is combined at −78° C. with 1 equivalent of n-butyllithium (2.5 N in n-hexane). After 30 minutes, 1 equivalent of a 0.5 N solution of zinc chloride in tetrahydrofuran is added and the mixture is left to come up to 0° C. Then the aryliodine compound and tetrakis(triphenylphosphine)palladium(0) are added and the mixture is refluxed for 5 hours. After the reaction has ended the mixture is divided between semisaturated sodium chloride solution and ethyl acetate. The aqueous phase is extracted twice with ethyl acetate and the combined organic phases are dried on magnesium sulphate. The solvents are eliminated in vacuo and the residue is chromatographed on silica gel.


The product is further reacted directly (19).


(3) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[4-(1-methyl-1H-imidazol-2-yl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate






In order to prepare 1-methyl-1H-imidazol-2-yl-zinc chloride, 1-methyl-2-iodo-1H-imidazole is combined in tetrahydrofuran at −78° C. with 1 equivalent n-butyllithium (2.5 N in n-hexane). After 30 minutes 1 equivalent of a 0.5 N solution of zinc chloride in tetrahydrofuran is added and the mixture is allowed to come up to ambient temperature. Then the aryliodine compound and tetrakis(triphenylphosphine)palladium(0) are added and the mixture is refluxed for 2 hours. After the reaction has ended the mixture is divided between water and ethyl acetate. The organic phase is dried on magnesium sulphate. The solvents are eliminated in vacuo and the residue is chromatographed on silica gel.


Mass spectrum (ESI+): m/z=612 [M+H]+


(4) 2-(tetrahydro-pyran-2-yl)-5-(thiazol-2-yl)-2H-pyridazin-3-one






Rf value: 0.14 (silica gel: petroleum ether/ethyl acetate 2:1)


(5) tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(2-thiazol-2-yl-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetate






Mass spectrum (ESI+): m/z=616 [M+H]+


Rf value: 0.33 (silica gel: petroleum ether/ethyl acetate 1:2)


(6) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(1-methyl-1H-imidazol-2-yl)-pyrimidin-4-yl]-1H-indol-5-yl}-amino)-acetate






Mass spectrum (ESI+): m/z=613 [M+H]+


Rf value: 0.33 (silica gel: petroleum ether/ethyl acetate 1:2)


(7) tert.butyl{(2-chloro-6-methyl-pyridin-4-sulphonyl)-[1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






The compound is obtained from tert.butyl{(2,6-dichloro-pyridin-4-sulphonyl)-[1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate and methylzinc chloride. It is refluxed for 4 hours.


Mass spectrum (ESI+): m/z=528 [M+H]+


Example LXI






6-ethyl-5-nitro-1H-indole

11.49 ml boron trifluoride-diethyletherate are added dropwise to 5.00 g 6-ethyl-5-nitro-1H-indol-2,3-dione in 300 ml of tetrahydrofuran at −25° C. under argon. Then 2.58 g sodium borohydride are added batchwise and the reaction mixture is stirred for one hour at −20° C. After being slowly heated to ambient temperature the reaction mixture is poured onto approx. 500 ml ice water and 300 ml tert-butylmethylether with stirring. The aqueous phase is extracted with tert-butylmethylether and the combined extracts are washed with water and saturated sodium chloride solution, dried on magnesium sulphate and evaporated down.


The flask residue is taken up in dichloromethane, filtered through a layer of aluminium oxide (activity stage 11) and washed with dichloromethane. The yellow filtrate is evaporated down and the residue is stirred with petroleum ether and a little tert-butylmethylether, suction filtered, washed with petroleum ether and dried.


Yield: 2.43 g (56% of theory)


Mass spectrum (ESI): m/z=189 [M−H]


Rf value: 0.60 (silica gel: cyclohexane/ethyl acetate 1:1)


Example LXII






1-(6-iodo-pyridazin-3-yl)-imidazolidin-2-one

220 mg 3-iodo-6-(2-aminoethyl)-amino-pyridazine and 290 μl N,N-diisopropyl-N-ethyl-amine are dissolved in 5 ml dichloromethane. 440 μl of a 20% solution of phosgene in toluene is added dropwise thereto. The mixture is stirred for another 1 hour, diluted with dichloromethane and washed once with semisaturated sodium chloride solution. After drying with magnesium sulphate the solvent is eliminated in vacuo and the residue is chromatographed on silica gel.


Yield: 60 mg (25% of theory)


Mass spectrum (ESI+): m/z=291 [M+H]+


The following compounds are obtained analogously to Example LXII:


(1) tert-butyl 3-(6-iodo-pyridazin-3-yl)-2-oxo-imidazolidine-1-carboxylate






The crude product is extracted from diethyl ether.


Mass spectrum (ESI+): m/z=391 [M+H]+


Example LXIII






tert-butyl 4-(6-iodo-pyridazin-3-yl)-[1,4]diazepan-1-carboxylate

500 mg 3,6-diiodo-pyridazine are dissolved in 3 ml dioxane. 220 mg potassium carbonate and 330 μl Boc-homopiperazine are added and the mixture is heated to 120° C. for 24 hours. Then it is diluted with dichloromethane and filtered to remove the insoluble constituents. The mother liquor is evaporated down in vacuo and the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 80:20 to 0:100).


Yield: 490 mg (80% of theory)


Mass spectrum (ESI+): m/z=405 [M+H]+


The following compounds are obtained analogously to Example LXIII:


(1) 3-iodo-6-(2-aminoethyl)-amino-pyridazine






The reaction time is 48 hours. The crude product is further reacted directly.


Example LXIV






4-methyl-5-nitro-1H-indole

1 g 5-nitro-1H-indole is dissolved in 30 ml of tetrahydrofuran and cooled to −10° C. To this is added dropwise a 3 N solution of methylmagnesium bromide in diethyl ether and the mixture is stirred for 30 minutes at −10° C. Then 1.7 g 2,3-dichloro-5,6-dicyano-p-benzoquinone are added and the mixture is allowed to come up to ambient temperature within 20 minutes. Then it is diluted with diethyl ether and washed once with saturated sodium hydrogen carbonate solution and once with saturated sodium chloride solution. The organic phase is dried on magnesium sulphate, the solvent is eliminated in vacuo and the residue is chromatographed on silica gel.


Yield: 668 mg (61% of theory)


Mass spectrum (ESI+): m/z=177 [M+H]+


Example LXV






2-(tetrahydro-pyran-2-yloxy)-ethanol

37.2 g ethyleneglycol are dissolved in 380 ml diethyl ether. 0.5 ml of concentrated hydrochloric acid are added and then 54 g of dihydro-2H-pyran are added dropwise. Then the mixture is stirred for 1.5 hours, then 8 g potassium carbonate are added and stirring is continued for a further 10 minutes. Then the solids are filtered off, the mother liquor is evaporated down in vacuo and the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 50:50 to 0:100).


Yield: 38.4 g (44% of theory)


Mass spectrum (ESI+): m/z=146 [M+H]+


The following compounds are obtained analogously to Example LXV:


(1) (5-bromo-pyrazin-2-yl)-[2-(tetrahydro-pyran-2-yloxy)-ethyl]-amine






The reaction is carried out in dichloromethane instead of diethyl ether.


Mass spectrum (ESI+): m/z=302 [M+H]+


Example LXVI






(6-bromo-pyridin-3-yl)-[2-(tert-butyl-dimethyl-silanyloxy)-ethyl]-amine

1 g 5-amino-2-bromo-pyridine are dissolved in 20 ml dichloromethane. To this are added successively 1.22 ml 2-tert-butyl-dimethylsilyloxy-acetaldehyde and 478 μl acetic acid. After stirring for 1 hour at ambient temperature, 2.2 g sodium triacetoxyborohydride are added in batches. Then the mixture is stirred for 3 days, 8 ml of methanol are added and stirring is continued for a further 12 hours. Then the solvents are eliminated in vacuo, the residue is taken up in ethyl acetate and washed once with 10% citric acid solution and once with saturated sodium chloride solution. After drying with magnesium sulphate the solvent is eliminated in vacuo and the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 10:1).


Yield: 619 mg (32% of theory)


Mass spectrum (ESI+): m/z=331 [M+H]+


The following compounds are obtained analogously to Example LXVI:


(1) (6-bromo-pyridin-3-yl)-(2,2-dimethyl-[1,3]dioxan-5-yl)-amine






Mass spectrum (ESI+): m/z=287 [M+H]+


Example LXVII






tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(3-hydroxy-prop-1-ynyl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate

Under argon 380 mg tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-iodo-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate are dissolved in 10 ml of tetrahydrofuran. To this are added successively 38 μl propargylalcohol, 4 mg bistriphenylphosphine-palladium-dichloride, 2.5 mg copper iodide and 162 μl diisopropylamine. The mixture is heated to 65° C. for 4 hours, then another 38 μl propargylalcohol, 4 mg bistriphenylphosphine-palladium dichloride, 2.5 mg copper iodide and 162 μl diisopropylamine are added and the mixture is heated for another 12 hours to 65° C. Then it is diluted with ethyl acetate, washed once with water and once with saturated sodium chloride solution and dried on magnesium sulphate. Then the solvents are eliminated in vacuo and the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 34:66).


Yield: 235 mg (69% of theory)


Mass spectrum (ESI+): m/z=587 [M+H]+


The following compounds are obtained analogously to Example LXXXI:


(1) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[4-(3-hydroxy-prop-1-ynyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate






The reaction is carried out for 5 hours at 65° C.


Rf value: 0.6 (silica gel: petroleum ether/ethyl acetate 1:1)


Example LXVIII






tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(2,3-dihydroxy-propoxy)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate

380 mg tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-phenyl-[1,3]dioxan-5-yloxy)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetate are dissolved in 2 ml acetic acid, 2 ml of tetrahydrofuran and 100 μl of water. The mixture is heated to 100° C. for 2 hours in a pressurised vessel, then diluted with ethyl acetate, washed once with saturated sodium chloride solution and dried with magnesium sulphate. The solvents are eliminated in vacuo and the residue is chromatographed on silica gel (dichloromethane/methanol 97:3 to 90:10).


Yield: 160 mg (48% of theory)


Mass spectrum (ESI+): m/z=623 [M+H]+


The following compounds are obtained analogously to Example LXVIII:


(1) tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[5-(2,3-dihydroxy-propoxy)-pyrazin-1-yl]-1H-indol-5-yl}-amino)-acetate






The reaction is carried out for 12 hours at 10° C. and 30 minutes at 160° C. in a pressurised vessel.


Mass spectrum (ESI+): m/z=623 [M+H]+


Example LXIX






tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(4-methanesulphinyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate

140 mg tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(4-methylsulphanyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetate are dissolved in 5 ml hexafluorisopropanol and to this are added 51 μl of a 32% solution of hydrogen peroxide in water. The mixture is stirred for 2 hours, combined with another 51 μl of a 32% solution of hydrogen peroxide in water and stirred for another 2 hours. Then it is combined with 10% sodium thiosulphate and 10% sodium hydrogen carbonate solution, extracted 3 times with ethyl acetate, the organic phase is dried on magnesium sulphate and the solvent is eliminated in vacuo. The residue is chromatographed on silica gel (cyclohexane/ethyl acetate 70:30 to 0:100).


Yield: 145 mg (100% of theory)


Mass spectrum (ESI+): m/z=594 [M+H]+


Example LXX






2,4-diiodo-pyridine

20 g 2,4-dichloro-pyridine are dissolved in 250 ml acetonitrile. 61 g of sodium iodide and 19.2 ml acetyl chloride are added and the mixture is refluxed for 12 hours. Then it is diluted with dichloromethane and washed once with 10% potassium carbonate solution and once with 5% sodium hydrogen sulphite solution. The organic phase is dried on magnesium sulphate and the solvents are eliminated in vacuo. The residue is chromatographed on silica gel (cyclohexane/ethyl acetate 5:1).


Yield: 145 mg (100% of theory)


Rf value: 0.50 (silica gel: cyclohexane/ethyl acetate 5:1)


Example LXXI






methyl 2-bromo-isonicotinate

500 mg 2-bromo-isonicotinic acid are dissolved in 4 ml diethyl ether. 230 μl of oxalyl chloride and 10 μl DMF are added successively and the mixture is refluxed for 1 hour. Then the volatile constituents are eliminated in vacuo, the residue is taken up twice in 4 ml dichloromethane and this is then eliminated again in vacuo. The acid chloride thus obtained is taken up in 5 ml diethyl ether and to this are added dropwise 500 μl methanol and 370 μl pyridine. The mixture is stirred for 1 hour and divided between water and ethyl acetate. The organic phase is dried on magnesium sulphate, the solvent is eliminated in vacuo and the residue is chromatographed on silica gel (dichloromethane/methanol 99:1 to 80:20).


Yield: 385 mg (79% of theory)


Mass spectrum (ESI+): m/z=216 [M+H]+


Example LXXII






6-bromo-imidazo[1,2-a]pyrazine

500 mg 5-bromo-pyrazin-2-ylamine are dissolved in 20 ml of ethanol and 750 μl bromo-acetaldehyde-diethylacetal and 2.5 ml 48% hydrobromic acid are added. The mixture is heated to 70° C. for 12 hours, diluted with water and combined with 20 ml 1 N sodium hydroxide solution. Then it is extracted 3 times with dichloromethane/isopropanol (4:1). The combined organic phases are washed with semisaturated sodium chloride solution, dried on magnesium sulphate and freed from the solvents in vacuo. The residue is extracted from diisopropyl ether.


Yield: 105 mg (18% of theory)


Mass spectrum (ESI+): m/z=198 [M+H]+


Example LXXIII






2-bromo-4-oxazol-2-yl-pyridine

650 mg 2-bromo-N-(2,2-dimethoxy-ethyl)-isonicotinamide are added to a mixture of 9 ml methanesulphonic acid and 1 g phosphorus pentoxide and heated to 135° C. for 6 hours. Then the mixture is added to ice, the aqueous phase is extracted twice with ethyl acetate and the combined organic phases are washed twice with saturated sodium hydrogen carbonate solution and once with saturated sodium chloride solution. After drying with magnesium sulphate the solvents are eliminated in vacuo and the residue is chromatographed on silica gel (petroleum ether/ethyl acetate 3:1).


Yield: 105 mg (21% of theory)


Mass spectrum (ESI+): m/z=225 [M+H]+


Example LXXIV






1-(2-bromo-pyridin-4-yl)-ethanone

200 mg 2-bromo-N-methoxy-N-methyl-isonicotinamide are dissolved in 3 ml of tetrahydrofuran, cooled to −10° C. and to this are added dropwise 275 μl of a 3 N solution of methylmagnesium bromide in tetrahydrofuran. Then the mixture is allowed to come up to ambient temperature, stirred for 12 hours and divided between ethyl acetate and semisaturated sodium chloride solution. The organic phase is dried on magnesium sulphate, freed from the solvents in vacuo and the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 90:10 to 50:50).


Yield: 110 mg (67% of theory)


Mass spectrum (ESI+): m/z=200 [M+H]+


The following compounds are obtained analogously to Example LXXIV:


(1) 1-(2-bromo-pyridin-4-yl)-propan-1-one






After 12 hours at ambient temperature another 1.5 equivalents of a 1 N solution of ethylmagnesium bromide in tetrahydrofuran are added dropwise. The mixture is stirred for another 2 hours and the reaction is ended by the addition of water. The solvents are eliminated in vacuo, the residue is taken up in acetonitrile, the solid is filtered off and the mother liquor is freed from the solvent in vacuo. The residue is chromatographed on silica gel.


Yield: 155 mg (46% of theory)


Rf value: 0.70 (silica gel: petroleum ether/ethyl acetate 2:1)


Example LXXV






5-chloro-pyrazine-2-carbonitrile

374 mg 5-chloro-pyrazine-2-carboxylic acid-amide are dissolved in 5 ml phosphorus oxychloride and refluxed for 2 hours. Then the phosphorus oxychloride is eliminated in vacuo and the residue is twice taken up in toluene and the latter is again eliminated in vacuo. Then the mixture is divided between water and ethyl acetate, the organic phase is washed once with saturated sodium chloride solution, dried on magnesium sulphate and freed from the solvent in vacuo.


Yield: 128 mg (39% of theory)


Rf value: 0.90 (silica gel: cyclohexane/ethyl acetate 1:1)


Example LXXVI






sodium 6-chloro-pyridazine-3-carboxylate

250 mg methyl 6-chloro-pyridazine-3-carboxylate are dissolved in 5 ml of tetrahydrofuran, 1.5 ml 1 N sodium hydroxide solution are added and the mixture is stirred for 2 hours. Then the solvent is eliminated in vacuo and the residue is extracted from ethyl acetate.


Yield: 255 mg (98% of theory)


Mass spectrum (ESI+): m/z=157 [M+H]+


Example LXXVII






tert-butyl(2-bromo-pyridin-4-ylmethyl)-carbamate

50 mg C-(2-bromo-pyridin-4-yl)-methylamine are dissolved in 3 ml of tetrahydrofuran. The mixture is cooled to 0° C., 320 μl of 1 N sodium hydroxide solution are added and then 65 mgl of di-tert-butyl-dicarbonate are added. After stirring for 12 hours the mixture is divided between ethyl acetate and water. The organic phase is washed twice with water and once with saturated sodium chloride solution, dried on magnesium sulphate and evaporated down in vacuo.


Yield: 60 mg (78% of theory)


Mass spectrum (ESI+): m/z=287 [M+H]+


Example LXXVIII






C-(2-bromo-pyridin-4-yl)-methylamine 148 mg 2-bromo-isonicotinamide are dissolved in 3 ml of tetrahydrofuran, cooled to 0° C. and to this 2.2 ml of a 1 N solution of borane-tetrahydrofuran complex in tetrahydrofuran are added dropwise. Then the mixture is heated to 70° C. for 4 hours, cooled to ambient temperature, 1.5 ml of methanol and 1.5 ml of 1 N sodium hydroxide solution are added and the mixture is heated to 70° C. for 30 minutes. Then it is diluted with dichloromethane, washed once with saturated sodium chloride solution, dried on magnesium sulphate, the solvents are eliminated in vacuo and the residue is chromatographed on silica gel (dichloromethane/methanol 100:0 to 80:20).

Yield: 50 mg (36% of theory)


Mass spectrum (ESI+): m/z=187 [M+H]+


Example LXXIX






3-chloro-5-(thiazol-2-yl)-pyridazine

2 ml phosphorus oxychloride are added to 225 mg 2-(tetrahydro-pyran-2-yl)-5-(thiazol-2-yl)-2H-pyridazin-3-one and the reaction mixture is heated to 90° C. for 10 minutes. After cooling to ambient temperature the reaction mixture is evaporated down in vacuo and slowly poured onto ice water with stirring. The mixture is made alkaline with sodium carbonate and extracted with dichloromethane. The organic phase is washed with saturated sodium chloride solution, dried on magnesium sulphate and evaporated down. The flask residue is chromatographed through a silica gel column with cyclohexane/ethyl acetate (80:20 to 40:60) as eluant.


Yield: 62 mg (37% of theory)


Rf value: 0.48 (silica gel: petroleum ether/ethyl acetate 1:1)


Example LXXX






tert.butyl[[1-(2′,4′-di-tert-butoxy-[4.5′]bipyrimidinyl-6-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate

89 mg 2,4-di(tert-butoxy)-pyrimidin-5-yl-boric acid and 1 ml of a 1 M sodium hydrogen carbonate solution are added to a mixture of 200 mg tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-iodo-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetate and 18 mg tetrakis(triphenylphosphine)palladium(0) in 3 ml 1,2-dimethoxy-ethane. The reaction mixture is refluxed for 2.5 hours. After cooling to ambient temperature the mixture is diluted with ethyl acetate, washed with water and saturated sodium chloride solution, dried on magnesium sulphate and evaporated down. The flask residue is chromatographed through a silica gel column with cyclohexane/ethyl acetate (90:10 to 75:25) as eluant.


Yield: 150 mg (65% of theory)


Mass spectrum (ESI+): m/z=755 [M+H]+


Rf value: 0.42 (silica gel: petroleum ether/ethyl acetate 5:1)


Example LXXXI






2,6-dimethyl-pyridin-4-sulphonic acid-(1H-indol-5-yl)-amide

1 g 4-bromo-2,6-dimethyl-pyridine is dissolved in 10 ml of tetrahydrofuran and cooled to −78° C. 3.53 ml of a 1.6 molar solution of n-butyllithium in hexane are added dropwise thereto. The mixture is stirred for 1 hour and then sulphur dioxide is piped through the solution for 5 minutes. Then within 45 minutes it is allowed to come up to −40° C., 30 ml of hexane are added, the mixture is allowed to come up to ambient temperature and the precipitated solid is suction filtered. The solid is dried in vacuo, then taken up in 15 ml dichloromethane and at 5° C. combined with 789 mg of N-chlorosuccinimide. The mixture is stirred for another 1 hour, the solid constituents are filtered through kieselguhr and the mother liquor is added dropwise at 0° C. to a solution of 871 mg of 1H-indol-5-yl-amine in 10 ml of pyridine. Then the mixture is stirred for 3 hours at ambient temperature, the solvents are eliminated in vacuo and the residue is divided between water and ethyl acetate. The aqueous phase is extracted twice with ethyl acetate and the combined organic phases are dried on magnesium sulphate. The solvent is eliminated in vacuo and the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 80:20 to 0:100).


Yield: 684 mg (42% of theory)


Mass spectrum (ESI+): m/z=302 [M+H]+


Example LXXXII






2,6-dichloro-pyridin-4-sulphonic acid-(1H-indol-5-yl)-amide

3.76 ml of a 2 molar solution of isopropylmagnesium chloride in tetrahydrofuran are mixed with 315 mg lithium chloride and stirred for 1 hour at ambient temperature. 1.2 ml 2,2,6,6-tetramethylpiperidine are added dropwise thereto and stirring is continued for another 6 hours. Then a solution of 1 g 2,6-dichloropyridine in 5 ml of tetrahydrofuran is added dropwise. The mixture is stirred for 30 minutes and then cooled to −50° C. Then sulphur dioxide is piped through the solution for 5 minutes. Then the mixture is allowed to come up to −20° C. within 45 minutes, 40 ml hexane are added, the mixture is allowed to come up to ambient temperature and the supernatant above the precipitated oil is removed. Another 5 ml of hexane are added to the oil, the mixture is stirred vigorously for 5 minutes and after the oil has settled out the supernatant is removed. The oil is dried in vacuo, then taken up in 20 ml dichloromethane and at 5° C. combined with 992 mg N-chlorosuccinimide. The mixture is stirred for another 1 hour, the solid constituents are filtered through kieselguhr and the mother liquor is added dropwise at 0° C. to a solution of 893 mg 1H-indol-5-yl-amine in 10 ml of pyridine. Then the mixture is stirred overnight at ambient temperature, the solvents are eliminated in vacuo and the residue is distributed between water and ethyl acetate. The aqueous phase is extracted twice with ethyl acetate and the combined organic phases are dried on magnesium sulphate. The solvent is eliminated in vacuo and the residue is chromatographed on silica gel (cyclohexane/ethyl acetate 80:20 to 0:100).


Yield: 514 mg (22% of theory)


Mass spectrum (ESI): m/z=340 [M−H]


Preparation of the End Compounds
Example 1






[[1-(2-cyano-phenyl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid

40 mg of tert.butyl[[1-(2-cyano-phenyl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate are dissolved in 3 ml dichloromethane. 1.5 ml trifluoroacetic acid are added, with stirring. The mixture is stirred for 1.5 hours at ambient temperature and then the solvents are eliminated in vacuo. The residue is extracted from diisopropyl ether.


Yield: 20 mg (56% of theory)


Mass spectrum (ESI+): m/z=517 [M+NH4]+


The following compounds are obtained analogously to Example 1:


(1) [(3,5-dichloro-phenylsulphonyl)-(1-pyrimidin-2-yl-1H-indol-5-yl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=477 [M+H]+


(2) [(3,5-dichloro-phenylsulphonyl)-(1-pyrazin-2-yl-1H-indol-5-yl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=477 [M+H]+


(3) [(3,5-dichloro-phenylsulphonyl)-(1-pyrimidin-5-yl-1H-indol-5-yl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=477 [M+H]+


(4) [[1-(3-carbamoyl-phenyl)-1H-indol-5-yl]-(3-chloro-phenylsulphonyl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=484 [M+H]+


(5) [[1-(3-carbamoyl-phenyl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=518 [M+H]+


(6) {(3-chloro-phenylsulphonyl)-[1-(3-methylcarbamoyl-phenyl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=498 [M+H]+


(7) {(3,5-dichloro-phenylsulphonyl)-[1-(3-methylcarbamoyl-phenyl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=532 [M+H]+


(8) {(3,5-dichloro-phenylsulphonyl)-[1-(4-morpholin-4-yl-phenyl)-1H-indol-5-yl]-amino}-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=560 [M+H]+


(9) {(3,5-dichloro-phenylsulphonyl)-[1-(4-morpholin-4-ylmethyl-phenyl)-1H-indol-5-yl]-amino}-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=574 [M+H]+


(10) [(3,5-dichloro-phenylsulphonyl)-(1-pyrimidin-2-yl-2,3-dihydro-1H-indol-5-yl)-amino]-acetic acid






Mass spectrum (ESI): m/z=477 [M−H]


(11) [(3,5-dichloro-phenylsulphonyl)-(1-pyridin-4-yl-1H-indol-5-yl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=476 [M+H]+


(12) {(3,5-dichloro-phenylsulphonyl)-[1-(1-methyl-1H-imidazol-2-yl)-2,3-dihydro-1H-indol-5-yl]-amino}-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=481 [M+H]+


(13) [(3,5-dichloro-phenylsulphonyl)-(1-pyrimidin-2-yl-1H-indol-4-yl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=494 [M+NH4]+


(14) {(3,5-dichloro-phenylsulphonyl)-[1-(4-methyl-6-piperazin-1-yl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=575 [M+H]+


(15) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=563 [M+H]+


(16) [{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-(3,5-dimethyl-phenylsulphonyl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=523 [M+H]+


(17) {(3,5-dichloro-phenylsulphonyl)-[1-(2-piperazin-1-yl-quinolin-8-yl)-1H-indol-5-yl]-amino}-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=610 [M+H]+


(18) ((3-bromo-5-methyl-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=587 [M+H]+


(19) ((3-chloro-5-methyl-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=543 [M+H]+


(20) [{1-[5-(2-dimethylamino-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-(3,5-dimethyl-phenylsulphonyl)-amino]-acetic acid*CF3CO2H






The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=523 [M+H]+


(21) ((3-bromo-5-methyl-phenylsulphonyl)-{1-[5-(2-dimethylamino-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=587 [M+H]+


(22) ((3,5-dibromo-phenylsulphonyl)-{1-[5-(2-dimethylamino-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=651 [M+H]+


(23) ((3-chloro-5-methyl-phenylsulphonyl)-{1-[5-(2-dimethylamino-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=543 [M+H]+


(24) ((3,5-dibromo-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=651 [M+H]+


(25) {(3,5-dichloro-phenylsulphonyl)-[1-(6-piperazin-1-yl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=561 [M+H]+


(26) {(3,5-dichloro-phenylsulphonyl)-[1-(2-methylamino-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=506 [M+H]+


(27) [(3,5-dichloro-phenylsulphonyl)-(1-naphthalen-2-yl-1H-indol-5-yl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=525 [M+H]+


(28) ((3-bromo-5-chloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=607 [M+H]+


(29) ((3-bromo-5-chloro-phenylsulphonyl)-{1-[5-(2-dimethylamino-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=607 [M+H]+


(30) [[1-(5-amino-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=491 [M+H]+


(31) {(3,5-dichloro-phenylsulphonyl)-[1-(2-methyl-quinolin-6-yl)-1H-indol-5-yl]-amino}-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=540 [M+H]+


(32) [(3,5-dichloro-phenylsulphonyl)-(1-naphthalen-1-yl-1H-indol-5-yl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=542 [M+NH4]+


(33) [{1-[2-(2-amino-ethylamino)-pyrimidin-4-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=535 [M+H]+


(34) {(3,5-dichloro-phenylsulphonyl)-[1-(3-methyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=490 [M+H]+


(35) [[1-(4-cyano-6-piperazin-1-yl-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=586 [M+H]+


(36) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(piperazine-1-carbonyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=588 [M+H]+


(37) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylcarbamoyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=590 [M+H]+


(38) [[1-(6-[1,4]diazepan-1-yl-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=575 [M+H]+


(39) {(3,5-dichloro-phenylsulphonyl)-[1-(6-methyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=490 [M+H]+


(40) [{1-[6-(3-amino-propylamino)-pyridazin-3-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=549 [M+H]+


(41) {(3,5-dichloro-phenylsulphonyl)-[1-(4-methyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=490 [M+H]+


(42) [[1-(6-cyclopropylamino-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=532 [M+H]+


(43) {(3,5-dichloro-phenylsulphonyl)-[1-(5-methyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=490 [M+H]+


(44) [(3,5-dichloro-phenylsulphonyl)-(1-isoquinolin-1-yl-1H-indol-5-yl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=526 [M+H]+


(45) [[1-(3-amino-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=491 [M+H]+


(46) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-3-methyl-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=577 [M+H]+


(47) [(1-{6-[(2-amino-ethyl)-methyl-amino]-pyridazin-3-yl}-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=549 [M+H]+


(48) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-methylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=549 [M+H]+


(49) ((3,5-dichloro-phenylsulphonyl)-{1-[3-(2-dimethylamino-ethylamino)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=562 [M+H]+


(50) [{1-[6-(2-amino-2-methyl-propylamino)-pyridazin-3-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=563 [M+H]+


(51) [{1-[6-(3-amino-piperidin-1-yl)-pyridazin-3-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=575 [M+H]+


(52) [{3-cyano-1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=588 [M+H]+


(53) {(3,5-dichloro-phenylsulphonyl)-[1-(6-morpholin-4-yl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=562 [M+H]+


(54) {(3,5-dichloro-phenylsulphonyl)-[1-(6-morpholin-4-yl-pyridazin-3-yl)-2,3-dihydro-1H-indol-5-yl]-amino}-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=564 [M+H]+


(55) [[1-(5-amino-pyrazin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=492 [M+H]+


(56) [{3-chloro-1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=597 [M+H]+


(57) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-3-trifluoromethyl-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=631 [M+H]+


(58) {(3,5-dichloro-phenylsulphonyl)-[1-(4,6-dimethoxy-[1,3,5]triazin-2-yl)-2,3-dihydro-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=540 [M+H]+


(59) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(piperazine-1-carbonyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=588 [M+H]+


(60) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(2-dimethylamino-ethylcarbamoyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=590 [M+H]+


(61) {(3,5-dichloro-phenylsulphonyl)-[1-(6-dimethylamino-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=520 [M+H]+


(62) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-hydroxy-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=536 [M+H]+


(63) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-piperidin-1-yl-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=603 [M+H]+


(64) {(3,5-dichloro-phenylsulphonyl)-[1-(4-morpholin-4-yl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=561 [M+H]+


Rf value: 0.25 (silica gel: dichloromethane/methanol 95:5)


(65) {(3,5-dichloro-phenylsulphonyl)-[1-(5-morpholin-4-yl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=561 [M+H]+


Rf value: 0.35 (silica gel: dichloromethane/methanol 95:5)


(66) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(3-oxo-morpholin-4-yl)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=576 [M+H]+


Rf value: 0.28 (silica gel: dichloromethane/methanol 95:5)


(67) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(tetrahydro-pyran-4-yloxy)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=577 [M+H]+


Rf value: 0.30 (silica gel: dichloromethane/methanol/acetic acid 98:2:0.1)


(68) (S)-((3,5-dichloro-phenylsulphonyl)-{1-[5-(tetrahydro-furan-3-yloxy)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI): m/z=561 [M−H]


Rf value: 0.30 (silica gel: dichloromethane/methanol/acetic acid 98:2:0.1)


(69) (R)-((3,5-dichloro-phenylsulphony)-{1-[6-(tetrahydro-furan-3-ylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=562 [M+H]+


Rf value: 0.20 (silica gel: toluene/dioxane/ethanol/glacial acetic acid 90:10:10:6)


(70) ((3,5-dichloro-phenylsulphony)-{1-[6-(3-oxo-morpholin-4-yl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=576 [M+H]+


Rf value: 0.53 (silica gel: toluene/dioxane/ethanol/glacial acetic acid 90:10:10:6)


(71) (R)-((3,5-dichloro-phenylsulphonyl)-{1-[5-(tetrahydro-furan-3-yloxy)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI): m/z=561 [M−H]


Rf value: 0.35 (silica gel: dichloromethane/methanol/acetic acid 98:2:0.1)


(72) (S)-((3,5-dichloro-phenylsulphony)-{1-[6-(tetrahydro-furan-3-yloxy)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI): m/z=561 [M−H]


Rf value: 0.20 (silica gel: dichloromethane/methanol/acetic acid 98:2:0.1)


(73) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(tetrahydro-pyran-4-yloxy)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=577 [M+H]+


Rf value: 0.25 (silica gel: dichloromethane/methanol/acetic acid 98:2:0.1)


(74) (R)-((3,5-dichloro-phenylsulphonyl)-{1-[6-(tetrahydro-furan-3-yloxy)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI): m/z=561 [M−H]


Rf value: 0.25 (silica gel: dichloromethane/methanol/acetic acid 98:2:0.1)


(75) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(3-oxo-morpholin-4-yl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=575 [M+H]+


Rf value: 0.40 (silica gel: toluene/dioxane/ethanol/glacial acetic acid 90:10:10:6)


(76) (R)-((3,5-dichloro-phenylsulphonyl)-{1-[5-(tetrahydro-furan-3-ylamino)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=562 [M+H]+


Rf value: 0.46 (silica gel: toluene/dioxane/ethanol/glacial acetic acid 90:10:10:6)


(77) ((3,5-dichloro-phenylsulphonyl)-{1-[4-(3-oxo-morpholin-4-yl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=575 [M+H]+


Rf value: 0.44 (silica gel: toluene/dioxane/ethanol/glacial acetic acid 90:10:10:6)


(78) [(3,5-dichloro-phenylsulphonyl)-(1-{6-[methyl-(tetrahydro-pyran-4-yl)-amino]-pyridazin-3-yl}-1H-indol-5-yl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=590 [M+H]+


Rf value: 0.30 (silica gel: toluene/dioxane/ethanol/glacial acetic acid 90:10:10:6)


(79) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(3-oxo-piperazin-1-yl)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI): m/z=573 [M−H]


Rf value: 0.27 (silica gel: dichloromethane/methanol/acetic acid 95:5:0.1)


(80) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(tetrahydro-pyran-4-ylamino)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=576 [M+H]+


Rf value: 0.45 (silica gel: toluene/dioxane/ethanol/glacial acetic acid 90:10:10:6)


(81) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(tetrahydro-pyran-4-ylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=576 [M+H]+


Rf value: 0.10 (silica gel: toluene/dioxane/ethanol/glacial acetic acid 90:10:10:6)


(82) {(3,5-dichloro-phenylsulphonyl)-[1-(6-methyl-pyridazin-3-yl)-1H-indazol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=492 [M+H]+


Rf value: 0.54 (silica gel: toluene/dioxane/ethanol/glacial acetic acid 90:10:10:6)


(83) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(tetrahydro-furan-3-yloxy)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=562 [M+H]+


Rf value: 0.43 (silica gel: dichloromethane/methanol/acetic acid 95:5:0.1)


(84) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(tetrahydro-pyran-4-yloxy)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=576 [M+H]+


Rf value: 0.58 (silica gel: dichloromethane/methanol/acetic acid 95:5:0.1)


(85) ((3,5-dichloro-phenylsulphonyl)-{1-[4-(tetrahydro-furan-3-yloxy)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=562 [M+H]+


Rf value: 0.50 (silica gel: dichloromethane/methanol/acetic acid 95:5:0.1)


(86) [(3,5-dichloro-phenylsulphonyl)-(1-{5-[methyl-(tetrahydro-pyran-4-yl)-amino]-pyrazin-2-yl}-1H-indol-5-yl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=590 [M+H]+


Rf value: 0.63 (silica gel: toluene/dioxane/ethanol/glacial acetic acid 90:10:10:6)


(87) ((3,5-dichloro-phenylsulphonyl)-{3-iodo-1-[6-(3-oxo-piperazin-1-yl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=701 [M+H]+


(88) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(3-oxo-piperazin-1-yl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=575 [M+H]+


(89) ((3,5-dichloro-phenylsulphonyl)-{1-[4-(tetrahydro-pyran-4-yloxy)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI): m/z=574 [M−H]


Rf value: 0.50 (silica gel: dichloromethane/methanol/acetic acid 95:5:0.1)


(90) [[6-chloro-1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=525 [M+H]+


Rf value: 0.20 (silica gel: dichloromethane/methanol/acetic acid 98:2:0.1)


(91) [[3-methyl-1-(6-methyl-pyridazin-3-yl)-1H-indazol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=506 [M+H]+


Rf value: 0.30 (silica gel: dichloromethane/methanol 95:5)


(92) {(3,5-dichloro-phenylsulphonyl)-[1-(5-trifluoromethyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=545 [M+H]+


Rf value: 0.37 (silica gel: dichloromethane/methanol 95:5)


(93) {(3,5-dichloro-phenylsulphonyl)-[3-iodo-1-(5-trifluoromethyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=671 [M+H]+


Rf value: 0.35 (silica gel: dichloromethane/methanol 95:5)


(94) {(3,5-dichloro-phenylsulphonyl)-[1-(6-thiazol-2-yl-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=560 [M+H]+


Rf value: 0.30 (silica gel: dichloromethane/methanol 95:5)


(95) [[6-ethyl-1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=519 [M+H]+


Rf value: 0.53 (silica gel: dichloromethane/methanol/acetic acid 95:5:0.1)


(96) {(3,5-dichloro-phenylsulphonyl)-[1-(6-methylamino-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=505 [M+H]+


(97) {(3,5-dichloro-phenylsulphonyl)-[3-iodo-1-(6-methylamino-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=632 [M+H]+


(98) ((3,5-dichloro-phenylsulphonyl)-{3-iodo-1-[6-(2-oxo-imidazolidin-1-yl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=687 [M+H]+


(99) [[1-(5-cyano-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






Mass spectrum (ESI+: m/z=501 [M+H]+


(100) [[1-(4-amino-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=491 [M+H]+


(101) [[1-(6-cyano-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=501 [M+H]+


(102) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethoxy)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=564 [M+H]+


(103) ethyl [[1-(6-[1,4]diazepan-1-yl-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate*CF3CO2H






Mass spectrum (ESI+): m/z=603 [M+H]+


(104) {(3,5-dichloro-phenylsulphonyl)-[1-(5-morpholin-4-yl-pyrazin-2-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=562 [M+H]+


(105) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(3-methylamino-propylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=563 [M+H]+


(106) [(1-{6-[(3-amino-propyl)-methyl-amino]-pyridazin-3-yl}-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=563 [M+H]+


(107) {(3,5-dichloro-phenylsulphonyl)-[1-(1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydro-pyrimidin-5-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI): m/z=535 [M−H]


(108) {(3,5-dichloro-phenylsulphonyl)-[1-(6-oxo-1,6-dihydro-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=493 [M+H]+


(109) ((3,5-dichloro-phenylsulphonyl)-{1-[4-(morpholine-4-carbonyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=589 [M+H]+


(110) [[1-(3-cyano-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






Mass spectrum (ESI): m/z=499 [M−H]


(111) {(3,5-dichloro-phenylsulphonyl)-[4-methyl-1-(6-morpholin-4-yl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=576 [M+H]+


(112) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-hydroxy-ethoxy)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=537 [M+H]+


(113) [[1-(2-chloro-9H-purin-6-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






Mass spectrum (ESI): m/z=549 [M−H]


(114) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-pyrrolidin-1-yl-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=589 [M+H]+


(115) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-oxo-imidazolidin-1-yl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=561 [M+H]+


(116) {(3,5-dichloro-phenylsulphonyl)-[1-(6-methylsulphanyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=523 [M+H]+


(117) {(3,5-dichloro-phenylsulphonyl)-[1-(4-methylcarbamoyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI): m/z=531 [M−H]


(118) ((3,5-dichloro-phenylsulphonyl)-{1-[4-(2-methoxy-ethylcarbamoyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=577 [M+H]+


(119) [[1-(4-cyano-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






Mass spectrum (ESI): m/z=499 [M−H]


(120) {(3,5-dichloro-phenylsulphonyl)-[3-methyl-1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=505 [M+H]+


(121) {(3,5-dichloro-phenylsulphonyl)-[1-(6-thiomorpholin-4-yl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=578 [M+H]+


(122) {(3,5-dichloro-phenylsulphonyl)-[1-(6-methanesulphinyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI): m/z=537 [M−H]


(123) [[3-chloro-1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=525 [M+H]+


(124) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(1,1-dioxo-1λ6-thiomorpholin-4-yl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=610 [M+H]+


(125) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2,3-dihydroxy-propoxy)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=567 [M+H]+


(126) {(3,5-dichloro-phenylsulphonyl)-[1-(5-methylsulphanyl-pyrazin-2-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI): m/z=521 [M−H]


(127) {(3,5-dichloro-phenylsulphonyl)-[1-(5-methylsulphanyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=522 [M+H]+


(128) {(3,5-dichloro-phenylsulphonyl)-[1-(5-methanesulphinyl-pyrazin-2-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=539 [M+H]+


(129) {(3,5-dichloro-phenylsulphonyl)-[1-(5-methanesulphonyl-pyrazin-2-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI): m/z=553 [M−H]


(130) {(3,5-dichloro-phenylsulphonyl)-[1-(6-methanesulphonyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=555 [M+H]+


(131) {(3,5-dichloro-phenylsulphonyl)-[1-(5-methanesulphinyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=538 [M+H]+


(132) {(3,5-dichloro-phenylsulphonyl)-[1-(5-methanesulphonyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI): m/z=552 [M−H]


(133) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(2,3-dihydroxy-propoxy)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=567 [M+H]+


(134) [(3,5-dichloro-phenylsulphonyl)-(1-{5-[2-(tetrahydro-pyran-2-yloxy)-ethylamino]-pyrazin-2-yl}-1H-indol-5-yl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=620 [M+H]+


(135) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(2-dimethylamino-ethoxy)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=564 [M+H]+


(136) {(3,5-dichloro-phenylsulphonyl)-[1-(4-methanesulphinyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=538 [M+H]+


(137) [{1-[5-(2-amino-ethoxy)-pyrazin-2-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=536 [M+H]+


(138) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(1-oxo-1λ4-thiomorpholin-4-yl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=594 [M+H]+


(139) {(3,5-dichloro-phenylsulphonyl)-[3-ethyl-1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=519 [M+H]+


(140) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(1-oxo-1λ4-thiomorpholin-4-yl)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=594 [M+H]+


(141) [[1-(5-carbamoyl-pyrazin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=520 [M+H]+


(142) 2-{5-[carboxymethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-isonicotinic acid






Mass spectrum (ESI+): m/z=520 [M+H]+


(143) {(3,5-dichloro-phenylsulphonyl)-[1-(4-thiazol-2-yl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=559 [M+H]+


(144) [{1-[5-(2-amino-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=535 [M+H]+


(145) [[1-(4-cyclopropylcarbamoyl-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=559 [M+H]+


(146) methyl 2-{5-[carboxymethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-isonicotinate






The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=534 [M+H]+


(147) {(3,5-dichloro-phenylsulphonyl)-[1-(5-methylcarbamoyl-pyrazin-2-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=534 [M+H]+


(148) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(morpholine-4-carbonyl)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=590 [M+H]+


(149) ((3,5-dichloro-phenylsulphonyl)-{1-[4-(methoxy-methyl-carbamoyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=563 [M+H]+


(150) {(3,5-dichloro-phenylsulphonyl)-[1-(4-ethanesulphinyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=552 [M+H]+


(151) [(3,5-dichloro-phenylsulphonyl)-(1-imidazo[1,2-a]pyrazin-6-yl-1H-indol-5-yl)-amino]-acetic acid






The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=516 [M+H]+


(152) {(3,5-dichloro-phenylsulphonyl)-[1-(4-oxazol-2-yl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=543 [M+H]+


(153) [[1-(4-acetyl-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=518 [M+H]+


(154) [[1-(5-cyano-pyrazin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






Mass spectrum (ESI): m/z=500 [M−H]


(155) {(3,5-dichloro-phenylsulphonyl)-[1-(4-propionyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid






The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=532 [M+H]+


(156) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(morpholine-4-carbonyl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=590 [M+H]+


(157) {(3,5-dichloro-phenylsulphonyl)-[1-(6-dimethylcarbamoyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=548 [M+H]+


(158) [[1-(4-cyclopropylcarbamoyl-pyridin-2-yl)-3-methyl-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=573 [M+H]+


(159) ((3,5-dichloro-phenylsulphonyl)-{1-[4-(1-methyl-1H-imidazol-2-yl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=556 [M+H]+


(160) [[1-(4-aminomethyl-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=505 [M+H]+


(161) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(2-dimethylamino-ethylamino)-pyrazin-2-yl]-3-methyl-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=577 [M+H]+


(162) {(3,5-dichloro-phenylsulphonyl)-[1-(1-methyl-1H-pyrazol-4-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=479 [M+H]+


Rf value: 0.45 (silica gel: dichloromethane/methanol/acetic acid 95:5:0.1)


(163) {(3,5-dichloro-phenylsulphonyl)-[1-(5-thiazol-2-yl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=560 [M+H]+


Rf value: 0.34 (silica gel: dichloromethane/methanol 95:5)


(164) {(3,5-dichloro-phenylsulphonyl)-[1-(1-methyl-1H-imidazol-4-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=479 [M+H]+


Rf value: 0.33 (silica gel: dichloromethane/methanol/acetic acid 95:5:0.1)


(165) {(3,5-dichloro-phenylsulphonyl)-[1-(6-trifluoromethyl-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=545 [M+H]+


Rf value: 0.57 (silica gel: dichloromethane/methanol/acetic acid 95:5:0.1)


(166) [(3,5-dichloro-phenylsulphonyl)-(1-thiazol-2-yl-1H-indol-5-yl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=482 [M+H]+


Rf value: 0.55 (silica gel: dichloromethane/methanol/acetic acid 95:5:0.1)


(167) [[1-(2-cyano-thiophen-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






Mass spectrum (ESI): m/z=504 [M−H]


Rf value: 0.50 (silica gel: dichloromethane/methanol/acetic acid 95:5:0.1)


(168) [[1-(5-acetyl-thiophen-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=523 [M+H]+


Rf value: 0.58 (silica gel: dichloromethane/methanol/acetic acid 95:5:0.1)


(169) {(3,5-dichloro-phenylsulphonyl)-[1-(2,6-dimethyl-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=505 [M+H]+


Rf value: 0.40 (silica gel: dichloromethane/methanol/acetic acid 95:5:0.1)


(170) {(3,5-dichloro-phenylsulphonyl)-[1-(5-methyl-[1,3,4]thiadiazol-2-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=497 [M+H]+


Rf value: 0.60 (silica gel: dichloromethane/methanol/acetic acid 95:5:0.1)


(171) {(3,5-dichloro-phenylsulphonyl)-[1-(6-methoxy-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=507 [M+H]+


Rf value: 0.55 (silica gel: dichloromethane/methanol/acetic acid 95:5:0.1)


(172) {(3,5-dichloro-phenylsulphonyl)-[1-(2-thiazol-2-yl-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=560 [M+H]+


Rf value: 0.30 (silica gel: toluene/dioxane/ethanol/glacial acetic acid 90:10:10:6)


(173) ethyl 2-(5-{5-[carboxymethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-thiophen-2-yl)-thiazole-4-carboxylate






Mass spectrum (ESI+): m/z=636 [M+H]+


Rf value: 0.65 (silica gel: toluene/dioxane/ethanol/glacial acetic acid 90:10:10:6)


(174) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(1-methyl-1H-imidazol-2-yl)-pyrimidin-4-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=557 [M+H]+


Rf value: 0.25 (silica gel: dichloromethane/methanol 90:10)


(175) ethyl 5-(5-{5-[carboxymethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-thiophen-2-yl)-isoxazol-3-carboxylate






Mass spectrum (ESI+): m/z=620 [M+H]+


Rf value: 0.40 (silica gel: dichloromethane/methanol 95:5)


(176) {(3,5-dichloro-phenylsulphonyl)-[3-methyl-1-(4-methyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=507 [M+H]+


Rf value: 0.39 (silica gel: dichloromethane/methanol 90:10)


(177) [{3-bromo-1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=641 [M+H]+


(178) [(3,5-dichloro-phenylsulphonyl)-(3-pyrimidin-2-yl-3H-benzimidazol-5-yl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=478 [M+H]+


(179) [(3,5-dichloro-phenylsulphonyl)-(1-pyrimidin-2-yl-1H-benzimidazol-5-yl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=478 [M+H]+


(180) {(2,6-dimethyl-pyridin-4-sulphonyl)-[1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=452 [M+H]+


(181) {(2,6-dichloro-pyridin-4-sulphonyl)-[1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=492 [M+H]+


(182) {(2-chloro-6-methyl-pyridin-4-sulphonyl)-[1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=472 [M+H]+


(183) {(2,6-dichloro-pyridin-4-sulphonyl)-[1-(4-methylcarbamoyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid






The product is purified by preparative HPLC (Kromasil-C-18 column, water/acetonitrile 90:10 to 0:100).


Mass spectrum (ESI+): m/z=534 [M+H]+


Example 2






[{1-[6-(3-acetylamino-propylamino)-pyridazin-3-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid

130 mg [{1-[6-(3-amino-propylamino)-pyridazin-3-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*CF3CO2H are dissolved in 2 ml of tetrahydrofuran. 100 μl pyridine and 20 μl acetanhydride are added and the mixture is stirred for 3 hours at ambient temperature. The volatile constituents are eliminated in vacuo, the residue is extracted from water and the solid thus obtained is purified by chromatography on silica gel with dichloromethane/methanol (99:5 to 60:40). The product thus obtained is extracted from diethyl ether.


Yield: 70 mg (60% of theory)


Mass spectrum (ESI+): m/z=591 [M+H]+


The following compounds are obtained analogously to Example 2:


(1) [(1-{6-[(3-acetylamino-propyl)-methyl-amino]-pyridazin-3-yl}-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






The reaction is carried out in acetic anhydride at 50° C.


Mass spectrum (ESI+): m/z=605 [M+H]+


(2) [[1-(5-acetylamino-pyrazin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






The reaction is carried out in the presence of 3 equivalents of pyridine in tetrahydrofuran.


Mass spectrum (ESI): m/z=532 [M−H]


(3) [[1-(4-acetylamino-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






The reaction is carried out in pyridine.


Mass spectrum (ESI+): m/z=533 [M+H]+


(4) [{1-[6-(4-acetyl-piperazin-1-yl)-pyridazin-3-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






The reaction is carried out in the presence of 5.5 equivalents pyridine in tetrahydrofuran. The crude product is purified by preparative HPLC


Mass spectrum (ESI+): m/z=603 [M+H]+


Example 3






{(3,5-dichloro-phenylsulphonyl)-[1-(1H-imidazol-2-yl)-2,3-dihydro-1H-indol-5-yl]-amino}-acetic acid*HCl

300 mg tert-butyl 2-{5-[tert-butoxycarbonylmethyl-(3,5-dichloro-phenylsulphonyl)-amino]-2,3-dihydro-indol-1-yl}-imidazole-1-carboxylate are dissolved in 2 ml dichloromethane, 2 ml trifluoroacetic acid are added and the mixture is stirred overnight at ambient temperature. The solvents are eliminated in vacuo and the residue is purified by chromatography on silica gel with dichloromethane/methanol (99:1 to 60:40). The product thus obtained is dissolved in a little dioxane and combined with a 4 N solution of HCl in dioxane. Then some diisopropylether is added and the solvents are eliminated in vacuo. The residue is extracted from diethyl ether and dried in vacuo.


Mass spectrum (ESI+): m/z=467 [M+H]+


Example 4






((3,5-dichloro-phenylsulphonyl)-{1-[3-(piperazine-1-carbonyl)-phenyl]-1H-indol-5-yl}-amino)-acetic acid*HCl

90 mg tert-butyl 4-(3-{5-[tert-butoxycarbonyl methyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-benzoyl)-piperazine-1-carboxylate are dissolved in 2 ml of a 4 N solution of HCl in dioxane. The mixture is stirred for 7 hours at RT and then combined with diethyl ether. After stirring overnight the precipitated solid is suction filtered and dried in vacuo.


Yield: 55 mg (73% of theory)


Mass spectrum (ESI+): m/z=578 [M+H]+


The following compounds are obtained analogously to Example 4:


(1) [(3,5-dichloro-phenylsulphonyl)-(1-pyridin-4-yl-2,3-dihydro-1H-indol-5-yl)-amino]-acetic acid*HCl






Carried out in dioxane with 1.05 equivalents of HCl at 70° C. for 24 hours. Crude product purified by preparative HPLC.


Mass spectrum (ESI+): m/z=478 [M+H]+


(2) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(2-dimethylamino-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid*HCl






Carried out at 70° C. for 3 hours.


Mass spectrum (ESI+): m/z=563 [M+H]+


(3) ((3,5-dichloro-phenylsulphonyl)-{1-[4-(piperazine-1-carbonyl)-phenyl]-1H-indol-5-yl}-amino)-acetic acid*HCl






Mass spectrum (ESI+): m/z=587 [M+H]+


(4) {(3,5-dichloro-phenylsulphonyl)-[1-(4-piperazin-1-yl-pyrimidin-2-yl)-2,3-dihydro-1H-indol-5-yl]-amino}-acetic acid*HCl






The crude product obtained initially is taken up in diisopropylether/methanol. The solvents are eliminated in vacuo. The remainder is taken up in water and this is in turn eliminated by freeze-drying. Then the residue is dissolved in 2 ml of methanol and 1 ml of 1 N NaOH is added. The mixture is stirred for 1.5 hours at ambient temperature and the solvents are eliminated in vacuo. 2 ml of 1 N HCl are added and the solvents are again eliminated in vacuo. The residue is dried under a high vacuum, taken up in 2 ml of methanol and the precipitated solid is filtered off. The methanol is eliminated in vacuo.


Mass spectrum (ESI+): m/z=563 [M+H]+


(5) ethyl{(3,5-dichloro-phenylsulphonyl)-[1-(4-piperazin-1-yl-pyrimidin-2-yl)-2,3-dihydro-1H-indol-5-yl]-amino}-acetate*HCl






Carried out at 70° C. for 3 hours.


Mass spectrum (ESI+): m/z=591 [M+H]+


(6) {(3,5-dichloro-phenylsulphonyl)-[1-(4-piperazin-1-yl-pyrimidin-2-yl)-1H-indol-5-yl]-amino}-acetic acid*HCl






Carried out at 70° C. for 3 hours.


Mass spectrum (ESI+): m/z=561 [M+H]+


(7) ethyl{(3,5-dichloro-phenylsulphonyl)-[1-(4-piperazin-1-yl-pyrimidin-2-yl)-1H-indol-5-yl]-amino}-acetate*HCl






Carried out at 70° C. for 3 hours.


Mass spectrum (ESI+): m/z=589 [M+H]+


(8) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(piperazine-1-carbonyl)-pyrazin-2-yl]-2,3-dihydro-1H-indol-5-yl}-amino)-acetic acid*HCl






Carried out at 70° C. for 3 hours.


Mass spectrum (ESI+): m/z=591 [M+H]+


(9) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(piperazine-1-carbonyl)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid*HCl






Carried out at 70° C. for 3 hours.


Mass spectrum (ESI+): m/z=589 [M+H]+


(10) {(3,5-dichloro-phenylsulphonyl)-[1-(3,4,5,6-tetrahydro-2H-[1,2′]bipyrazinyl-6′-yl)-1H-indol-5-yl]-amino}-acetic acid*HCl






Mass spectrum (ESI+): m/z=561 [M+H]+


(11) {(3,5-dichloro-phenylsulphonyl)-[1-(3,4,5,6-tetrahydro-2H-[1,2′]bipyrazinyl-6′-yl)-2,3-dihydro-1H-indol-5-yl]-amino}-acetic acid*HCl






Mass spectrum (ESI+): m/z=563 [M+H]+


(12) [(3,5-dichloro-phenylsulphonyl)-(1-pyrimidin-2-yl-2,3-dihydro-1H-indol-4-yl)-amino]-acetic acid






Mass spectrum (ESI+): m/z=479 [M+H]+


(13) [(1-{4-[carboxymethyl-(2-dimethylamino-ethyl)-amino]-pyrimidin-2-yl}-2,3-dihydro-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*HCl






Mass spectrum (ESI+): m/z=623 [M+H]+


(14) {(3,5-dichloro-phenylsulphonyl)-[1-(6-piperazin-1-yl-pyridazin-3-yl)-2,3-dihydro-1H-indol-5-yl]-amino}-acetic acid*HCl






The reaction is carried out for 12 hours at 40° C.


Mass spectrum (ESI+): m/z=563 [M+H]+


(15) ((3,5-dichloro-phenylsulphonyl)-{1-[4-(2-dimethylaminoethylamino)-pyrimidin-2-yl]-2,3-dihydro-1H-indol-5-yl}-amino)-acetic acid*HCl






Mass spectrum (ESI+): m/z=565 [M+H]+


(16) carboxymethyl-[2-(6-{5-[carboxymethyl-(3,5-dichloro-phenylsulphonyl)-amino]-2,3-dihydro-indol-1-yl}-pyridazin-3-ylamino)ethyl]-dimethyl-ammonium chloride






Mass spectrum (ESI+): m/z=623 [M+H]+


(17) carboxymethyl-[2-(2-{5-[carboxymethyl-(3,5-dichloro-phenylsulphonyl)-amino]-2,3-dihydro-indol-1-yl}-pyrimidin-4-ylamino)ethyl]-dimethyl-ammonium chloride






Mass spectrum (ESI+): m/z=623 [M+H]+


(18) [(3,5-dichloro-phenylsulphonyl)-(1-pyridin-2-yl-1H-indol-5-yl]-amino]-acetic acid*HCl






Mass spectrum (ESI): m/z=474 [M−H]


(19) {(3,5-dichloro-phenylsulphonyl)-[1-(3-trifluoromethyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid*HCl






Mass spectrum (ESI): m/z=542 [M−H]


(20) [{1-[6-(2-amino-ethylamino)-pyridazin-3-yl]-2,3-dihydro-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*HCl






Mass spectrum (ESI+): m/z=537 [M+H]+


(21) [{1-[6-(2-amino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*HCl






Mass spectrum (ESI+): m/z=535 [M+H]+


(22) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-oxo-imidazolidin-1-yl)-pyridazin-3-yl]-2,3-dihydro-1H-indol-5-yl}amino)-acetic acid






Mass spectrum (ESI+): m/z=563 [M+H]+


(23) {(3,5-dichloro-phenylsulphonyl)-[1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=490 [M+H]+


(24) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-2,3-dimethyl-1H-indol-5-yl}-amino)-acetic acid*HCl






Mass spectrum (ESI+): m/z=591 [M+H]+


(25) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-2-methyl-1H-indol-5-yl}-amino)-acetic acid*HCl






Mass spectrum (ESI+): m/z=577 [M+H]+


(26) ((3,5-dichloro-phenylsulphonyl)-{1-[4-(2-dimethylamino-ethylcarbamoyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid*HCl






Mass spectrum (ESI+): m/z=590 [M+H]+


(27) {(3,5-dichloro-phenylsulphonyl)-[3-iodo-1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=617 [M+H]+


(28) {(3,5-dichloro-phenylsulphonyl)-[1-(3,4,5,6-tetrahydro-2H-[1,2′]bipyrazinyl-5′-yl)-1H-indol-5-yl]-amino}-acetic acid*HCl






Mass spectrum (ESI+): m/z=561 [M+H]+


(29) ((3,5-dichloro-phenylsulphonyl)-{1-[4-(piperazine-1-carbonyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid*HCl






Mass spectrum (ESI+): m/z=588 [M+H]+


(30) [(1-[4-(2-amino-ethylamino)-pyrimidin-2-yl]-1H-indol-5-yl}-{(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*HCl






Mass spectrum (ESI+): m/z=535 [M+H]+


(31) [[1-(6-amino-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid*HCl






Mass spectrum (ESI+): m/z=492 [M+H]+


(32) {(3,5-dichloro-phenylsulphonyl)-[1-(5-hydroxymethyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=506 [M+H]+


(33) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(3-hydroxy-propyl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid






The crude product is purified by chromatography on silica gel with dichloromethane/methanol (9:1 to 6:1).


Mass spectrum (ESI+): m/z=535 [M+H]+


(34) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(2-hydroxy-1-hydroxymethyl-ethylamino)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=565 [M+H]+


(35) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(2-hydroxy-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=536 [M+H]+


Example 5






Ethyl((3,5-dichloro-phenylsulphonyl)-{1-[5-(2-dimethylamino-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetate*HCl

Under argon 200 mg tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1H-indol-5-yl)-amino]-acetate, 9 mg copper iodide and 298 mg potassium phosphate are dissolved in 3 ml of toluene. 229 mg N′-(5-bromo-pyrazin-2-yl)-N,N-dimethyl-ethan-1,2-diamine and 15 μl N,N′-dimethyl-trans-cyclohexanediamine are added. Then the mixture is heated to 110° C. for 8 hours. It is divided between water and ethyl acetate and the aqueous phase is extracted twice with ethyl acetate. After drying with magnesium sulphate the solvents are eliminated in vacuo. The residue is purified by chromatography on silica gel (dichloromethane/methanol 9:1 to 1:2). The product is taken up in 10 ml diisopropylether and combined with 500 μl of 4 N HCl in dioxane. The precipitated solid is suction filtered and dried in vacuo.


Yield: 108 mg (39% of theory)


Mass spectrum (ESI+): m/z=591 [M+H]+


The following compounds are obtained analogously to Example 5:


(1) ethyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






Mass spectrum (ESI+): m/z=519 [M+H]+


(2) ethyl [[1-(5-amino-pyrazin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate






Mass spectrum (ESI+): m/z=520 [M+H]+


(3) ethyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-morpholin-4-yl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






Mass spectrum (ESI+): m/z=590 [M+H]+


Example 6






[(7-chloro-1-pyrazin-2-yl-1H-indol-5-yl)-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid


75 mg tert.butyl[(3,5-dichloro-phenylsulphonyl)-(1-pyrazin-2-yl-1H-indol-5-yl)-amino]-acetate are dissolved in 2 ml dichloromethane under argon. 19 mg of N-chloro-succinimide are added and the mixture is stirred for 1 hour at ambient temperature. The solvent is eliminated in vacuo and the residue is taken up in 1 ml acetic acid. It is heated to 70° C. and 150 μl phosphoric acid are added. Then the mixture is refluxed for 2 hours. It is divided between water and ethyl acetate, the aqueous phase is extracted twice with ethyl acetate and the combined organic phases are dried with sodium sulphate. The solvents are eliminated in vacuo and the residue is chromatographed on silica gel (dichloromethane/methanol 9:1 to 3:2).


Yield: 17 mg (24% of theory)


Mass spectrum (ESI+): m/z=511 [M+H]+


Example 7






((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-7-methyl-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H

90 mg tert.butyl[(3,5-dichloro-phenylsulphonyl)-(7-methyl-1H-indol-5-yl)-amino]-acetate, 122 mg potassium phosphate and 7.3 mg copper iodide are suspended in 2 ml anhydrous toluene. To this is added a solution of 45 mg N′-(6-bromo-pyridazin-3-yl)-N,N-dimethyl-ethan-1,2-diamine in 1 ml anhydrous toluene. After the addition of 13 μl N,N′-dimethyl-trans-cyclohexane-diamine the mixture is heated to 100° C. for 5 hours. Then it is divided between water and ethyl acetate. The aqueous phase is extracted twice with ethyl acetate and the combined organic phases are dried on magnesium sulphate. The solvents are eliminated in vacuo and the residue is chromatographed on silica gel [dichloromethane/(methanol/acetic acid/water 8:1:1) 95:5 to 75:25]. The product thus obtained is taken up in 3 ml dichloromethane. 1.5 ml trifluoroacetic acid are added and the mixture is stirred for 3 hours at ambient temperature. The solvents are then eliminated in vacuo and the residue is taken up in 2 ml of water. After freeze-drying the product is obtained as a solid.


Yield: 31 mg (28% of theory)


Mass spectrum (ESI+): m/z=577 [M+H]+


The following compounds are obtained analogously to Example 7:


(1) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-6-methyl-1H-indol-5-yl}-amino)-acetic acid*CF3CO2H






Mass spectrum (ESI+): m/z=577 [M+H]+


Example 8






Methyl((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-oxo-imidazolidin-1-yl)-pyridazin-3-yl]-2,3-dihydro-1H-indol-5-yl}-amino)-acetate

60 mg ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-oxo-imidazolidin-1-yl)-pyridazin-3-yl]-2,3-dihydro-1H-indol-5-yl}-amino)-acetic acid are suspended in 1 ml of methanol, 150 μl of a 2 N solution of trimethylsilyldiazomethan in hexane and stirred for 12 hours at ambient temperature. Then the mixture is diluted with 2 ml of methanol and 10 drops of 2 N hydrochloric acid are added. The solvents are eliminated in vacuo and the residue is extracted from diethyl ether.


Yield: 45 mg (73% of theory)


Mass spectrum (ESI+): m/z=577 [M+H]+


Example 9






2-dimethylamino-ethyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate

1.4 g of ethyl{(3,5-dichloro-phenylsulphonyl)-[1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate are dissolved in 5 ml 2-dimethylaminoethanol. 100 μl of titanium tetraisopropoxide are added and the mixture is heated for 4 hours to 120° C. Then the excess 2-dimethylaminoethanol is eliminated in vacuo and the residue is divided between water and diethyl ether. The aqueous phase is extracted 3 times with diethyl ether and the combined organic phases are dried on magnesium sulphate. Then the solvent is eliminated in vacuo until crystallisation sets in. After crystallisation has ended the solid is suction filtered and dried in vacuo.


Yield: 780 mg (51% of theory)


Mass spectrum (ESI+): m/z=562 [M+H]+


Example 10






{(3,5-dichloro-phenylsulphonyl)-[1-(2,4-dioxo-1,2,3,4-tetrahydro-pyrimidin-5-yl)-1H-indol-5-yl]-amino}-acetic acid

116 mg tert.butyl{(3,5-dichloro-phenylsulphonyl)-[1-(2,4-dimethoxy-pyrimidin-5-yl)-1H-indol-5-yl]-amino}-acetate are dissolved in 18 ml acetic acid. To this are added 230 μl 2 N hydrochloric acid and the mixture is refluxed for 1 hour. The solvents are then eliminated in vacuo and the residue is purified by preparative HPLC.


Yield: 5 mg (5% of theory)


Mass spectrum (ESI): m/z=507 [M−H]


The following compounds are obtained analogously to Example 10:


(1) {(3,5-dichloro-phenylsulphonyl)-[1-(2′,4′-dioxo-1′.2′.3′.4′-tetrahydro-[4.5′]bipyrimidinyl-6-yl)-1H-indol-5-yl]-amino}-acetic acid






Prepared by treating tert.butyl[[1-(2′,4′-di-tert-butoxy-[4.5′]bipyrimidinyl-6-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate with hydrochloric acid in methanol at ambient temperature and subsequent treatment with trifluoroacetic acid in dichloromethane at ambient temperature.


Mass spectrum (ESI+): m/z=587 [M+H]+


Rf value: 0.35 (silica gel: dichloromethane/methanol 90:10)


Example 11






((3,5-dichloro-phenylsulphonyl)-{1-[4-(2-hydroxy-ethylcarbamoyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid

100 mg tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[4-(2-hydroxy-ethylcarbamoyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate are dissolved in 1 ml dichloromethane and 0.5 ml trifluoroacetic acid and stirred for 5 hours at ambient temperature. Then the solvents are eliminated in vacuo and the residue is taken up in 0.5 ml of tetrahydrofuran. 140 μl 1 N sodium hydroxide solution are added and the mixture is stirred for 1 hour at ambient temperature. Then the tetrahydrofuran is eliminated in vacuo and the residue is combined with 140 μl of 1 N hydrochloric acid. The precipitated solid is suction filtered and dried in vacuo.


Yield: 54 mg (59% of theory)


Mass spectrum (ESI+): m/z=563 [M+H]+


The following compounds are obtained analogously to Example 11:


(1) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(2-hydroxy-ethylamino)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI): m/z=533 [M−H]


(2) ((3,5-dichloro-phenylsulphonyl)-{1-[4-(3-hydroxy-propyl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






Mass spectrum (ESI+): m/z=534 [M+H]+


Example 12






{(3,5-dichloro-phenylsulphonyl)-[1-(2,6-dioxo-1,2,3,6-tetrahydro-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetic acid

31 mg {(3,5-dichloro-phenylsulphonyl)-[1-(2,6-dichloro-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetic acid are dissolved in 600 μl tetrahydrofuran. 250 μl of 4 N sodium hydroxide solution and 15 drops of a 30% hydrogen peroxide solution are added and the mixture is heated for 6 hours to 50° C. The volatile constituents are eliminated in vacuo and the residue is purified by preparative HPLC.


Yield: 2.6 mg (11% of theory) {(3,5-dichloro-phenylsulphonyl)-[1-(2,6-dioxo-1,2,3,6-tetrahydro-pyrimidin-4-yl)-1H-indol-5-yl]-amino}-acetic acid


Mass spectrum (ESI+): m/z=509 [M+H]+ and 5 mg (20% of theory) of 3-{5-[carboxymethyl-(3,5-dichloro-phenylsulphonyl)-amino]-indol-1-yl}-3-ureido-acrylic acid


Mass spectrum (ESI+): m/z=527 [M+H]+


Example 13






((3,5-dichloro-phenylsulphonyl)-{1-[6-(3-methanesulphonylamino-propylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid

25 mg [{1-[6-(3-amino-propylamino)-pyridazin-3-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid are dissolved in 2 ml of tetrahydrofuran. The mixture is cooled to 0° C., 250 μl N sodium hydroxide solution are added and then 10 μl methanesulphonic acid chloride are added thereto. After stirring for 3 hours, 250 μl of 1 N hydrochloric acid are added and the volatile constituents are removed in vacuo. The residue is taken up in dichloromethane/methanol 2:1 and the solid is suction filtered. The mother liquor is evaporated down in vacuo and the residue is purified by preparative HPLC.


Yield: 6.5 mg (23% of theory)


Mass spectrum (ESI+): m/z=627 [M+H]+


The following compounds are obtained analogously to Example 13:


(1) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(4-methanesulphonyl-piperazin-1-yl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid






The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=639 [M+H]+


(2) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(2-methanesulphonylamino-ethoxy)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=614 [M+H]+


(3) [{1-[5-(2-acetylamino-ethoxy)-pyrazin-2-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






Instead of methanesulphonic acid chloride acetic anhydride is used. The crude product is purified by preparative HPLC.


Mass spectrum (ESI): m/z=576 [M−H]


(4) {(3,5-dichloro-phenylsulphonyl)-[1-(4-methanesulphonyl-3,4,5,6-tetrahydro-2H-[1,2′]bipyrazinyl-5′-yl)-1H-indol-5-yl]-amino}-acetic acid






Mass spectrum (ESI+): m/z=639 [M+H]+


(5) [{1-[5-(2-acetylamino-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






Instead of methanesulphonic acid chloride acetic anhydride is used. The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=577 [M+H]+


(6) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(2-methanesulphonylamino-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid






The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=613 [M+H]+


(7) [[1-(4-acetyl-3,4,5,6-tetrahydro-2H-[1,2′]bipyrazinyl-5′-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid






Instead of methanesulphonic acid chloride acetic anhydride is used. The crude product is purified by preparative HPLC.


Mass spectrum (ESI+): m/z=603 [M+H]+


Example 14






2-dimethylamino-ethyl [[1-(5-cyano-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetate

250 mg [[1-(5-cyano-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid are dissolved in 4 ml dichloromethane. 217 μl oxalyl chloride and 1 drop of DMF are added successively and the mixture is stirred for 1 hour at ambient temperature. Then the volatile constituents are eliminated in vacuo and the residue is taken up in 4 ml dichloromethane. To this is added dropwise a solution of 80 μl pyridine and 74 μl 2-dimethylamino-ethanol in 1 ml dichloromethane. The mixture is stirred for 2 hours and divided between saturated sodium hydrogen carbonate solution and dichloromethane. The aqueous phase is extracted twice with dichloromethane and the combined organic phases are dried on magnesium sulphate. The solvent is eliminated in vacuo and the residue is extracted from diisopropylether.


Yield: 239 mg (84% of theory)


Mass spectrum (ESI+): m/z=572 [M+H]+


The following compounds are obtained analogously to Example 14:


(1) 2-dimethylamino-ethyl{(3,5-dichloro-phenylsulphonyl)-[3-methyl-1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetate






Mass spectrum (ESI+): m/z=576 [M+H]+


Example 15






((3,5-dichloro-phenylsulphonyl)-{1-[4-(1H-imidazol-2-yl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetic acid

25 mg tert.butyl((3,5-dichloro-phenylsulphonyl)-{1-[4-(1-ethoxymethyl-1H-imidazol-2-yl)-pyridin-2-yl]-1H-indol-5-yl}-amino)-acetate are dissolved in 2 ml trifluoroacetic acid and 200 μl anisole. The mixture is heated for 36 hours to 70° C. Then the solvents are eliminated in vacuo and the residue is purified by preparative thin layer chromatography (silica gel, dichloromethane/methanol 9:1).


Yield: 3.7 mg (18% of theory)


Mass spectrum (ESI+): m/z=542 [M+H]+


Example 16

Coated tablets containing 75 mg of active substance 1 tablet core contains:



















active substance
75.0
mg



calcium phosphate
93.0
mg



corn starch
35.5
mg



polyvinylpyrrolidone
10.0
mg



hydroxypropylmethylcellulose
15.0
mg



magnesium stearate
1.5
mg




230.0
mg










Preparation:

The active substance is mixed with calcium phosphate, corn starch, polyvinylpyrrolidone, hydroxypropylmethylcellulose and half the specified amount of magnesium stearate. Blanks 13 mm in diameter are produced in a tablet-making machine and these are then rubbed through a screen with a mesh size of 1.5 mm using a suitable machine and mixed with the rest of the magnesium stearate. This granulate is compressed in a tablet-making machine to form tablets of the desired shape.



















Weight of core:
230
mg



die:
9
mm, convex










The tablet cores thus produced are coated with a film consisting essentially of hydroxypropylmethylcellulose. The finished film-coated tablets are polished with beeswax.

    • Weight of coated tablet: 245 mg.


Example 17
Tablets Containing 100 mg of Active Substance
Composition:

1 tablet contains:



















active substance
100.0
mg



lactose
80.0
mg



corn starch
34.0
mg



polyvinylpyrrolidone
4.0
mg



magnesium stearate
2.0
mg




220.0
mg










Method of Preparation:

The active substance, lactose and starch are mixed together and uniformly moistened with an aqueous solution of the polyvinylpyrrolidone. After the moist composition has been screened (2.0 mm mesh size) and dried in a rack-type drier at 50° C. it is screened again (1.5 mm mesh size) and the lubricant is added. The finished mixture is compressed to form tablets.


















Weight of tablet:
220 mg



Diameter:
10 mm, biplanar, facetted on both




sides and notched on one side.










Example 18
Tablets Containing 150 mg of Active Substance
Composition:

1 tablet contains:



















active substance
50.0
mg



powdered lactose
89.0
mg



corn starch
40.0
mg



colloidal silica
10.0
mg



polyvinylpyrrolidone
10.0
mg



magnesium stearate
1.0
mg




300.0
mg










Preparation:

The active substance mixed with lactose, corn starch and silica is moistened with a 20% aqueous polyvinylpyrrolidone solution and passed through a screen with a mesh size of 1.5 mm. The granules, dried at 45° C., are passed through the same screen again and mixed with the specified amount of magnesium stearate. Tablets are pressed from the mixture.



















Weight of tablet:
300
mg



die:
10
mm, flat










Example 19
Hard Gelatine Capsules Containing 150 mg of Active Substance

1 capsule contains:



















active substance
50.0
mg



corn starch (dried
approx. 80.0
mg



lactose (powdered)
approx. 87.0
mg



magnesium stearate
3.0
mg




approx. 420.0
mg










Preparation:

The active substance is mixed with the excipients, passed through a screen with a mesh size of 0.75 mm and homogeneously mixed using a suitable apparatus. The finished mixture is packed into size 1 hard gelatine capsules.


















Capsule filling:
approx. 320 mg



Capsule shell:
size 1 hard gelatine capsule.










Example 20
Suppositories Containing 150 mg of Active Substance

1 suppository contains:



















active substance
150.0
mg



polyethyleneglycol 1500
550.0
mg



polyethyleneglycol 6000
460.0
mg



polyoxyethylene sorbitan monostearate
840.0
mg




2,000.0
mg










Preparation:

After the suppository mass has been melted the active substance is homogeneously distributed therein and the melt is poured into chilled moulds.


Example 21
Suspension Containing 50 mg of Active Substance

100 ml of suspension contain:



















active substance
1.00
g



carboxymethylcellulose-Na-salt
0.10
g



methyl p-hydroxybenzoate
0.05
g



propyl p-hydroxybenzoate
0.01
g



glucose
10.00
g



glycerol
5.00
g



70% sorbitol solution
20.00
g



flavouring
0.30
g



dist. water ad
100
ml










Preparation:

The distilled water is heated to 70° C. The methyl and propyl p-hydroxybenzoates together with the glycerol and sodium salt of carboxymethylcellulose are dissolved therein with stirring. The solution is cooled to ambient temperature and the active substance is added and homogeneously dispersed therein with stirring. After the sugar, the sorbitol solution and the flavouring have been added and dissolved, the suspension is evacuated with stirring to eliminate air.


5 ml of suspension contain 50 mg of active substance.


Example 22
Ampoules Containing 10 mg Active Substance
Composition:



















active substance
10.0
mg










0.01 N hydrochloric acid
q.s.











double-distilled water ad
2.0
ml










Preparation:

The active substance is dissolved in the necessary amount of 0.01 N HCl, made isotonic with common salt, filtered sterile and transferred into 2 ml ampoules.


Example 23
Ampoules Containing 50 mg of Active Substance
Composition:



















active substance
50.0
mg










0.01 N hydrochloric acid
q.s.











double-distilled water ad
10.0
ml










Preparation:

The active substance is dissolved in the necessary amount of 0.01 N HCl, made isotonic with common salt, filtered sterile and transferred into 10 ml ampoules.

Claims
  • 1. An arylsulphonylglycine of formula
  • 2. A compound of formula I according to claim 1, wherein R denotes a group of the formula mentioned in claim 1, wherein R1 denotes H, C1-6-alkyl or a group of formula
  • 3. A compound of formula I according to claim 2, wherein R denotes a group of the formula mentioned in claim 1, wherein R1 denotes H, C1-4-alkyl or a group of formula
  • 4. A compound of formula I according to claim 3, wherein R denotes a group of the formula mentioned in claim 1, wherein R1 denotes H or a C1-3-alkyl group optionally substituted by a di-(C1-3-alkyl)-amino group,R2 and R3 independently of one another denote chlorine, bromine or methyl and A denotes CH or N,m denotes 0 or 1,R4 denotes chlorine, methyl or ethyl,and the heterocyclic group
  • 5. A compound of formula I according to claim 4, wherein R denotes a group of the formula mentioned in claim 1, wherein R1 denotes H, methyl, ethyl or 2-dimethylamino-ethyl,R2 and R3 independently of one another denote chlorine, bromine or methyl andA denotes CH or N,m denotes 0 or 1,R4 denotes chlorine, methyl or ethyl,and the heterocyclic group
  • 6. A compound of formula I according to claim 5, wherein R denotes a group of the formula mentioned in claim 1, wherein R1 denotes hydrogen,R2 and R3 in each case represent chlorine andA denotes CH,m denotes 0 andand the heterocyclic group
  • 7. A compound of formula I according to claim 1 selected from: (1) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(2-dimethylamino-ethylamino)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid(2) {(3,5-dichloro-phenylsulphonyl)-[1-(6-piperazin-1-yl-pyridazin-3-yl)-2,3-dihydro-1H-indol-5-yl]-amino}-acetic acid(3) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid(4) {(3,5-dichloro-phenylsulphonyl)-[1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid(5) ((3-bromo-5-methyl-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid(6) {(3,5-dichloro-phenylsulphonyl)-[1-(6-piperazin-1-yl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid(7) [[1-(6-[1,4]diazepan-1-yl-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid(8) {(3,5-dichloro-phenylsulphonyl)-[1-(4-methyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid(9) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(2-dimethylamino-ethylamino)-pyridazin-3-yl]-3-methyl-1H-indol-5-yl}-amino)-acetic acid(10) [(3,5-dichloro-phenylsulphonyl)-(1-{6-[methyl-(tetrahydro-pyran-4-yl)-amino]-pyridazin-3-yl}-1H-indol-5-yl)-amino]-acetic acid(11) ((3,5-dichloro-phenylsulphonyl)-{1-[5-(3-oxo-piperazin-1-yl)-pyrazin-2-yl]-1H-indol-5-yl}-amino)-acetic acid(12) [[6-ethyl-1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid(13) [[1-(4-amino-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid(14) ((3,5-dichloro-phenylsulphonyl)-{1-[6-(3-hydroxy-propyl)-pyridazin-3-yl]-1H-indol-5-yl}-amino)-acetic acid(15) [{1-[6-(4-acetyl-piperazin-1-yl)-pyridazin-3-yl]-1H-indol-5-yl}-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid(16) {(3,5-dichloro-phenylsulphonyl)-[1-(4-methylcarbamoyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid(17) {(3,5-dichloro-phenylsulphonyl)-[3-methyl-1-(6-methyl-pyridazin-3-yl)-1H-indol-5-yl]-amino}-acetic acid(18) {(3,5-dichloro-phenylsulphonyl)-[1-(4-methanesulphinyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid(19) [[1-(4-cyclopropylcarbamoyl-pyridin-2-yl)-1H-indol-5-yl]-(3,5-dichloro-phenylsulphonyl)-amino]-acetic acid(20) {(2,6-dichloro-pyridin-4-sulphonyl)-[1-(4-methylcarbamoyl-pyridin-2-yl)-1H-indol-5-yl]-amino}-acetic acid,and an enantiomer, mixture thereof and salt thereof.
  • 8. A physiologically acceptable salt of the compound according to claim 1 with an inorganic acid or base, or an organic acid or base.
  • 9. A pharmaceutical composition comprising a compound according to claim 1, or a physiologically acceptable salt thereof, optionally together with one or more inert carriers and/or diluents, wherein said physiologically acceptable salt is formed from an inorganic acid or base, or an organic acid or base.
  • 10. Use of a compound according to claim 1, or a physiologically acceptable salt thereof for the treatment of type I and type II diabetes mellitus, wherein said physiologically acceptable salt is formed from an inorganic acid or base, or an organic acid or base.
  • 11. Process for preparing a pharmaceutical composition according to claim 9, characterised in that said compound according to claim 1, or a physiologically acceptable salt thereof, is incorporated in one or more inert carriers and/or diluents by a non-chemical method, wherein said physiologically acceptable salt is formed from an inorganic acid or base, or an organic acid or base.
  • 12. A process for preparing the compound of formula I according to claim 1, characterised in that a) a compound of formula
Priority Claims (1)
Number Date Country Kind
10 2007 007 751.5 Feb 2007 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP08/51824 2/15/2008 WO 00 10/8/2009