Substituted azaspiro(4.5)decane derivatives

Information

  • Patent Grant
  • 10202345
  • Patent Number
    10,202,345
  • Date Filed
    Wednesday, July 15, 2015
    9 years ago
  • Date Issued
    Tuesday, February 12, 2019
    5 years ago
Abstract
The invention relates to substituted spirocyclic cyclohexane derivatives which have an affinity for the μ opioid receptor and the ORL1 receptor, processes for the preparation thereof, medicaments containing these compounds and the use of these compounds for the preparation of medicaments.
Description

The present invention relates to substituted spirocyclic cyclohexane derivatives which have an affinity for the μ opioid receptor and the ORL1 receptor, processes for the preparation thereof, medicaments containing these compounds and the use of these compounds for the preparation of medicaments.


Spirocyclic cyclohexane derivatives which have an affinity for the μ opioid receptor and the ORL1 receptor are known in the prior art. In this connection reference may be made to, for example, the full scope of WO2004/043967, WO2005/063769, WO2005/066183, WO2006/018184, WO2006/108565, WO2007/124903, WO2008/009416, WO2008/101659, WO2009/118169 and WO2009/118173.


However, the known compounds are not satisfactory in all respects and there is a need for further compounds with comparable or better properties.


Thus, in suitable binding assays the known compounds sometimes show a certain affinity for the hERG ion channel, for the L-type calcium ion channel (phenylalkylamine, benzothiazepine, dihydropyridine binding sites) or for the sodium channel in the BTX assay (batrachotoxin), which can in each case be interpreted as an indication of cardiovascular side effects. Numerous of the known compounds furthermore show only a low solubility in aqueous media, which can have an adverse effect, inter alia, on the bioavailability. The chemical stability of the known compounds moreover is often only inadequate. Thus, the compounds sometimes do not show an adequate pH, UV or oxidation stability, which can have an adverse effect, inter alia, on the storage stability and also on the oral bioavailability. The known compounds furthermore in some cases have an unfavourable PK/PD (pharmacokinetic/pharmacodynamic) profile, which can manifest itself e.g. in too long a duration of action.


The metabolic stability of the known compounds also appears to be in need of improvement. An improved metabolic stability can indicate an increased bioavailability. A weak or non-existent interaction with transporter molecules involved in the uptake and excretion of drugs is also to be evaluated as an indication of an improved bioavailability and at all events low drug interactions. Furthermore, the interactions with the enzymes involved in the breakdown and excretion of drugs should be as low as possible, since such test results likewise indicate that at all events low drug interactions or none at all are to be expected.


The known compounds furthermore sometimes show an only low selectivity for the kappa opioid receptor, which is responsible for side effects, in particular dysphoria, sedation, diuresis. The known compounds moreover sometimes show a very high affinity for the μ opioid receptor, which appears to be connected with other side effects, in particular respiratory depression, constipation and addiction.


The invention is based on the object of providing compounds which are suitable for pharmaceutical purposes and have advantages over the compounds of the prior art.


This object is achieved by the subject matter of the claims.


It has been found, surprisingly, that substituted spirocyclic cyclohexane derivatives which have an affinity for the μ opioid receptor and the ORL1 receptor can be prepared.


The invention relates to compounds of the general formula (1)




embedded image




    • wherein

    • Y1, Y1′, Y2, Y2′, Y3, Y3′, Y4 and Y4′ in each case independently of each other are chosen from the group consisting of —H, —F, —Cl, —Br, —I, —CN, —NO2, —CHO, —R0, —C(═O)R0, —C(═O)H, —C(═O)—OH, —C(═O)OR0, —C(═O)NH2, —C(═O)NHR0, —C(═O)N(R0)2, —OH, —OR0, —OC(═O)H, —OC(═O)R0, —OC(═O)OR0, —OC(═O)NHR0, —OC(═O)N(R0)2, —SH, —SR0, —SO3H, —S(═O)1-2—R0, —S(═O)1-2NH2, —NH2, —NHR0, —N(R0)2, —N+(R0)3, —N+(R0)2O, —NHC(═O)R0, —NHC(═O)OR0, —NHC(═O)NH2, —NHC(═O)NHR0 and —NHC(═O)N(R0)2; preferably in each case independently of each other are chosen from the group consisting of —H, —F, —C1-8-aliphatic, —C1-8-aliphatic-NHC1-8-aliphatic, —C1-8-aliphatic-N(C1-8-aliphatic)2, —S—C1-8-aliphatic, —S-aryl, -aryl, —C1-8-aliphatic-aryl; or Y1 and Y1′, or Y2 and Y2′, or Y3 and Y3′, or Y4 and Y4′ together represent ═O;

    • X1, X1′, X2, X2′, X3 and X3′ in each case independently of each other represent —H, —F, —Cl, —Br, —I, —NO2, —CF3, —OR5, —SR5, —SO2R5, —S(═O)2OR5, —CN, —COOR5, —CONR5, —NR6R7, or —R0; or X1 and X1′, or X2 and X2′, or X3 and X3′ together represent ═O; or X1 and X2 or X2 and X3 together represent —(CH2)2-6—, wherein individual hydrogen atoms can also be replaced by —F, —Cl, —Br, —I, —NO2, —CF3, —OR5, —CN or —C1-6-aliphatic; or X1 and X1′ or X2 and X2′ or X3 and X3′ together represent a C3-6-cycloaliphatic, wherein individual hydrogen atoms can also be replaced by —F, —Cl, —Br, —NO2, —CF3, —OR5, —CN or —C1-6-aliphatic;

    • R0 in each case independently represents —C1-8-aliphatic, —C3-12-cycloaliphatic, -aryl, -heteroaryl, —C1-8-aliphatic-C3-12-cycloaliphatic, —C1-8-aliphatic-aryl, —C1-8-aliphatic-heteroaryl, —C3-8-cycloaliphatic-C1-8-aliphatic, —C3-8-cycloaliphatic-aryl or —C3-8-cycloaliphatic-heteroaryl;

    • R1 and R2 independently of each other represent —H or —R0; or R1 and R2 together represent —CH2CH2OCH2CH2—, —CH2CH2NR8CH2CH2— or —(CH2)3-6—;

    • R3 represents —R0;

    • R4 represents H or —Z—R11,
      • wherein
      • Z can be absent or —C(═O)—, —S(═O)— or —S(═O)2—, and
      • R11 represents —C1-6-alkyl, —C3-6-cycloalkyl or —C1-3-alkyl-C3-6-cycloalkyl, wherein in the C3-6-cycloalkyl group a ring carbon atom can be replaced by an oxygen atom and —C1-6-alkyl, —C3-6-cycloalkyl or —C1-3-alkyl-C3-6-cycloalkyl can be unsubstituted, mono- or polysubstituted with substituents independently of each other selected from the group consisting of —F, —Cl, —Br, —I, —ON, —OH, —SH, —O—C1-3-alkyl and —S—C1-3-alkyl, wherein —C1-3-alkyl can be substituted by one or more substituents from the group consisting of —F, —Cl, —Br, —I, —CN, —OH, —OCH3, —SH and —SCH3;

    • R5 in each case independently represents —H or —R0;

    • R6 and R7 independently of each other represent —H or —R0; or R6 and R7 together represent —CH2CH2OCH2CH2—, —CH2CH2NR10CH2CH2— or —(CH2)3-6—;

    • R8 represents —H, —R0 or —C(═O)R0;

    • R10 represents —H or —C1-6-aliphatic;

    • wherein

    • “aliphatic” in each case is a branched or unbranched, saturated or a mono- or polyunsaturated, unsubstituted or mono- or polysubstituted, aliphatic hydrocarbon radical;

    • “cycloaliphatic” in each case is a saturated or mono- or polyunsaturated, unsubstituted or mono- or polysubstituted, alicyclic, mono- or multicyclic hydrocarbon radical, the number of ring carbon atoms of which is preferably in the stated range (i.e. “C3-8-” cycloaliphatic preferably has 3, 4, 5, 6, 7 or 8 ring carbon atoms);

    • wherein with respect to “aliphatic” and “cycloaliphatic”, “mono- or polysubstituted” is understood as meaning substitution once or several times of one or more hydrogen atoms, e.g. substitution once, twice, three times or completely by substituents independently of each other chosen from the group consisting of —F, —Cl, —Br, —I, —CN, —NO2, —CHO, ═O, —R0, —C(═O)R0, —C(═O)H, —C(═O)—OH, —C(═O)OR0, —C(═O)NH2, —C(═O)NHR0, —C(═O)N(R0)2, —OH, —OR0, —OC(═O)H, —OC(═O)R0, —OC(═O)OR0, —OC(═O)NHR0, —OC(═O)N(R0)2, —SH, —SR0, —SO3H, —S(═O)1-2—R0, —S(═O)1-2NH2, —NH2, —NHR0, —N(R0)2, —N+(R0)3, —N+(R0)2O, —NHC(═O)R0, —NHC(═O)OR0, —NHC(═O)NH2, —NHC(═O)NHR0, —NH—C(═O)N(R0)2, —Si(R0)3, —PO(OR0)2;

    • “aryl” in each case independently represents a carbocyclic ring system having at least one aromatic ring, but without hetero atoms in this ring, wherein the aryl radicals can optionally be fused with further saturated, (partially) unsaturated or aromatic ring systems and each aryl radical can be unsubstituted or mono- or polysubstituted, wherein the substituents on aryl can be identical or different and can be in any desired and possible position of the aryl;

    • “heteroaryl” represents a 5-, 6- or 7-membered cyclic aromatic radical which contains 1, 2, 3, 4 or 5 hetero atoms, wherein the hetero atoms are identical or different and are nitrogen, oxygen or sulfur and the heterocycle can be unsubstituted or mono- or polysubstituted; wherein in the case of substitution on the heterocycle the substituents can be identical or different and can be in any desired and possible position of the heteroaryl; and wherein the heterocycle can also be part of a bi- or polycyclic system;

    • wherein with respect to “aryl” and “heteroaryl”, “mono- or polysubstituted” is understood as meaning substitution once or several times of one or more hydrogen atoms of the ring system by substituents chosen from the group consisting of —F, —Cl, —Br, —I, —CN, —NO2, —CHO, ═O, —R0, —C(═O)R0, —C(═O)H, —C(═O)OH, —C(═O)OR0, —C(═O)NH2, —C(═O)NHR0, —C(═O)—N(R0)2, —OH, —O(CH2)1-2O—, —OR0, —OC(═O)H, —OC(═O)R0, —OC(═O)OR0, —OC(═O)NHR0, —OC(═O)N(R0)2, —SH, —SR0, —SO3H, —S(═O)1-2—R0, —S(═O)1-2NH2, —NH2, —NHR0, —N(R0)2, —N+(R0)3, —N+(R0)2O, —NHC(═O)R0, —NHC(═O)OR0, —NHC(═O)NH2, —NHC(═O)NHR0, —NHC(═O)N(R0)2, —Si(R0)3, —PO(OR0)2; wherein N ring atoms optionally present can in each case be oxidised (N-oxide);

    • in the form of an individual stereoisomer or mixture thereof, the free compounds and/or their physiologically acceptable salts and/or solvates.





Where various radicals are combined, for example Y1, Y1′, Y2, Y2′, Y3, Y3′, Y4 and Y4′, and where radicals on substituents thereof are combined, such as e.g. —OR0, —OC(═O)R0, —OC(═O)NHR0, a substituent, e.g. R0, can assume different meanings for two or more radicals, for example —OR0, —OC(═O)R0, —OC(═O)NHR0, within a substance.


The compounds according to the invention show good binding to the ORL1 receptor and/or the μ opioid receptor, preferably to the ORL1 receptor and the μ opioid receptor.


The compounds according to the invention preferably have a Ki value on the μ opioid receptor of at most 500 nM, more preferably at most 100 nM or at most 50 nM, still more preferably at most 10 nM, most preferably at most 1.0 nM and in particular at most 0.5 nM.


Methods for determination of the Ki value on the μ opioid receptor are known to the person skilled in the art. The determination is preferably carried out as described in connection with the examples.


The compounds according to the invention preferably have a Ki value on the ORL1 receptor of at most 500 nM, more preferably at most 100 nM or at most 50 nM, still more preferably at most 10 nM, most preferably at most 1.0 nM and in particular at most 0.75 nM.


Methods for determination of the Ki value on the ORL1 receptor are known to the person skilled in the art. The determination is preferably carried out as described in connection with the examples.


It has been found, surprisingly, that the compounds according to the invention having affinity for the ORL1 and μ plaid receptor have a pharmacological profile which has significant advantages compared with the other opioid receptor ligands:

    • 1. The compounds according to the invention show an activity in acute pain models which is sometimes comparable to that of the usual level 3 opioids. At the same time, however, they are distinguished by a clearly better tolerability compared with conventional μ opioids.
    • 2. In contrast to the usual level 3 opioids, the compounds according to the invention show a clearly higher activity in mono- and polyneuropathy pain models, which is to be attributed to a synergism of the ORL1 and μ opioid component.
    • 3. In contrast to the usual level 3 opioids, the compounds according to the invention show a substantial, preferably a complete separation of antiallodynic or antihyperalgesic action and antinociceptive effect in neuropathic animals.
    • 4. In contrast to the usual level 3 opioids, the compounds according to the invention show a clear intensification of action against acute pain in animal models for chronic inflammation pain (inter alia carrageenan- or CFA-induced hyperalgesia, visceral inflammation pain).
    • 5. In contrast to the usual level 3 opioids, side effects typical of μ opioids (inter alia respiratory depression, opioid-induced hyperalgesia, physical dependency/withdrawal, emotional dependency/addiction) are clearly reduced or preferably are not to be observed with the compounds according to the invention in the therapeutically active dose range.


On the basis of the reduced μ opioid side effects on the one hand and the increased activity on chronic, preferably neuropathic pain on the other hand, the mixed ORL1/μ agonists are thus distinguished by clearly increased safety margins compared with pure μ opioids. This results in a clearly increased “therapeutic window” in the treatment of states of pain, preferably chronic pain, still more preferably neuropathic pain.


A preferred embodiment of the invention relates to compounds of the general formula (2), i.e. Y1′, Y2′, Y3 and Y4′ are each —H:




embedded image


In a preferred embodiment of the compound (2) according to the invention Y1, Y2, Y3 and Y4 are not —H. In another preferred embodiment of the compound (2) according to the invention three of the radicals Y1, Y2, Y3 and Y4 are not —H and the remaining radical is —H. In another preferred embodiment two of the radicals Y1, Y2, Y3 and Y4 are not —H and the remaining two radicals are —H. In a further preferred embodiment of the compound (2) according to the invention one of the radicals Y1, Y2, Y3 and Y4 is not —H and the remaining radicals are —H.


In a particularly preferred embodiment of the compound (2) according to the invention Y1, Y2, Y3 and Y4 each represent —H.


Particularly preferred compounds of the general formula (1) or (2) are those wherein


R0 in each case independently represents —C1-8-aliphatic, —C3-12-cycloaliphatic, -aryl, -heteroaryl, —C1-8-aliphatic-C3-12-cycloaliphatic, —C1-8-aliphatic-heteroaryl, —C3-8-cycloaliphatic-C1-8-aliphatic, —C3-8-cycloaliphatic-aryl or —C3-8-cycloaliphatic-heteroaryl; wherein these are unsubstituted or mono- or polysubstituted by substituents independently of each other chosen from the group consisting of —F, —Cl, —Br, —CN, —CH3, —C2H5, —NH2, —NO2, —SH, —CF3, OH, —OCH3, —OC2H5 and —N(CH3)2.


A preferred embodiment of the compound (2) according to the invention relates to compounds of the general formula (2.1):




embedded image


Particularly preferred compounds of the general formula (2) are those wherein


R3 represents —C1-8-aliphatic, -aryl, -heteroaryl, —C1-3-aliphatic-aryl, —C1-3-aliphatic-heteroaryl or —C1-3-aliphatic-C5-6-cycloaliphatic; wherein these are unsubstituted or mono- or polysubstituted by substituents independently of each other chosen from the group consisting of —F, —Cl, —Br, —CN, —CH3, —C2H5, —NH2, —NO2, —SH, —CF3, —OH, —OCH3, —OC2H5 and —N(CH3)2;


and


X1, X1′, X2, X2′, X3, X3′ in each case independently of each other represent —H, —F, —Cl, —Br, —I, —NO2, —CF3, —OR5, —SR5, —SO2R5, —S(═O)2OR5, —CN, —COOR5, —CONR5, —NR6R7, or —R0; or X1 and X1′, or X2 and X2′, or X3 and X3′ together represent ═O.


Particularly preferred compounds are those of the general formula (3), i.e. Y1, Y1′, Y2, Y2′, Y3, Y3′, Y4 and Y4′ are each —H:




embedded image


In further embodiments of the compounds of the general formula (3) one of the radicals X1 and X1′ represents H and the other represents —C1-8-aliphatic, —C3-12-cycloaliphatic, -aryl, -heteroaryl, —C1-8-aliphatic-C3-12-cycloaliphatic, —C1-8-aliphatic-aryl, —C1-8-aliphatic-heteroaryl, —C3-8-cycloaliphatic-C1-8-aliphatic, —C3-8-cycloaliphatic-aryl or —C3-8-cycloaliphatic-heteroaryl; wherein these are unsubstituted or mono- or polysubstituted by substituents independently of each other chosen from the group consisting of —F, —Cl, —Br, —CN, —CH3, —C2H5, —NH, —NO2, —SH, —CF3, OH, —OCH3, —OC2H5 and —N(CH3)2.


Preferred embodiments of the compounds of the general formula (3) have the general formula (3.1):




embedded image


These embodiments relate to compounds of the general formula (3) in which X1 and X1′ are —H.


Particularly preferred compounds of the general formula (3.1) are those wherein


X2, X2′, X3 and X3′ represent H; or X2 and X2′, or X3 and X3′ together represent ═O;


R0 in each case independently represents —C1-8-aliphatic, —C3-12-cycloaliphatic, -aryl, -heteroaryl, —C1-8-aliphatic-C3-12-cycloaliphatic, —C1-8-aliphatic-aryl, —C1-8-aliphatic-heteroaryl, —C3-8-cycloaliphatic-C1-8-aliphatic, —C3-8-cycloaliphatic-aryl or —C3-8-cycloaliphatic-heteroaryl; wherein these are unsubstituted or mono- or polysubstituted by substituents independently of each other chosen from the group consisting of —F, —Cl, —Br, —CN, —CH3, —C2H5, —NH2, —NO2, —SH, —CF3, OH, —OCH3, —OC2H5 and —N(CH3)2;


R1 represents CH3;


R2 represents —H or —CH3; or


R1 and R2 together form a ring and represent —(CH2)3-4—; and


R3 represents —C1-8-aliphatic, -aryl, -heteroaryl, —C1-3-aliphatic-aryl, —C1-3-aliphatic-heteroaryl or —C1-3-aliphatic-C5-6-cycloaliphatic; wherein these are unsubstituted or mono- or polysubstituted by substituents independently of each other chosen from the group consisting of —F, —Cl, —Br, —CN, —CH3, —C2H5, —NH2, —NO2, —SH, —CF3, —OH, —OCH3, —OC2H5 and —N(CH3)2; and


R4 represents H or —Z—R11,

    • wherein
    • Z can be absent or —C(═O)—, —S(═O)— or —S(═O)2—, and
    • R11 represents —C1-6-alkyl, —C3-6-cycloalkyl or —C1-3-alkyl-C3-6-cycloalkyl, wherein in the C3-6-cycloalkyl group a ring carbon atom can be replaced by an oxygen atom and —C1-6-alkyl, —C3-6-cycloalkyl or —C1-3-alkyl-C3-6-cycloalkyl can be unsubstituted, mono- or polysubstituted with substituents independently of each other selected from the group consisting of —F, —Cl, —Br, —I, —CN, —OH, —SH, —O—C1-3-alkyl and —S—C1-3-alkyl, wherein —C1-3-alkyl can be substituted by one or more substituents from the group consisting of —F, —Cl, —Br, —I, —CN, —OH, —OCH3, —SH and —SCH3;


Preferred embodiments of the compounds of the general formula (3.1) have the general formula (3.1.1), (3.1.2), (3.1.3), (3.1.4), (3.1.5) or (3.1.6):




embedded image


A further preferred embodiment relates to compounds of the general formula (4.1), i.e. R1 and R2 are in each case —CH3.




embedded image


Preferred embodiments of the compounds of the general formula (4.1) have the general formula (4.1.1), (4.1.2), (4.1.3), (4.1.4), (4.1.5) or (4.1.6):




embedded image


Preferably, Y1, Y1′, Y2, Y2′, Y3, Y3′, Y4 and Y4′ in each case independently of each other are chosen from the group consisting of —H, —F, —Cl, —Br, —I, —CN, —NH2, —NH—C1-6-aliphatic, —NH—C3-6-cycloaliphatic, —NH—C1-6-aliphatic-OH, —N(C1-6-aliphatic)2, —N(C3-8-cycloaliphatic)2, —N(C1-6-aliphatic-OH)2, —NO2, —NH—C1-6-aliphatic-C3-6-cycloaliphatic, —NH—C1-6-aliphatic-aryl, —NH—C1-6-aliphatic-heteroaryl, —NH-aryl, —NH-heteroaryl, —SH, —S—C1-6-aliphatic, —S—C3-8-cycloaliphatic, —S—C1-6-aliphatic-C3-8-cycloaliphatic, —S—C1-6-aliphatic-aryl, —S—C1-6-aliphatic-heteroaryl, —S-aryl, —S-heteroaryl, —OH, —O—C1-6-aliphatic, —O—C3-8-cycloaliphatic, —O—C1-6-aliphatic-OH, —O—C1-6-aliphatic-C3-8-cycloaliphatic, —O—C1-6-aliphatic-aryl, —O—C1-6-aliphatic-heteroaryl, —O-aryl, —O—heteroaryl, —O—C(═O)C1-6-aliphatic, —O—C(═O)C3-8-cycloaliphatic, —O—C(═O)C1-6-aliphatic-OH, —O—C(═O)C1-6-aliphatic-C3-8-cycloaliphatic, —O—C(═O)C1-6-aliphatic-aryl, —O—C(═O)C1-6-aliphatic-heteroaryl, —O—C(═O)aryl, —O—C(═O)heteroaryl, —C1-6-aliphatic, —C3-8-cycloaliphatic, —C1-6-aliphatic-C3-8-cycloaliphatic, —C1-6-aliphatic-aryl, —C1-6-aliphatic-heteroaryl, -aryl, -heteroaryl, —C(═O)C1-6-aliphatic, —C(═O)C3-8-cycloaliphatic, —C(═O)C1-6-aliphatic-C3-8-cycloaliphatic, —C(═O)C1-6-aliphatic-aryl, —C(═O)C1-6-aliphatic-heteroaryl, —C(═O)aryl, —C(═O)heteroaryl, —CO2H, —CO2—C1-6-aliphatic, —CO2—C3-8-cycloaliphatic, —CO2—C1-6-aliphatic-C3-8-cycloaliphatic, —CO2—C1-6-aliphatic-aryl, —CO2—C1-6-aliphatic-heteroaryl, —CO2-aryl, —CO2-heteroaryl; or Y1 and Y1′, or Y2 and Y2′, or Y3 and Y3′, or Y4 and Y4′ together represent ═O.


More preferably, Y1, Y1′, Y2, Y2′, Y3, Y3′, Y4 and Y4′ in each case independently of each other are chosen from the group consisting of —H, —F, —Cl, —Br, —I, —CN, —C1-6-aliphatic, —C1-6-aliphatic-NHC1-6-aliphatic, —C1-6-aliphatic-N(C1-8-aliphatic)2, —C3-8-cycloaliphatic, —C1-6-aliphatic-C3-8-cycloaliphatic, —C1-6-aliphatic-aryl, —C1-6-aliphatic-heteroaryl, —S—C1-8-aliphatic, —S-aryl, -aryl or -heteroaryl.


Particularly preferably, Y1, Y1′, Y2, Y2′, Y3, Y3′, Y4 and Y4′ in each case independently of each other are chosen from the group consisting of —H, —F, —Cl, —C1-6-alkyl, —C2-6-alkenyl, —C1-6-alkyl-NH—C1-6-alkyl, —C1-6-alkyl-N(C1-6-alkyl)2, -aryl, —C1-6-alkyl-aryl, —S—C1-6-alkyl and —S-aryl.


In a preferred embodiment at least one of the radicals Y1, Y1′, Y2, Y2′, Y3, Y3′, Y4 and Y4′ is not —H and the remaining radicals represent —H.


Particularly preferably, Y1, Y1′, Y2, Y2′, Y3, Y3′, Y4 and Y4′ each represent —H.


Preferably, X1, X1′, X2, X2′, X3 and X3′ in each case independently of each other represent —H, —F, —Cl, —Br, —I, —NO2, —NR6R7, —C1-6-aliphatic, —C3-8-cycloaliphatic, -aryl, -heteroaryl, —C1-6-aliphatic-aryl, —C1-6-aliphatic-heteroaryl or —C1-6-aliphatic-C3-8-cycloaliphatic, or X1 and X1′, or X2 and X2′, or X3 and X3′ together represent ═O; or X1 and X2, or X2 and X3 together represent —(CH2)2-6; or X1 and X1′ together represent a C3-C6-cycloaliphatic, preferably a C3-6-cycloalkyl.


Preferred compounds are in particular also those in which X1, X1′, X2, X2′, X3 and X3′ in each case independently of each other represent —H, —C1-5-aliphatic, -aryl or -aryl linked via a —C1-3-aliphatic group (bridge); or X1 and X1′, or X2 and X2′, or X3 and X3′ together represent ═O.


Particularly preferably, X1, X1′, X2, X2′, X3 and X3′ in each case independently of each other represent —H, —CH3, -phenyl or -benzyl, in particular —H, or X1 and X1′, or X2 and X2′, or X3 and X3′ together represent ═O.


Very particularly preferably, X1, X1′, X2, X2′, X3 and X3′ represent H; or X2 and X2′, or X3 and X3′ together represent ═O.


In a preferred embodiment X2 and X2′ together represent ═O, and X1, X1′, X3 and X3′ represent —H.


In another preferred embodiment X3 and X3′ together represent ═O, and X1, X1′, X2 and X2′ represent —H.


In a further preferred embodiment X1, X1′, X2, X2′, X3 and X3′ represent H.


R0 preferably in each case independently represents —C1-8-aliphatic, —C3-12-cycloaliphatic, -aryl, -heteroaryl, —C1-8-aliphatic-C3-12-cycloaliphatic, —C1-8-aliphatic-aryl or —C1-8-aliphatic-heteroaryl. In this context —C1-8-aliphatic-C3-12-cycloaliphatic, —C1-8-aliphatic-aryl or —C1-8-aliphatic-heteroaryl means that the radicals —C3-12-cycloaliphatic, -aryl or -heteroaryl are in each case bonded via a divalent —C1-8-aliphatic-bridge. Preferred examples for —C1-8-aliphatic-aryl are —CH2—C6H5, —CH═CH—C6H5 and —CH2CH2—C6H5. A preferred example for —C1-8-aliphatic-heteroaryl is —CH2-pyridyl. A preferred example for —C1-8-aliphatic-C3-12-cycloaliphatic is —CH2-cyclopentyl.


Preferably, R1 and R2 independently of each other represent —H; —C1-6-aliphatic; —C3-8-cycloaliphatic, —C1-6-aliphatic-aryl, —C1-6-aliphatic-C3-8-cycloaliphatic or —C1-6-aliphatic-heteroaryl; or the radicals R1 and R2 together form a ring and denote —CH2CH2OCH2CH2—, —CH2CH2NR8CH2CH2— or —(CH2)3-6—.


More preferably, R1 and R2 independently of each other represent —H; —C1-5-aliphatic; or the radicals R1 and R2 together form a ring and denote —CH2CH2OCH2CH2—, —CH2CH2NR8—CH2CH2— or —(CH2)3-6—, wherein R8 preferably denotes —H or —C1-5-aliphatic.


Particularly preferred compounds are those wherein R1 and R2 independently of each other represent —CH3 or —H, wherein R1 and R2 do not simultaneously denote —H; or R1 and R2 form a ring and denote —(CH2)3-4—.


Very particularly preferred compounds are those wherein R1 and R2 represent —CH3.


Preferably, R3 represents —C1-8-aliphatic, —C3-8-cycloaliphatic, -aryl, -heteroaryl; or represents -aryl, -heteroaryl or —C3-8-cycloaliphatic in each case bonded via a —C1-3-aliphatic group.


Preferably, R3 represents —C1-5-aliphatic; in each case saturated or unsaturated, unsubstituted or mono- or polysubstituted by —OH, —OCH3 or —OC2H5; -aryl, -heteroaryl; in each case unsubstituted or mono- or polysubstituted by —F, —Cl, —Br, —CN, —CH3, —C2H5, —NH2, —NO2, —SH, —CF3, —OH, —OCH3, —OC2H5 or —N(CH3)2; or represents —C5-6-cycloaliphatic bonded via a —C1-3-aliphatic group.


Most preferably, R3 represents -aryl, -heteroaryl; in each case unsubstituted or mono- or polysubstituted by —F, —Cl, —Br, —CN, —CH3, —C2H5, —NH2, —NO2, —SH, —CF3, —OH, —OCH3, —OC2H5 or —N(CH3)2; or represents a —C5-6-cycloaliphatic bonded via a —C1-3-aliphatic group.


Particularly preferably, R3 represents -vinyl, -ethyl, -allyl, -propyl, -butyl, -pentyl, -hexyl, -heptyl, -cyclopentyl, -cyclohexyl, -phenyl, -benzyl, -naphthyl, -anthracenyl, -thiophenyl (-thienyl), -benzothiophenyl, -furyl, -benzofuranyl, -benzodioxolanyl, -indolyl, -indanyl, -benzodioxanyl, -pyrrolyl, -pyridyl, -pyrimidyl or -pyrazinyl, in each case unsubstituted or mono- or polysubstituted; or —C5-6-cycloaliphatic, -phenyl, -naphthyl, -anthracenyl, -thiophenyl, -benzothiophenyl, pyridyl, -furyl, -benzofuranyl, -benzodioxolanyl, -indolyl, -indanyl, -benzodioxanyl, -pyrrolyl, -pyrimidyl, -triazolyl or -pyrazinyl bonded via a saturated, unbranched —C1-3-aliphatic group and in each case unsubstituted or mono- or polysubstituted.


Still more preferably, R3 represents -propyl, -butyl, -pentyl, -hexyl, -phenyl, -phenethyl, -thiophenyl (-thienyl), -pyridyl, -triazolyl, -benzothiophenyl or -benzyl, in each case substituted or unsubstituted, particularly preferably -propyl, -3-methoxypropyl, -butyl, -pentyl, -hexyl, -phenyl, -3-methylphenyl, -3-fluorophenyl, -benzo[1,3]-dioxolyl, -thienyl, -5-methylthiophen-2-yl, -benzothiophenyl, -4-chlorobenzyl, -benzyl, -3-chlorobenzyl, -4-methylbenzyl, -2-chlorobenzyl, -4-fluorobenzyl, -3-methylbenzyl, -2-methylbenzyl, -3-fluorobenzyl, -2-fluorobenzyl, -1-methyl-1,2,4-triazolyl or -phenethyl.


Most preferably, R3 represents -phenyl, -benzyl, -phenethyl, in each case unsubstituted or mono- or polysubstituted on the ring; —C1-5-aliphatic, —C4-6-cycloaliphatic, -pyridyl, -thienyl, -thiazolyl, -imidazolyl, -1,2,4-triazolyl or -benzimidazolyl, unsubstituted or mono- or polysubstituted.


Particularly preferably, R3 represents -phenyl, -benzyl, -phenethyl, -thienyl, -pyridyl, -thiazolyl, -imidazolyl, -1,2,4-triazolyl, -benzimidazolyl or -benzyl, unsubstituted or mono- or polysubstituted by —F, —Cl, —Br, —CN, —CH3, —C2H5, —NH2, —NO2, —SH, —CF3, —OH, —OCH3, —OC2H5 or —N(CH3)2; -ethyl, -n-propyl, -2-propyl, -allyl, -n-butyl, -iso-butyl, -sec-butyl, -tert-butyl, -n-pentyl, -iso-pentyl, -neo-pentyl, -n-hexyl, -cyclopentyl or -cyclohexyl, in each case unsubstituted or mono- or polysubstituted by —OH, —OCH3 or —OC2H5.


Particularly preferably, R3 represents -phenyl or -thienyl, in each case unsubstituted or monosubstituted by —F, —Cl, —CH3; -ethyl, -n-propyl, -n-butyl, -vinyl, or -allyl, unsubstituted or mono- or polysubstituted by —OCH3, —OH or —OC2H5, in particular by —OCH3 or —OC2H5.


In further preferred embodiments, R3 represents a radical selected from the group consisting of phenyl, benzyl and 2-thienyl, in each case unsubstituted or mono- or polysubstituted by substituents independently of each other selected from the group consisting of —F, —Cl, —Br, —CN, —CH3, —C2H5, —NH2, —NO2, —SH, —CF3, OH, —OCH3, —OC2H5 and —N(CH3)2.


Preferably, R4 represents H or —Z—R11,


wherein

    • Z can be absent or —C(═O)—, and
    • R11 represents —C1-6-alkyl, —C3-6-cycloalkyl, or C1-3-alkyl-C3-6-cycloalkyl, wherein in the C3-6-cycloalkyl group a ring carbon atom can be replaced by an oxygen atom and —C1-6-alkyl, —C3-6-cycloalkyl or —C1-3-alkyl-C3-6-cycloalkyl can be unsubstituted, mono- or polysubstituted, by substituents independently of each other selected from the group consisting of —F, —Cl, —Br, —I, —CN, —OH, —SH, —O—C1-3-alkyl, and —S—C1-3-alkyl, wherein —C1-3-alkyl can be substituted by one or more substituents independently of each other selected from the group consisting of —F, —Cl, —Br, —CN, —OH, —OCH3, —SH and —SCH3.


Preferably, in the radical R11 the —C3-6-cycloalkyl groups and oxygen-containing derivatives thereof are selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, oxetanyl, oxolanyl(tetrahydrofuranyl) and oxanyl(tetrahydropyranyl).


In further preferred embodiments R4 represents H, CH3, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, iso-butyl, t-butyl, n-pentyl, s-pentyl, iso-pentyl,




embedded image


embedded image


embedded image


embedded image


embedded image


Preferably, R5 represents —H, —C1-5-aliphatic, —C3-8-cycloaliphatic, -aryl, or -heteroaryl; or represents an -aryl, —C3-8-cycloaliphatic or -heteroaryl in each case bonded via a —C1-3-aliphatic group.


Preferably, R6 and R7 independently of each other represent —H, —C1-5-aliphatic, —C3-8-cycloaliphatic, -aryl, or -heteroaryl, or represent an -aryl, —C3-8-cycloaliphatic or -heteroaryl in each case bonded via a —C1-3-aliphatic group; or R6 and R7 together form —CH2CH2OCH2CH2—, —CH2CH2N—R10CH2CH2— or —(CH2)3-6—. Particularly preferably, R6 and R7 independently of each other represent —H, —C1-5-aliphatic; or R6 and R7 together form —CH2CH2OCH2CH2—, —CH2CH2N—R10CH2CH2— or —(CH2)3-6—.


Preferably, R8 represents —H, —C1-5-aliphatic, —C3-8-cycloaliphatic, -aryl, or -heteroaryl, —C1-6-aliphatic-aryl, —C1-6-aliphatic-C3-8-cycloaliphatic, —C1-6-aliphatic-heteroaryl, —C(═O)aryl, —C(═O)heteroaryl, or —C(═O)—C1-6-aliphatic.


Particularly preferably, R10 represents —H or —C1-5-aliphatic.


For the purpose of the description, hydrocarbon radicals are divided into aliphatic hydrocarbon radicals on the one hand and aromatic hydrocarbon radicals on the other hand.


Aliphatic hydrocarbon radicals are in their turn divided into non-cyclic aliphatic hydrocarbon radicals on the one hand (=“aliphatic”) and cyclic aliphatic hydrocarbon radicals, i.e. alicylic hydrocarbon radicals, on the other hand (=“cycloaliphatic”). Cycloaliphatics can be monocyclic or multicyclic. Alicyclic hydrocarbon radicals (“cycloaliphatic”) include both pure aliphatic carbocycles and aliphatic heterocycles, i.e.—if not expressly specified—“cycloaliphatic” includes pure aliphatic carbocycles (e.g. cyclohexyl), pure aliphatic heterocycles (e.g. piperidyl or piperazyl) and non-aromatic, multicyclic, optionally mixed systems (e.g. decalinyl, decahydroquinolinyl). In other words the term “cycloaliphatic” is understood here as meaning that both cycloalkyls and heterocycloalkyls as well as unsaturated—but not aromatic—derivatives fall under this term. The term “C3-8-cycloaliphatic” thus includes, inter alia, both 3- to 8-membered cycloalkyls, such as e.g. cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, and 3- to 8-membered non-aromatic heterocycles in which one or more carbon atoms or —(CH2)— groups are replaced by a hetero atom (e.g. tetrahydrofuranyl, tetrahydropyranyl, piperidyl or piperazyl etc.).


Aromatic hydrocarbon radicals are in their turn divided into carbocyclic aromatic hydrocarbons on the one hand (=“aryl”) and heterocyclic aromatic hydrocarbons on the other hand (=“heteroaryl”).


The assignment of multicyclic, at least partially aromatic systems preferably depends on whether at least one aromatic ring of the multicyclic system contains at least one hetero atom (conventionally N, O or S) in the ring. If at least one such hetero atom is present in this ring, the system is preferably a “heteroaryl” (even if a further carbocyclic aromatic or non-aromatic ring with or without a hetero atom is present optionally as an additionally present ring of the multicyclic system); if such a hetero atom is present in none of the optionally several aromatic rings of the multicyclic system, the system is preferably “aryl” (even if a ring hetero atom is present in an optionally additionally present non-aromatic ring of the multicyclic system).


Within the cyclic substituents, the following priority of assignment accordingly preferably applies: heteroaryl>aryl>cycloaliphatic.


For the purpose of the description, monovalent and polyvalent, e.g. divalent hydrocarbon radicals are not differentiated with respect to terminology, i.e. “C1-3-aliphatic” includes, depending on the sense, e.g. both —C1-3-alkyl, —C1-3-alkenyl and —C1-3-alkynyl, and e.g. —C1-3-alkylene-, —C1-3-alkenylene- and —C1-3-alkynylene-.


Preferably, “aliphatic” is in each case is a branched or unbranched, saturated or a mono- or polyunsaturated, unsubstituted or mono- or polysubstituted, aliphatic hydrocarbon radical. If aliphatic is mono- or polysubstituted, the substituents independently of each other are chosen from the group consisting of —F, —Cl, —Br, —I, —CN, —NO2, —CHO, ═O, —R0, —C(═O)R0, —C(═O)OH, —C(═O)OR0, —C(═O)NH2, —C(═O)NHR0, —C(═O)N(R0)2, —OH, —OR0, —OC(═O)H, —OC(═O)R0, —OC(═O)OR0, —OC(═O)—NHR0, —OC(═O)N(R0)2, —SH, —SR0, —SO3H, —S(═O)1-2—R0, —S(═O)1-2NH2, —NH2, —NHR0, —N(R0)2, —N+(R0)3, —N+(R0)2O, —NHC(═O)R0, —NHC(═O)OR0, —NHC(═O)NH2, —NHC(═O)NHR0, —NHC(═O)N(R0)2, —NHS(═O)1-2R0, —Si(R0)3, —PO(OR0)2. “Aliphatic” thus includes acyclic saturated or unsaturated hydrocarbon radicals, which can be branched or straight-chain, i.e. alkanyls, alkenyls and alkynyls. In this context alkenyls have at least one C═C double bond and alkynyls have at least one C≡C triple bond. Preferred unsubstituted monovalent aliphatics include —CH3, —CH2CH3, —CH2CH2CH3, —CH(CH3)2, —CH2CH2CH2CH3, —CH(CH3)CH2CH3, —CH2CH(CH3)2, —C(CH3)3, —CH2CH2CH2—CH2CH3 and —CH2CH2—CH2CH2CH2CH3; but also —CH═CH2, —C≡CH, —CH2CH═CH2, —CH═CHCH3, —CH2C≡CH, —C≡CCH3 and —CH═CHCH═CH2. Preferred unsubstituted divalent aliphatics include —CH2—, —CH2CH2—, —CH2CH(CH3)—, —CH(CH3)—CH2—, —CH2CH2CH2—, —CH(CH3)CH2CH2—, —CH2CH(CH3)—CH2—, —CH2CH2CH(CH3)—, —CH—(CH2CH3)CH2— and —CH2CH2—CH2CH2—; but also —CH═CH—, —CH2CH═CH—, —CH═CHCH2—, —CH2C≡C— and —C≡CCH2—. Preferred substituted monovalent aliphatics include —CH2F, —CHF2, —CF3, —CH2CF3, —CF2CF3, —CH2OH, —CH2CH2OH, —CH2CHOHCH3, —CH2OCH3 and CH2CH2OCH3. Preferred substituted divalent aliphatics include —CF2—, —CF2CF2—, —CH2CHOH—, —CHOHCH2— and —CH2CHOHCH2—.


Methyl, ethyl, n-propyl and n-butyl are particularly preferred aliphatics.


Preferably, cycloaliphatic is in each case a saturated or a mono- or polyunsaturated, unsubstituted or mono- or polysubstituted, aliphatic (i.e. non-aromatic), mono- or multicyclic hydrocarbon radical. The number of ring carbon atoms is preferably in the stated range (i.e. a “C3-8-” cycloaliphatic preferably has 3, 4, 5, 6, 7 or 8 ring carbon atoms). For the purpose of the description, “C3-8-cycloaliphatic” is preferably a cyclic hydrocarbon having 3, 4, 5, 6, 7 or 8 ring carbon atoms, saturated or unsaturated, but not aromatic, one or two carbon atoms independently of each other optionally being replaced by a hetero atom S, N or O. If cycloalkyl is mono- or polysubstituted, the substituents independently of each other are chosen from the group consisting of —F, —Cl, —Br, —I, —CN, —NO2, —CHO, ═O, —R0, —C(═O)R0, —C(═O)OH, —C(═O)OR0, —C(═O)NH2, —C(═O)NHR0, —C(═O)N(R0)2, —OH, —OR0, —OC(═O)H, —OC(═O)R0, —OC(═O)OR0, —OC(═O)NHR0, —OC(═O)—N(R0)2, —SH, —SR0, —SO3H, —S(═O)1-2—R0, —S(═O)1-2NH2, —NH2, —NHR0, —N(R0)2, —N+(R0)3, —N+(R0)2O, —NHC(═O)R0, —NHC(═O)OR0, —NHC(═O)NH2, —NHC(═O)NHR0, —NHC(═O)N(R0)2, NHS(═O)1-2R0, —Si(R0)3, —PO(OR0)2. C3-8-Cycloaliphatic is advantageously chosen from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclopentenyl, cyclohexenyl, cycloheptenyl and cyclooctenyl, but also tetrahydropyranyl, dioxanyl, dioxolanyl, morpholinyl, piperidinyl, piperazinyl, pyrazolinonyl and pyrrolidinyl.


Cyclopentyl and cyclohexyl are particularly preferred C3-8-cycloaliphatics.


Preferably, in connection with “aliphatic” or “cycloaliphatic”, “mono- or polysubstituted” is understood as meaning substitution once or several times, e.g. once, twice, three times or four times, of one or more hydrogen atoms by —F, —Cl, —Br, —OH, —OC1-6-alkyl, —OC(═O)C1-6-alkyl, —SH, —NH2, —NHC1-6-alkyl, —N(C1-6-alkyl)2, —C(═O)OC1-6-alkyl or —C(═O)OH. Compounds wherein “aliphatic substituted” or “cycloaliphatic substituted” means aliphatic or cycloaliphatic substituted by —F, —Cl, —Br, —I, —CN, —CH3, —C2H5, —NH2, —NO2, —SH, —CF3, —OH, —OCH3, —OC2H5 or —N(CH3)2 are preferred. Particularly preferred substituents are —F, —Cl, —OH, —SH, —NH2 and —C(═O)OH.


Polysubstituted radicals are to be understood as meaning those radicals which are polysubstituted, e.g. di- or trisubstituted, either on different or on the same atoms, for example trisubstituted on the same C atom, as in the case of —CF3 or —CH2CF3, or at different places, as in the case of —CH(OH)—CH═CH—CHCl2. Polysubstitution can be with the same or with various substituents. A substituent can optionally also be substituted in its turn; thus -Oaliphatic, inter alia, also includes —OCH2CH2O—CH2CH2—OH. It is preferable for aliphatic or cycloaliphatic to be substituted by —F, —Cl, —Br, —I, —CN, —CH3, —C2H5, —NH2, —NO2, —SH, —CF3, —OH, —OCH3, —OC2H5 or —N(CH3)2. It is very particularly preferable for aliphatic or cycloaliphatic to be substituted by —OH, —OCH3 or —OC2H5.


Preferably, “aryl” in each case independently represents a carbocyclic ring system having at least one aromatic ring, but without hetero atoms in this ring, wherein the aryl radicals can optionally be fused with further saturated, (partially) unsaturated or aromatic ring systems and each aryl radical can be unsubstituted or mono- or polysubstituted, wherein the substituents on aryl can be identical or different and can be in any desired and possible position of the aryl. Preferred aryls are phenyl, naphthyl, anthracenyl, phenanthrenyl, fluoranthenyl, fluorenyl, indanyl and tetralinyl. Phenyl and naphthyl are particularly preferred. If aryl is mono- or polysubstituted, the substituents on aryl can be identical or different and can be in any desired and possible position of the aryl, and are independently of each other chosen from the group consisting of —F, —Cl, —Br, —I, —CN, —NO2, —CHO, ═O, —R0, —C(═O)R0, —C(═O)OH, —C(═O)OR0, —C(═O)—NH2, —C(═O)NHR0, —C(═O)N(R0)2, —OH, —O(CH2)1-2O—, —OR0, —OC(═O)H, —OC(═O)R0, —OC(═O)OR0, —OC(═O)—NHR0, —OC(═O)N(R0)2, —SH, —SR0, —SO3H, —S(═O)1-2—R0, —S(═O)1-2NH2, —NH2, —NHR0, —N(R0)2, —N+(R0)3, —N+(R0)2O, —NHC(═O)R0, —NHC(═O)OR0, —NHC(═O)NH2, —NHC(═O)NHR0, —NHC(═O)N(R0)2, —Si(R0)3, —PO(OR0)2. Preferred substituted aryls are 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,3-difluorophenyl, 2,4-difluorophenyl, 3,4-difluorophenyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl, 2,4-dichlorophenyl, 3,4-dichlorophenyl, 2-methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 2,3-dimethoxyphenyl, 2,4-dimethoxyphenyl, 3,4-dimethoxyphenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2,3-dimethylphenyl, 2,4-dimethylphenyl and 3,4-dimethylphenyl.


Preferably, heteroaryl represents a 5-, 6- or 7-membered cyclic aromatic radical which contains 1, 2, 3, 4 or 5 hetero atoms, wherein the hetero atoms are identical or different and are nitrogen, oxygen or sulfur and the heterocycle can be unsubstituted or mono- or polysubstituted; wherein in the case of substitution on the heterocycle the substituents can be identical or different and can be in any desired and possible position of the heteroaryl; and wherein the heterocycle can also be part of a bi- or polycyclic system. Preferably, “heteroaryl” is chosen from the group consisting of pyrrolyl, indolyl, furyl (furanyl), benzofuranyl, thienyl (thiophenyl), benzothienyl, benzothiadiazolyl, benzooxadiazolyl, benzothiazolyl, benzooxazolyl, benzotriazolyl, benzodioxolanyl, benzodioxanyl, phthalazinyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, pyranyl, indazolyl, purinyl, indolizinyl, quinolinyl, isoquinolinyl, quinazolinyl, carbazolyl, phenazinyl, phenothiazinyl or oxadiazolyl, where bonding can be via any desired and possible ring member of the heteroaryl radical. If heteroaryl is mono- or polysubstituted, the substituents on heteroaryl can be identical or different and can be in any desired and possible position of the heteroaryl, and are independently of each other chosen from the group consisting of —F, —Cl, —Br, —I, —CN, —NO2, —CHO, ═O, —R0, —C(═O)R0, —C(═O)OH, —C(═O)OR0, —C(═O)—NH2, —C(═O)NHR0, —C(═O)N(R0)2, —OH, —O(CH2)1-2O—, —OR0, —OC(═O)H, —OC(═O)R0, —OC(═O)OR0, —OC(═O)NHR0, —OC(═O)—N(R0)2, —SH, —SR0, —SO3H, —S(═O)1-2—R0, —S(═O)1-2NH2, —NH2, —NHR0, —N(R0)2, —N+(R0)3, —N+(R0)2O, —NH—C(═O)R0, —NHC(═O)OR0, —NHC(═O)NH2, —NHC(═O)NHR0, —NH—C(═O)N(R0)2, —Si(R0)3, —PO(OR0)2; wherein N ring atoms optionally present can in each case be oxidised (N-oxide).


With respect to “aryl” or “heteroaryl”, “mono- or polysubstituted” is understood as meaning substitution once or several times, e.g. twice, three times, four times or five times, of one or more hydrogen atoms of the ring system.


The substituents on aryl and heteroaryl are particularly preferably in each case independently of each other chosen from —F, —Cl, —Br, —I, —CN, —CHO, —CO2H, —NH2, —NO2, —NHR0, —N(R0)2, —N+(R0)3, —N+(R0)2O, —SH, —SR0, —OH, —OR0, —C(═O)R0, —CO2R0, —C(═O)NH2, —C(═O)NHR0, —C(═O)N(R0)2, —S(═O)1-2R0, —S(═O)2NH2, —SO3H, ═O or —R0. Preferred substituents are —F, —Cl, —Br, —I, —OH, —OC1-6-alkyl, —O—C(═O)—C1-6-alkyl, —SH, —NH2, —NHC1-6-alkyl, —N(C1-6-alkyl)2, —C(═O)OC1-6-alkyl or —C(═O)OH. Compounds wherein “aryl substituted” or “heteroaryl substituted” means aryl or heteroaryl substituted by —F, —Cl, —Br, —I, —CN, —CH3, —C2H5, —NH2, —NO2, —SH, —CF3, —OH, —OCH3, —OC2H5 or —N(CH3)2 are preferred. Particularly preferred substituents are —F, —Cl, —CH3, —OH, —SH, —NH2 and —C(═O)OH.


The compounds according to the invention can be in the form of an individual stereoisomer or mixture thereof, the free compounds and/or their physiologically acceptable salts and/or solvates.


With respect to the Spiro ring, the compounds according to the invention are isomers in which the substitution pattern on the Spiro cyclohexane ring system can also be designated cis/trans, Z/E or syn/anti. “cis-trans isomers” are a sub-group of stereoisomers (configuration isomers).


The cis-trans isomers of the compound of the general formula (1) according to the invention have the general formula (1a) or (1b):




embedded image


The assignment of the two stereoisomers (1a) and (1b) according to the substitution pattern as the cis or trans isomer is known to the person skilled in the art.


In a preferred embodiment the diastereomer excess of the cis isomer is at least 50% de, more preferably at least 75% de, still more preferably at least 90% de, most preferably at least 95% de and in particular at least 99% de. In another preferred embodiment, the diastereomer excess of the trans isomer is at least 50% de, more preferably at least 75% de, still more preferably at least 90% de, most preferably at least 95% de and in particular at least 99% de.


Suitable methods for separation of the isomers (diastereomers) are known to the person skilled in the art. Examples which may be mentioned are column chromatography, preparative HPLC and crystallization methods.


A person skilled in the art moreover recognises that the compounds according to the invention can be chiral or achiral, depending on the substitution pattern.


If the compounds according to the invention are chiral, they are preferably in the form of the racemate or in a concentrated form of one enantiomer. In a preferred embodiment the enantiomer excess (ee) of the S enantiomer is at least 50% ee, more preferably at least 75% ee, still more preferably at least 90% ee, most preferably at least 95% ee and in particular at least 99% ee. In another preferred embodiment the enantiomer excess (ee) of the R enantiomer is at least 50% ee, more preferably at least 75% ee, still more preferably at least 90% ee, most preferably at least 95% ee and in particular at least 99% de.


Suitable methods for separation of the enantiomers are known to the person skilled in the art. Examples which may be mentioned are preparative HPLC on chiral stationary phases and conversion into diastereomeric intermediates. The conversion into diastereomeric intermediates can be carried out, for example, as salt formation with the aid of chiral, enantiomerically pure acids. After the separation of the diastereomers formed in this way, the salt can then be converted back into the free base or another salt.


If not expressly specified, any reference to the compounds according to the invention includes all the isomers (e.g. stereoisomers, diastereomers, enantiomers) in any desired mixing ratio.


If not expressly specified, any reference to the compounds according to the invention includes the free compounds (i.e. the forms which are not in the form of a salt) and all physiologically acceptable salts.


For the purpose of the description, physiologically acceptable salts of the compounds according to the invention are in the form of salts with anions or acids of the particular compound with inorganic or organic acids which are physiologically acceptable—in particular when used in humans and/or mammals.


Examples of physiologically acceptable salts of particular acids are salts of: hydrochloric acid, hydrobromic acid, sulfuric acid, methanesulfonic acid, formic acid, acetic acid, oxalic acid, succinic acid, malic acid, tartaric acid, mandelic acid, fumaric acid, lactic acid, citric acid, glutamic acid, saccharic acid, monomethylsebacic acid, 5-oxo-proline, hexane-1-sulfonic acid, nicotinic acid, 2-, 3- or 4-aminobenzoic acid, 2,4,6-trimethylbenzoic acid, α-lipoic acid, acetylglycine, acetylsalicylic acid, hippuric acid and/or aspartic acid. The hydrochloride, the citrate and the hemicitrate are particularly preferred.


Physiologically acceptable salts with cations or bases are salts of the particular compound—as the anion with at least one, preferably inorganic cation—which are physiologically acceptable—in particular when used in humans and/or mammals. The salts of alkali metals and alkaline earth metals but also ammonium salts are particularly preferred, but in particular (mono)- or (di)sodium, (mono)- or (di)potassium, magnesium or calcium salts.


The compounds according to the invention are defined by substituents, for example by R1, R2 and R3 (substituents of the 1st generation), which in their turn are optionally substituted (substituents of the 2nd generation). Depending on the definition, these substituents of the substituents can in their turn be substituted again (substituents of the 3rd generation). For example, if Y1=—R0, wherein R0=—C1-8-aliphatic (substituent of the 1st generation), —C1-8-aliphatic can in its turn be substituted, e.g. by —OR0, wherein R0=-aryl (substituent of the 2nd generation). The functional group —C1-8-aliphatic-Oaryl results from this. -Aryl can then in its turn be substituted again, e.g. by —Cl (substituent of the 3rd generation). The functional group —C1-8-aliphatic-Oaryl-Cl overall then results from this.


In a preferred embodiment, however, the substituents of the 3rd generation cannot be substituted again, i.e. there are then no substituents of the 4th generation.


In another preferred embodiment, however, the substituents of the 2nd generation cannot be substituted again, i.e. there are then already no substituents of the 3rd generation. In other words, in this embodiment the functional groups for R0 to R10 can in each case be optionally substituted, but the particular substituents cannot then in their turn be substituted again.


In another preferred embodiment the substituents of the 1st generation already cannot be substituted again, i.e. there are then neither substituents of the 2nd nor substituents of the 3rd generation. In other words, in this embodiment the functional groups for R0 to R10 in each case cannot be substituted.


Preferred compounds are those wherein “aliphatic substituted” or “cycloaliphatic substituted” means aliphatic or cycloaliphatic substituted by —F, —Cl, —Br, —I, —CN, —CH3, —C2H5, —NH2, —NO2, —SH, —CF3, —OH, —OCH3, —OC2H5 or —N(CH3)2; and “aryl substituted” or “heteroaryl substituted” means aryl or heteroaryl substituted by —F, —Cl, —Br, —I, —CN, —CH3, —C2H5, —NH2, —NO2, —SH, —CF3, —OH, —OCH3, —OC2H5 or —N(CH3)2 in the form of the racemate; the enantiomers, diastereomers, mixtures of the enantiomers or diastereomers or of an individual enantiomer or diastereomer; the bases and/or salts of physiologically acceptable acids or cations.


Very particularly preferred compounds are those according to the general formula (3)




embedded image


in which X1 and X1 represent H and the radicals R1, R2, R3, R4, X2/X2′ and X3/X3′ have the following meaning:


















Example
R1
R2
R3
X2/X2
X3/X3
R4







1; 2
CH3
CH3
Benzyl
H/H
═O
H


3; 4
CH3
CH3
Benzyl
H/H
H/H
H


5; 6
CH3
CH3
Benzyl
H/H
H/H
CH3


7; 8
CH3
CH3
Benzyl
H/H
H/H
Acetyl


 9
CH3
CH3
Benzyl
H/H
H/H
n-Butyl





10; 11
CH3
CH3
Benzyl
H/H
H/H


embedded image







 12
CH3
CH3
Benzyl
H/H
H/H


embedded image







 13
CH3
CH3
Phenyl
H/H
═O
H


14; 15
CH3
CH3
Phenyl
═O
H/H
H


 16
CH3
CH3
n-Butyl
H/H
═O
H


 17
CH3
CH3
2-Thienyl
H/H
═O
H


18; 25
CH3
CH3
2-Thienyl
H/H
H/H
H


 19
CH3
CH3
2-Thienyl
H/H
H/H
CH3





20a/b
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 21
CH3
CH3
2-Thienyl
H/H
H/H
n-Butyl





 22
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







24a/b
CH3
CH3
2-Thienyl
═O
H/H
H


 27
CH3
CH3
Benzyl
H/H
H/H
n-Butyl





28; 29
CH3
CH3
Phenyl
H/H
H/H


embedded image







 30
CH3
CH3


embedded image


H/H
═O
H





 31
CH3
CH3


embedded image


H/H
H/H
H





 32
CH3
CH3


embedded image


H/H
H/H


embedded image







 33
CH3
CH3
2-Thienyl
═O
H/H
n-Butyl


 34
CH3
CH3
2-Thienyl
═O
H/H
CH3





 35
CH3
CH3


embedded image


H/H
H/H
n-Butyl





 36
CH3
CH3


embedded image


H/H
H/H


embedded image







 37
CH3
CH3


embedded image


H/H
H/H


embedded image







 38
CH3
CH3


embedded image


H/H
H/H


embedded image







 39
CH3
CH3


embedded image


H/H
H/H


embedded image







 40
CH3
CH3


embedded image


H/H
H/H


embedded image







 41
CH3
CH3


embedded image


H/H
H/H


embedded image







 42
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 43
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 44
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 45
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 46
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 47
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 48
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 49
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 50
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 51
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 52
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 53
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 54
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 55
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 56
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 57
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 58
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 59
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 60
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 61
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 62
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 63
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 64
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 65
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 66
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 67
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 68
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 69
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 70
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







 71
CH3
CH3
Phenyl
H/H
H/H
H





 72
CH3
CH3
Phenyl
H/H
H/H


embedded image







 73
CH3
CH3
Phenyl
H/H
H/H
Acetyl


 74
CH3
CH3
Phenyl
H/H
H/H
n-Butyl





 75
CH3
CH3
Phenyl
H/H
H/H


embedded image







 76
CH3
CH3
Phenyl
H/H
H/H


embedded image







 77
CH3
CH3
Phenyl
H/H
H/H


embedded image







 78
CH3
CH3
Phenyl
H/H
H/H


embedded image







 79
CH3
CH3
Phenyl
H/H
H/H


embedded image







 80
CH3
CH3
Phenyl
H/H
H/H


embedded image







 81
CH3
CH3
Phenyl
H/H
H/H


embedded image







 82
CH3
CH3
Phenyl
H/H
H/H


embedded image







 83
CH3
CH3
Phenyl
H/H
H/H


embedded image







 84
CH3
CH3
Phenyl
H/H
H/H


embedded image







 85
CH3
CH3
Phenyl
H/H
H/H


embedded image







 86
CH3
CH3
Phenyl
H/H
H/H


embedded image







 87
CH3
CH3
Phenyl
H/H
H/H


embedded image







 88
CH3
CH3


embedded image


H/H
H/H


embedded image







 89
CH3
CH3


embedded image


H/H
H/H
n-Butyl





 90
CH3
CH3


embedded image


H/H
H/H


embedded image







 91
CH3
CH3


embedded image


H/H
H/H
n-Butyl





 92
CH3
CH3


embedded image


H/H
H/H
H





 93
CH3
CH3


embedded image


H/H
H/H


embedded image







 94
CH3
CH3


embedded image


H/H
H/H
n-Butyl





 95
CH3
CH3


embedded image


H/H
H/H


embedded image







 96
CH3
CH3


embedded image


H/H
H/H
n-Butyl





 97
CH3
CH3


embedded image


H/H
H/H


embedded image







 98
CH3
CH3


embedded image


H/H
H/H
n-Butyl





 99
CH3
CH3


embedded image


H/H
H/H


embedded image







100
CH3
CH3


embedded image


H/H
H/H


embedded image







101
CH3
CH3


embedded image


H/H
H/H


embedded image







102
CH3
CH3


embedded image


H/H
H/H


embedded image







103
CH3
CH3


embedded image


H/H
H/H


embedded image







104
CH3
CH3


embedded image


H/H
H/H


embedded image







105
CH3
CH3


embedded image


H/H
H/H


embedded image







106; 107
CH3
CH3


embedded image


H/H
H/H
n-Butyl















108; 109
—CH2CH2CH2
2-Thienyl
H/H
H/H


embedded image







110; 111
—CH2CH2CH2
Phenyl
H/H
H/H


embedded image







112; 113
—CH2CH2CH2
Phenyl
H/H
H/H
n-Butyl













114
CH3
CH3
2-Thienyl
H/H
═O
CH3


115
CH3
CH3
2-Thienyl
H/H
═O
n-Butyl





116
CH3
CH3
2-Thienyl
H/H
═O


embedded image







117
CH3
CH3


embedded image


H/H
═O
H





118; 119
CH3
CH3
Benzyl
H/H
═O
CH3





120; 121
CH3
CH3
Benzyl
H/H
═O
n-Butyl





122; 123
CH3
CH3
Benzyl
H/H
═O


embedded image







124
CH3
CH3
2-Thienyl
═O
H/H
CH3


125
CH3
CH3
2-Thienyl
═O
H/H
n-Butyl





126; 127
CH3
CH3
2-Thienyl
═O
H/H


embedded image







128; 129
CH3
CH3
2-Thienyl
═O
H/H


embedded image







130; 131
CH3
CH3
2-Thienyl
═O
H/H


embedded image







132; 133
CH3
CH3
2-Thienyl
═O
H/H


embedded image







134; 135
CH3
CH3
2-Thienyl
═O
H/H


embedded image







136; 137
CH3
CH3
2-Thienyl
═O
H/H


embedded image







138; 139
CH3
CH3
2-Thienyl
═O
H/H


embedded image







140; 141
CH3
CH3
2-Thienyl
═O
H/H


embedded image







142; 143
CH3
CH3
2-Thienyl
═O
H/H


embedded image







144; 145
CH3
CH3
2-Thienyl
═O
H/H


embedded image







146; 147
CH3
CH3
2-Thienyl
═O
H/H


embedded image







148; 149
CH3
CH3
2-Thienyl
═O
H/H


embedded image







150; 151
CH3
CH3
2-Thienyl
═O
H/H


embedded image







152; 153
CH3
CH3


embedded image


═O
H/H
H





154; 155
CH3
CH3


embedded image


═O
H/H
CH3





156; 157
CH3
CH3


embedded image


═O
H/H
n-Butyl





158; 159
CH3
CH3


embedded image


═O
H/H


embedded image







160
CH3
CH3


embedded image


═O
H/H


embedded image







161
CH3
CH3


embedded image


═O
H/H


embedded image







162
CH3
CH3
Phenyl
═O
H/H
CH3


163; 164
CH3
CH3
Phenyl
═O
H/H
n-Butyl





165; 166
CH3
CH3
Phenyl
═O
H/H


embedded image







167; 168
CH3
CH3
Phenyl
═O
H/H


embedded image







169; 170
CH3
CH3
Phenyl
═O
H/H


embedded image







171; 172
CH3
CH3
Phenyl
═O
H/H


embedded image







173; 174
CH3
CH3
Phenyl
═O
H/H


embedded image







175; 176
CH3
CH3
Phenyl
═O
H/H


embedded image







177; 178
CH3
CH3
Phenyl
═O
H/H


embedded image







179; 180
CH3
CH3
Phenyl
═O
H/H


embedded image







181
CH3
CH3
Phenyl
═O
H/H


embedded image







182; 183
CH3
CH3
Phenyl
═O
H/H


embedded image







184; 185
CH3
CH3
Phenyl
═O
H/H


embedded image







186; 187
CH3
CH3
Phenyl
═O
H/H


embedded image







188
CH3
CH3
Phenyl
H/H
H/H


embedded image







189
CH3
CH3
Phenyl
H/H
H/H


embedded image







190
CH3
CH3
Phenyl
H/H
H/H


embedded image







191
CH3
CH3
Phenyl
H/H
H/H


embedded image







192
CH3
CH3
Phenyl
H/H
H/H


embedded image







193
CH3
CH3
Phenyl
H/H
H/H


embedded image







194
CH3
CH3
Phenyl
H/H
H/H


embedded image







195
CH3
CH3
Phenyl
H/H
H/H


embedded image







196
CH3
CH3
Phenyl
H/H
H/H


embedded image







197
CH3
CH3
Phenyl
H/H
H/H


embedded image







198
CH3
CH3
Phenyl
H/H
H/H


embedded image







199
CH3
CH3
Phenyl
H/H
H/H


embedded image







200
CH3
CH3
Phenyl
H/H
H/H


embedded image







201
CH3
CH3
Phenyl
H/H
H/H


embedded image







202
CH3
CH3
Phenyl
H/H
H/H


embedded image







203
CH3
CH3
Phenyl
H/H
H/H


embedded image







204
CH3
CH3
Phenyl
H/H
H/H


embedded image







205
CH3
CH3
Phenyl
H/H
H/H


embedded image







206
CH3
CH3
Phenyl
H/H
H/H


embedded image







207
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







208
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







209
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







210
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







211
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







212
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







213
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







214
CH3
CH3


embedded image


H/H
H/H


embedded image







215; 216
CH3
CH3
2-Thienyl
═O
H/H


embedded image







217; 218
CH3
CH3
2-Thienyl
═O
H/H


embedded image







219; 220
CH3
CH3
2-Thienyl
═O
H/H


embedded image







221; 222
CH3
CH3
2-Thienyl
═O
H/H


embedded image







223
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







224; 225
CH3
CH3
2-Thienyl
═O
H/H


embedded image







226
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







227
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







228
CH3
CH3
Phenyl
H/H
H/H


embedded image







229
CH3
CH3
Phenyl
H/H
H/H


embedded image







230; 231
CH3
CH3
Phenyl
═O
H/H


embedded image







232
CH3
CH3
Phenyl
H/H
H/H


embedded image







233
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







234
CH3
CH3


embedded image


═O
H/H


embedded image







235
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







236
CH3
CH3


embedded image


═O
H/H


embedded image







237
CH3
CH3
Phenyl
H/H
H/H


embedded image







238
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







239
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







240
CH3
CH3
2-Thienyl
═O
H/H


embedded image







241; 242
CH3
CH3
2-Thienyl
═O
H/H


embedded image







243
CH3
CH3


embedded image


═O
H/H


embedded image







244
CH3
CH3


embedded image


═O
H/H


embedded image







245
CH3
CH3


embedded image


═O
H/H


embedded image







246
CH3
CH3


embedded image


═O
H/H


embedded image







247
CH3
CH3


embedded image


H/H
H/H


embedded image







248
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







249
CH3
CH3
Phenyl
H/H
H/H


embedded image







250
CH3
CH3
2-Thienyl
═O
H/H


embedded image







251; 252
CH3
CH3
Phenyl
═O
H/H


embedded image







253
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







254; 255
CH3
CH3
Phenyl
═O
H/H


embedded image







256
CH3
CH3


embedded image


═O
H/H


embedded image







257
CH3
CH3


embedded image


H/H
H/H


embedded image







258
CH3
CH3


embedded image


H/H
H/H


embedded image







259
CH3
CH3


embedded image


H/H
H/H


embedded image







260; 261
CH3
CH3
Phenyl
═O
H/H


embedded image







262; 263
CH3
CH3
Phenyl
═O
H/H


embedded image







264
CH3
CH3
Phenyl
═O
H/H


embedded image







265
CH3
CH3


embedded image


H/H
H/H


embedded image







266
CH3
CH3


embedded image


H/H
H/H


embedded image







267
CH3
CH3


embedded image


H/H
H/H


embedded image







268
CH3
CH3


embedded image


H/H
H/H


embedded image







269; 270
CH3
CH3
Phenyl
═O
H/H


embedded image







271
CH3
CH3
Phenyl
═O
H/H


embedded image







272
CH3
CH3
Phenyl
H/H
H/H


embedded image







273
CH3
CH3


embedded image


H/H
H/H


embedded image







274
CH3
CH3


embedded image


═O
H/H


embedded image







275
CH3
H
Phenyl
═O
H/H


embedded image







276
CH3
CH3


embedded image


═O
H/H


embedded image







277
CH3
CH3


embedded image


═O
H/H


embedded image







278
CH3
CH3


embedded image


═O
H/H


embedded image







279; 280
CH3
CH3
2-Thienyl
═O
H/H


embedded image







281
CH3
CH3


embedded image


═O
H/H
n-Butyl





282
CH3
CH3


embedded image


═O
H/H
CH3





283
CH3
CH3
Phenyl
H/H
H/H


embedded image







284
CH3
CH3
Phenyl
H/H
H/H


embedded image







285
CH3
CH3
Phenyl
H/H
H/H


embedded image







286
CH3
CH3


embedded image


═O
H/H


embedded image







287
CH3
CH3


embedded image


═O
H/H


embedded image







288; 289
CH3
CH3
2-Thienyl
═O
H/H


embedded image







290
CH3
H
2-Thienyl
═O
H/H


embedded image







291
CH3
CH3


embedded image


H/H
H/H


embedded image







292
CH3
CH3


embedded image


H/H
H/H


embedded image







293; 294
CH3
CH3


embedded image


═O
H/H


embedded image







295
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







296
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







297
CH3
CH3


embedded image


H/H
H/H


embedded image







298
CH3
CH3


embedded image


H/H
H/H


embedded image







299
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







300
CH3
CH3
Phenyl
H/H
H/H


embedded image







301
CH3
CH3


embedded image


H/H
H/H


embedded image







302
CH3
CH3


embedded image


H/H
H/H


embedded image







303
CH3
CH3
Phenyl
H/H
H/H


embedded image







304
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







305
CH3
CH3
Phenyl
H/H
H/H


embedded image







306
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







307; 308
CH3
H
2-Thienyl
═O
H/H


embedded image







309
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







310
CH3
CH3
Phenyl
═O
H/H


embedded image







311
CH3
CH3
2-Thienyl
═O
H/H


embedded image







312
CH3
CH3
Phenyl
═O
H/H


embedded image







313
CH3
CH3
2-Thienyl
═O
H/H


embedded image







314
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







315
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







316
CH3
H
2-Thienyl
═O
H/H


embedded image







317
CH3
CH3
2-Thienyl
═O
H/H


embedded image







318
CH3
CH3
2-Thienyl
═O
H/H


embedded image







319
CH3
CH3
Phenyl
═O
H/H


embedded image







320
CH3
CH3
Phenyl
H/H
H/H


embedded image







321
CH3
CH3
2-Thienyl
═O
H/H


embedded image







322
CH3
CH3
Phenyl
═O
H/H


embedded image







323
CH3
CH3
Phenyl
═O
H/H


embedded image







324
CH3
CH3
Phenyl
═O
H/H


embedded image







325
CH3
CH3
Phenyl
═O
H/H


embedded image







326
CH3
CH3
Phenyl
═O
H/H


embedded image







327
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







328
CH3
CH3
Phenyl
H/H
H/H


embedded image







329
CH3
CH3
Phenyl
H/H
H/H


embedded image







330
CH3
H
Phenyl
═O
H/H


embedded image







331
CH3
H
Phenyl
═O
H/H


embedded image







332
CH3
CH3
2-Thienyl
═O
H/H


embedded image







333
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







334
CH3
CH3
2-Thienyl
═O
H/H


embedded image







335
CH3
CH3
Phenyl
═O
H/H


embedded image







336
CH3
CH3


embedded image


═O
H/H


embedded image







337
CH3
CH3


embedded image


═O
H/H


embedded image







338
CH3
CH3
Phenyl
H/H
H/H


embedded image







339
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







340
CH3
CH3
Phenyl
═O
H/H


embedded image







341
CH3
H
2-Thienyl
═O
H/H


embedded image







342
CH3
CH3
Phenyl
H/H
H/H


embedded image







343
CH3
CH3
Phenyl
H/H
H/H


embedded image







344
CH3
CH3
2-Thienyl
═O
H/H


embedded image







345
CH3
CH3
Phenyl
H/H
H/H


embedded image







346
CH3
H
2-Thienyl
H/H
H/H


embedded image







347
CH3
CH3
2-Thienyl
═O
H/H


embedded image







348
CH3
CH3
Phenyl
═O
H/H


embedded image







349
CH3
CH3
Phenyl
═O
H/H


embedded image







350
CH3
CH3
Phenyl
H/H
H/H


embedded image







351
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







352
CH3
CH3
Phenyl
H/H
H/H


embedded image







353
CH3
CH3
2-Thienyl
═O
H/H


embedded image







354
CH3
CH3
Phenyl
H/H
H/H


embedded image







355
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







356
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







357
CH3
CH3
Phenyl
═O
H/H


embedded image







358
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







359
CH3
CH3
Phenyl
H/H
H/H


embedded image







360
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







361
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







362
CH3
CH3
Phenyl
H/H
H/H


embedded image







363
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







364
CH3
CH3
n-Butyl
H/H
H/H


embedded image







365
CH3
CH3
Phenyl
H/H
H/H


embedded image







366
CH3
CH3
Phenyl
H/H
H/H


embedded image







367
CH3
CH3
n-Butyl
H/H
H/H


embedded image







368
CH3
CH3
n-Butyl
H/H
H/H


embedded image







369
CH3
CH3
Phenyl
H/H
H/H


embedded image







370
CH3
CH3
2-Thienyl
═O
H/H


embedded image







371
CH3
CH3
Phenyl
H/H
H/H


embedded image







372
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







373
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







374
CH3
CH3
Phenyl
H/H
H/H


embedded image







375
CH3
CH3
n-Butyl
H/H
H/H


embedded image







376
CH3
CH3
Phenyl
═O
H/H


embedded image







377
CH3
CH3
2-Thienyl
═O
H/H


embedded image







378
CH3
CH3
Phenyl
═O
H/H


embedded image







379
CH3
CH3
Phenyl
H/H
H/H


embedded image







380
CH3
CH3
Phenyl
H/H
H/H


embedded image







381
CH3
CH3
Phenyl
H/H
H/H


embedded image







382
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







383
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







384
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







385
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







386
CH3
CH3
2-Thienyl
═O
H/H


embedded image







387
CH3
CH3
Phenyl
═O
H/H


embedded image







388
CH3
CH3
n-Butyl
H/H
H/H


embedded image







389
CH3
CH3
n-Butyl
H/H
H/H


embedded image







390
CH3
CH3
Phenyl
H/H
H/H


embedded image







391
CH3
CH3


embedded image


H/H
H/H


embedded image







392
CH3
CH3


embedded image


H/H
H/H


embedded image







393
CH3
CH3


embedded image


H/H
H/H


embedded image







394
CH3
CH3
Phenyl
H/H
H/H


embedded image







395
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







396
CH3
CH3


embedded image


H/H
H/H


embedded image







397
CH3
CH3


embedded image


H/H
H/H


embedded image







398
CH3
CH3


embedded image


H/H
H/H


embedded image







399; 400
CH3
CH3
n-Butyl
═O
H/H


embedded image







401; 402
CH3
CH3
n-Butyl
═O
H/H


embedded image







403; 404
CH3
CH3
n-Butyl
═O
H/H


embedded image







405
CH3
CH3
Phenyl
H/H
H/H


embedded image







406
CH3
CH3
n-Butyl
═O
H/H


embedded image







407
CH3
CH3


embedded image


H/H
H/H


embedded image







408
CH3
CH3
Phenyl
H/H
H/H


embedded image







409; 410
CH3
CH3
n-Butyl
═O
H/H


embedded image







411
CH3
CH3


embedded image


H/H
H/H


embedded image







412
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







413
CH3
CH3
n-Butyl
═O
H/H


embedded image







414
CH3
CH3
Phenyl
H/H
H/H


embedded image







415
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







416
CH3
CH3
2-Thienyl
H/H
H/H


embedded image







417
CH3
CH3


embedded image


═O
H/H


embedded image







418
CH3
CH3


embedded image


H/H
H/H


embedded image







419
CH3
H
2-Thienyl
H/H
H/H


embedded image







420
CH3
H
Phenyl
H/H
H/H


embedded image







421
CH3
CH3


embedded image


═O
H/H


embedded image







422
CH3
H
Phenyl
H/H
H/H


embedded image







423
CH3
H
2-Thienyl
H/H
H/H


embedded image







424
CH3
CH3


embedded image


H/H
H/H
H





425
CH3
CH3


embedded image


H/H
H/H
H





426
CH3
CH3


embedded image


H/H
H/H
H















427; 428
—CH2CH2CH2
2-Thienyl
H/H
H/H
H


429; 430
—CH2CH2CH2
Phenyl
H/H
H/H
H













431
CH3
CH3
Phenyl
═O
H/H
H


432; 433
CH3
CH3
n-Butyl
═O
H/H
H









where these compounds can be in the form of an individual stereoisomer or mixture thereof, the free compounds and/or their physiologically acceptable salts and/or solvates.


The compounds according to the invention act, for example, on the ORL1 receptor relevant in connection with various diseases, so that they are suitable as a pharmaceutical active compound in a medicament.


The invention therefore also provides medicaments which contain at least one compound according to the invention and optionally suitable additives and/or auxiliary substances and/or optionally further active compounds.


The medicaments according to the invention optionally contain, in addition to at least one compound according to the invention, suitable additives and/or auxiliary substances, that is to say also carrier materials, fillers, solvents, diluents, dyestuffs and/or binders, and can be administered as liquid medicament forms in the form of injection solutions, drops or juices, as semi-solid medicament forms in the form of granules, tablets, pellets, patches, capsules, plasters/spray-on plasters or aerosols. The choice of auxiliary substances etc. and the amounts thereof to be employed depend on whether the medicament is to be administered orally, perorally, parenterally, intravenously, intraperitoneally, intradermally, intramuscularly, intranasally, buccally, rectally or locally, for example on the skin, the mucous membranes or into the eyes. Formulations in the form of tablets, coated tablets, capsules, granules, drops, juices and syrups are suitable for oral administration, solutions, suspensions, easily reconstitutable dry formulations and sprays are suitable for parenteral, topical and inhalatory administration. Compounds according to the invention in a depot, in dissolved form or in a plaster, optionally with the addition of agents which promote penetration through the skin, are suitable formulations for percutaneous administration. Formulation forms which can be used orally or percutaneously can release the compounds according to the invention in a delayed manner. The compounds according to the invention can also be used in parenteral long-term depot forms, such as e.g. implants or implanted pumps. In principle, other further active compounds known to the person skilled in the art can be added to the medicaments according to the invention.


The amount of active compound to be administered to patients varies as a function of the weight of the patient, of the mode of administration, the indication and the severity of the disease. 0.00005 to 50 mg/kg, preferably 0.001 to 0.5 mg/kg of at least one compound according to the invention are conventionally administered.


For all the above forms of the medicaments according to the invention, it is particularly preferable if the medicament also contains, in addition to at least one compound according to the invention, a further active compound, in particular an opioid, preferably a potent opioid, in particular morphine, or an anaesthetic, preferably hexobarbital or halothane.


In a preferred form of the medicament, a compound according to the invention contained therein is in the form of a pure diastereomer and/or enantiomer.


The ORL1 receptor has been identified in particular in the pain event. Compounds according to the invention can accordingly be used for the preparation of a medicament for treatment of pain, in particular acute, visceral, neuropathic or chronic pain.


The invention therefore also provides the use of a compound according to the invention for the preparation of a medicament for treatment of pain, in particular acute, visceral, neuropathic or chronic pain.


The invention also provides the use of a compound according to the invention for the preparation of a medicament for treatment of anxiety states, of stress and syndromes associated with stress, depression, epilepsy, Alzheimer's disease, senile dementia, general cognitive dysfunctions, learning and memory disorders (as a nootropic), withdrawal symptoms, alcohol and/or drug and/or medicament abuse and/or dependency, sexual dysfunctions, cardiovascular diseases, hypotension, hypertension, tinnitus, pruritus, migraine, impaired hearing, lack of intestinal motility, impaired food intake, anorexia, obesity, locomotor disorders, diarrhoea, cachexia, urinary incontinence or as a muscle relaxant, anticonvulsive or anaesthetic or for co-administration in treatment with an opioid analgesic or with an anaesthetic, for diuresis or antinatriuresis, anxiolysis, for modulation of motor activity, for modulation of neurotransmitter secretion and treatment of neurodegenerative diseases associated therewith, for treatment of withdrawal symptoms and/or for reduction of the addiction potential of opioids.


In this context, in one of the above uses it may be preferable for a compound which is used to be in the form of a pure diastereomer and/or enantiomer, a racemate or a non-equimolar or equimolar mixture of the diastereomers and/or enantiomers.


The invention also provides a method for the treatment, in particular in one of the abovementioned indications, of a non-human mammal or a human requiring treatment of pain, in particular chronic pain, by administration of a therapeutically active dose of a compound according to the invention, or of a medicament according to the invention.


The invention also provides a process for the preparation of the compounds according to the invention as described in the following description and examples.


General Synthesis Equations:


In a preferred embodiment the synthesis of the compounds according to the invention follows the following general synthesis equation:




embedded image


In step 1 compound A (WO2007079930) is converted into the nitrile B under basic conditions (WO2007127763; Reimann, Eberhard et al., Archiv der Pharmazie (Weinheim, Germany) (1988), 321(12), 935-41). The reduction of the nitrile B is carried out e.g. with cobalt boride (WO2007127763), the intermediate C cyclising spontaneously to the lactam D. The lactam D is deprotected under acid conditions (cerium ammonium nitrate/acetonitrile/water (I. Márko et al., Angew. Chem. 1999, 111, 3411-3413; Tetrahedron 2003, 59, 8989-8999), palladium chloride-bis-acetonitrile complex/acetone (B. H. Lipshutz et al., Tetrahedron Lett. 1985, 26, 705-708), sodium iodide/cerium(III) chloride/acetonitrile (E. Marcantoni et al., J. Org. Chem. 1997, 62, 4183-4184) and thiourea/ethanol/water (S. Majumdar, A. Bhattacharjya, J. Org. Chem. 1999, 64, 5682-5685) and then it is converted into the nitrile F in a Strecker reaction (WO2008101660, WO2008009415). The nitrile F reacts in a Bruylants reaction (D. Alberti et al., Bioorg. Med. Chem. Lett. 2006, 16, 4321-4325) with a Grignard reagent to give the compound of the general formula G. The compounds of the general formula G are reduced by methods known from the literature, e.g. with lithium aluminium hydride (Wang, Jun et al., J. Am. Chem. Soc., 131(23), 8066-8076; 2009; Bhandari, Kalpana et al., Chemistry & Industry (London, United Kingdom), (17), 547-8; 1990). By methods known from the literature, the compounds of the general formula H are alkylated (Hutchins, Robert O., Markowitz, Morris J. Org. Chem. 46(17), 3571-4; 1981; Setaki, Despina et al., Bioorg. Chem., 34(5), 248-273; 2006; Stamatiou, G. et al.; Bioorg. & Med. Chem. Lett. 11(16), 2137-2142; 2001), arylated (WO2007070826, U.S. Pat. No. 7,157,456, WO2002085838) and acylated (WO2008034731, WO2008036755, US20070117824, WO2007030061) on the nitrogen. Alternatively, the compound G can also first be alkylated or arylated and thereafter reduced. A polar and a non-polar diastereomer of the general formula G, but preferably the polar diastereomer G, are formed by this synthesis route.


In another preferred embodiment the synthesis of the compounds according to the invention follows the following general synthesis equation:




embedded image


In step 1 compound A (WO2007079930) is converted into the nitro compound J under basic conditions and then reduced (G. H. Posner, D. R. Crouch, Tetrahedron 1990, 46, 7509-7530; R. J. Flintoft et al., Tetrahedron Lett. 1999, 44, 4485-4488; E. A. Krafft et al., Synthesis 2005, 3245-3252). Further reaction of the compound D is carried out as described in equation 1.


In another preferred embodiment the synthesis of the compounds according to the invention follows the following general synthesis equation:




embedded image


In step 1 ketones of the general formula K (synthesised analogously to WO2006/031610 and U.S. Pat. No. 6,573,386) are converted into nitriles of the general formula L with TosMIC (Van Leusen, Daan et al., Organic Reactions (Hoboken, N.J., United States), 57, 2001). The nitrile L is converted into the imido-ester M in a Pinner reaction (Whitlock, Gavin A. et al., Bioorg. & Med. Chem. Lett. 18(9), 2930-2934, 2008; Geffken, Detlef et al., Archiv der Pharmazie (Weinheim, Germany), 321(1), 45-9; 1988) and then hydrolysed (US2002/58687). The ester N is converted into the nitrile O under basic conditions, like the ester A in equation 1. The nitrile O is reduced under conditions known from the literature and cyclised to the lactam G (WO2007127763). A polar and a non-polar diastereomer of the general formula G are formed by this synthesis route. Further reaction of compound G is carried out as described in equation 1.


In another preferred embodiment the synthesis of the compounds according to the invention follows the following general synthesis equation:




embedded image


In step 1 ketones of the general formula K (synthesised analogously to WO2006/031610 and U.S. Pat. No. 6,573,386) are converted into enol triflates (P) (WO2009111056). The aminocarbonylation with ethanolamine proceeds under extremely mild conditions (O. Lagerlund et al., Tetrahedron 2009, 65, 7646-7652; A. I. Meyers et al., Tetrahedron Lett. 1991, 33, 1181-1184). The alcohol Q is converted into a bromine derivative of the general formula R under conditions known from the literature (Van der Mey, Margaretha et al., J. Med. Chem. 45(12), 2520-2525; 2002). An exo-trig cyclisation between a primary radical and an α,β-unsaturated carboxylic acid derivative is then carried out to give the compound G (T. J. Murray et al. Tetrahedron 1995, 51, 635-640). A polar and a non-polar diastereomer of the general formula G are formed by this synthesis route. Further reaction of the compound G is carried out as described in equation 1.


In another preferred embodiment the synthesis of the compounds according to the invention follows the following general synthesis equation:




embedded image


In step 1 ketones of the general formula K (synthesised analogously to WO2006/031610 and U.S. Pat. No. 6,573,386) are converted into the compounds S in a Homer olefination known from the literature (Wadsworth, W. S., Jr. Et al., Organic Syntheses, 45, 1965). The compounds of the general formula S are reacted with nitromethane in a Michael addition to give the compound T (U.S. Pat. No. 5,091,567; WO2008/129007; J. S. Bryans et al., J. Med. Chem. 1998, 41, 1838-1845). The nitro compound T is reduced under conditions known from the literature and cyclised in situ to give the lactam U (G. H. Posner, D. R. Crouch, Tetrahedron 1990, 46, 7509-7530; R. J. Flintoft et al., Tetrahedron Lett. 1999, 44, 4485-4488; E. A. Krafft et al., Synthesis 2005, 3245-3252). By reduction of U the target compounds of the general formula H are obtained (Wang, Jun et al., J. Am, Chem. Soc., 131(23), 8066-8076; 2009; Bhandari, Kalpana et al., Chemistry & Industry (London, United Kingdom), (17), 547-8; 1990). A polar and a non-polar diastereomer of the general formula U are formed by this synthesis route. By methods known from the literature, the compounds of the general formula H are alkylated (Hutchins, Robert O., Markowitz, Morris J. Org. Chem. 46(17), 3571-4; 1981; Setaki, Despina et al., Bioorg. Chem., 34(5), 248-273; 2006; Stamatiou, G. et al.; Bioorg, & Med. Chem. Lett. 11(16), 2137-2142; 2001), arylated (WO2007070826, U.S. Pat. No. 7,157,456, WO2002085838) and acylated (WO2008034731, WO2008036755, US20070117824, WO2007030061) on the nitrogen. Alternatively, the compound U can also first be alkylated or arylated and thereafter reduced.


With respect to further details of the synthesis of the compounds according to the invention, in particular with respect to the synthesis of suitable educt units, reference is furthermore made to the full scope of WO2004/043967, WO2005/063769, WO2005/066183, WO2006/018184, WO2006/108565, WO2007/124903, WO2008/004915 and WO2008/009416. A person skilled in the art recognises that suitable educt units for the synthesis of the compounds according to the invention can be prepared analogously to the synthesis equations and embodiment examples disclosed in these publications.







EXAMPLES

The following examples serve to illustrate the invention in more detail, but are not to be interpreted as limiting.


The yields of the compounds prepared are not optimized. All the temperatures are uncorrected. The term “ether” means diethyl ether, “EA” ethyl acetate and “MC” methylene chloride. The term “equivalent” means equivalent substance amount, “m.p.” melting point or melting range, “decomp.” decomposition, “RT” room temperature, “abs.” absolute (anhydrous), “rac.” racemic, “conc.” concentrated, “min” minutes, “h” hours, “d” days, “vol. %” percent by volume, “wt. %” percent by weight, and “M” is a concentration stated in mol/l.


Silica gel 60 (0.040-0.063 mm) from E. Merck, Darmstadt was employed as the stationary phase for the column chromatography. The thin layer chromatography investigations were carried out with HPTLC precoated plates, silica gel 60 F 254 from E. Merck, Darmstadt. The mixing ratios of mobile phases for chromatography investigations are always stated in volume/volume.


Synthesis Instructions


Example No. 1
Step 1: 8-Cyanomethyl-1,4-dioxaspiro[4.5]decane-8-carboxylic acid ethyl ester

A 2.5 M solution of n-buyllithium in n-hexane (22 ml, 55 mmol) was added dropwise to a solution of diisopropylamine (5.56 g, 55 mmol) in anhydrous tetrahydrofuran (80 ml) under argon at −78° C. and the mixture was than stirred for 15 min at 0° C. A solution of ethyl 1,4-dioxaspiro[4.5]decane-8-carboxylate (10.7 g, 50 mmol) in tetrahydrofuran (15 ml) was added dropwise to this lemon-yellow solution at −78° C. in the course of 20 min. The dark yellow mixture was stirred for 1.5 h at −78° C. and a solution of bromoacetonitrile (7.16 g, 3.98 ml, 60 mmol) and 1,3-dimethyl-3,4,5,6-tetrahydro-2-(1H)pyrimidone (DMPU, 3.20 g, 3.0 ml, 25 mmol) in tetrahydrofuran (15 ml) was then added dropwise. Thereafter, the orange-coloured solution was warmed slowly to room temperature and stirred overnight. 0.5 N hydrochloric acid (38 ml) was added to the now red-brown solution and the phases were separated. The aqueous phase was extracted with diethyl ether (3×50 ml). The combined organic phases were washed with saturated sodium bicarbonate solution (2×100 ml) and with saturated sodium chloride solution (4×100 ml), dried with sodium sulfate and concentrated i. vac. The crude product (12.1 g) was purified by flash chromatography (400 g, 20×7.5 cm) with ethyl acetate/cyclohexane (1:2).


Yield: 6.50 g (51%), yellowish oil.



1H-NMR (CDCl3): 1.29 (t, 3H, J=7.1 Hz); 1.62-1.76 (m, 6H); 2.17-2.29 (m, 2H); 2.57 (s, 2H): 3.93 (t, 4H, J=22 Hz); 4.23 (q, 2H, J=7.1 Hz).


Step 2: 1,4-Dioxa-10-azadispiro[4.2.4.2]tetradecan-9-one

Sodium borohydride (4.84 g, 128 mmol) was added in portions to a raspberry-coloured mixture of 8-cyanomethyl-1,4-dioxaspiro[4.5]decane-8-carboxylic acid ethyl ester (6.50 g, 25.6 mmol) and anhydrous cobalt(II) chloride (1.66 g, 12.8 mmol) in tetrahydrofuran (100 ml) and water (50 ml) under argon at 0° C. and the mixture was then stirred overnight at room temperature. During this operation the solution became black in colour. Since the reaction was not yet complete, cobalt(II) chloride (830 mg, 6.4 mmol) and sodium borohydride (2.42 g, 64 mmol) were again added and the mixture was stirred for a further 24 h. 25% strength aqueous ammonia solution (5 ml) was added to the reaction mixture and the mixture was filtered. The residue on the filter was washed with tetrahydrofuran/water (2:1). The filtrate was concentrated i. vac. and the aqueous solution was extracted with methylene chloride (3×50 ml). The combined organic extracts were dried with sodium sulfate and concentrated i. vac.


Yield: 4.64 g (86%), white solid which still contained approx. 30% of educt.


Step 3: 2-Azaspiro[4.5]decane-1,8-dione

p-toluenesulfonic acid (5.00 g, 26.3 mmol) was added to a solution of 1,4-dioxa-10-azadispiro[4.2.4.2]tetradecan-9-one (4.64 g, 21.9 mmol) in methanol (75 ml) and water (25 ml) and the mixture was stirred for 24 h at room temperature and 24 h at 50° C. The reaction mixture was then rendered alkaline with 5 N sodium hydroxide solution and concentrated. The residue was diluted with water (50 ml) and the mixture was extracted with methylene chloride (6×30 ml). The organic phase was dried with sodium sulfate and concentrated i. vac. The crude product (2.09 g) was purified by flash chromatography (200 g, 20×5.7 cm) with ethyl acetate/methylene chloride (4:1) and ethyl acetate/methylene chloride/methanol (3:1:1). The mixed fractions (850 mg) were purified again by flash chromatography (100 g, 20×4.0 cm) with tert-butyl methyl ether/methanol (14:1).


Yield: 1.20 g (33%), white solid


Melting point: 128-130° C.



1H-NMR (CDCl3): 1.73-1.89 (m, 2H); 2.08-2.21 (m, 4H); 2.33 (ddd, 2H, J=5.8, 10.2 and 15.0 Hz); 2.70 (td, 2H, J=6.3 and 14.8 Hz); 3.41 (dt, 2H, J=0.8 and 7.1 Hz); 3.72 (s, 1H).


Step 4: Dimethylamino-1-oxo-2-azaspiro[4.5]decane-8-carbonitrile

4 N hydrochloric acid (2.15 ml, 8.56 mmol) and 2-azaspiro[4.5]decane-1,8-dione (1.20 g, 7.17 mmol) in methanol (16 ml) were added to a 40% strength aqueous dimethylamine solution (3.6 ml, 28.7 mmol), cooled to 0° C., and methanol (1.6 ml). Potassium cyanide (931 mg, 14.3 mmol) was added to this mixture and the mixture was stirred over the weekend at room temperature. After addition of water (30 ml) the solution was extracted with diethyl ether and methylene chloride (3×30 ml of each). The combined organic phases were dried with sodium sulfate and concentrated i. vac.


Yield: 1.40 g (88%), white solid



1H-NMR (CDCl3): 1.35-1.67 (m, 3H); 1.76-2.09 (m, 5H); 2.18-2.31 (m, 2H); 2.33 and 2.35 (2s, 6H); 3.28-3.35 (m, 2H); 6.50 and 6.60 (2s, 1H). This is a diastereoisomer mixture in the ratio of approx. 2:1.


Step 5: 8-Benzyl-8-(dimethyl-amino)-3-azaspiro[4.5]decan-4-one (Example no. 1, polar diastereomer, Example no. 2, non-polar diastereomer)

A solution of dimethylamino-1-oxo-2-azaspiro[4.5]decane-8-carbonitrile (1.40 g, 6.3 mmol) in anhydrous tetrahydrofuran (60 ml) was added dropwise to a 2 M solution of benzylmagnesium chloride in tetrahydrofuran (9.5 ml, 19 mmol) at 0° C. under argon and thereafter the mixture was stirred at room temperature overnight. 20% strength ammonium chloride solution (25 ml) was then added to the reaction solution. The phases were separated and the aqueous phase was extracted with ethyl acetate (3×30 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The crude product (2.00 g) was purified by flash chromatography (100 g, 20×4.0 cm) with methylene chloride/methanol (48:1) and 0.25% ammonia (25% in water). The mixed fractions (560 mg) were purified again by flash chromatography (38 g, 20×2.5 cm) with methylene chloride/isopropanol (95:5) and 1% ammonia (25% in water).


Example No. 1 (Polar Diastereoisomer)

Yield: 511 mg (28%), colourless oil which also contains approx. 20% of the non-polar diastereoisomer.



1H-NMR (CDCl3): 1.53-1.63 (m, 4H); 1.67-1.75 (m, 2H); 1.85-1.92 (m, 2H); 1.95 (t, 2H, J 6.8 Hz); 2.28 (s, 6H); 2.77 (s, 2H); 3.21-3.26 (m, 2H); 5.71 (br s, 1H); 7.13-7.26 (m, 5H).



13C-NMR (CDCl3): 28.2; 29.0; 35.3; 36.7; 37.4; 38.6; 41.5; 57.6; 125.7; 127.7; 130.8; 139.2; 182.6.


LC-MS: m/z: [M+H]+=287.3, Rt=1.0 min.


Example No. 2 (Non-polar Diastereoisomer)

Yield: 970 mg (54%), white solid


Melting point: 202-204° C.



1H-NMR (CDCl3): 1.05-1.19 (m, 4H); 1.67-1.80 (m, 4H); 2.00-2.14 (m, 2H); 2.30 (s, 6H); 2.62 (s, 2H); 3.15 (t, 2H, J=7.2 Hz); 5.90 (br s, 1H); 7.00-7.13 (m, 2H); 7.15-7.28 (m, 3H).



13C-NMR (CDCl3): 26.9; 28.6; 31.6; 37.0; 38.8; 43.6; 57.1; 125.6; 127.7; 130.6; 139.3; 183.3.


LC-MS: m/z: [M+H]+=287.3, Rt=2.3 min.


Example No. 3
(8-Benzyl-3-azaspiro[4.5]decan-8-yl)-dimethylamine (Example no. 3, polar diastereomer)

A solution of 8-benzyl-8-(dimethylamino)-3-azaspiro[4.5]decan-4-one (polar diastereomer) (663 mg, 2.3 mmol) in anhydrous tetrahydrofuran (35 ml) was added to a suspension of lithium aluminium hydride (436 mg, 11.5 mmol) in anhydrous tetrahydrofuran (20 ml), while cooling with ice, and the mixture was then stirred overnight at 60° C. Water (300 μl), 1 N sodium hydroxide solution (1 ml) and again water (1 ml) were added to the mixture, while cooling with ice, and the mixture was stirred for 1 h at room temperature. The suspension was filtered through sea sand and the residue was washed with tetrahydrofuran. The filtrate was dried with sodium sulfate and concentrated i. vac.


Example No. 3 (Polar Diastereoisomer)

Yield: 588 mg (94%), colourless oil


A portion of the crude product (165 mg) was purified by flash chromatography (5 g, 15×0.9 cm) with methylene chloride/methanol (9:1) and 1% ammonia (25% in water), as a result of which the test substance (130 mg) was obtained.



1H-NMR (CDCl3): 1.07-1.22 (m, 4H); 1.48 (t, 2H, J=7.2 Hz); 1.62-1.75 (m, 4H); 2.30 (s, 6H); 2.41 (s, 2H); 2.60 (s, 2H); 2.80 (br s, 1H); 2.85 (t, 2H, J=7.2 Hz); 7.08-7.11 (m, 2H); 7.14-7.26 (m, 3H).



13C-NMR (CDCl3): 30.0; 31.3; 36.7; 37.1; 41.1; 42.2; 45.5; 55.9; 57.6; 125.6; 127.7; 130.6; 139.3.


LC-MS: m/z: [M+H]+=273.4, Rt=0.2 min.


Example No. 4
(8-Benzyl-3-azaspiro[4.5]decan-8-yl)-dimethylamine (Example no. 4, non-polar diastereomer)

A solution of 8-benzyl-8-(dimethylamino)-3-azaspiro[4.5]decan-4-one (non-polar diastereomer) (700 mg, 2.44 mmol) in anhydrous tetrahydrofuran (30 ml) was added to a suspension of lithium aluminium hydride (463 mg, 12.2 mmol) in anhydrous tetrahydrofuran (20 ml), while cooling with ice, and the mixture was then stirred overnight at 60° C. Water (300 μl), 1 N sodium hydroxide solution (1 ml) and again water (1 ml) were added to the mixture, while cooling with ice, and the mixture was stirred for 1 h at room temperature. The suspension was filtered through sea sand and the residue was washed with tetrahydrofuran. The filtrate was dried with sodium sulfate and concentrated i. vac.


Example No. 4 (Non-polar Diastereoisomer)

Yield: 640 mg (96%), colourless oil


A portion of the crude product (154 mg) was purified by flash chromatography (5 g, 15×0.9 cm) with methylene chloride/methanol (9:1) and 1% ammonia (25% in water), as a result of which the test substance (117 mg) was obtained.



1H-NMR (CDCl3): 1.09-1.27 (m, 6H); 1.62-1.71 (m, 4H); 2.23 (br s, 1H); 2.29 (s, 6H); 2.58 (s, 2H); 2.61 (s, 2H); 2.82 (t, 2H, J=7.1 Hz); 7.09-7.26 (m, 5H).



13C-NMR (CDCl3): 29.8; 31.3; 36.0; 36.7; 37.1; 42.4; 46.6; 57.6; 61.3; 125.5; 127.6; 130.6; 139.4.


LC-MS: m/z: [M+H]+=273.4, Rt=0.3 min.


Example No. 5
(8-Benzyl-3-methyl-3-azaspiro[4.5]decan-8-yl)-dimethylamine (Example no. 5, polar diastereomer)

37% strength formalin solution (1.30 ml), glacial acetic acid (650 μl) and sodium cyanoborohydride (205 mg, 3.2 mmol) were added to a solution of (8-benzyl-3-azaspiro[4.5]decan-8-yl)-dimethylamine (polar diastereomer) (207 mg, 0.76 mmol) in methanol (6.5 ml) and the mixture was stirred for 16 h at room temperature. After addition of saturated sodium bicarbonate solution (20 ml) the mixture was extracted with methylene chloride (3×20 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The crude product (220 mg) was purified by flash chromatography (10 g, 20×1.5 cm) with methylene chloride/methanol (9:1) and 1% ammonia (25% in water).


Example No. 5 (Polar Diastereoisomer)

Yield: 160 mg (73%), white solid


Melting point: 89-91° C.



1H-NMR (CDCl3): 1.07-1.17 (m, 2H); 1.26-1.33 (m, 2H); 1.56 (t, 2H, J=6.9 Hz); 1.62-1.72 (m, 4H); 2.07 (s, 2H); 2.21 (s, 3H); 2.29 (s, 6H); 2.43 (t, 2H, J=6.9 Hz); 2.61 (s, 2H); 7.09-7.13 (m, 2H); 7.15-7.27 (m, 3H).



13C-NMR (CDCl3): 30.1; 33.3; 36.8; 37.2; 40.8; 41.7; 42.7; 55.6; 57.5; 66.7; 125.6; 127.7; 130.7; 139.5.


LC-MS: m/z: [M+H]+=287.3, Rt=0.2 min.


Example No. 6
(8-Benzyl-3-methyl-3-azaspiro[4.5]decan-8-yl)-dimethylamine (Example no. 6, non-polar diastereomer)

37% strength formalin solution (1 ml), glacial acetic acid (500 μl) and sodium cyanoborohydride (138 mg, 2.2 mmol) were added to a solution of (8-benzyl-3-azaspiro[4.5]decan-8-yl)-dimethylamine (non-polar diastereomer) (150 mg, 0.55 mmol) in methanol (5 ml) and the mixture was stirred for 16 h at room temperature. After addition of saturated sodium bicarbonate solution (20 ml) the mixture was extracted with methylene chloride (3×20 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The crude product (199 mg) was purified by flash chromatography (10 g, 20×1.5 cm) with methylene chloride/methanol (9:1) and 1% ammonia (25% in water).


Example No. 6 (Non-polar Diastereoisomer)

Yield: 110 mg (70%), white solid


Melting point: 57-58° C.



1H-NMR (CDCl3): 1.18-1.30 (m, 4H); 1.37 (t, 2H, J=6.9 Hz); 1.64-1.77 (m, 4H); 2.28 (s, 3H); 2.31 (s, 2H); 2.33 (s, 6H); 2.45 (t, 2H, J=6.9 Hz); 2.65 (s, 2H); 7.14-7.31 (m, 5H). The signal at 4.76 ppm (s) belongs to an unknown impurity.



13C-NMR (CDCl3): 29.4: 32.8; 36.0; 36.8; 37.1; 41.5; 42.7; 56.4; 57.5; 71.2; 74.8; 125.5; 127.7, 130.7; 139.4. One of the signals between 56.0 and 75.0 belongs to an unknown impurity.


LC-MS: m/z: [M+H]+=287.4, Rt=0.2 min.


Example No. 7
1-[8-Benzyl-8-(dimethylamino)-3-azaspiro[4.5]decan-3-yl]-ethanone (Example no. 7, polar diastereomer)

Triethylamine (203 mg, 279 μl, 2.01 mmol) and acetic anhydride (137 mg, 126 μl, 1.34 mmol) were added to a solution of (8-benzyl-3-azaspiro[4.5]decan-8-yl)-dimethylamine (polar diastereomer) (183 mg, 0.67 mmol) in anhydrous methylene chloride (5 ml) and the mixture was stirred for 3 h at room temperature. After addition of methylene chloride (30 ml) the solution was washed with 25% strength saturated potassium carbonate solution (10 ml). The organic phase was dried with sodium sulfate and concentrated i. vac. The crude product (220 mg) was purified by flash chromatography (10 g, 20×1.5 cm) with methylene chloride/methanol (95:5) and 1% ammonia.


Example No. 7 (Polar Diastereoisomer)

Yield: 138 mg (65%), colourless oil



1H-NMR (CDCl3): 1.05-1.25 (m, 4H); 1.59-1.77 (m, 6H); 1.88 and 1.98 (2 s, 3H); 2.28 and 2.30 (2 s, 6H); 2.60 and 2.63 (2 s, 2H); 2.92 and 3.05 (2 s, 2H); 3.37-3.45 (m, 2H); 7.04-7.29 (m, 5H).



13C-NMR (CDCl3): 22.1; 22.4; 29.7; 29.74; 29.9; 36.8; 36.9; 37.0; 37.1; 38.2; 39.8; 40.2; 42.1; 43.7; 45.7; 54.0; 55.8; 57.6; 57.62; 125.8; 126.0; 127.8; 128.0; 130.5; 130.6; 138.8; 139.1; 169.2; 169.4.


The sometimes doubled signal sets are based on hindered rotation.


LC-MS: m/z: [M+H]+=315.3, Rt=2.3 min.


Example No. 8
1-[8-Benzyl-8-(dimethylamino)-3-azaspiro[4.5]decan-3-yl]-ethanone (Example no. 8, non-polar diastereomer)

Triethylamine (188 mg, 258 μl, 1.86 mmol) and acetic anhydride (126 mg, 116 μl, 1.24 mmol) were added to a solution of (8-benzyl-3-azaspiro[4.5]decan-8-yl)-dimethylamine (non-polar diastereomer) (169 mg, 0.62 mmol) in anhydrous methylene chloride (5 ml) and the mixture was stirred for 3 h at room temperature. After addition of methylene chloride (40 ml) the solution was washed with 25% strength saturated potassium carbonate solution (10 ml). The organic phase was dried with sodium sulfate and concentrated i. vac. The crude product (203 mg) was purified by flash chromatography (10 g, 20×1.5 cm) with methylene chloride/methanol (95:5) and 1% ammonia.


Example No. 8 (Non-polar Diastereoisomer)

Yield: 146 mg (75%), colourless oil



1H-NMR (CDCl3): 1.11-1.26 (m, 4H); 1.54 and 1.52 (2 t, 2H, J=7.2 Hz); 1.63-1.77 (m, 4H); 1.97 and 1.98 (2 s, 3H); 2.28 and 2.95 (2 s, 6H); 2.63 (s, 2H); 3.14 and 3.19 (2 s, 2H); 3.34 and 3.38 (2 t, 2H, J=7.2 Hz); 7.09-7.29 (m, 5H).



13C-NMR (CDCl3): 22.0; 22.4; 29.0; 29.1; 29.54; 29.57; 32.2; 33.6; 36.5; 36.6; 37.0; 40.2; 41.9; 44.3; 46.1; 57.6; 57.62; 58.3; 60.8; 125.6; 125.8; 127.8; 127.9; 130.6; 130.7; 139.0; 139.3; 169.1; 169.2.


The sometimes doubled signal sets are based on hindered rotation.


LC-MS: m/z: [M+H]+=315.3, Rt=2.5 min.


Example No. 9
(8-Benzyl-3-butyl-3-azaspiro[4.5]decan-8-yl)-dimethylamine (Example no. 9, non-polar diastereomer)

Sodium cyanoborohydride (177 mg, 2.82 mmol) and butyraldehyde (86 mg, 106 μl, 1.19 mmol) were added to a solution of (8-benzyl-3-azaspiro[4.5]decan-8-yl)-dimethylamine (non-polar diastereomer) (162 mg, 0.59 mmol) in methanol (5 ml) and the mixture was stirred for 30 min at room temperature. Glacial acetic acid (600 μl) was added to the mixture and the mixture was stirred for a further 16 h at room temperature. After addition of saturated sodium bicarbonate solution (20 ml) the mixture was extracted with methylene chloride (3×20 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The crude product (202 mg) was purified by flash chromatography (10 g, 20×1.5 cm) with methylene chloride/methanol (95:5) and 1% ammonia.


Example No. 9 (Non-polar Diastereoisomer)

Yield: 150 mg (87° A)), colourless oil



1H-NMR (CDCl3): 0.92 (t, 3H, J=7.3 Hz); 1.10-1.20 (m, 2H); 1.26-1.40 (m, 4H); 1.52-1.65 (m, 4H); 1.67-1.82 (m, 4H); 2.28 (s, 6H); 2.62 (s, 2H); 2.70-2.77 (m, 4H); 2.95 (br t, 2H, J=6.5 Hz); 7.07-7.11 (m, 2H); 7.16-7.28 (m, 3H).



13C-NMR (CDCl3): 13.6; 20.2; 28.5; 29.2; 31.4; 33.5; 36.5; 37.0; 41.3; 53.8; 56.3; 57.3; 66.7; 125.8; 127.9; 130.6; 138.8.


LC-MS: m/z: [M+H]+=329.4, Rt=1.2 min.


Example No. 10
(8-Benzyl-3-butyl-3-azaspiro[4.5]decan-8-yl)-dimethylamine (Example no. 10, polar diastereomer)

Butyryl chloride (134 mg, 132 μl, 1.26 mmol) was added to a solution of (8-benzyl-3-azaspiro[4.5]decan-8-yl)-dimethylamine (polar diastereomer) (169 mg, 0.62 mmol) and triethylamine (193 mg, 264 μl, 1.9 mmol) in anhydrous methylene chloride (5 ml) and the mixture was stirred for 18 h at room temperature. The reaction mixture was diluted with methylene chloride (20 ml) and washed with 25% strength potassium carbonate solution (2×10 ml). The organic phase was dried with sodium sulfate and concentrated i. vac. The crude product (240 mg) was purified by flash chromatography (10 g, 20×1.5 cm) with methylene chloride/methanol (95:5) and 1% ammonia (25% in water).


Example No. 10 (Polar Diastereoisomer)

Yield: 159 mg (75%), colourless oil



1H-NMR (CDCl3): 0.88 and 0.93 (2 t, 3H, J=7.4 Hz); 1.04-1.23 (m, 4H); 1.53-1.77 (m, 8H); 2.04 and 2.77 (2 t, 2H, J=7.5 Hz); 2.28 and 2.30 (2 s, 6H); 2.60 and 2.63 (2 s, 2H); 2.92 and 3.06 (2 s, 2H); 3.36-3.44 (m, 2H); 7.04-7.29 (m, 5H).



13C-NMR (CDCl3): 13.9; 14.0; 18.3; 18.5; 29.59; 29.6; 29.8; 29.9; 36.4; 36.7; 36.8; 36.84; 37.0; 37.1; 37.9; 39.7; 40.0; 42.0; 43.7; 44.9; 54.0; 54.9; 57.61; 57.64; 125.7; 125.9; 127.8; 128.0; 130.5; 130.6; 138.8; 139.1; 171.9.


The NMR spectra show sometimes doubled signal sets (rotamers).


LC-MS: m/z: [M+H]+=343.4, Rt=2.7 min.


Example No. 11
(8-Benzyl-3-butyl-3-azaspiro[4.5]decan-8-yl)-dimethylamine (Example no. 11, non-polar diastereomer)

Butyryl chloride (134 mg, 132 μl, 1.26 mmol) was added to a solution of (8-benzyl-3-azaspiro[4.5]decan-8-yl)-dimethylamine (non-polar diastereomer) (173 mg, 0.63 mmol) and triethylamine (193 mg, 264 μl, 1.9 mmol) in anhydrous methylene chloride (5 ml) and the mixture was stirred for 18 h at room temperature. The reaction mixture was diluted with methylene chloride (20 ml) and washed with 25% strength potassium carbonate solution (2×10 ml). The organic phase was dried with sodium sulfate and concentrated i. vac. The crude product (220 mg) was purified by flash chromatography (10 g, 20×1.5 cm) with methylene chloride/methanol (300:5) and 1% ammonia (25% in water).


Example No. 11 (Non-polar Diastereoisomer)

Yield: 157 mg (73%), white solid


Melting point: 98-105° C.



1H-NMR (CDCl3): 0.93 and 0.94 (2 t, 3H, J=7.4 Hz); 1.12-1.26 (m, 4H); 1.41 and 1.50 (2 t, 2H, J=7.1 Hz); 1.59-1.77 (m, 6H); 2.13-2.19 (m, 2H); 2.28 and 2.30 (2 s, 6H); 2.62 (s, 2H); 3.16 and 3.19 (2 s, 2H); 3.33 and 3.38 (2 t, 2H, J=7.1 Hz); 7.09-7.28 (m, 5H).



13C-NMR (CDCl3): 14.0; 14.02; 18.3; 18.4; 29.0; 29.1; 29.5; 29.6; 32.0; 33.6; 36.2; 36.5; 36.6; 36.8; 37.0; 40.0; 41.9; 44.3; 45.3; 57.6; 57.7; 58.4; 60.0; 125.6; 125.7; 127.8; 127.9; 130.6; 130.7; 139.1; 139.3; 171.6; 171.7.


The NMR spectra show sometimes doubled signal sets (rotamers).


LC-MS: m/z: [M+H]+=343.3, Rt=2.9 min.


Example No. 12
(8-Benzyl-3-(cyclopentylmethyl)-3-azaspiro[4.5]decan-8-yl)-dimethylamine (Example no. 12, non-polar diastereomer)

Cyclopentanecarbaldehyde (125 mg, 136 μl, 1.3 mmol) and glacial acetic acid (500 μl) were added to a solution of (8-benzyl-3-azaspiro[4.5]decan-8-yl)-dimethylamine (non-polar diastereomer) (202 mg, 0.74 mmol) in methanol (5 ml) and the mixture was stirred for 2 h at room temperature. After addition of sodium cyanoborohydride (200 mg, 3.1 mmol) the mixture was stirred for 24 h at room temperature. The reaction mixture was then diluted with methylene chloride (20 ml), saturated sodium bicarbonate solution (25 ml) was added and the phases were separated. The aqueous phase was extracted with methylene chloride (3×20 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The crude product (283 mg) was purified by flash chromatography (10 g, 20×1.5 cm) with methylene chloride/methanol (95:5) and 1% ammonia (25% in water).


Example No. 12 (Non-polar Diastereoisomer)

Yield: 192 mg (73%), colourless oil



1H-NMR (CDCl3): 1.11-1.29 (m, 6H); 1.37 (t, 2H, J=6.9 Hz); 1.45-1.80 (m, 10H); 1.98 (td, 1H, J=15.4, 7.8 Hz); 2.29 (s, 6H); 2.39 (d, 2H, J=7.2 Hz); 2.41 (s, 2H); 2.58 (t, 2H, J=6.9 Hz); 2.62 (s, 2H); 7.09-7.25 (m, 5H).



13C-NMR (CDCl3): 25.1; 29.4; 31.5; 32.5; 34.6; 36.7; 37.1; 38.8; 41.0; 54.7; 57.5; 62.5; 68.5; 125.6; 127.7; 130.7; 139.3.


LC-MS: m/z: [M+H]+=355.4, Rt=2.0 min.


Example No. 13
8-Dimethylamino-8-phenyl-3-azaspiro[4.5]decan-4-one (Example no. 13, a diastereomer)

A solution of dimethylamino-1-oxo-2-azaspiro[4.5]decane-8-carbonitrile (330 mg, 1.49 mmol) in tetrahydrofuran (15 ml) was added dropwise to a 2 M solution of phenylmagnesium chloride in tetrahydrofuran (2.4 ml, 4.8 mmol) at 0° C. and under argon and thereafter the mixture was stirred overnight at room temperature. 20% strength ammonium chloride solution (15 ml) was then added to the reaction solution. The phases were separated and the aqueous phase was extracted with ethyl acetate (2×15 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The crude product (520 mg) was purified by flash chromatography (45 g, 23×2.5 cm) with methylene chloride/methanol (95:5) and 0.5% ammonia (33% in H2O).


Example No. 13 (A Diastereomer)

Yield: 155 mg (38%), white solid


Melting point: 183-185° C.



1H-NMR (CDCl3): 1.30-1.37 (m, 2H); 1.61 (t, 2H, J=13.5 Hz); 1.97 (t, 2H, J=6.9 Hz); 2.05 (s, 6H); 2.21 (dt, 2H, J=3.1 and 13.1 Hz); 2.62 (br d, 2H, J=14.4 Hz); 3.26-3.32 (m, 2H); 6.17 (br s, 1H); 7.21-7.30 (m, 1H); 7.30-7.39 (m, 4H).



13C-NMR (CDCl3): 28.2 (2C); 29.3; 32.8; 37.9 (2C); 38.8 (2C); 43.1; 58.7; 126.5; 126.8 (2C); 127.5 (2C); 139.4; 182.9.


LC-MS: m/z: [M+H]+=273.3, Rt=1.4 min.


Example No. 14 and Example No. 15
Step 1: (4-Dimethylamino-4-phenylcyclohexylidene)acetic acid ethyl ester

Potassium tert-butylate (1.93 g, 17.3 mmol) was added to a solution of phosphonoacetic acid triethyl ester (3.86 g, 314 ml, 17.3 mmol) in anhydrous N,N-dimethylformamide (20 ml) under argon. The mixture was stirred for 10 min at room temperature and a solution of 4-(dimethylamino)-4-phenylcyclohexanone (2.50 g, 11.5 mmol) in anhydrous N, N-dimethylformamide (40 ml) was then added and thereafter the mixture was stirred for 1 h at room temperature and then poured into ice-water (50 g). The aqueous suspension was extracted with diethyl ether (4×40 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac.


Yield: 3.39 g (100%)



1H-NMR (CDCl3): 1.26 (t, 3H, J=7.1 Hz); 2.06 (s, 6H); 2.10-2.25 (m, 5H); 2.45 (m, 1H); 2.67 (m, 1H); 3.20 (m, 1H); 4.13 (q, 2H, J=7.1 Hz); 5.60 (s, 1H); 7.26 (m, 1H); 7.31-7.40 (m, 4H).


LC-MS: [M+H]+: m/z=288.3, Rt=2.7 min.


Step 2: (4-Dimethylamino-2-nitromethyl-4-phenylcyclohexyl)acetic acid ethyl ester

Nitromethane (138 mg, 122 μl, 2.26 mmol) was added to a mixture of (4-dimethylamino-4-phenylcyclohexylidene)acetic acid ethyl ester (500 mg, 1.74 mmol) and tetra-n-butylammonium fluoride trihydrate (602 mg, 1.91 mmol) in tetrahydrofuran (30 ml) and the mixture was stirred for 6 h at 70° C. The reaction mixture was then concentrated in vacuo and the residue (1.10 g) was purified by flash chromatography (38 g, 20×2.5 cm) with ethyl acetate/methanol (95:5).


Yield: 453 mg (75%), yellowish oil.



1H-NMR (DMSO-d6): The spectrum shows all the required signals. This is a diastereoisomer mixture in the ratio of approx. 3:2.


Step 3: 8-(Dimethylamino)-8-phenyl-3-azaspiro[4.5]decan-2-one (Example no. 14, polar diastereomer, Example no. 15, non-polar diastereomer)

A solution of (4-dimethylamino-2-nitromethyl-4-phenylcyclohexyl)acetic acid ethyl ester (1.13 g, 3.24 mmol) in ethanol (32 ml) was added to a mixture of iron powder (904 mg, 16.2 mmol), ammonium chloride (4.33 g, 81 mmol) and water (3.3 ml) and the mixture was then stirred for 5 h at 80° C. The mixture was filtered and the residue was washed with ethanol. The filtrate was rendered alkaline with 5% strength sodium bicarbonate solution (1 ml) and then concentrated i. vac. The crude product was purified by flash chromatography (38 g, 20×2.5 cm) with methylene chloride/methanol (95:5) and 1% ammonia (25% in water). The diastereoisomer mixture isolated was separated by medium pressure chromatography on a PuriFlash cartridge (PF-15SIHP, 40 g) with the above eluent.


Example No. 14 (Polar Diastereoisomer)

Yield: 330 mg (37%), white solid


Melting point: 210-215° C.



1H-NMR (CDCl3): 1.35-1.45 (m, 2H); 1.73-1.82 (m, 2H); 1.86-2.01 (m, 2H); 2.02 (s, 6H); 2.05 (s, 2H); 2.10-2.30 (m, 2H); 3.26 (s, 2H); 6.28 (s, 1H); 7.25-7.30 (m, 3H); 7.35-7.40 (m, 2H).



13C-NMR (CDCl3): 30.2; 32.7; 37.98; 38.0; 39.0; 43.3; 52.8; 53.4; 60.1; 126.7; 127.4; 127.7; 136.0; 177.4.


LC-MS: m/z: [M+H]+=273.3, Rt=1.3 min.


Example No. 15 (Non-Polar Diastereoisomer)

Yield: 215 mg (24%), white solid


Melting point: 218-223° C.



1H-NMR (CDCl3): 1.35-1.45 (m, 2H); 1.50-1.58 (m, 1H); 1.73-1.82 (m, 2H); 1.85-2.02 (m, 2H); 2.04 (s, 6H); 2.13-2.18 (m, 1H); 2.30 (s, 2H); 3.02 (s, 2H); 5.41 (br s, 1H); 7.27-7.32 (m, 3H); 7.36-7.41 (m, 2H).



13C-NMR (CDCl3): 30.2; 32.9; 38.0; 38.1; 39.2; 42.4; 53.9; 60.4; 126.6; 127.5; 127.7; 136.3; 177.6.


LC-MS: m/z: [M+H]+=273.3, Rt=1.6 min.


Example No. 16
8-Butyl-8-dimethylamino-8-phenyl-3-azaspiro[4.5]decan-4-one (Example no 16, a diastereomer)

A solution of dimethylamino-1-oxo-2-azaspiro[4.5]decane-8-carbonitrile (390 mg, 1.76 mmol) in tetrahydrofuran (15 ml) was added dropwise to a 2 M solution of n-butylmagnesium chloride in tetrahydrofuran (3.5 ml, 7 mmol) at 0° C. and under argon and thereafter the mixture was stirred overnight at room temperature. 20% strength ammonium chloride solution (15 ml) was then added to the reaction solution. The phases were separated and the aqueous phase was extracted with ethyl acetate (2×20 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The crude product (334 mg) was purified by flash chromatography (32 g, 20×2.5 cm) with methylene chloride/methanol [9:1→4:1→4:1+1% ammonia (33% in H2O)]. Thereafter the mixed fractions were purified by renewed flash chromatography (12 g, 18×1.6 cm) with methylene chloride/methanol [9:1+0.5% ammonia (33% in H2O)].


Example No. 16 (A Diastereomer)

Yield: 185 mg (42%), white solid


Melting point: 148-151° C.



1H-NMR (CDCl3): 0.89 (t, 3H, J=7.1 Hz); 1.08-1.35 (m, 10H); 1.71 (br d, 2H, J=13.0 Hz); 1.98 (t, 2H, J=6.9 Hz); 2.06 (dt, 2H, J=13.0 Hz); 2.20 (s, 6H); 3.23-3.31 (m, 2H); 6.85 (s, 1H).



13C-NMR (CDCl3): 14.1; 23.8 (2C); 26.7; 27.3; 28.4; 31.0 (2C); 32.3; 37.1 (2C); 39.0; 43.6; 55.9; 183.5.


LC-MS: m/z: [M+H]+=253.3, Rt=1.5 min.


Example No. 17
8-Dimethylamino-8-thiophen-2-yl-3-azaspiro[4.5]decan-4-one (Example no. 17, a diastereomer)

A solution of dimethylamino-1-oxo-2-azaspiro[4.5]decane-8-carbonitrile (800 mg, 3.6 mmol) in tetrahydrofuran (15 ml) was added dropwise to a 1 M solution of 2-thienylmagnesium bromide in tetrahydrofuran (11.5 ml, 11.5 mmol) at 0° C. and under argon and thereafter the mixture was stirred overnight at room temperature. 20% strength ammonium chloride solution (35 ml) was then added to the reaction solution. The phases were separated and the aqueous phase was extracted with ethyl acetate (2×30 ml). The combined organic phases were dried with sodium sulfate and concentrated. The crude product (950 mg) was purified by flash chromatography (80 g, 17×3.7 cm) with methylene chloride/methanol [9:1+2% ammonia (33% in H2O)].


Example No. 17 (A Diastereomer)

Yield: 840 mg (84%), yellowish solid


Melting point: 168-174° C.



1H-NMR (CDCl3): 1.26-1.36 (m, 2H); 1.69 (dt, 2H, J=3.2 and 13.8 Hz); 1.99 (t, 2H, J=6.9 Hz); 2.10 (s, 6H); 2.20 (dt, 2H, J=3.2 and 13.1 Hz); 2.45 (br d, 2H, J=13.6 Hz); 3.25-3.34 (m, 2H); 6.76 (br s, 1H); 6.85 (dd, 1H, J=1.1 and 3.6 Hz); 7.03 (dd, 1H, J=3.6 and 5.1 Hz); 7.21 (dd, 1H, J=1.1 and 5.1 Hz).



13C-NMR (CDCl3): 27.9 (2C); 31.9 (2C); 32.5; 38.0 (2C); 38.9; 43.4; 58.4; 122.8; 123.6; 126.0; 145.4; 183.0.


LC-MS: m/z: [M+H]+=279.2, Rt=1.3 min.


Example No. 18
Dimethyl-(8-thiophen-2-yl-3-azaspiro[4.5]decan-8-yl)-amine (Example no. 18, polar diastereomer)

A solution of 8-(dimethylamino)-8-thiophen-2-yl-3-azaspiro[4.5]decan-4-one (polar diastereomer) (714 mg, 2.56 mmol) in tetrahydrofuran (20 ml) was added to a suspension of lithium aluminium hydride (490 mg, 12.9 mmol) in tetrahydrofuran (4 ml) at room temperature and the mixture was stirred for 18 h at 60° C. The reaction mixture was cooled to 0° C., water (0.5 ml), 1 N sodium hydroxide solution (1 ml) and again water (1 ml) were added and the mixture was then stirred for 1 h at room temperature. The precipitate was filtered off, ethyl acetate (20 ml) was added to the filtrate and the phases were separated. The organic phase was dried with sodium sulfate and the solvent was removed i. vac. The residue (570 mg) was purified by flash chromatography (30 g, 19×2.5 cm) with methylene chloride/methanol (4:1) and 1% ammonia (25% in H2O).


Example No. 18 (Polar Diastereomer)

Yield: 280 mg (41%), white oily solid.


Melting point: 80-84° C.



1H-NMR (CDCl3): 1.38 (ddd, 2H, J=3.6, 13.3 Hz); 1.43-1.50 (m, 1H); 1.58-1.70 (m, 2H); 1.86-2.01 (m, 2H); 2.09 (m, 9H); 2.75 (s, 2H); 2.90 (t, 2H, J=7.1 Hz); 6.84 (dd, 1H, J=1.1 and 3.6 Hz); 7.03 (dd, 1H, J=3.6 and 5.1 Hz); 7.23 (dd, 1H, J=1.1 and 5.1 Hz). The NH proton could not be identified.



13C-NMR (CDCl3): 32.8 (2C); 33.7 (2C); 38.1; 39.0; 42.3; 57.8; 59.8; 123.2; 124.9; 126.1; 143.2.


LC-MS: m/z: [M+H]+=265.2, Rt=0.5 min.


Example No. 19
Dimethyl-(3-methyl-8-thiophen-2-yl-3-azaspiro[4.5]decan-8-yl)-amine (Example no. 19, polar diastereomer)

37% strength aqueous formalin solution (1 ml) and sodium cyanoborohydride (151 mg, 2.4 mmol) were added to a solution of dimethyl-(8-thiophen-2-yl-3-azaspiro[4.5]decan-8-yl)-amine (polar diastereomer) (160 mg, 0.6 mmol) in methanol (6 ml) and the mixture was stirred for 30 min at room temperature. After addition of acetic acid (0.6 ml) the mixture was further stirred for 3 h at room temperature. The reaction solution was then diluted with saturated sodium bicarbonate solution (20 ml) and extracted with methylene chloride (3×20 ml). The combined organic phases were dried with sodium sulfate, the solvent was removed i. vac. and the residue (164 mg) was purified by flash chromatography (16 g, 16×2 cm) with methylene chloride/methanol (9:1) and 1% ammonia (25% in H2O).


Example No. 19 (Polar Diastereomer)

Yield: 90 mg (54%), white solid


Melting point: 71-72° C.



1H-NMR (CDCl3): 1.34-1.43 (m, 2H); 1.52 (t, 2H, J=6.8 Hz); 1.64-1.75 (m, 2H); 1.84-1.99 (m, 2H); 2.08 (s, 8H); 2.30 (s, 3H); 2.40 (s, 2H); 2.48 (t, 2H, J=6.8 Hz); 6.83 (dd, 1H, J=1.0 and 3.5 Hz); 7.02 (dd, 1H, J=3.5 and 5.1 Hz); 7.21 (dd, 1H, J=1.0 and 5.1 Hz).



13C-NMR (CDCl3): 33.6 (2C); 34.4; 38.1 (2C); 38.6 (br.); 41.7; 42.6 (2C); 55.9; 59.6; 68.1 (br.); 74.8; 132.2; 124.9; 126.1; 143.3 (br).


LC-MS: [MH-HNMe2]+: m/z=234.2 (100%) and [M+H]+: m/z=279.3 (8%), Rt=0.2 min.


Example No. 20a
1-(8-Dimethylamino-8-thiophen-2-yl-3-azaspiro[4.5]decan-3-yl)-butan-1-one (Example no. 20a, polar diastereomer)

Butyryl chloride (69 mg, 68 μl, 0.65 mmol) was added to a solution of dimethyl-(8-thiophen-2-yl-3-azaspiro[4.5]decan-8-yl)-amine (polar diastereomer) (142 mg, 0.54 mmol) and triethylamine (82 mg, 0.81 mmol) in methylene chloride (5 ml) and the mixture was stirred for 2.5 h at room temperature. 1 M potassium carbonate solution (6 ml) was then added to the reaction mixture and the mixture was stirred for 30 min at room temperature. The phases were separated and the aqueous phase was extracted with methylene chloride (2×10 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The residue (180 mg) was purified by flash chromatography (18 g, 19×2 cm) with methylene chloride/methanol (95:5).


Example No. 20a (Polar Diastereomer)

Yield: 140 mg (78%), colourless oil



1H-NMR (CDCl3): 0.96 (ddt, 3H, J=0.6; 4.5 and 7.4 Hz); 1.33-1.45 (m, 2H); 1.57-1.78 (m, 6H); 1.84-2.03 (m, 2H); 2.09 (d, 3H, J=0.7 Hz); 2.12 (s, 4H); 2.22 (dd, 3H, J=6.7 and 14.5 Hz); 3.31 (s, 1H); 3.37 (s, 1H); 3.41-3.50 (m, 2H); 6.83-6.88 (m, 1H); 7.01-7.07 (m, 1H); 7.22-7.26 (m, 1H).



13C-NMR (CDCl3): 14.0; 18.3; 18.4; 31.1; 31.2; 32.8; 33.4; 35.6; 36.3; 36.8; 37.1; 38.1; 40.1; 42.9; 45.0; 55.3; 56.4; 59.9; 123.3; 123.6; 124.9; 125.1; 126.1; 126.4; 171.9; 172.0. Some C signals are doubled due to the amide structure.


LC-MS: [MH-HNMe2]+: m/z=290.2 (100%) and [M+H]+: m/z=335.3 (90%), Rt=2.7 min.


Example No. 20b
1-[8-(Dimethylamino)-8-thiophen-2-yl-3-azaspiro[4.5]decan-3-yl]-butan-1-one (Example no. 20b, non-polar diastereomer)

Butyryl chloride (63 mg, 62 μl, 0.59 mmol) was added to a solution of dimethyl-(8-thiophen-2-yl-3-azaspiro[4.5]decan-8-yl)-amine (non-polar diastereomer) (130 mg, 0.49 mmol) and triethylamine (75 mg, 103 μl, 0.74 mmol) in methylene chloride (5 ml) and the mixture was stirred for 1 h at room temperature. Potassium carbonate solution (5 ml) was then added to the mixture and the mixture was stirred for 15 min.


The phases were separated and the aqueous phase was subsequently extracted with methylene chloride (3×5 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The crude product (160 mg) was purified by means of flash chromatography (18 g, 20×2.0 cm) with methylene chloride/methanol (95:5).


Example No. 20b (Non-polar Diastereoisomer)

Yield: 116 mg (71%), yellow oil



1H-NMR (CDCl3): 0.91 (t, 1.5H, J=7.4 Hz); 0.96 (t, 1.5H, J=7.4 Hz); 1.37-1.45 (m, 2H); 1.57-1.73 (m, 4H); 1.76 (t, 1H, J=7.2 Hz); 1.86 (t, 1H, J=7.2 Hz); 2.00-2.09 (m, 4H); 2.12 (s, 6H); 2.13-2.23 (m, 2H); 3.14 (s, 1H); 3.23 (s, 1H); 3.47 (t, 1H, J=7.1 Hz); 3.52 (t, 1H, J=7.1 Hz); 6.84 (dd, 0.5H, J=0.8, 3.6 Hz); 6.86 (dd, 0.5H, J=1.1, 3.6 Hz); 7.02 (dd, 0.5H, J=3.6, 5.2 Hz); 7.04 (dd, 0.5H, J=3.6, 5.2 Hz); 7.22 (dd, 0.5H, J=0.8, 5.1 Hz); 7.24 (dd, 0.5H, J=1.1, 5.1 Hz).



13C-NMR (CDCl3): 13.97; 13.99; 18.4; 31.0; 33.1; 36.3; 36.7, 38.07; 38.09, 40.1; 42.1; 44.1; 45.2; 56.0; 57.6; 59.9; 123.5; 124.9; 126.21, 126.26; 171.8; 171.9.


The NMR spectra show sometimes doubled signal sets (rotamers).


LC-MS: m/z: [MH-HNMe2]+=290.2 (100%) and [M+H]+=335.3 (50%), Rt=2.7 min.


Example No. 21
(3-Butyl-8-thiophen-2-yl-3-azaspiro[4.5]decan-8-yl)-dimethylamine (Example no. 21, polar diastereomer)

Butyraldehyde (49 mg, 61 μl, 0.68 mmol) and sodium cyanoborohydride (147 mg, 2.34 mmol) were added to a cloudy solution of dimethyl-(8-thiophen-2-yl-3-azaspiro[4.5]decan-8-yl)-amine (polar diastereomer) (137 mg, 0.52 mmol) in methanol (5 ml) and the mixture was stirred for 30 min at room temperature. After addition of acetic acid (0.52 ml) the mixture was stirred for a further 2 h at room temperature. The reaction mixture was then diluted with sodium bicarbonate solution (20 ml) and extracted with methylene chloride (3×20 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The crude product (157 mg) was purified by means of flash chromatography (16 g, 16×2.0 cm) with methanol and 0.5% ammonia (25% in H2O).


Example No. 21 (Polar Diastereomer)

Yield: 105 mg (63%), colourless oil



1H-NMR (CDCl3): 0.91 (t, 3H, J=7.2 Hz); 1.27-1.53 (m, 8H); 1.64-1.74 (m, 2H); 1.85-1.99 (m, 2H); 2.10 (m, 8H); 2.33-2.40 (m, 2H); 2.42 (s, 2H); 2.50 (t, 2H, J=6.9 Hz); 6.85 (td, 1H, J=1.0 and 3.6 Hz); 7.02-7.05 (m, 1H); 7.21-7.24 (m, 1H).



13C-NMR (CDCl3): 14.1; 20.9; 31.0; 33.8; 34.5; 38.2; 40.8; 54.0; 56.8; 59.7; 65.6; 123.2; 124.9; 126.1. A thienyl-C signal (approx. 143 ppm) could not be identified.


LC-MS: [MH-HNMe2]+: m/z=276.3 (100%) and [M+H]+: m/z=321.3 (16%), Rt=0.3 min.


Example No. 22
[3-(Cyclopentylmethyl)-8-thiophen-2-yl-3-azaspiro[4.5]decan-8-yl]-dimethylamine (Example no. 22, polar diastereomer)

A solution of cyclopentanecarbaldehyde (92 mg, 0.94 mmol) in methanol (1 ml) and sodium cyanoborohydride (204 mg, 3.24 mmol) was added to a cloudy solution of dimethyl-(8-thiophen-2-yl-3-azaspiro[4.5]decan-8-yl)-amine (polar diastereomer) (190 mg, 0.72 mmol) in methanol (6 ml) and the mixture was stirred for 30 min at room temperature. After addition of acetic acid (0.72 ml) the mixture was stirred for a further 3 h at room temperature. The reaction mixture was then diluted with sodium bicarbonate solution (30 ml) and extracted with methylene chloride/2-propanol (4:1, 2×30 ml) and methylene chloride (30 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The crude product (357 mg) was purified by means of flash chromatography (35 g, 22×2.5 cm) with methanol and 0.2% ammonia (25% in H2O).


Example No. 22 (Polar Diastereomer)

Yield: 179 mg (72%), colourless oil



1H-NMR (CDCl3): 1.13-1.24 (m, 2H); 1.37 (ddd, 2H, J=3.5; 10.0 and 13.3 Hz); 1.44-1.63 (m, 6H); 1.64-1.81 (m, 4H); 1.84-2.03 (m, 3H); 2.10 (s, 8H); 2.31 (d, 2H, J=7.3 Hz); 2.41 (5, 2H); 2.49 (t, 2H, J=6.9 Hz); 6.85 (dd, 1H, J=1.1 and 3.6 Hz); 7.03 (dd, 1H, J=3.6 and 5.1 Hz); 7.22 (dd, 1H, J=1.1 and 5.1 Hz).



13C-NMR (CDCl3): 25.2 (2C); 31.5 (2C); 33.7 (2C); 34.3 (2C); 37.7; 38.2; 39.1; 41.0; 54.3; 59.7; 62.5; 65.6; 123.2; 124.9; 126.1; 143.2.


LC-MS: [MH-HNMe2]+: m/z=302.3 (100%) and [M+H]+: m/z=347.3 (30%), Rt=1.9 min.


Example No. 24a and Example No. 24b
Step 1: (4-Dimethylamino-4-thiophen-2-ylcyclohexylidene)-acetic acid ethyl ester

Potassium tert-butylate (3.01 g, 26.9 mmol) was added to a solution of triethyl phosphonoacetate (6.02 g, 5.33 ml, 26.9 mmol) in absolute N,N-dimethylformamide (30 ml) under argon. The mixture was stirred for 10 min at room temperature, before a solution of 4-(dimethylamino)-4-(thiophen-2-yl)cyclohexanone (4.0 g, 17.9 mmol) in absolute N,N-dimethylformamide (60 ml) was added, and the mixture was then stirred for 1 h at room temperature. The reaction mixture was then poured into ice-water (75 g) and the aqueous suspension was extracted with diethyl ether (4×50 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac.


Yield: 5.20 g (99%), yellow oil



1H-NMR (CDCl3): 1.26 (t, 3H, J=7.1 Hz); 2.03-2.12 (m, 2H); 2.13 (s, 6H); 2.15-2.27 (m, 2H); 2.90-3.09 (m, 4H); 4.13 (q, 2H, J=7.1 Hz); 5.61 (s, 1H); 6.87 (dd, 1H, J=1.1, 3.6 Hz); 7.03 (dd, 1H, J=3.6, 5.1 Hz); 7.23 (dd, 1H, J=1.1, 5.1 Hz).


LC-MS: m/z: [MH-HNMe2]+=249.2 (90%), Rt=2.8 min.


Step 2: (4-Dimethylamino-1-nitromethyl-4-thiophen-2-yl-cyclohexyl)-acetic acid ethyl ester

Tetra-n-butylammonium fluoride trihydrate (5.10 g, 19.5 mmol) and nitromethane (5.40 g, 4.79 ml, 88.5 mmol) were added to a solution of the crude product of (4-dimethylamino-4-thiophen-2-ylcyclohexylidene)-acetic acid ethyl ester (5.20 g, 17.7 mmol) in tetrahydrofuran (120 ml) and the mixture was stirred for 3 h at 70° C. and then for 18 h at 45° C. The reaction mixture was then concentrated i. vac. The residue was purified by means of flash chromatography (200 g, 20×4.0 cm) with cyclohexane/ethyl acetate (1:9).


Yield: 4.9 g (78%), orange-coloured oil



1H-NMR (CDCl3): 1.20-1.28 (m, 3H); 1.44-1.53 (m, 4H); 1.77-1.88 (m, 4H); 2.09 (s, 6H); 2.46 and 2.61 (2 s, 2H); 4.04-4.22 (m, 2H); 4.62 and 4.77 (s, 2H); 6.82-6.85 (m, 1H); 7.02 (m, 1H); 7.22-7.25 (m, 1H).


LC-MS: m/z: [M+H]+=355.2, Rt=2.5 min.


This is a diastereoisomer mixture in the ratio of approx. 1:1 which is still contaminated with approx. 15% of educt.


Step 3: 8-(Dimethylamino)-8-thiophenyl-2-yl-3-azaspiro[4.5]decan-3-one (Example no. 30, polar diastereomer, Example no. 31, non-polar diastereomer)

A solution of the diastereoisomer mixture of (4-dimethylamino-1-nitromethyl-4-thiophen-2-ylcyclohexyl)-acetic acid ethyl ester (4.90 g, 13.8 mmol) in ethanol (138 ml) was added to a mixture of iron powder (3.85 g, 69 mmol) and ammonium chloride (18.5 g, 345 mmol) in water (14 ml) and the mixture was heated for 5 h under reflux. The reaction mixture was then filtered, saturated sodium bicarbonate solution (4 ml) was added to the filtrate and the mixture was concentrated i. vac. The residue was separated by flash chromatography (200 g, 20×5.7 cm) with methylene chloride/methanol (10:1) and 1% ammonia (32% in water).


Yield: 2.33 g (61%), diastereoisomer mixture in the ratio of approx. 1:1


The diastereoisomer mixture was separated by repeated medium pressure chromatography (230 g, 3.6×46 cm) or flash chromatography (100 g, 20×4.0 cm), the column material used being spherical silica gel (PharmPrep 60 CC (40-63 μm) and the eluent used being methylene chloride/methanol 95:5 and 1% ammonia (32% in H2O). The ratio of sample to silica gel weight was in each case approx. 1:200.


Example No. 24a (Polar Diastereomer)

Melting point: 215° C., white solid



1H-NMR (CDCl3): 1.47-1.55 (m, 2H); 1.78-1.86 (m, 2H); 1.97-2.09 (m, 4H); 2.10 (s, 6H); 2.12 (s, 2H); 3.23 (s, 2H); 5.69 (br s, 1H); 6.85 (dd, 1H, J=1.1, 3.6 Hz); 7.05 (dd, 1H, J=3.6, 5.1 Hz); 7.25 (dd, 1H, J=1.2, 5.1 Hz).



13C-NMR (CDCl3): 32.6; 32.7, 38.1; 38.8; 43.1; 53.0; 59.3; 123.4; 124.9; 126.3; 142.6; 177.5.


LC-MS: m/z: [MH-HNMe2]+=234.2 (100%) and [M+H]+=279.2 (16%), Rt=1.3 min.


Example No. 24b (Non-Polar Diastereoisomer)

Melting point: 213-222° C., white solid



1H-NMR (CDCl3): 1.46-1.54 (m, 2H); 1.76-1.84 (m, 2H); 1.93-2.12 (m, 4H); 2.09 (s, 6H); 2.26 (s, 2H); 3.08 (s, 2H); 5.78 (br s, 1H); 6.85 (dd, 1H, J=1.1, 3.6 Hz); 7.04 (dd, 1H, J=3.6, 5.1 Hz); 7.24 (dd, 1H, J=1.1, 5.1 Hz).



13C-NMR (CDCl3): 32.7; 32.8; 38.1; 38.9; 42.5; 53.6; 59.5; 123.4; 124.8; 124.9; 126.3; 142.7; 177.5.


LC-MS: m/z: [MH-HNMe2]+=234.2 (100%) and [M+H]+=279.2 (22%), Rt=1.4 min.


Example No. 26
Dimethyl-(8-thiophen-2-yl-3-azaspiro[4.5]decan-8-yl)-amine (Example no. 25, non-polar diastereomer)

A solution of 8-dimethylamino-8-thiophen-2-yl-3-azaspiro[4.5]decan-4-one (non-polar diastereomer) (270 mg, 0.97 mmol) in absolute tetrahydrofuran (15 ml) was added to a suspension of lithium aluminium hydride (184 mg, 4.85 mmol) in absolute tetrahydrofuran (10 ml), while cooling with ice, and the mixture was stirred for 18 h at 60° C. Water (755 μl), 1 N sodium hydroxide solution (2.5 ml) and again water (2.5 ml) were then added to the mixture, while cooling with ice, and the mixture was stirred for 1 h at room temperature. The suspension was filtered through sea sand and the residue was washed with tetrahydrofuran. The filtrate was dried with sodium sulfate and concentrated i. vac. The crude product (300 mg) was purified by means of flash chromatography (18 g, 20×2.0 cm) with methylene chloride/methanol (4:1)+1% ammonia (25% in H2O)→methanol+1% ammonia (25% in H2O).


Example No. 25 (Non-polar Diastereoisomer)

Yield: 182 mg (71%), yellow oil



1H-NMR (CDCl3): 1.37 (ddd, 2H, J=3.5, 10.1, 13.5 Hz); 1.57-1.65 (m, 4H); 1.89-1.99 (m, 2H); 2.06-2.15 (m, 3H); 2.10 (s, 6H); 2.57 (s, 2H); 2.93 (t, 2H, J=7.1 Hz); 6.84 (dd, 1H, J=1.1, 3.6 Hz); 7.02 (dd, 1H, J=3.6, 5.1 Hz); 7.22 (dd, 1H, J=1.1, 5.1 Hz).



13C-NMR (CDCl3): 32.9; 33.8; 38.2; 38.4; 42.4; 46.6; 59.4; 59.9; 123.2; 125.0; 126.1; 143.0.


LC-MS: m/z: [MH-HNMe2]+=220.2 (100%) and [M+H]+=265.3 (48%), Rt=0.2 min.


Example No. 27
(8-Benzyl-3-butyl-3-azaspiro[4.5]decan-8-yl)-dimethylamine (Example no. 27, polar diastereomer)

Sodium cyanoborohydride (177 mg, 2.82 mmol) and butyraldehyde (86 mg, 106 μl, 1.19 mmol) were added to a solution of (8-benzyl-3-azaspiro[4.5]decan-8-yl)-dimethylamine (polar diastereomer) (162 mg, 0.59 mmol) in methanol (5 ml) and the mixture was stirred for 30 min at room temperature. After addition of glacial acetic acid (600 μl) the mixture was stirred for a further 2 h at room temperature. Thereafter saturated sodium bicarbonate solution (20 ml) was added and the solution was extracted with methylene chloride (3×20 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The crude product was purified by flash chromatography (10 g, 20×1.5 cm) with methylene chloride/methanol (95:5) and 1% ammonia (25% in water).


Example No. 27 (Polar Diastereoisomer)

Yield: 158 mg (93%), colourless oil



1H-NMR (CDCl3): 0.88 (t, 3H, J=7.3 Hz); 1.06-1.16 (m, 2H); 1.22-1.34 (m, 4H); 1.38-1.47 (m, 2H); 1.60 (t, 2H, J=6.9 Hz); 1.64-1.74 (m, 4H); 2.21 (s, 2H); 2.29 (s, 6H); 2.35-2.41 (m, 2H); 2.58 (t, 2H, J=6.9 Hz); 2.62 (s, 2H); 7.10-7.13 (m, 2H); 7.16-7.28 (m, 3H).



13C-NMR (CDCl3): 13.9; 20.7; 30.1; 30.3; 33.0; 36.8; 37.2; 39.7; 40.9; 53.2; 56.7; 57.5; 64.3; 125.6; 127.9; 130.7; 139.3.


LC-MS: m/z: [M+H]+=329.4, Rt=0.9 min.


Example No. 28
1-[8-(Dimethylamino)-8-phenyl-3-azaspiro[4.5]decan-3-yl]-butan-1-one (Example no. 28, non-polar diastereomer)

Triethylamine (193 mg, 264 μl, 1.9 mmol) and butyryl chloride (134 mg, 132 μl, 1.26 mmol) were added to a solution of N,N-dimethyl-8-phenyl-3-azaspiro[4.5]decan-8-amine (non-polar diastereomer) (160 mg, 0.62 mmol) in anhydrous methylene chloride (5 ml) and the mixture was stirred for 20 h at room temperature. After addition of methylene chloride (20 ml) the solution was washed with 25% strength potassium carbonate solution (2×20 ml) and the organic phase was dried with sodium sulfate and concentrated i. vac. The crude product (205 mg) was purified by flash chromatography (10 g, 20×1.5 cm) with methylene chloride/methanol (95:5) and 1% ammonia (25% in water).


Example No. 28 (Non-polar Diastereoisomer)

Yield: 106 mg (50%), colourless oil



1H-NMR (CDCl3): 0.90 and 0.95 (2 t, 3H, J=7.4 Hz); 1.28-1.39 (m, 2H); 1.56-1.70 (m, 4H); 1.80 and 1.89 (2 t, 2H, J=7.1 Hz); 1.96-2.04 (m, 2H); 2.05 (s, 6H); 2.09-2.23 (m, 4H); 3.08 and 3.17 (2 s, 2H); 3.45-3.55 (m, 2H); 7.26-7.41 (m, 5H).



13C-NMR (CDCl3): 13.96; 14.0; 18.4; 30.4; 30.5; 31.10; 31.11; 34.3; 36.3; 36.7; 38.0; 40.3; 42.3; 44.1; 45.2; 56.4; 58.0; 60.7; 126.7; 127.4; 127.5; 127.6; 127.7; 136.5; 171.8.


The NMR spectra show sometimes doubled signal sets (rotamers).


LC-MS: m/z: [M+H]+=329.4, Rt=2.7 min.


Example No. 29
1-[8-(Dimethylamino)-8-phenyl-3-azaspiro[4.5]decan-3-yl]-butan-1-one (Example no. 29, polar diastereomer)

Triethylamine (235 mg, 322 μl, 2.3 mmol) and butyryl chloride (164 mg, 161 μl, 1.5 mmol) were added to a solution of N,N-dimethyl-8-phenyl-3-azaspiro[4.5]decan-8-amine (polar diastereomer) (200 mg, 0.77 mmol) in anhydrous methylene chloride (5 ml) and the mixture was stirred for 4 h at room temperature. After addition of methylene chloride (20 ml) the solution was washed with 25% strength potassium carbonate solution (2×20 ml) and the organic phase was dried with sodium sulfate and concentrated i. vac. The crude product (260 mg) was purified by flash chromatography (10 g, 20×1.5 cm) with methylene chloride/methanol (95:5) and 1% ammonia (25% in water).


Example No. 29 (Polar Diastereoisomer)

Yield: 218 mg (86%), colourless oil



1H-NMR (CDCl3): 0.97 (t, 3H, J=7.4 Hz); 1.23-1.35 (m, 2H); 1.52-1.74 (m, 8H); 2.02 and 2.04 (2 s, 6H); 2.18-2.26 (m, 3H); 2.23-2.41 (br s, 1H); 3.34 and 3.41 (2 s, 2H); 3.39-3.48 (m, 2H); 7.23-7.42 (m, 5H).



13C-NMR (CDCl3): 13.7; 14.0; 18.4; 18.5; 18.9; 30.1; 30.9; 31.2; 31.5; 36.4; 36.9; 37.8; 38.0; 38.1; 40.3; 42.3; 43.9; 45.0; 55.1; 56.4; 60.8; 126.5; 126.7; 127.6; 127.63; 127.67; 127.7; 171.9; 172.0.


The NMR spectra show sometimes doubled signal sets (rotamers).


LC-MS: m/z: [M+H]+=329.4, Rt=2.8 min.


Example No. 30
Step 1: 8-Cyanomethyl-1,4-dioxaspiro[4.5]decane-8-carboxylic acid ethyl ester

A 2.5 M solution of n-buyllithium in n-hexane (11 ml, 27.5 mmol) was added dropwise to a solution of diisopropylamine (2.78 g, 3.92 ml, 27.5 mmol) in tetrahydrofuran (50 ml) in a thoroughly heated flask at −78° C. under argon. The reaction solution was stirred for 15 min at 0° C. and then cooled again to −78° C. and a solution of ethyl 1,4-dioxaspiro[4.5]decane-8-carboxylate (5.36 g, 25 mmol) in tetrahydrofuran (7.5 ml) was added dropwise in the course of 20 min. The resulting mixture was stirred for 1.5 h at −78° C. and a solution of bromoacetonitrile (3.58 g, 1.99 ml, 30 mmol) and 1,3-dimethyl-3,4,5,6-tetrahydro-2-(1H)pyrimidone (DMPU, 1.60 g, 1.5 ml, 12.5 mmol) in tetrahydrofuran (7.5 ml) was then slowly added dropwise. The reaction solution was then warmed to room temperature in the course of approx. 3 h and stirred for a further 20 h at room temperature. Thereafter 0.5 N hydrochloric acid (19 ml) was added to the reaction mixture and the phases were separated. The aqueous phase was extracted with diethyl ether (3×50 ml). The combined organic phases were washed with sodium bicarbonate solution (2×100 ml) and with sodium chloride solution (4×100 ml), dried with sodium sulfate and concentrated i. vac. The crude product (5.5 g) was purified by flash chromatography (250 g, 27×5.4 cm) with ethyl acetate/cyclohexane (1:2).


Yield: 3.60 g (57%), colourless oil



1H-NMR (CDCl3): 1.29 (t, 3H, J=7.1 Hz); 1.62-1.76 (m, 6H); 2.17-2.29 (m, 2H); 2.57 (s, 2H); 3.93 (t, 4H, J=2.2 Hz); 4.23 (q, 2H, J=7.1 Hz).


Step 2: 1,4-Dioxa-10-azadispiro[4.2.4.2]tetradecan-9-one

Sodium borohydride (2.68 g, 71 mmol) was added in portions to a mixture of 8-cyanomethyl-1,4-dioxaspiro[4.5]decane-8-carboxylic acid ethyl ester (3.6 g, 14.2 mmol) and cobalt(II) chloride (922 mg, 7.1 mmol) in tetrahydrofuran (50 ml) and water (25 ml) at 0° C. under argon. The reaction mixture was stirred for 2 d at room temperature. 25% strength ammonia solution (2.5 ml) was then added to the reaction mixture and the mixture formed was filtered. The residue on the filter was washed with tetrahydrofuran/water (2:1). The filtrate was concentrated i. vac. and the aqueous solution was extracted with methylene chloride (3×50 ml). The combined organic extracts were washed with sodium chloride solution, dried with sodium sulfate and concentrated i. vac.


Yield: 2.50 g (83%), white solid which still contained approx. 15% of educt.



1H-NMR (CDCl3): 1.49-1.64 (m, 5H); 1.82-1.91 (m, 2H); 1.96-2.04 (m, 2H); 2.03-2.08 (m, 2H); 3.29-3.34 (m, 2H); 3.95 (s, 4H); 5.51 (br s, 1H).


Step 3: 3-Azaspiro[4.5]decane-4.8-dione

5% strength aqueous sulfuric acid (60 ml) was added to a solution of 1,4-dioxa-10-azadispiro[4.2.4.2]tetradecan-9-one (3.48 g, 16.5 mmol) in acetone (50 ml) and the mixture was stirred for 1 d at room temperature. 1 M potassium carbonate solution (60 ml) was added to the reaction mixture and the mixture was concentrated i. vac. The aqueous solution obtained was extracted with methylene chloride (4×50 ml) and the combined organic phases were washed with saturated sodium chloride solution (50 ml), dried with sodium sulfate and concentrated i. vac.


Yield: 2.72 g (98%), white solid



1H-NMR (CDCl3): 1.73-1.89 (m, 2H); 2.08-2.21 (m, 4H); 2.33 (ddd, 2H, J=5.8, 10.2 and 15.0 Hz); 2.70 (td, 2H, J=6.3 and 14.8 Hz); 3.41 (dt, 2H, J=0.8 and 7.1 Hz); 3.72 (s, 1H).


Step 4: Dimethylamino-1-oxo-2-azaspiro[4.5]decane-8-carbonitrile

4 N hydrochloric acid (1.97 ml, 7.86 mmol) and then a solution of 3-azaspiro[4.5]decane-4.8-dione (1.09 mg, 6.55 mmol) in methanol (12 ml) were added to a 40° A) strength aqueous dimethylamine solution (3.3 ml, 26.2 mmol), cooled to 0° C., and methanol (1.5 ml). Potassium cyanide (853 mg, 13.1 mmol) was added to this mixture and the mixture was stirred for 20 h at room temperature. After addition of water (30 ml) the solution was extracted with diethyl ether (3×30 ml). The combined organic extracts were dried with sodium sulfate and concentrated, as a result of which the product (390 mg) was isolated. The aqueous solution was then subsequently extracted with methylene chloride (3×20 ml). The combined methylene chloride extracts were dried with sodium sulfate and concentrated, as a result of which 820 mg of the product were obtained.


Yield: 1.21 g (83%), white solid



1H-NMR (CDCl3): 1.35-1.67 (m, 3H); 1.76-2.09 (m, 5H); 2.18-2.31 (m, 2H); 2.33 and 2.35 (2s, 6H); 3.28-3.35 (m, 2H); 6.50 and 6.60 (2s, 1H). This is a diastereoisomer mixture in the ratio of approx. 2:1.


Step 5: 8-(Dimethylamino)-8-(5-methylthiophen-2-yl)-3-azaspiro[4.5]decan-4-one (Example no. 42, polar diastereomer)

Magnesium (292 mg, 12 mmol) and an iodine crystal were heated in a secure apparatus under argon until iodine gas evolved. After 10 min absolute diethyl ether (20 ml) and a further iodine crystal were added. The mixture was heated to the boiling point and a solution of 2-bromo-5-methylthiophene (2.12 g, 1.35 ml, 12 mmol) in absolute diethyl ether (20 ml) was then slowly added dropwise such that the solution continued to boil. After the end of the addition the mixture was heated for a further 30 min under reflux and the solution was then cooled to 0° C.


A solution of dimethylamino-1-oxo-2-azaspiro[4.5]decane-8-carbonitrile (1.06 g, 4.8 mmol) in absolute tetrahydrofuran (50 ml) was slowly added dropwise to this ice-cooled solution under argon and the mixture was then stirred overnight at room temperature. After addition of saturated ammonium chloride solution (50 ml) the tetrahydrofuran was removed i. vac. The aqueous solution obtained was extracted with methylene chloride (3×50 ml) and the combined organic phases were washed with saturated sodium chloride solution (50 ml), dried with sodium sulfate and concentrated i. vac. 160 mg of the crude product (1.56 g) were purified, for the purpose of release, by means of flash chromatography (10 g, 20×1.5 cm) with ethyl acetate/methanol (4:1), as a result of which 139 mg of pure target compound were obtained. This is the polar diastereoisomer. The remainder was reacted further as crude product.


Example No. 30 (Polar Diastereoisomer)

Yield: 1.56 g (crude product)


Melting point: 173-176° C.



1H-NMR (CDCl3): 1.27-1.33 (m, 2H); 1.66 (dt, J=12.9, 3.2 Hz, 2H); 2.00 (t, J=6.9 Hz, 2H); 2.11 (s, 6H); 2.18 (dt, J=13.2, 3.1 Hz, 2H); 2.36-2.43 (m, 2H); 2.46 (s, 3H); 3.27-3.31 (m, 2H); 6.21 (br s, 1H); 6.62 (d, J=3.5 Hz, 1H); 6.65-6.67 (m, 1H).



13C-NMR (CDCl3): 15.2; 28.0; 31.8; 32.6; 37.9; 38.7; 43.3; 58.5; 123.6; 124.7; 137.2; 143.1; 182.8.


LC-MS: m/z: [MH-HNMe2]+=248.2, Rt=2.5 min.


Example No. 31
Dimethyl-[8-(5-methylthiophen-2-yl)-3-azaspiro[4.5]decan-8-yl]-amine (Example no. 31, polar diastereomer)

A solution of 8-(dimethylamino)-8-(5-methylthiophen-2-yl)-3-azaspiro[4.5]decan-4-one (polar diastereomer) (1.40 g, 4.8 mmol) in anhydrous tetrahydrofuran (100 ml) was added to a suspension of lithium aluminium hydride (456 mg, 12 mmol) in anhydrous tetrahydrofuran (20 ml) in a thoroughly heated apparatus, while cooling with ice, and the mixture was then stirred at 60° C. overnight. Water (857 μl), 1 N sodium hydroxide solution (2.1 ml) and again water (2.1 ml) were added to the reaction solution, while cooling with ice, and the mixture was stirred for 1 h at room temperature. The mixture was filtered through sea sand and the residue was washed with tetrahydrofuran. The filtrate was dried with sodium sulfate and concentrated i. vac. 160 mg of the crude product (1.18 g) were purified, for the purpose of release, by means of flash chromatography (10 g, 20×1.5 cm) with ethyl acetate methanol (4:1)→methanol+1% ammonia (25% in water), as a result of which 80 mg of the target compound were obtained, which still contained minimal impurities.


Example No. 31 (Polar Diastereoisomer)

Yield: 1.18 g (crude product), yellow viscous oil



1H-NMR (CDCl3): 1.37-1.41 (m, 2H); 1.47 (t, J=7.1 Hz, 2H); 1.57-1.65 (m, 2H); 1.85-1.91 (m, 2H); 2.00-2.16 (m, 2H, overlapped); 2.11 (s, 6H); 2.47 (s, 3H); 2.75 (s, 2H); 2.91 (t, J=7.1 Hz, 2H); 6.62 (d, J=3.5 Hz, 1H); 6.67-6.68 (m, 1H). The NH proton could not be identified.



13C-NMR (CDCl3): 15.3; 32.9; 33.6; 38.2; 42.4; 46.1; 57.9; 59.9; 64.2; 124.3; 124.9; 137.6; 140.8.


LC-MS: m/z: [MH-HNMe2]+=234.2, Rt=0.7 min.


Example No. 32
1-[8-(Dimethylamino)-8-(5-methylthiophen-2-yl)-3-azaspiro[4.5]decan-3-yl]-butan-1-one (Example no. 32, polar diastereomer)

Butyryl chloride (91 mg, 90 μl, 0.86 mmol) was added to a solution of 8-(dimethylamino)-8-(5-methylthiophen-2-yl)-3-azaspiro[4.5]decan-4-one (polar diastereomer) (200 mg, 0.72 mmol) and triethylamine (110 mg, 152 μl, 1.1 mmol) in absolute methylene chloride (10 ml) and the mixture was stirred for 2 h at room temperature. The reaction mixture was then adjusted to pH 9-10 with 1 M potassium carbonate solution and stirred for 15 min. The phases were separated and the aqueous phase was extracted with methylene chloride (3×50 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The residue (230 mg) was purified by flash chromatography on spherical silica gel (PharmPrep 60 CC, 40-63 mm, 10 g, 20×1.5 cm) with ethyl acetate/methanol (4:1).


Example No. 32 (Polar Diastereoisomer)

Yield: 153 mg (63%), colourless viscous oil



1H-NMR (CDCl3): 0.94-0.98 (m, 3H); 1.35-1.46 (m, 2H); 1.58-1.71 (m, 6H); 1.81-1.95 (m, 2H); 2.10 (s, 2H); 2.13 (s, 4H); 2.19 (m, 4H); 2.46 (d, J=1.0 Hz, 1H); 2.47 (d, J=1.0 Hz, 2H); 3.30 (s, 1.3H); 3.36 (s, 0.7H); 3.42-3.49 (m, 2H); 6.61 (d, J=3.5 Hz, 0.3H); 6.62 (d, J=3.5 Hz, 0.7H); 6.66 (dd, J=3.4; 1.1 Hz, 0.3H); 6.69 (dd, J=3.4; 1.1 Hz, 0.7H).



13C-NMR (CDCl3): 14.0; 15.3; 18.3; 18.5; 31.2; 31.3; 32.6; 33.3; 36.3; 36.3; 36.9; 37.3; 38.1; 40.1; 42.0; 43.9; 45.0; 55.2; 56.2; 60.1; 60.4; 124.3, 124.6, 124.9; 125.2; 137.7, 138.0; 171.8; 171.9.


The NMR spectra show sometimes doubled signal sets (rotamers).


LC-MS: m/z: [MH-HNMe2]+=304.3, Rt 3.0 min.


Example No. 33
3-Butyl-8-(dimethylamino)-8-thiophen-2-yl-3-azaspiro[4.5]decan-2-one (Example no. 33, non-polar diastereomer)

A mixture of 8-(dimethylamino)-8-thiophen-2-yl-2-azaspiro[4.5]decan-3-one (non-polar diastereoisomer) (200 mg, 0.72 mmol) and potassium tert-butylate (92 mg, 0.82 mmol) in N,N-dimethylformamide (5 ml) was stirred for 40 min at room temperature, before iodobutane (151 mg, 94 μl, 0.82 mmol) was added and stirring was carried out for a further 18 h at room temperature. The reaction mixture was then diluted with ethyl acetate (50 ml) and washed with water (3×10 ml). The organic phase was dried with sodium sulfate and concentrated i. vac. The crude product (190 mg) was purified by means of flash chromatography (10 g, 20×1.5 cm) with methylene chloride methanol (95:5)+1% ammonia (25% in H2O).


Example No. 33 (Non-Polar Diastereoisomer)

Yield: 130 mg (54%), yellow oil



1H-NMR (CDCl3): 0.89 (t, 3H, J=7.3 Hz); 1.22-1.33 (m, 2H); 1.39-1.50 (m, 4H); 1.70-1.79 (m, 2H); 1.92-2.08 (m, 4H); 2.10 (s, 6H); 2.32 (s, 2H); 3.04 (s, 2H); 3.22 (t, 2H, J=7.3 Hz); 6.84 (dd, 1H, J=1.1, 3.6 Hz); 7.04 (dd, 1H, J=3, 6, 5.1 Hz); 7.24 (dd, 1H, J=1.1, 5.1 Hz).



13C-NMR (CDCl3): 13.7; 20.0; 29.3; 32.7; 32.9; 35.6; 38.1; 42.0; 43.8; 58.6; 59.5; 123.4; 124.9; 126.2; 142.8; 173.5.


LC-MS: m/z: [MH-HNMe2]+=290.3 (100%) and [M+H]+=335.3 (33%), Rt=2.9 min.


Example No. 34
8-(Dimethylamino)-3-methyl-8-thiophen-2-yl-3-azaspiro[4.5]decan-2-one (Example no. 34, non-polar diastereomer)

A mixture of 8-(dimethylamino)-8-thiophen-2-yl-2-azaspiro[4.5]decan-3-one (non-polar diastereoisomer) (200 mg, 0.72 mmol) and potassium tert-butylate (92 mg, 0.82 mmol) in N,N-dimethylformamide (5 ml) was stirred for 40 min at room temperature, before methyl iodide (116 mg, 51 μl, 0.82 mmol) was added and stirring was carried out for a further 5 h at room temperature. Since the reaction was not complete, potassium tert-butylate (40 mg, 0.36 mmol) and methyl iodide (58 mg, 25 μl, 0.41 mmol) were again added and the mixture was stirred for a further 18 h at room temperature. The reaction mixture was then diluted with ethyl acetate (50 ml) and washed with water (3×10 ml). The organic phase was dried with sodium sulfate and concentrated i. vac. The crude product was purified by means of flash chromatography (10 g, 20×1.5 cm) with methylene chloride/methanol (95:5)+1% ammonia (25% in H2O).


Example No. 34 (Non-polar Diastereoisomer)

Yield: 124 mg (59%), white solid


Melting point: 88-94° C.



1H-NMR (CDCl3): 1.40-1.49 (m, 2H); 1.68-1.78 (m, 2H); 1.90-2.07 (m, 4H); 2.08 (s, 6H); 2.29 (s, 2H); 2.77 (s, 3H); 3.04 (s, 2H); 6.82 (dd, 1H, J=0.9, 3.4 Hz); 7.02 (dd, 1H, J=3.6, 5.0 Hz); 7.21 (dd, 1H, J=0.8, 5.1 Hz).



13C-NMR (CDCl3): 29.5; 32.6; 32.9; 35.3; 38.1; 43.4; 59.4; 61.0; 123.4; 124.9; 126.2; 142.7; 173.7.


LC-MS: m/z: [MH-HNMe2]+=248.2 (100%) and [M+H]+=293.3 (50%), Rt=2.2 min.


Example No. 35
[3-Butyl-8-(5-methylthiophen-2-yl)-3-azaspiro[4.5]decan-8-yl]-dimethylamine (Example no. 35, polar diastereomer)

Butyraldehyde (61 mg, 75 μl, 0.84 mmol), acetic acid (650 μl) and sodium cyanoborohydride (184 mg, 2.9 mmol) were added successively to a solution of dimethyl-[8-(5-methylthiophen-2-yl)-3-azaspiro[4.5]decan-8-yl)-amine (polar diastereomer) (180 mg, 0.65 mmol) in absolute methanol (5 ml) and the mixture was stirred for 4 h at room temperature. Saturated potassium bicarbonate solution (30 ml) was then added to the reaction mixture and the mixture was extracted with methylene chloride/2-propanol (4:1) (3×30 ml). The combined organic phases were washed with saturated sodium chloride solution (50 ml), dried with sodium sulfate and concentrated i. vac. The residue (186 mg) was purified by flash chromatography on spherical silica gel (PharmPrep 60 CC, 40-63 mm, 10 g, 20×1.5 cm) with methanol which contained 1% ammonia (25% in H2O).


Example No. 35 (Polar Diastereoisomer)

Yield: 106 mg (49%), colourless viscous oil



1H-NMR (CDCl3): 0.91 (t, J=7.3 Hz, 3H); 1.27-1.52 (m, 8H); 1.62-1.69 (m, 2H); 1.78-1.93 (m, 2H); 2.02-2.05 (m, 2H); 2.11 (s, 6H); 2.34-2.38 (m, 2H); 2.41 (s, 2H); 2.46 (d, J=1.1 Hz, 3H); 2.49 (d, J=6.9 Hz, 2H); 6.61 (d, J=3.5 Hz, 1H); 6.67 (qd, J=3.3, 1.0 Hz, 1H).



13C-NMR (CDCl3): 14.1; 15.3; 20.9; 31.1; 33.6; 34.6; 38.2; 40.8, 54.0; 56.8; 59.8: 65.6; 124.3; 124.9; 137.5.


LC-MS: m/z: [M+H]+=335.2, Rt=1.6 min.


Example No. 41
1-[8-Dimethylamino-8-(5-methylthiophen-2-yl)-2-azaspiro[4.5]dec-2-yl]-2-methoxyethanone

Dimethyl-[8-(5-methylthiophen-2-yl)-3-azaspiro[4.5]decan-8-yl]-amine (Example no. 31) (0.28 g, 1.00 mmol) and triethylamine (0.33 ml, 2.40 mmol) were dissolved in abs. THF (5 ml) under argon, methoxyacetyl chloride (0.11 ml, 0.13 g, 1.20 mmol) was added and the mixture was stirred at room temperature for 1 d. For working up the reaction mixture was concentrated to dryness i. vac., the residue was taken up in methylene chloride and the mixture was washed with saturated NaHCO3 solution (2×25 ml) and water (2×25 ml). The organic phase was dried over Na2SO4, filtered and concentrated i. vac. The residue obtained was purified by means of a PuriFlash 430 and Interchim cartridge 15 μm×25 g with chloroform/methanol (100:0→0:100).


Yield: 120 mg (34%)



1H-NMR (CDCl3): 1.34-1.41 (2 H, m); 1.53-1.68 (4 H, m); 1.94 (2 H, m); 2.10 (2 H, s); 2.17 (6 H, s); 2.44 (3 H, m); 3.27 (1 H, s); 3.36-3.41 (4 H, m); 3.47 (2 H, t); 3.97 (2 H, d); 6.64 (2 H, m).


Step 2: [3-(2-Methoxyethyl)-8-(5-methylthiophen-2-yl)-3-azaspiro[4.5]decan-8-yl]-dimethylamine (Example no. 58, polar diastereomer)

LiAlH4 (26 mg, 0.68 mmol) was added to a solution of 1-[8-dimethylamino-8-(5-methylthiophen-2-yl)-2-azaspiro[4.5]dec-2-yl]-2-methoxyethanone (0.12 g, 0.34 mmol) in abs. THF (5 ml) under argon and the mixture was stirred under reflux for 1 h. For working up the reaction mixture was hydrolysed with a few drops of water at 0° C. The suspension was then subsequently stirred for 1 h. The solution was filtered over a sea sand frit, the sand was rinsed with THF and methylene chloride and the combined solution was concentrated i. vac.


Example No. 41 (Polar Diastereoisomer)

Yield: 62 mg (54%)



1H-NMR (CDCl3): 1.34-1.42 (2 H, m); 1.50 (2 H, t); 1.66 (2 H, m); 1.81 (2 H, bs); 2.05 (1 H, m); 2.09 (6 H, s); 2.45 (5 H, s); 2.54 (2 H, t); 2.60 (2 H, t); 3.33 (3 H, s); 3.46 (2 H, t); 6.60 (1 H, m); 6.65 (1 H, m).


LC-MS: m/z: [M+H]+=337.2, Rt=1.1 min.


Example No. 48
2-Cyclopropyl-1-[8-(dimethylamino)-8-thiophen-2-yl-3-azaspiro[4.5]decan-3-yl]-ethanone (Example no. 48, polar diastereomer)

Carbonyldiimidazole (365 mg, 2.25 mmol) was added to a solution of cyclopropylacetic acid (180 mg, 174 μl, 1.8 mmol) in absolute tetrahydrofuran (20 ml) and the mixture was stirred for 2 h under reflux (evolution of CO2). A solution of dimethyl-(8-thiophen-2-yl-3-azaspiro[4.5]decan-8-yl)-amine (Example no. 18) (397 mg, 1.5 mmol) in tetrahydrofuran (10 ml) was added to the solution and the mixture was stirred for 2 h under reflux. The reaction mixture was then concentrated i. vac., the residue was dissolved in ethyl acetate (30 ml) and the solution was extracted with water (3×20 ml). The organic phase was dried with sodium sulfate and concentrated i. vac. The crude product was purified by means of flash chromatography (18 g, 20×2.0 cm) with methylene chloride/methanol (95:5).


Example No. 48 (Polar Diastereoisomer)

Yield: 280 mg (54%), brown oil



1H-NMR (CDCl3): 0.12-0.19 (2 H, m); 0.55 (2 H, ddd, J=8.1, 5.8 and 4.6 Hz); 1.03-1.14 (1 H, m); 1.34-1.45 (2 H, m); 1.58-1.63 (1.4 H, m); 1.64-1.72 (3 H, m); 1.85-2.03 (2.6 H, m); 2.09 (3 H, s); 2.13 (3 H, br s); 2.17-2.20 (3 H, m); 3.29 (1.2 H, s), 3.38 (0.8 H, s); 3.41 (0.8 H, t, J=7.2 Hz); 3.49 (1.2 H, t, J=7.3 Hz); 6.85 (0.4 H, dd, J=3.6 and 1.1 Hz); 6.86-6.88 (0.6 H, m); 7.03 (0.4 H, dd, J=5.1 and 3.5 Hz); 7.06 (0.6 H, dd, J=5.1 and 3.6 Hz); 7.23 (0.4 H, dd, J=5.1 and 1.1 Hz); 7.24-7.28 (0.6 H, m).



13C-NMR (CDCl3): 4.4; 4.4; 6.8; 6.9; 31.1; 31.2; 32.8; 33.0; 33.3; 35.6; 37.2; 38.0; 38.1; 39.5; 39.9; 40.0; 42.0; 43.9; 45.0; 55.3; 56.4; 60.0; 123.4; 123.8; 124.9; 125.4; 126.1; 126.4; 143.5; 171.4; 171.5.


The NMR spectra show sometimes a doubled signal set (rotamers).


LC-MS: m/z: [MH-HNMe2]+=302.3 (100%) and [M+H]+=347.3 (50% Rt=2.8 min.


Example No. 92
8-(Cyclohexylmethyl)-8-dimethylamino-3-azaspiro[4.5]decan-4-one (Example no. 92, a diastereoisomer)

A 0.5 M solution of cyclohexylmethylmagnesium bromide in tetrahydrofuran (63.2 ml, 31.6 mmol) was added dropwise to a solution of 8-(dimethylamino)-1-oxo-2-azaspiro[4.5]decane-8-carbonitrile (2 g, 9.03 mmol) in anhydrous tetrahydrofuran (75 ml) at 0° C. and the mixture was stirred for 18 h at room temperature. Saturated ammonium chloride solution (90 ml) was then added to the mixture, while cooling with ice. The phases were separated and the aqueous phase was extracted with ethyl acetate (2×25 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The residue (2.4 g) was purified by flash chromatography (200 g, 20×5.7 cm) with methylene chloride/methanol (98:2) and 1% ammonia (25% in water).


Example No. 92 (A Diastereoisomer)

Yield: 1.20 g (46%), white solid


Melting point: 190-193° C.



1H-NMR (CDCl3): 0.88-1.00 (2 H, m); 1.06-1.27 (8 H, m); 1.32 (2 H, dt, J=14.1 and 3.4 Hz); 1.54-1.74 (7 H, m); 2.03 (2 H, t, J=7.0 Hz); 2.08 (2 H, dt, J=13.2 and 3.2 Hz); 2.16 (6 H, s); 3.26-3.31 (2 H, m); 6.04 (1 H, br s).



13C-NMR (CDCl3): 26.2; 26.7; 27.0; 28.9; 32.0; 32.9; 33.5; 36.0; 36.9; 37.7; 38.1; 38.8; 43.8; 56.4; 183.5.


Only one diastereoisomer was isolated.


LC-MS: m/z: [M+H]+=293.2, low UV activity.


Example No. 93
Step 1: (8-Cyclohexylmethyl-2-azaspiro[4.5]dec-8-yl)dimethylamine

A solution of 8-(cyclohexylmethyl)-8-dimethylamino-3-azaspiro[4.5]decan-4-one (Example no. 158, a diastereoisomer) (1.05 g, 3.59 mmol) in anhydrous tetrahydrofuran (40 ml) was added dropwise to a suspension of lithium aluminium hydride (683 mg, 18 mmol) in anhydrous tetrahydrofuran (20 ml), while cooling with ice. The mixture was stirred for 18 h at 50° C. and water (700 μl), 1 N sodium hydroxide solution (1.4 ml) and again water (1.4 ml) were then added dropwise, while cooling with ice. The suspension was stirred for 1 h at room temperature and thereafter filtered through sodium sulfate. The residue on the filter was washed with tetrahydrofuran and the filtrate was concentrated i. vac.


Yield: 884 mg (99%), colourless oil



1H-NMR (CDCl3): 0.89-1.01 (2 H, m); 1.06-1.45 (9 H, m); 1.50-1.74 (10 H, m); 1.80-1.90 (2 H, m); 2.17 (6 H, s); 2.64 (2 H, s); 2.94 (2 H, t, J=7.1 Hz). The NH proton could not be identified.


Step 2: 1-[8-(Cyclohexylmethyl)-8-dimethylamino-3-azaspiro[4.5]decan-3-yl]-butan-1-one (Example no. 159, a diastereomer)

Butyryl chloride (193 mg, 190 μl, 1.80 mmol) was added to a solution of (8-cyclohexylmethyl-2-azaspiro[4.5]dec-8-yl)dimethylamine (420 mg, 1.5 mmol) and triethylamine (230 mg, 315 μl, 2.26 mmol) in anhydrous methylene chloride (15 ml) and the mixture was stirred overnight at room temperature. 25% strength potassium carbonate solution (15 ml) was then added to the mixture and the mixture was stirred for 15 min at room temperature. The phases were separated and the aqueous phase was extracted with methylene chloride (3×5 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The residue (515 mg) was purified by flash chromatography (38 g, 20×2.8 cm) with methylene chloride/methanol (95:5) and 1% ammonia (25% in water).


Example No. 93 (A Diastereoisomer)

Yield: 448 mg (85%), colourless oil



1H-NMR (CDCl3): 0.88-1.01 (5 H, m); 1.05-1.46 (10 H, m); 1.52-1.91 (13 H, m); 2.157 and 2.164 (6 H, 2 s); 2.12-2.25 (2 H, m); 3.17 (1.2 H, s); 3.25 (0.8 H, s); 3.46 (0.8 H, t, J=7.1 Hz); (1.2 H, t, J=7.2 Hz).



13C-NMR (CDCl3): 14.0; 18.4; 18.5; 26.2; 26.5; 28.7; 29.2; 29.8; 30.3; 33.1; 33.2; 35.9; 36.1; 36.2; 36.8; 37.1; 37.7; 37.9; 40.3; 42.0; 44.3; 45.2; 57.1; 57.2; 59.5; 171.77; 171.84.


The NMR spectra show sometimes doubled signal sets (rotamers).


LC-MS: m/z: [M+H]+=349.3, low UV activity.


Example No. 9
Step 1: 8-Cyclopentylmethyl-8-dimethylamino-2-azaspiro[4.5]decan-1-one

A solution of 8-(dimethylamino)-1-oxo-2-azaspiro[4.5]decane-8-carbonitrile (1.96 g, 8.8 mmol) in anhydrous tetrahydrofuran (40 ml) was added dropwise to a solution of cyclopentylmethylmagnesium iodide (approx. 32 mmol) under an argon atmosphere at 0° C. The reaction mixture was stirred for 18 h at room temperature and saturated ammonium chloride solution (80 ml) was then added, while cooling with ice. The phases were separated and the aqueous phase was extracted with ethyl acetate (2×30 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The residue (1.88 g) was purified by flash chromatography (100 g, 20×4.0 cm) with methylene chloride/methanol (95:5) and 1% ammonia (25% in water).


Yield: 519 mg (21%), white solid



1H-NMR (CDCl3): 0.98-1.10 (2 H, m); 1.10-1.17 (2 H, m); 1.30-1.40 (4 H, m); 1.42-1.84 (9 H, m); 2.01 (2 H, t, J=6.9 Hz); 2.17 (6 H, s); 3.28 (2 H, dd, J=13.9 and 0.8 Hz); 6.51 (1 H, s).



13C-NMR (CDCl3): 25.2; 27.2; 29.1; 32.2; 35.3; 36.1; 36.9; 38.9; 43.8; 56.2; 183.3.


Step 2: (8-Cyclopentylmethyl-2-azaspiro[4.5]dec-8-yl)dimethylamine

A solution of 8-cyclopentylmethyl-8-dimethylamino-2-azaspiro[4.5]decan-1-one (539 mg, 1.93 mmol) in anhydrous tetrahydrofuran (20 ml) was added dropwise to a suspension of lithium aluminium hydride (368 mg, 9.7 mmol) in anhydrous tetrahydrofuran (10 ml), while cooling with ice. The mixture was stirred for 18 h at 50° C. and thereafter water (377 μl), 1 N sodium hydroxide solution (754 μl) and again water (754 μl) were added dropwise, while cooling with ice. The suspension was stirred for 1 h at room temperature and then filtered through sodium sulfate, the residue on the filter was washed with tetrahydrofuran and the filtrate was concentrated i. vac.


Yield: 463 mg (90%), colourless oil



1H-NMR (CDCl3): 1.00-1.12 (2 H, m); 1.17-1.27 (2 H, m); 1.31-1.95 (17 H, m); 2.18 (6 H, s); 2.64 (2 H, s); 2.93 (2 H, t, J=7.0 Hz). The NH signal could not be identified.



13C-NMR (CDCl3): 25.0; 29.8; 31.8; 35.1; 36.0; 36.7; 37.2; 37.4; 42.6; 46.6; 56.9; 60.7.


Step 3
[3-Butyl-8-(cyclopentylmethyl)-3-azaspiro[4.5]decan-8-yl]-dimethylamine (Example no. 164, a diastereomer)

Butyryl chloride (114 mg, 112 μl, 1.07 mmol) was added to a solution of (8-cyclopentylmethyl-2-azaspiro[4.5]dec-8-yl)dimethylamine (237 mg, 0.89 mmol) and triethylamine (136 mg, 187 μl, 1.34 mmol) in anhydrous methylene chloride (10 ml) and the mixture was stirred for 18 h at room temperature. 25% strength potassium carbonate solution (9 ml) was added to the mixture and the mixture was stirred for 15 min at room temperature. The phases were separated and the aqueous phase was extracted with methylene chloride (2×15 ml). The combined organic phases were dried with sodium sulfate and concentrated vac. The residue (307 mg) was purified by flash chromatography (18 g, 20×2.0 cm) with methylene chloride/methanol (95:5) and 1% ammonia (25% in water).


Example No. 95 (A Diastereoisomer)

Yield: 206 mg (68%), colourless oil



1H-NMR (CDCl3): 0.94 (1.5 H, t, J=7.4 Hz); 0.95 (1.5 H, t, J=7.4 Hz); 1.00-1.14 (2 H, m); 1.20-1.30 (2 H, m); 1.32-1.84 (20 H, m); 2.10-2.24 (7 H, m); 3.17 (1 H, s); 3.25 (1 H, s); 3.45 (1 H, t, J=7.2 Hz); 3.50 (1 H, t, J=7.2 Hz).



13C-NMR (CDCl3): 14.0; 18.4; 25.1; 28.8; 29.5; 29.8; 30.2; 33.0; 35.0; 35.1; 35.2; 35.5; 35.7; 36.1; 36.2; 36.5; 36.8; 36.9; 37.0; 37.2; 40.3; 42.2; 44.3; 45.3; 56.7; 56.8; 57.1; 59.5; 171.76; 171.84.


The NMR spectra show sometimes doubled signal sets (rotamers).


LC-MS: m/z: [M+H]+=335.3, low UV activity.


Example No. 106 and Example No. 107
Step 1: 10-Butyl-1,4-dioxa-10-azadispiro[4.2.4.2]tetradecan-9-one

Potassium tert-butylate (3.19 g, 28.4 mmol) was added to a solution of substance D (equation 1) (5.0 g, 23.7 mmol) in N,N-dimethylformamide (40 ml), whereupon a precipitate precipitated out, and the mixture was then stirred for 30 min at room temperature. n-Butyl iodide (5.23 g, 3.23 ml, 28.4 mmol) was then added to the suspension and the mixture was stirred for 18 h at room temperature. The reaction mixture was then concentrated i. vac., the residue was taken up in ethyl acetate (100 ml) and the solution was washed with water (3×40 ml). The organic phase was dried with sodium sulfate and concentrated i. vac.


Yield: 5.30 g (84%), yellow oil



1H-NMR (CDCl3): 0.91 (3 H, t, J=7.3 Hz); 1.22-1.34 (2 H, m); 1.42-1.50 (4 H, m); 1.53-1.62 (2 H, m); 1.81-1.88 (2 H, m); 1.91 (2 H, t, J=6.9 Hz); 1.93-2.02 (2 H, m); 3.26 (4 H, t, J=7.0 Hz); 3.92-3.95 (4 H, m).


LC-MS: m/z: [M+H]+=268.3, Rt=3.3 min.


Step 2: 10-Butyl-1,4-dioxa-10-azadispiro[4.2.4.2]tetradecane

A solution of 10-butyl-1,4-dioxa-10-azadispiro[4.2.4.2]tetradecan-9-one (5.22 g, 19.5 mmol) in absolute tetrahydrofuran (40 ml) was added to a suspension of lithium aluminium hydride (2.95 g, 77.8 mmol) in absolute tetrahydrofuran (20 ml), while cooling with ice, and the mixture was stirred for 66 h at 50° C. Water (2.95 ml), 15% strength sodium hydroxide solution (2.95 ml) and again water (8.85 ml) were then cautiously added to the mixture, while cooling with ice, and the mixture was stirred for 1 h at room temperature. The suspension was filtered through sea sand and the residue was washed with tetrahydrofuran. The filtrate was dried with sodium sulfate and concentrated i. vac.


Yield: 4.83 g (98%), colourless oil



1H-NMR (CDCl3): 0.90 (3 H, t, J=7.3 Hz); 1.26-1.36 (2 H, m); 1.40-1.49 (2 H, m); 1.55-1.66 (10 H, m); 2.33-2.38 (4 H, m); 2.53 (2 H, t, J=6.9 Hz); 3.92 (4 H, s).


LC-MS: m/z: [M+H]+=254.4, Rt=2.0 min.


Step 3: 2-Butyl-2-azaspiro[4.5]decan-8-one

A solution of 10-butyl-1,4-dioxa-10-azadispiro[4.2.4.2]tetradecane (4.83 g, 19.1 mmol) in 5% strength sulfuric acid (50 ml) was stirred for 18 h at room temperature. The reaction solution was then washed with diethyl ether (3×20 ml) in order to remove neutral substances present. The aqueous phase was then rendered alkaline (pH ˜9) with 4 N sodium hydroxide solution and extracted with methylene chloride (4×30 ml). The combined organic phases of the alkaline extraction were dried with sodium sulfate and concentrated i. vac.


Yield: 3.54 g (89%), yellow oil



1H-NMR (CDCl3): 0.92 (3 H, t, J=6.9 Hz); 1.34 (2 H, qd, J=14.3 and 7.2 Hz); 1.43-1.52 (2 H, m); 1.76 (2 H, t, J=6.9 Hz); 1.87 (2 H, t, J=6.8 Hz); 2.31-2.38 (4 H, m); 2.39-2.44 (2 H, m); 2.49 (2 H, s); 2.62 (2 H, t, J=6.9 Hz).


Step 4: 2-Butyl-8-dimethylamino-2-azaspiro[4.5]decane-8-carbonitrile

4 N hydrochloric acid (4.23 ml) and then a solution of the crude product of 2-butyl-2-azaspiro[4.5]decan-8-one (3.54 g, 16.9 mmol) in methanol (20 ml) were added to a 40% strength aqueous dimethylamine solution (10.4 ml, 75.3 mmol), cooled to 0° C., and methanol (4.7 ml). Potassium cyanide (2.67 g, 40 mmol) was added to the mixture and the mixture was stirred for 18 h at room temperature. Water (75 ml) was then added to the reaction solution and the mixture was extracted with methylene chloride (6×15 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac.


Yield: 4.27 g (96%), yellow oil


This is a diastereoisomer mixture.



1H-NMR (CDCl3): All the characteristic signals are present.


Step 5: [2-Butyl-8-(iminophenylmethyl)-2-azaspiro[4.5]dec-8-yl]-dimethylamine

A 1.8 M phenyllithium solution in di-n-butyl ether (4.2 ml, 7.6 mmol) was added dropwise to a solution of 2-butyl-8-dimethylamino-2-azaspiro[4.5]decane-8-carbonitrile (1.0 g, 3.8 mmol) in absolute tetrahydrofuran (40 ml) at 0° C. under argon and the mixture was then stirred for 3 h at room temperature. Water (10 ml) and sodium chloride solution (10 ml) were then added, the phases were separated and the aqueous phase was extracted with methylene chloride (3×20 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac.


Yield: 1.59 g (>100%, crude product)


The crude product was reacted further without prior purification.



1H-NMR (DMSO-d6): All the characteristic signals are present (two diastereoisomers).


LC-MS: m/z: [M+H]+=342.3, Rt=0.6 min.


Step 6: [3-Butyl-8-(dimethylamino)-3-azaspiro[4.5]decan-8-yl]-phenylmethanone (Example no. 180, polar diastereomer and Example no. 181, non-polar diastereomer)

A solution of the crude product of [2-butyl-8-(iminophenylmethyl)-2-azaspiro[4.5]dec-8-yl]-dimethylamine (1.57 g, max. 3.8 mmol) in tetrahydrofuran/water (1:1, ˜20 ml) was acidified with formic acid (5 ml) and stirred for 18 h at room temperature. The tetrahydrofuran was then concentrated i. vac. and the aqueous residue was extracted with ethyl acetate (3×10 ml). The combined acid, aqueous extracts were rendered alkaline with 1 N sodium hydroxide solution and extracted with methylene chloride (3×20 ml). The combined organic extracts of the alkaline extraction were dried with sodium sulfate and concentrated i. vac. The crude product was purified by means of flash chromatography (100 g, 20×4.0 cm) with chloroform/methanol (95:5) and 1% acetic acid. In order to obtain the free bases of the particular product batches, the fractions were in each case concentrated i. vac., the residues were taken up in 1 M potassium carbonate solution and the suspensions were extracted with methylene chloride (3×10 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac.


Example No. 106 (Polar Diastereoisomer)

Yield: 250 mg (19%), yellow oil



1H-NMR (CDCl3): 0.88 (3 H, t, J=7.3 Hz); 1.24-1.37 (4 H, m); 1.39-1.54 (4 H, m); 1.62-1.71 (4 H, m); 2.03-2.09 (2 H, m); 2.26 (2 H, s); 2.31 (6 H, s); 2.32-2.37 (2 H, m); 2.57 (2 H, t, J=6.8 Hz); 7.33-7.39 (2 H, m); 7.43-7.49 (1 H, m); 8.21-8.25 (2 H, m).


LC-MS: m/z: [M+H]+=343.4, Rt=2.2 min.


Example No. 107 (Non-Polar Diastereoisomer)

Yield: 170 mg (13%), yellow oil



1H-NMR (CDCl3): 0.92 (3 H, t, J=7.3 Hz); 1.27-1.38 (4 H, m); 1.46-1.65 (8 H, m); 2.06-2.12 (2 H, m); 2.32 (6 H, s); 2.47-2.52 (2 H, m); 2.55 (s, 2 H); 2.63 (2 H, t, J=6.8 Hz); 7.34-7.39 (2 H, m); 7.44-7.49 (1 H, m); 8.20-8.24 (2 H, m).


LC-MS: m/z: [M+H]+=343.4, Rt=2.2 min.


Example No. 117
8-(5-Chlorothiophen-2-yl)-8-dimethylamino-3-azaspiro[4.5]decan-4-one (Example no. 117, a diastereomer)

A suspension of 8-(dimethylamino)-1-oxo-2-azaspiro[4.5]decane-8-carbonitrile (1.76 g, 7.9 mmol) in absolute tetrahydrofuran (75 ml) was slowly added dropwise to a 0.5 M suspension of 5-chloro-2-thienylmagnesium bromide (5.29 g, 48 ml, 23.9 mmol) in tetrahydrofuran under argon, a clear solution being formed. The solution was then stirred overnight at 50° C. After addition of saturated ammonium chloride solution (100 ml) the tetrahydrofuran was removed i. vac. The aqueous solution obtained was extracted with methylene chloride (3×50 ml) and the combined organic phases were washed with saturated sodium chloride solution (50 ml), dried with sodium sulfate and concentrated i. vac. The crude product (2.45 g) was purified by means of flash chromatography (100 g, 20×4.0 cm) with ethyl acetate/methanol (97:3).


Example No. 117 (A Diastereoisomer)

Yield: 1.47 g (59%), yellow solid.


Melting point: 198-201° C.



1H-NMR (CDCl3): 1.28-1.34 (2 H, m); 1.61-1.68 (2 H, m); 2.01 (2 H, t, J=6.9 Hz); 2.12 (6 H, s); 2.17 (2 H, dt, J=13.1 and 3.1 Hz), 2.32-2.40 (2 H, m); 3.28-3.32 (2 H, m); 5.90 (1 H, br s); 6.60 (1 H, d, J=3.8 Hz); 6.83 (1 H, d, J=3.8 Hz).



13C-NMR (CDCl3): 27.9; 31.5; 32.7; 37.9; 38.7; 43.1; 58.9; 123.1; 125.2, 127.4; 144.4; 182.4.


LC-MS: m/z: [MH-HNMe2]+=268.2, Rt=2.6 min.


Example No. 152
8-(Dimethylamino)-8-(5-methylthiophen-2-yl)-3-azaspiro[4.5]decan-2-one (Example no 152, polar diastereomer)

Trifluoroacetic acid (5 ml) was added to a solution of 8-(dimethylamino)-8-(5-methylthiophen-2-yl)-2-oxo-3-azaspiro[4.5]decane-3-carboxylic acid tert-butyl ester (polar diastereoisomer) (900 mg, 2.3 mmol) in anhydrous methylene chloride (50 ml) and the mixture was stirred for 3 h at room temperature. The reaction mixture was concentrated i. vac., methylene chloride (30 ml) was added to the residue and the mixture was washed with saturated sodium bicarbonate solution (3×20 ml). The organic phase was dried with sodium sulfate and concentrated i. vac. The crude product (622 mg) was purified by flash chromatography (18 g, 20×2.0 cm) with methylene chloride/methanol (14:1) and 0.5% ammonia (25% in water).


Example No. 152 ( Polar Diastereoisomer)

Yield: 502 mg (75%), white solid


Melting point: 198-201° C.



1H-NMR (CDCl3): 1.46-1.54 (2 H, m); 1.72-1.80 (2 H, m); 1.85-2.10 (4 H, m); 2.11 (6 H, s); 2.25 (2 H, s); 2.45 (3 H, d, J=1.0 Hz); 3.07 (2 H, s); 5.72 (1 H, br s); 6.61 (1 H, d, J=3.5 Hz); 6.66-6.69 (1 H, m).



13C-NMR (CDCl3): 15.2; 32.6; 32.8; 38.2; 38.9; 42.3; 53.7; 59.7; 124.5; 125.0; 137.9; 177.4.


LC-MS: m/z: [MH-HNMe2]+=248.3 (100%) and [M+H]+=293.3 (10%), Rt=2.2 min.


Example No. 153
8-(Dimethylamino)-8-(5-methylthiophen-2-yl)-3-azaspiro[4.5]decan-2-one (Example no. 153, non-polar diastereomer)

Trifluoroacetic acid (5 ml) was added to a solution of 8-(dimethylamino)-8-(5-methylthiophen-2-yl)-2-oxo-3-azaspiro[4.5]decane-3-carboxylic acid tert-butyl ester (Example no. 251, non-polar diastereoisomer) (820 mg, 2.09 mmol) in anhydrous methylene chloride (50 ml) and the mixture was stirred for 3 h at room temperature. The reaction mixture was concentrated i. vac., methylene chloride (30 ml) was added to the residue and the mixture was washed with saturated sodium bicarbonate solution (3×20 ml). The organic phase was dried with sodium sulfate and concentrated I. vac. The crude product (530 mg) was purified by flash chromatography (18 g, 20×2.0 cm) with methylene chloride/methanol (95:5) and 1% ammonia (25% in water).


Example No. 153 (Non-polar Diastereoisomer)

Yield: 425 mg (70%), white solid



1H-NMR (CDCl3): 1.46-1.56 (2 H, m); 1.74-1.84 (2 H, m); 1.86-2.09 (4 H, m); 2.11 (6 H, s); 2.115 (2 H, s); 2.47 (3H, d, J=1.1 Hz); 3.22 (2 H, s); 5.78 (1 H, br s); 6.61 (1 H, d, J=3.5 Hz); 6.67-6.69 (1 H, m).



13C-NMR (CDCl3): 15.2; 32.6; 38.1; 38.8; 43.2; 52.7; 59.4; 124.5; 124.9; 137.9; 140.0; 177.4.


LC-MS: m/z: [M+H]+=293.3, Rt=2.2 min.


Example No. 162
Step 1: 8-Dimethylamino-8-phenyl-2-azaspiro[4.5]decan-3-one

A suspension of 8-dimethylamino-3-oxo-2-azaspiro[4.5]decane-8-carbonitrile (536 mg, 2.4 mmol) in anhydrous tetrahydrofuran (30 ml) was added dropwise to a 2 M solution of phenylmagnesium chloride in tetrahydrofuran (3 ml, 6 mmol), cooled to 0° C., under argon and the mixture was then stirred for 18 h at room temperature. After addition of saturated ammonium chloride solution (15 ml) the phases were separated and the aqueous phase was extracted with ethyl acetate (3×30 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac.


Yield: 601 mg (92 white solid (crude product)


Diastereoisomer mixture: Polar:non-polar ratio=1:2.


The diastereoisomer ratio was determined with the aid of the singlets of the HN—CH2 group at 3.27 (polar diastereoisomer) and 3.02 ppm (non-polar diastereoisomer) in the 1H-NMR spectrum.


Step 2: 8-Dimethylamino-3-oxo-8-phenyl-2-azaspiro[4.5]decan-2-carboxylic acid tert-butyl ester

A solution of di-tert-butyl dicarbonate (4.05 g, 18.6 mmol) in anhydrous tetrahydrofuran (30 ml) and 4-dimethylaminopyridine (206 mg, 1.69 mmol) was added to a solution of 8-dimethylamino-8-phenyl-2-azaspiro[4.5]decan-3-one (4.60 g, 16.9 mmol) in anhydrous acetonitrile (300 ml) and anhydrous tetrahydrofuran (100 ml) and the mixture was stirred for 3 d at room temperature. Since the reaction was not complete, a solution of di-tert-butyl dicarbonate (2.00 g, 9 mmol) in anhydrous acetonitrile (10 ml) was again added and the mixture was stirred for 3 h at 50° C. and for 18 h at room temperature. The solvent was then removed i. vac., the residue was dissolved in methylene chloride (100 ml) and the solution was washed with water (3×50 ml) and saturated sodium chloride solution (50 ml). The organic phase was dried with sodium sulfate and concentrated i. vac. The crude product (7.00 g) was purified by flash chromatography (400 g, 20×7.5 cm) with ethyl acetate/methanol (9:1).


Non-Polar Diastereoisomer


Yield: 1.40 g (22%), white solid


Melting point: 174-176° C.



1H-NMR (CDCl3): 1.34-1.42 (2 H, m); 1.53 (9 H, s); 1.72-1.82 (2 H, m); 1.96-2.03 (2 H, m); 2.04 (6 H, s); 2.10-2.24 (2 H, m); 2.25 (2 H, s); 3.61 (2 H, s); 7.26-7.31 (3 H, m); 7.36-7.41 (2 H, m).



13C-NMR (CDCl3): 28.1; 30.0; 32.2; 34.3; 38.0; 45.8; 56.6; 60.1; 82.8; 126.8; 127.4; 127.8; 150.1; 173.4.


LC-MS: m/z: [M+H]+=373.4, Rt=2.6 min.


Polar Diastereoisomer


Yield: 1.26 g (20%), white solid


Melting point: 176-181° C.



1H-NMR (CDCl3): 1.34-1.44 (2 H, m); 1.48 (9 H, s); 1.68-1.77 (2 H, m); 1.90-2.03 (2 H, m); 2.04 (6 H, s); 2.15-2.30 (2 H, m); 2.48 (2 H, s); 3.36 (2 H, s); 7.28-7.32 (3 H, m); 7.36-7.42 (2 H, m).



13C-NMR (CDCl3): 28.0; 29.8; 32.3; 34.5; 38.0; 44.9; 57.6; 60.3; 60.5; 82.7; 126.8; 127.5; 127.8; 136.2; 150.1; 173.4.


LC-MS: m/z: [M+H]+=373.4, Rt=3.0 min.


Step 3: 8-Dimethylamino-8-phenyl-2-azaspiro[4.5]decan-3-one (non-polar diastereomer)

Trifluoroacetic acid (5 ml) was added to a solution of 8-dimethylamino-3-oxo-8-phenyl-2-azaspiro[4.5]decane-2-carboxylic acid tert-butyl ester (non-polar diastereoisomer) (1.46 g, 3.9 mmol) in anhydrous methylene chloride (50 ml) and the mixture was stirred for 3 h at room temperature. The reaction mixture was concentrated i. vac., the residue was dissolved in methylene chloride (50 ml) and the solution was washed with saturated sodium bicarbonate solution (3×20 ml). The organic phase was dried with sodium sulfate and concentrated i. vac.


Yield: 1.03 g (96%), white solid


Melting point: >260° C.



1H-NMR (CDCl3): 1.37-1.46 (2 H, m); 1.76-1.84 (2 H, m); 1.90-2.02 (2 H, br s); 2.04 (6 H, s); 2.06 (2 H, s); 2.15-2.27 (2 H, br s); 3.27 (2 H, s); 5.60 (1 H, s); 7.26-7.32 (3 H, m); 7.36-7.42 (2 H, m).


Step 4: 8-(Dimethylamino)-3-methyl-8-phenyl-3-azaspiro[4.5]decan-2-on (Example no. 162, non-polar diastereomer)

Potassium tert-butylate (74 mg, 0.66 mmol) was added to a suspension of 8-dimethylamino-8-phenyl-2-azaspiro[4.5]decan-3-one (non-polar diastereomer) (150 mg, 0.55 mmol) in anhydrous tetrahydrofuran (20 ml) and anhydrous N,N-dimethylformamide (3 ml) and the mixture was stirred for 30 min at room temperature. Methyl iodide (94 mg, 41 μl, 0.66 mmol) was then added and the mixture was stirred for 5 h at room temperature. The solution was then concentrated i. vac. After addition of ethyl acetate (50 ml) the mixture was washed with water (3×20 ml). The organic phase was then extracted with 5% strength formic acid (3×20 ml). The combined aqueous, acid phases were adjusted to pH 10 with 5 N sodium hydroxide solution and extracted with ethyl acetate (3×20 ml). The combined organic phases were dried with sodium sulfate and concentrated vac.


Example No. 162 (Non-polar Diastereoisomer)

Yield: 120 mg (76%), white solid


Melting point: 145-148° C.



1H-NMR (CDCl3): 1.33-1.42 (2 M, m); 1.70-1.78 (2 H, m); 1.85-2.02 (2 H, m); 2.03 (6 H, s); 2.12 (2 H, s); 2.13-2.25 (2 H, m); 2.83 (3 H, s); 3.34 (2 H, s); 7.24-7.31 (3 H, m); 7.35-7.41 (2 H, m).



13C-NMR (CDCl3): 29.7; 30.2; 33.1; 35.5; 38.0; 44.2; 60.1; 60.5; 126.7; 127.4; 127.7; 173.8. LC-MS: m/z: [M+H]+=287.4, Rt=1.3 min.


Example No. 186
Step 1: 2-[3-(tert-Butyldimethylsilanyloxy)-3-methylbutyl]-8-dimethylamino-8-phenyl-2-azaspiro[4.5]decan-3-one

A suspension of powdered sodium hydroxide dried i vac. (106 mg, 2.64 mmol) in absolute dimethylsulfoxide (5 ml) was stirred for 40 min at room temperature. 8-Dimethylamino-8-phenyl-2-azaspiro[4.5]decan-3-one (Example no. 152, step 3, non-polar diastereomer) (180 mg, 0.66 mmol) was then added to this, before a solution of 3-(tert-butyldimethylsilyloxy)-3-methylbutyl 4-methylbenzenesulfonate (272 mg, 0.73 mmol) in dimethylsulfoxide (2 ml) was added, and the mixture was stirred for 2 h at room temperature. A solution of 3-(tert-butyldimethylsilyloxy)-3-methylbutyl 4-methylbenzenesulfonate (136 mg, 0.37 mmol) in dimethylsulfoxide (2 ml) was then again added and the mixture was stirred for 18 h at room temperature. Water (100 ml) was then added to the mixture and the mixture was extracted with ethyl acetate (4×20 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The residue was repeatedly taken up in toluene (3×10 ml) and the mixture was each time concentrated again i. vac.


The crude product (420 mg, >100%) was reacted further without prior purification.


Step 2: 8-Dimethylamino-2-(3-hydroxy-3-methylbutyl)-8-phenyl-2-azaspiro[4.5]decan-3-one (Example no. 186, non-polar diastereomer)

2 N hydrochloric acid (7.5 ml) was added to a solution of the crude product of 2-[3-(tert-butyldimethylsilanyloxy)-3-methylbutyl]-8-dimethylamino-8-phenyl-2-azaspiro[4.5]decan-3-one (non-polar diastereomer) (420 mg, max. 0.66 mmol) in methanol (20 ml) and the mixture was stirred for 2 h at room temperature. The reaction mixture was rendered alkaline with 1 M potassium carbonate solution and the methanol was removed i. vac. The aqueous residue was extracted with methylene chloride (3×20 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The crude product was purified by means of flash chromatography (18 g, 20×2.0 cm) with methylene chloride/methanol (4:1).


Example No. 186 (Non-polar Diastereoisomer)

Yield: 105 mg (44%), white solid


Melting point: 114-119° C.



1H-NMR (CDCl3): 1.25 (6 H, s); 1.30-1.41 (2 H, m); 1.63-1.68 (2 H, m); 1.69-1.79 (2 H, m); 1.91-2.03 (2 H, m); 2.02 (6 H, s); 2.12 (2 H, s); 2.13-2.24 (4 H, m); 2.28-2.45 (1 H, br s); 3.27 (2 H, s); 3.37-3.42 (2 H, m); 7.25-7.30 (3 H, m); 7.35-7.40 (2 H, m).



13C-NMR (CDCl3): 29.6; 30.2; 32.8; 35.8; 38.0; 38.8; 40.1; 44.5; 58.3; 60.1; 69.5; 126.7; 127.4; 127.7; 136.4; 174.0.


LC-MS: m/z: [MH-HNMe2]+=314.3 (82%) and [M+H]+=359.3 (100%), Rt=2.3 min.


Example No. 187
Step 1: 2-[3-(tert-Butyldimethylsilanyloxy)-3-methylbutyl]-8-dimethylamino-8-phenyl-2-azaspiro[4.5]decan-3-one

A suspension of powdered sodium hydroxide dried i. vac. (106 mg, 2.64 mmol) in absolute dimethylsulfoxide (5 ml) was stirred for 40 min at room temperature. 8-Dimethylamino-8-phenyl-2-azaspiro[4.5]decan-3-one (180 mg, 0.66 mmol) was then added to this and a solution of 3-(tert-butyldimethylsilyloxy)-3-methylbutyl 4-methylbenzenesulfonate (272 mg, 0.73 mmol) in dimethylsulfoxide (2 ml) was added. After 2 h at room temperature a solution of 3-(tert-butyldimethylsilyloxy)-3-methylbutyl 4-methylbenzenesulfonate (136 mg, 0.37 mmol) in dimethylsulfoxide (2 ml) was again added and the mixture was stirred for 18 h at room temperature. Water (100 ml) was then added to the mixture and the mixture was extracted with ethyl acetate (4×20 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The residue was repeatedly taken up in toluene (3×10 ml) and the mixture was each time concentrated again i. vac.


The crude product (450 mg, >100%) was reacted further without prior purification.


Step 2: 8-Dimethylamino-2-(3-hydroxy-3-methylbutyl)-8-phenyl-2-azaspiro[4.5]decan-3-one (Example no. 187, polar diastereomer)

2 N hydrochloric acid (7.5 ml) was added to a solution of the crude product of 2-[3-(tert-butyldimethylsilanyloxy)-3-methylbutyl]-8-dimethylamino-8-phenyl-2-azaspiro[4.5]decan-3-one (polar diastereomer) (450 mg, max. 0.66 mmol) in methanol (20 ml) and the mixture was stirred for 2 h at room temperature. The reaction mixture was then rendered alkaline with 1 M potassium carbonate solution and the methanol was removed i. vac. The aqueous residue was extracted with methylene chloride (3×20 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The crude product was purified by means of flash chromatography (18 g, 20×2.0 cm) with methylene chloride/methanol (4:1). The product batch (150 mg) obtained by this procedure contained 3-methyl-1,3-butanediol as an impurity and was purified again by means of flash chromatography (10 g, 20×1.5 cm) with methylene chloride/methanol (9:1).


Example No. 187 (Polar Diastereoisomer)

Yield: 120 mg (51%), colourless oil



1H-NMR (CDCl3): 1.21 (6 H, s); 1.32-1.40 (2 H, m); 1.56-1.61 (2 H, m); 1.67-1.74 (2 H, m); 1.88-2.00 (2 H, m); 2.02 (6 H, s); 2.15-2.29 (2 H, m); 2.34 (2 H, s); 3.02 (2 H, s); 3.31-3.36 (2 H, m); 7.24-7.30 (3 H, m); 7.35-7.40 (2 H, m).



13C-NMR (CDCl3): 29.5; 30.0; 33.0; 35.9; 38.0; 38.6; 40.0; 43.6; 59.2; 60.7; 69.5; 126.7; 127.6; 127.8; 136.2; 174.0.


LC-MS: m/z: [MH-HNMe2]+=314.3 (100%) and [M+H]+=359.4 (55%), Rt=2.6 min.


Example No. 213
Step 1: 3-(8-Dimethylamino-8-thiophen-2-yl-2-azaspiro[4.5]dec-2-yl)propionic acid methyl ester

Methyl acetate (2.00 g, 2.16 ml, 24 mmol) was added to a solution of Example no. 21 (320 mg, 1.2 mmol) in anhydrous tetrahydrofuran (10 ml) and the mixture was stirred for 3 d at 150° C. The reaction mixture was then concentrated i. vac. and the residue (365 mg) was purified by flash chromatography (18 g, 20×2.0 cm) with methylene chloride/methanol (95:5) and 0.5% ammonia (25% in water).


Yield: 274 mg (65%), colourless oil



1H-NMR (CDCl3): 1.33-1.41 (2 H, m); 1.51 (2 H, t, J=6.8 Hz); 1.65-1.74 (2 H, m); 1.87-2.00 (2 H, m); 2.10 (8 H, s); 2.44 (2 H, s); 2.47-2.56 (4 H, m); 2.70-2.75 (2 H, m); 3.68 (3 H, s); 6.85 (1 H, d, J=3.0 Hz); 7.03 (1 H, dd, J=5.1 and 3.5 Hz); 7.23 (1 H, br d, J=4.8 Hz).


Step 2: 1-[8-(Dimethylamino)-8-thiophen-2-yl-3-azaspiro[4.5]decan-3-yl]-3-ethylpentan-3-ol (Example no. 213, polar diastereomer)

Titanium tetra-isopropylate (45 mg, 48 μl, 0.16 mmol) was added to a solution of 3-(8-dimethylamino-8-thiophen-2-yl-2-azaspiro[4.5]dec-2-yl)propionic acid methyl ester (274 mg, 0.78 mmol) in anhydrous tetrahydrofuran (5 ml) under argon. A 0.3 M solution of ethylmagnesium bromide (7.8 ml, 2.34 mmol) in diethyl ether was then slowly added dropwise in the course of 1 h and the mixture was stirred overnight at room temperature. 5% strength aqueous sulfuric acid (5 ml) was added to the honey-yellow solution and the mixture was stirred vigorously. pH 10 was established by addition of 2 M potassium carbonate solution and the mixture was extracted with methylene chloride (3×30 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The crude product (250 mg) was purified by flash chromatography (10 g, 20×1.5 cm) with methylene chloride/methanol (95:5) and 1% ammonia (25% in water).


Example No. 213 (Polar Diastereoisomer)

Yield: 85 mg (29%), oil



1H-NMR (CDCl3): 0.84 (6 H, t, J=7.5 Hz); 1.31-1.58 (10 H, m); 1.64-1.74 (2 H, m); 1.88-1.98 (2 H, m); 2.00-2.09 (2 H, m); 2.10 (6H, s); 2.48 (2 H, s); 2.58 (2 H, t, J=7.0 Hz); 2.64-2.69 (2 H, m); 6.25 (1 H, br s); 6.83 (1 H, dd, J=3.5 and 1.1 Hz); 7.02 (1 H, dd, J=5.1 and 3.5 Hz); 7.21 (1 H, dd, J=5.1 and 1.1 Hz).



13C-NMR (CDCl3): 8.1; 26.9; 30.9; 33.5; 33.9; 37.2; 38.1; 40.9; 52.2; 53.5; 59.6; 65.5; 74.9; 123.2; 124.8; 126.1; 143.1.


LC-MS: m/z: [M+H]+=379.4, Rt=1.9 min.


Example No. 214
Step 1: 8-Dimethylamino-8-thiophen-2-ylmethyl-2-azaspiro[4.5]decan-1-one

Lithium chloride (269 mg, 6.33 mmol) was heated by means of a hot air gun in a Schlenk flask under a high vacuum for 10 min. Magnesium (220 mg, 9.05 mmol) was then added and the mixture was heated once more for 10 min by means of a hot air gun under a high vacuum. Absolute tetrahydrofuran (1.5 ml) freshly distilled over calcium hydride and one drop of a 25% strength diisobutylaluminum hydride solution in toluene were then added and the mixture was stirred for 5 min at room temperature. Substance F (equation 1, R1=R2=methyl) (400 mg, 1.18 mmol) was then added and a solution, dried for 40 min over a molecular sieve of 4 Å, of 2-(bromomethyl)thiophene (1.18 g, 6.66 mmol) in absolute tetrahydrofuran (2 ml) freshly distilled over calcium hydride was slowly added dropwise to this suspension, warming of the solution and dissolving of the starting substance being observed. The reaction mixture was stirred for 30 min at room temperature and then for 3 h at 55° C. Thereafter saturated ammonium chloride solution (6 ml) was slowly added and the mixture was stirred for 16 h at room temperature. After addition of 2 M sodium hydroxide solution (8 ml) and water (30 ml) the mixture was extracted with ethyl acetate (2×100 ml) and chloroform/methanol (7:1, 50 ml), the combined organic phases were washed with saturated sodium chloride solution (30 ml) and dried with magnesium sulfate and the solvent was removed i. vac. The residue (706 mg) was taken up in diethyl ether (20 ml), the suspension was filtered, the residue on the filter was washed with diethyl ether and the filtrate was concentrated i. vac. This residue was purified by flash chromatography (18 g, 20×2 cm) with ethyl acetate/methanol (2:0.1→2:0.4) and 1% ammonia (25% in water).


Non-Polar Diastereoisomer


Yield: 240 mg (45%), colourless oil.



1H-NMR (CDCl3): 1.15 (2 H, d, J=13.1 Hz); 1.32 (2 H, t, J=14.1 Hz); 1.74-1.87 (4 H, m); 2.02-2.12 (2 H, m); 2.29 (6 H, s); 2.85 (2 H, s); 3.21 (2 H, t, J=7.1 Hz); 6.16 (1 H, s); 6.75 (1 H, d, J=2.8 Hz); 6.92 (1 H, dd, J=5.2 and 3.4 Hz); 7.12 (1 H, dd, J=5.2 and 1.2 Hz).


LC-MS: [M+H]+: m/z=293.3, Rt=2.2 min.


Polar Diastereoisomer


Yield: 20 mg (3.8%), colourless oil.



1H-NMR (CDCl3): 1.46-1.63 (4 H, m); 1.70-1.85 (4 H, m), 2.00 (2 H, t, J=6.9 Hz); 2.31 (6 H, s); 3.10 (2 H, s); 3.28 (2 H, t, J=6.9 Hz); 6.25 (1 H, s); 6.86 (1 H, dd, J=3.4 Hz); 6.90 (1 H, dd, J=5.1 Hz); 7.13 (1 H, dd, J=5.1 Hz).


LC-MS: [M+H]+: m/z=293.3, Rt=0.6 min.


Step 2: N,N-Dimethyl-8-(thiophen-2-ylmethyl)-2-azaspiro[4.5]decan-8-amine (non-polar diastereomer)

8-Dimethylamino-8-thiophen-2-ylmethyl-2-azaspiro[4.5]decan-1-one (non-polar diastereomer) (230 mg, 0.79 mmol), dissolved in absolute tetrahydrofuran (6 ml) was slowly added to a suspension of lithium aluminium hydride (150 mg, 3.95 mmol) in absolute tetrahydrofuran (5 ml) in a Schlenk flask under argon at 0° C. The ice bath was then removed and the mixture was stirred for 16 h at 50° C. Water (150 μl), 15% strength sodium hydroxide solution (150 μl), tetrahydrofuran (10 ml) and water (450 μl) were then added successively at 0° C. and the suspension was stirred for 1 h at room temperature. The suspension was filtered through sodium sulfate, the residue was washed with methylene chloride (2×30 ml) and the filtrate was concentrated to dryness i. vac.


Yield: 207 mg (95%), yellow oil.



1H-NMR (CDCl3): 1.20-1.28 (2 H, m); 1.33-1.45 (4 H, m); 1.60-1.71 (4 H, m); 2.28 (6 H, s); 2.65 (2 H, s); 2.87-2.93 (4 H, m); 6.76 (1 H, dd, J=3.4 and 1.1 Hz); 6.92 (1 H, dd, J=5.2 and 3.4 Hz); 7.12 (1 H, dd, J=5.2 and 1.2 Hz).


LC-MS: [M+H]+: m/z=279.3, Rt=0.2 min.


Step 3: 1-(8-Dimethylamino-8-thiophen-2-ylmethyl-2-azaspiro[4.5]dec-2-yl)-butan-1-one (Example no, 214, non-polar diastereomer)

First triethylamine (116 mg, 160 μl, 1.14 mmol) and then slowly butyryl chloride (99 mg, 96 μl, 0.93 mmol) were added to a solution of N,N-dimethyl-8-(thiophen-2-ylmethyl)-2-azaspiro[4.5]decan-8-amine (non-polar diastereomer) (199 mg, 0.72 mmol) in absolute methylene chloride (5 ml) in a 10 ml Schlenk flask under argon at room temperature. The reaction mixture was stirred for 16 h at room temperature and saturated sodium carbonate solution (20 ml) was then added. After addition of methylene chloride (10 ml) the phases were separated and the aqueous phase was extracted with methylene chloride (2×25 ml). The combined organic phases were washed successively with saturated sodium carbonate solution (20 ml), 0.2 M sodium hydroxide solution (10 ml) and saturated sodium chloride solution (10 ml) and dried with magnesium sulfate and the solvent was removed i. vac. The crude product (264 mg) was purified first by flash chromatography (PuriFlash PF-15SIHP, 8 g) with methylene chloride/methanol 95:5→80:20) and 1% ammonia (25% in water) and then again by flash chromatography (7 g, 20×1.5 cm) with methylene chloride/methanol (95:5→80:20) and 1% ammonia (25% in water).


Example No. 217 (Non-polar Diastereoisomer)

Yield: 161 mg (65%), yellow solid.


Melting point: 86° C.


1H-NMR (CDCl3): 0.94 (3 H, t, J=7.4 Hz); 1.21-1.47 (4 H, m); 1.56 (1 H, t, J=7.3 Hz); 1.60-1.77 (7 H, m); 2.18 (2 H, t, J=7.5 Hz); 2.27 and 2.28 (6 H, s); 2.88 and 2.90 (2 H, 2 s); 3.16 (1 H, s); 3.24 (1 H, s); 3.38-3.46 (2 H, m); 6.80-6.73 (1 H, m); 6.91-6.94 (1 H, m); 7.13 (1 H, d, J=5.1 Hz). Some signals are to be seen as a doubled signal set (rotamers).



13C-NMR (CDCl3): 13.99; 14.01; 18.3; 18.4; 28.5; 29.0; 29.8; 30.1; 31.1; 31.3; 32.7; 34.9; 36.3; 36.7; 37.1; 37.1; 40.1; 42.0; 44.2; 45.3; 57.36; 57.38; 59.4; 123.9; 124.0; 126.3; 126.5; 126.45; 126.60; 126.7; 141.0; 141.2; 171.7; 171.8.


LC-MS: [M+H]+: m/z=349.3, Rt=2.8 min.


Example No. 234
Step 1: Cyclopent-1-enemagnesium bromide

Magnesium (1.70 g, 70 mmol) and an iodine crystal were heated in a secure apparatus such that iodine gas was formed. The mixture was cooled to room temperature and anhydrous tetrahydrofuran (17 ml) and a further iodine crystal were then added. A solution of 1-bromocyclopentene (10.3 g, 70 mmol) in anhydrous tetrahydrofuran (23 ml) was then added dropwise such that the reaction mixture started to boil. The mixture was stirred for a further 1 h under reflux and then cooled to room temperature. The solution obtained in this way was employed in the next step.


Step 2: (8-Cyclopent-1-enyl-1,4-dioxaspiro[4.5]dec-8-yl)-dimethylamine

A solution of 8-(dimethylamino)-1,4-dioxaspiro[4.5]decane-8-carbonitrile (6.05 g, 28.7 mmol) in anhydrous tetrahydrofuran (40 ml) was added dropwise to the solution from step 1 (max. 70 mmol). The mixture was stirred overnight at room temperature and then for 2 h at 60° C. and thereafter saturated ammonium chloride solution (50 ml) and water (50 ml) were added, while cooling with ice. The pH of the mixture was adjusted to 9 with 4 N sodium hydroxide solution. The phases were separated and the aqueous phase was extracted with ethyl acetate (3×50 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The crude product was purified by flash chromatography (400 g, 20×7.5 cm) with methylene chloride/methanol (95:5) and 1% ammonia (25% in water).


Yield: 2.54 g (35%), yellow oil



1H-NMR (CDCl3): 1.50-1.60 (2 H, m); 1.70-1.94 (8 H, m); 2.20 (6 H, s); 2.24-2.30 (2 H, m); 2.31-2.39 (2 H, m); 3.88-3.96 (4 H, m); 5.53 (1 H, m).



13C-NMR (CDCl3): 23.6; 29.0; 31.4; 32.2; 33.1; 38.5; 58.4; 64.1; 109.0; 128.2; 143.8.


LC-MS: [M+H]+: m/z=252.3, Rt=1.9 min.


Step 3: (8-Cyclopentyl-1,4-dioxaspiro[4.5]dec-8-yl)-dimethylamine

5% rhodium on activated aluminium oxide (2.05 g, 1 mmol) was added to a solution of (8-cyclopent-1-enyl-1,4-dioxaspiro[4.5]dec-8-yl)-dimethylamine (2.53 g, 10 mmol) in anhydrous methanol (220 ml). The suspension was stirred for 18 h at 50° C. and under a hydrogen pressure of 4 bar and then filtered through Celite which had been washed with methanol beforehand. The filtrate was concentrated i. vac.


Yield: 2.51 g (100%), yellow oil



1H-NMR (CDCl3): 1.20-1.34 (2 H, m); 1.38-1.64 (10 H, m); 1.68-1.78 (2 H, m); 1.82-1.94 (2 H, m); 2.07 (1 H, m); 2.27 (6 H, s); 3.91-3.94 (4 H, m).



13C-NMR (CDCl3): 25.0; 28.0; 28.5; 30.0; 37.8; 43.8; 57.5; 64.1; 109.6.


Step 4: 4-Cyclopentyl-4-dimethylaminocyclohexanone

A solution of (8-cyclopentyl-1,4-dioxaspiro[4.5]dec-8-yl)-dimethylamine (5.21 g, 20.5 mmol) in 1 M aqueous sulfuric acid (150 ml) was stirred for 48 h at room temperature. The mixture was washed with methylene chloride (2×70 ml). The aqueous phase was rendered alkaline with 4 N sodium hydroxide solution and extracted with methylene chloride (4×50 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac.


Yield: 3.52 g (82%), yellow oil



1H-NMR (CDCl3): 1.18-1.34 (2 H, m); 1.40-1.80 (8 H, m); 1.96-2.08 (2 H, m); 2.10-2.22 (3 H, m); 2.34 (6 H, s); 2.51-2.63 (2 H, m).



13C-NMR (CDCl3): 24.9; 28.6; 30.1; 36.6; 37.2; 38.0; 43.4; 57.5.


The carbonyl carbon was detected by a gHMBC spectrum at 212 ppm.


LC-MS: [M+H]+: m/z=210.3, Rt=0.8 min.


Step 5: (4-Cyclopentyl-4-dimethylaminocyclohexylidene)-acetic acid ethyl ester

Potassium tert-butanolate (2.99 g, 26.7 mmol) was added to a solution of phosphonoacetic acid triethyl ester (6.74 g, 5.98 ml, 30.1 mmol) in anhydrous N,N-dimethylformamide (30 ml) and the mixture was stirred for 1 h at 50° C. The solution was cooled to room temperature and a solution of 4-cyclopentyl-4-dimethylaminocyclohexanone (3.96 g, 18.9 mmol) in anhydrous N,N-dimethylformamide (50 ml) was then added. The reaction mixture was stirred for 20 h at room temperature and then poured into ice-water (75 g). The suspension was extracted with diethyl ether (4×40 ml). These combined organic phases were dried with sodium sulfate and concentrated i. vac. Toluene was first repeatedly added to the residue and the mixture concentrated i. vac. again each time and thereafter the procedure was repeated with cyclohexane. This residue (5.49 g) was taken up in ethyl acetate (30 ml) and the solution was extracted with 10% strength formic acid (5×30 ml). The combined acid, aqueous phases were rendered alkaline with 4 N sodium hydroxide solution and extracted with methylene chloride (5×30 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac.


Yield: 4.36 g (77%), colourless oil



1H-NMR (CDCl3): 1.14-1.70 (13 H, m); 1.78-2.40 (5 H, m); 2.32 (6 H, s); 2.57 (1 H, br t, J=13.9 Hz); 3.55 (1 H, br d, J=12.6 Hz); 4.13 (2 H, q, J=7.0 Hz); 5.58 (1 H, s).


Step 6: (4-Cyclopentyl-4-dimethylamino-1-nitromethylcyclohexyl)-acetic acid ethyl ester

Nitromethane (1.22 ml, 1.07 ml, 20 mmol) was added to a mixture of (4-cyclopentyl-4-dimethylaminocyclohexylidene)acetic acid ethyl ester (4.35 g, 15.6 mmol) and tetra-n-butylammonium fluoride trihydrate (5.36 g, 17 mmol) in anhydrous tetrahydrofuran (37 ml). The solution was stirred for 7.5 h at 70° C. and then for 18 h at 45° C. The mixture was concentrated i. vac. The residue (9.9 g) was purified by flash chromatography (400 g, 20×7.5 cm) with cyclohexane/ethyl acetate (1:4).


Yield: 3.04 g (57%), yellowish oil.



1H-NMR (CDCl3): 1.26 (0.3 H, t, J=7.0 Hz); 1.27 (2.7 H, t, J=7.1 Hz); 1.30-1.75 (16 H, m); 2.06 (1 H, m); 2.24 (6 H, s); 2.46 (0.2 H, s); 2.59 (1.8 H, s); 4.15 (2 H, q, J=7.1 Hz); 4.58 (1.8 H, s); 4.81 (0.2 H, s)



13C-NMR (CDCl3): 14.2; 25.05; 24.14; 25.4; 28.1; 28.45; 28.50; 35.0; 36.8; 37.7; 43.6; 44.0; 44.1; 57.4; 60.1; 60.2; 84.3; 171.3.


This is a diastereoisomer mixture.


Step 7: 8-Cyclopentyl-8-dimethylamino-2-azaspiro[4.5]decan-3-one

A 50% strength aqueous Raney nickel suspension (1.15 ml) was added to a solution of (4-cyclopentyl-4-dimethylamino-1-nitromethylcyclohexyl)-acetic acid ethyl ester (3.04 g) in methanol (50 ml). The suspension was stirred for 5 h at 60° C. and under a hydrogen pressure of 5 bar. The suspension was filtered through Celite, the residue on the filter was washed with methanol (2×10 ml) and the filtrate was concentrated i. vac.


Yield: 2.36 g (100%), white solid



1H-NMR (CDCl3): 1.16-1.80 (16 H, m); 2.05 (1 H, m); 2.12 (0.3 H, s); 2.20 (1.7 H, s); 2.26 (6 H, s); 3.09 (1.7 H, s); 3.18 (0.3 H, s); 6.04 (1 H, br s).


This is a diastereoisomer mixture in the ratio of approx. 7:1.


Step 8: 8-Cyclopentyl-8-dimethylamino-3-oxo-2-azaspiro[4.5]decan-2-carboxylic acid tert-butyl ester

A solution of di-tert-butyl dicarbonate (2.14 g, 9.83 mmol) in anhydrous acetonitrile (20 ml) and 4-dimethylaminopyridine (69 mg, 0.87 mmol) was added to a solution of 8-cyclopentyl-8-dimethylamino-2-azaspiro[4.5]decan-3-one (2.36 g, 8.92 mmol) in anhydrous acetonitrile (60 ml) and the mixture was then stirred overnight at 50° C. Since the conversion (1H-NMR) was not complete, further di-tert-butyl carbonate (2.14 g, 9.83 mmol) was added and the mixture was stirred for a further 18 h at 50° C. The mixture was concentrated I. vac. and the residue was taken up in methylene chloride (100 ml). The solution was washed with water (3×80 ml) and saturated sodium chloride solution (2×50 ml). The organic phase was dried with sodium sulfate and concentrated i. vac. The crude product (3.54 g) was purified by flash chromatography (200 g, 20×5.7 cm) with methylene chloride/methanol (98:2-95:5). Yield:


Nonpolar Diastereoisomer


Yield: 1.74 g (53%), yellowish solid



1H-NMR (CDCl3): 1.16-1.36 (6 H, m); 1.38-1.63 (6 H, m); 1.51 (9 H, s); 1.64-1.80 (4 H, m); 2.05 (1 H, m); 2.26 (6 H, s); 2.40 (2 H, s); 3.44 (2 H, s).


Polar Diastereoisomer


Yield: 408 mg (12%), yellow oil



1H-NMR (CDCl3): 1.10-1.85 (25 H, m); 2.06 (1 H, m); 2.25 (6 H, s); 2.32 (2 H, s); 3.54 (2 H, s).


Step 9: 8-Cyclopentyl-8-dimethylamino-2-azaspiro[4.5]decan-3-one (non-polar diastereoisomer)

Trifluoroacetic acid (10 ml) was added to a solution of 8-cyclopentyl-8-dimethylamino-3-oxo-2-azaspiro[4.5]decane-2-carboxylic acid tert-butyl ester—non-polar diastereoisomer (1.74 g, 4.77 mmol) in anhydrous methylene chloride (75 ml) and the mixture was stirred overnight at room temperature. The mixture was concentrated i. vac., the residue was taken up in methylene chloride (150 ml) and the solution was washed with saturated sodium bicarbonate solution (3×50 ml). The aqueous phase was extracted with a methylene chloride/isopropanol mixture (4:1, 3×50 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac.


Yield: 1.08 g (86%), white solid



1H-NMR (CDCl3): 1.16-1.82 (16 H, m); 2.06 (1 H, m); 2.21 (2 H, s); 2.26 (6 H, s); 3.10 (2 H, s); 5.86 (1 H, br s).


Step 10: 8-Cyclopentyl-8-dimethylamino-2-azaspiro[4.5]decan-3-one (polar diastereoisomer)

Trifluoroacetic acid (3.38 ml) was added to a solution of 8-cyclopentyl-8-dimethylamino-3-oxo-2-azaspiro[4.5]decane-2-carboxylic acid tart-butyl ester—polar diastereoisomer (446 mg, max. 1.22 mmol, contaminated) in anhydrous methylene chloride (35 ml) and the mixture was stirred for 4 h at room temperature. The mixture was concentrated i. vac., the residue was taken up in methylene chloride (40 ml) and the solution was washed with saturated sodium bicarbonate solution (3×30 ml). The aqueous phase was extracted with a methylene chloride/isopropanol mixture (4:1, 3×50 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The residue (326 mg) was purified by flash chromatography (38 g, 20×2.5 cm) with methylene chloride/methanol (95:5) and 1% ammonia (25% in water).


Yield: 176 mg (54%), white solid



1H-NMR (CDCl3): 1.16-1.32 (4 H, m); 1.36-1.62 (8 H, m); 1.63-1.82 (4 H, m); 2.06 (1 H, m); 2.14 (2 H, s); 2.26 (6H, s); 3.20 (2 H, s); 5.81 (1 H, br s).


Step 11: 8-Cyclopentyl-3-(2-cyclopropyl-ethyl)-8-(dimethylamino)-3-azaspiro[4.5]decan-2-one (Example no. 234, non-polar diastereoisomer)

A suspension of sodium hydroxide (96 mg, 2.39 mmol) in anhydrous dimethylsulfoxide (5 ml) was stirred for 40 min at room temperature, 8-cyclopentyl-8-dimethylamino-2-azaspiro[4.5]decan-3-one (non-polar diastereoisomer) (158 mg, 0.6 mmol) and subsequently a solution of 2-cyclopropylethyl 4-methylbenzenesulfonate (144 mg, 0.6 mmol) in anhydrous dimethylsulfoxide (2 ml) were then added and the mixture was stirred for 4 h at room temperature. A solution of 2-cyclopropylethyl 4-methylbenzenesulfonate (72 mg, 0.3 mmol) in anhydrous dimethylsulfoxide (2 ml) was again added to the reaction mixture and the mixture was stirred for a further 18 h at room temperature. Water (150 ml) was added to the mixture and the mixture was extracted with ethyl acetate (3×50 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The residue (300 mg) was purified by flash chromatography (18 g, 20×2.0 cm) with methylene chloride/methanol (98:2). 60 mg of the target compound were obtained in a pure form by this procedure. The contaminated product (90 mg) obtained by flash chromatography was taken up in ethyl acetate (10 ml) and the solution was extracted with 10% strength aqueous formic acid (4×20 ml). The combined acid, aqueous phases were rendered alkaline with 4 N sodium hydroxide solution and extracted with methylene chloride (4×20 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac.


Example No. 234 (Non-polar Diastereoisomer)

Yield: 131 mg (66%), yellowish oil



1H-NMR (CDCl3): 0.00-0.05 (2 H, m); 0.38-0.45 (2 H, m); 0.61 (1 H, m); 1.10-1.80 (18 H, m); 2.03 (1 H, m); 2.24 (6 H, s), 2.25 (2 H, s); 3.08 (2 H, s); 3.29 (2 H, t, J=7.2 Hz).



13C-NMR (CDCl3): 4.2; 8.5; 25.1; 25.4; 25.8; 26.0; 26.9; 28.5; 31.6; 32.3; 32.4; 36.3; 37.8; 42.4; 42.5; 44.2; 57.7; 61.1; 173.7.


LC-MS: [M+H]+: m/z=333.4, Rt=2.6 min.


Example No. 272
Step 1: 3-(8-Dimethylamino-8-phenyl-2-azaspiro[4.5]dec-2-yl)propionic acid methyl ester

Methyl acrylate (4.18 g, 4.20 ml, 46 mmol) was added to a solution of N,N-dimethyl-8-phenyl-2-azaspiro[4.5]decan-8-amine (600 mg, 2.32 mmol) in anhydrous tetrahydrofuran (20 ml) and the mixture was stirred for 18 h at 50° C. The reaction mixture was concentrated in vacuo and the residue (767 mg) was purified by flash chromatography (38 g, 20×2.5 cm) with methylene chloride/methanol (95:5) and 0.5% ammonia (25% in water).


Step 2: 4-(8-Dimethylamino-8-phenyl-2-azaspiro[4.5]dec-2-yl)-2-methylbutan-2-ol (Example no. 272)

A 1.4 M solution of methylmagnesium bromide (1.26 ml, 1.76 mmol) in toluene/tetrahydrofuran (3:1) was added to a solution of 3-(8-dimethylamino-8-phenyl-2-azaspiro[4.5]dec-2-yl)propionic acid methyl-ester (150 mg, 0.44 mmol) in anhydrous tetrahydrofuran (5 ml) under argon and the mixture was stirred overnight at room temperature. 5% strength aqueous sulfuric acid (5 ml) was added to the solution and the mixture was stirred vigorously. pH 10 was established by addition of 2 M potassium carbonate solution and the mixture was extracted with methylene chloride (3×30 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The residue (130 mg) was taken up in ethyl acetate (30 ml) and the solution was then extracted with 5% strength aqueous formic acid (3×20 ml). The combined aqueous, acid phases were adjusted to pH 10 with 5 M sodium hydroxide solution and extracted with ethyl acetate (3×30 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac.


Analytical data of Example 272:



1H-NMR (CDCl3): 1.22 (6 H, s); 1.23-1.30 (2 H, m); 1.44 (2 H, t, J=7.1 Hz); 1.56-1.60 (2 H, m); 1.60-1.70 (2 H, m); 1.80-1.97 (2 H, m); 2.01 (6 H, s); 2.10-2.26 (2 H, m); 2.52 (2 H, s); 2.57 (2 H, t, J=7.1 Hz); 2.70-2.75 (2 H, m); 6.10-6.80 (1 H, br s); 7.22-7.30 (3 H, m); 7.32-7.39 (2 H, m).



13C-NMR (CDCl3): 29.6; 31.0; 34.2; 37.7; 38.0; 38.3; 41.2; 52.8; 53.4; 60.5; 65.4; 71.0; 126.4; 127.6; 127.61.


LC-MS (method 1): m/z: [M+H]+=345.4, Rt=0.4 min.


Example No. 275
3-(2-Cyclopropyiethyl)-8-methylamino-8-phenyl-3-azaspiro[4.5]decan-2-one (Example no. 275, non-polar diastereoisomer)

N-Iodosuccinimide (348 mg, 1.55 mmol) was added to a solution of 3-(2-cyclopropylethyl)-8-(dimethylamino)-8-phenyl-3-azaspiro[4.5]decan-2-one (Ex. no. 184, non-polar series, 350 mg, 1.03 mmol) in anhydrous acetonitrile (10 ml) and the mixture was stirred for 5 h at room temperature. 4 M sodium hydroxide solution (3 ml) was then added to the reaction solution and the mixture was stirred for 20 min at room temperature. The phases were separated and the aqueous phase was extracted with methylene chloride (2×10 ml). The combined organic phases were concentrated i. vac. The residue (550 mg) was taken up in methanol (5 ml), 2 M hydrochloric acid (2 ml) was added to the solution and the mixture was stirred for 1 h at room temperature. The solution was then diluted with water (10 ml) and washed with diethyl ether (3×10 ml). The aqueous solution was rendered alkaline (pH ˜10) with 2 M sodium hydroxide solution and extracted with methylene chloride (3×20 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The crude product (240 mg) was purified by means of flash chromatography on PharmPrep 60 CC (12 g, 18×1.5 cm) with methylene chloride/methanol (50:1)+0.5% ammonia (25% in water) and subsequent renewed flash chromatography on PharmPrep 60 CC (4 g, 14×1.0 cm) with methanol.


Example No. 275 (Non-polar Diastereoisomer)

Yield: 155 mg (46%), colourless resin



1H-NMR (CDCl3): 0.04-0.08 (2 H, m); 0.42-0.49 (2 H, m); 0.59-0.70 (1 H, m); 1.42 (2 H, dd, J=14.4 and 7.01 Hz); 1.45-1.53 (2 H, m); 1.73-1.99 (7 H, m); 2.00 (3 H, s); 2.24 (2 H, s); 3.22 (2 H, s); 3.32-3.37 (2 H, m); 7.18-7.28 (1 H, m); 7.32-7.39 (4 H, m).



13C-NMR (CDCl3): 4.3; 8.6; 28.6; 31.9; 32.4; 32.5; 35.8; 38.0; 42.6; 56.9; 59.7; 125.9; 126.5; 128.4; 173.5.


LC-MS: m/z: [M+H]+=327.3, Rt=2.6 min.


Example No. 337
Step 1: 8-Dimethylamino-8-[1.2.3]triazol-1-yl-2-azaspiro[4.5]decan-3-one

A 2 M dimethylamine solution in tetrahydrofuran (1.8 ml, 3.6 mmol), 1,2,3-triazole (228 mg, 191 μl, 3.3 mmol) and a molecular sieve 4 Å (1.00 g) were added to a solution of 2-azaspiro[4.5]decane-3,8-dione (500 mg, 3 mmol) in anhydrous tetrahydrofuran (30 ml) and the mixture was stirred for 18 h at room temperature. The reaction mixture was filtered and the filtrate was concentrated i. vac.


Yield: 704 mg (89%), white solid


Step 2: 8-(5-Chlorothiophen-2-yl)-8-dimethylamino-2-azaspiro[4.5]decan-3-one

A suspension of 8-dimethylamino-8-[1.2.3]triazol-1-yl-2-azaspiro[4.5]decan-3-one (2.10 g, maximum 8 mmol) in anhydrous tetrahydrofuran (60 ml) was added dropwise to a 0.5 M suspension of 5-chloro-2-thienylmagnesium bromide (45 ml, 22.5 mmol) in tetrahydrofuran at room temperature and the mixture was then stirred for 6 h at 50° C. and for 18 h at room temperature. After addition of saturated ammonium chloride solution (100 ml) the phases were separated and the aqueous phase was extracted with ethyl acetate (3×30 ml). The combined organic phases were washed with saturated sodium chloride solution (50 ml), dried with sodium sulfate and filtered and the filtrate was concentrated i. vac.


Yield: 1.95 g (>100%), brown solid


The 1H-NMR spectrum (CDCl3) shows all the required signals of the diastereoisomer mixture.


LC-MS: m/z: [M+H]+=313.2, Rt=2.3 min.


Step 3:8-(5-acid tert-butyl ester (polar and non-polar diastereoisomer)

Di-tert-butyl dicarbonate (1.92 g, 8.8 mmol) and 4-dimethylaminopyridine (100 mg, 0.8 mmol) were added to a solution of 8-(5-chlorothiophen-2-yl)-8-dimethylamino-2-azaspiro[4.5]decan-3-one (1.70 g, maximum 8 mmol) in anhydrous tetrahydrofuran (30 ml) and anhydrous acetonitrile (50 ml) and the mixture was stirred for 18 h at room temperature. After 4 h and 1 d in each case di-tert-butyl dicarbonate (1.92 g, 8.8 mmol) and dimethylaminopyridine (100 mg, 0.8 mmol) were added and the mixture was then stirred for 4 d at room temperature. The reaction mixture was concentrated i. vac., the residue was taken up in methylene chloride (100 ml) and the solution was washed with water (3×50 ml) and saturated sodium chloride solution (50 ml). The organic phase was dried with sodium sulfate and concentrated i. vac. The crude product (1.70 g) was purified by flash chromatography (100 g, 20×4.0 cm) with ethyl acetate/methanol (30:1).


Nonpolar Diastereoisomer


Yield: 224 mg (7%), brown oil



1H-NMR (CDCl3): 1.42-1.50 (3 H, m); 1.52 (9 H, s); 1.75-1.83 (2 H, m); 1.90-2.03 (3 H, m); 2.12 (6 H, s); 2.32 (2 H, s); 3.56 (2 H, s); 6.60 (1 H, d, J=3.8 Hz); 6.85 (1 H, d, J=3.8 Hz).


Polar Diastereoisomer


Yield: 260 mg (8%), brown oil



1H-NMR (CDCl3): 1.44-1.50 (3 H, m); 1.50 (9 H, s); 1.70-1.78 (2 H, m); 1.88-2.03 (3 H, m); 2.11 (6 H, s); 2.43 (2 H, s); 3.44 (2 H, s); 6.61 (1 H, d, J=3.8 Hz); 6.85 (1 H, d, J=3.8 Hz).


Step 4: 8-(5-Chlorothiophen-2-yl)-8-dimethylamino-2-azaspiro[4.5]decan-3-one

Trifluoroacetic acid (2 ml) was added to a solution of 8-(5-chlorothiophen-2-yl)-8-dimethylamino-3-oxo-2-azaspiro[4.5]decane-2-carboxylic acid tert-butyl ester (non-polar diastereoisomer) (224 mg, 0.54 mmol) in anhydrous methylene chloride (20 ml) and the mixture was stirred for 3 h at room temperature. The reaction mixture was concentrated i. vac., methylene chloride (20 ml) was added to the residue and the solution was washed with saturated sodium bicarbonate solution (3×20 ml). The organic phase was dried with sodium sulfate and concentrated i. vac.


Non-Polar Diastereoisomer


Yield: 126 mg (74%), brown solid


Melting point: 170-175° C.



1H-NMR (CDCl3): 1.46-1.55 (2 H, m); 1.76-1.85 (2 H, m); 1.90-2.01 (4 H, m); 2.11 (6 H, s); 2.14 (2 H, s); 3.22 (2 H, s); 5.55 (1 H, br s); 6.61 (1 H, d, J=3.8 Hz); 6.85 (1 H, d, J=3.8 Hz).


Trifluoroacetic acid (2 ml) was added to a solution of 8-(5-chlorothiophen-2-yl)-8-dimethylamino-3-oxo-2-azaspiro[4.5]decane-2-carboxylic acid tert-butyl ester (polar diastereoisomer) (155 mg, 0.37 mmol) in anhydrous methylene chloride (20 ml) and the mixture was stirred for 2 h at room temperature. The reaction mixture was concentrated i. vac., methylene chloride (20 ml) was added to the residue and the mixture was washed with saturated sodium bicarbonate solution (3×20 ml). The organic phase was dried with sodium sulfate and concentrated i. vac.


Polar Diastereoisomer


Yield: 66 mg (56%), brown solid



1H-NMR (CDCl3): 1.46-1.54 (2 H, m); 1.75-1.83 (2 H, m); 1.89-2.03 (4 H, m); 2.12 (6 H, s); 2.25 (2 H, s); 3.10 (2 H, s); 5.48 (1 H, br s); 6.61 (1 H, d, J=3.8 Hz); 6.85 (1 H, d, J=3.8 Hz).


Step 5: 8-(5-Chlorothiophen-2-yl)-8-(dimethylamino)-3-(3-methoxy-3-methylbutyl)-3-azaspiro[4.5]decan-2-one (Example no. 460, non-polar diastereoisomer)

A suspension of powdered sodium hydroxide dried in vacuo (96 mg, 2.4 mmol) in anhydrous dimethylsulfoxide (10 ml) was stirred for 40 min at room temperature and 8-(5-chlorothiophen-2-yl)-8-dimethylamino-2-azaspiro[4.5]decan-3-one (non-polar series, 126 mg, 0.41 mmol) and 3-methoxy-3-methylbut-1-yl tosylate (136 mg, 0.5 mmol) were then added. Thereafter the reaction mixture was stirred for 1 d at room temperature. After addition of water (50 ml) the reaction mixture was extracted with ethyl acetate (3×30 ml). The combined organic phases were dried with sodium sulfate and filtered and the filtrate was concentrated i. vac. Toluene was repeatedly added to the residue and each time the mixture was concentrated i. vac. The crude product (152 mg) was purified by flash chromatography (10 g, 20×1.5 cm) with methylene chloride/methanol (95:5) and 0.5% ammonia (25% in water).


Example No. 337 (Non-polar Diastereoisomer)

Yield: 98 mg (58%), yellow solid.


Melting point: 86-90° C.



1H-NMR (CDCl3): 1.18 (6 H, s); 1.41-1.49 (2 H, m); 1.62-1.69 (2 H, m); 1.70-1.79 (2 H, m); 1.91-2.00 (4 H, m); 2.10 (6 H, s); 2.18 (2 H, s); 3.19 (3 H, s); 3.20 (2 H, s); 3.28-3.34 (2 H, m); 6.60 (1 H, d, J=3.8 Hz); 6.84 (1 H, d, J=3.8 Hz).



13C-NMR (CDCl3): 24.9; 32.4; 32.6; 35.5; 36.8; 38.0; 38.2; 44.3; 49.2; 58.0; 59.6; 73.5; 124.2; 124.5; 127.8; 173.2.


LC-MS: m/z: [M+H]+=414.3, Rt=2.8 min.


Example No. 364
Step 1: (8-Butyl-2-azaspiro[4.5]dec-8-yl)-dimethylamine

A solution of Example no. 19 (5.00 g, 19.8 mmol) in anhydrous tetrahydrofuran (50 ml) was added to a suspension of lithium aluminium hydride (3.01 g, 79.2 mmol) in anhydrous tetrahydrofuran (50 ml) in a thoroughly heated apparatus, while cooling with ice, and the mixture was stirred for 18 h at 50° C. and then for 72 h at room temperature. Water (3 ml), 15% strength sodium hydroxide solution (3 ml) and again water (9 ml) were added dropwise to the reaction mixture, while cooling with ice, and the mixture was stirred for 2 h at room temperature. The suspension was then filtered through sea sand, the residue was washed with tetrahydrofuran and the filtrate was dried with sodium sulfate and concentrated i. vac. The residue was taken up several times in methylene chloride (3×25 ml) and the solution was in each case concentrated again i. vac. again.


Yield: 4.71 g (100%), yellow oil



1H-NMR (CDCl3): 0.87 (3 H, t, J=7.1 Hz); 1.14-1.33 (10 H, m); 1.44-1.57 (8H, m); 2.13 (6 H, s); 2.80 (2 H, t, J=7.1 Hz); 3.65 (1 H, br s).


Step 2: 1-(8-Butyl-8-dimethylamino-3-azaspiro[4.5]decan-3-yl)-2-cyclopropylethanone (Example no. 364, polar diastereoisomer)

N,N′-Carbonyldiimidazole (122 mg, 0.8 mmol) was added to a solution of cyclopropylacetic acid (137 mg, 1.4 mmol) in absolute tetrahydrofuran (10 ml) and the mixture was stirred for 2 h under reflux. Thereafter a solution of (8-butyl-2-azaspiro[4.5]dec-8-yl)-dimethylamine (238 mg, 1.0 mmol) in absolute tetrahydrofuran (10 ml) was added and the mixture was stirred for a further 2 h under reflux. The reaction solution was then concentrated I. vac. and the residue was taken up in ethyl acetate (40 ml). The solution obtained was washed with 1 M potassium carbonate solution (2×20 ml), water (3×20 ml) and saturated sodium chloride solution (20 ml), dried with sodium sulfate and concentrated i. vac. The crude product (210 mg) was purified by flash chromatography (10 g, 20×1.5 cm) with ethyl acetate/methanol (9:1).


Example No. 364 (Polar Diastereoisomer)

Yield: 93 mg (33%), yellow oil



1H-NMR (CDCl3): 0.13-0.17 (2 H, m); 0.52-0.57 (2 H, m); 0.91 (3 H, t, J=7.1 Hz); 1.04-1.13 (1 H, m); 1.16-1.46 (10 H, m); 1.50-1.67 (4 H, m, overlapped by the water signal), 1.72 (0.8 H, t, J=7.2 Hz); 1.78 (1.2H, t, J=7.1 Hz); 2.19 (2 H, m); 2.21 (3 H, s); 2.22 (3 H, s); 3.18 (1 H, s); 3.30 (1 H, s); 3.43 (0.8H, t, J=7.1 Hz); 3.52 (1.2 H, t, J=7.2 Hz).



13C-NMR (CDCl3): 4.42; 4.44; 6.9; 7.0; 14.17; 14.20; 23.76; 23.81; 26.2, 26.6, 28.1; 28.9; 30.2; 30.5, 30.6; 30.8; 33.8; 36.3; 37.3; 37.4; 39.5; 39.9; 40.3; 42.2; 44.2; 45.3; 56.4; 56.5; 58.8; 171.40; 171.44.


LC-MS: m/z: [M+H]+=321.4 (100%), Rt=2.8 min.


Example No. 408
Step 1: Dimethyl-(8-phenyl-2-azaspiro[4.5]dec-8-yl)amine

A solution of Example 431 (8-dimethylamino-8-phenyl-2-azaspiro[4.5]decan-3-one) (non-polar, diastereoisomer, 327 mg, 1.2 mmol) in anhydrous tetrahydrofuran (25 nil) was added dropwise to a suspension of lithium aluminium hydride (114 mg, 3 mmol) in anhydrous tetrahydrofuran (10 ml) under argon and the mixture was then stirred for 18 h at room temperature. Since the reaction was not complete, the mixture was heated to 50° C. and stirred for a further 3 h. After addition of water (200 μl), 1 M sodium hydroxide solution (500 μl) and water (500 μl) the mixture was stirred for 1 h and the suspension was filtered through sea sand. The filtrate was dried with sodium sulfate and concentrated i. vac.


Yield: 310 mg (100%), colourless oil



1H-NMR (CDCl3): 1.23-1.32 (2 H, m); 1.54-1.62 (2 H, m); 1.85 (2 H, t, J=7.1 Hz); 1.85-1.96 (2 H, m), 2.04 (6 H, s); 2.05-2.11 (1 H, m); 2.23-2.35 (2 H, m); 2.53 (2 H, s); 2.95 (2 H, t, J=7.1 Hz); 7.26-7.32 (3 H, m); 7.34-7.40 (2 H, m).


Step 2: 2-Cyclopropyl-1-[8-(dimethylamino)-8-phenyl-3-azaspiro[4.5]decan-3-yl]-ethanone (Example no. 408, non-polar diastereoisomer)

N,N′-Carbonyldiimidazole (130 mg, 0.8 mmol) was added to a solution of cyclopropylacetic acid (100 mg, 96 μl, 1 mmol) in anhydrous tetrahydrofuran (20 ml) and the mixture was stirred for 2 h under reflux. After addition of dimethyl-(8-phenyl-2-azaspiro[4.5]dec-8-yl)amine (155 mg, 0.6 mmol) in anhydrous tetrahydrofuran (5 ml) the solution was stirred for a further 2 h under reflux. The reaction mixture was then concentrated i. vac., the residue was taken up in ethyl acetate (30 ml) and the solution was washed with 2 M potassium carbonate solution (3×30 ml), water (3×30 ml) and saturated sodium chloride solution (30 ml). The organic phase was separated off, dried with sodium sulfate and filtered and the filtrate was concentrated i. vac. The crude product (210 mg) was purified by flash chromatography (10 g, 20×1.5 cm) with methylene chloride/methanol (95:5) and 0.5° A ammonia (25% in water).


Example No. 408 (Non-polar Diastereoisomer)

Yield: 65 mg (32%), colourless oil



1H-NMR (CDCl3): 0.06-0.16 (2 H, m); 0.47-0.57 (2 H, m); 0.97-1.12 (1 H, m); 1.24-1.40 (3 H, m); 1.60-1.70 (3 H, m); 1.80 (1 H, t, J=7.2 Hz); 1.88 (1 H, t, J=7.1 Hz); 2.04 (6 H, s); 2.07-2.22 (4 H, m); 3.06 and 3.18 (2 H, 2 s); 3.46 (1 H, t, J=7.1 Hz); 3.54 (1 H, t, J=7.2 Hz); 7.26-7.32 (3 H, m); 7.33-7.41 (2 H, m).



13C-NMR (CDCl3): 4.36; 4.42; 30.4; 30.5; 31.1; 34.2; 38.1; 39.4; 39.8; 40.3; 42.3; 44.2; 45.3; 58.0; 60.6; 126.7; 127.4; 127.5; 127.7; 171.4.


LC-MS: m/z: [M+H]+=341.3, Rt=2.8 min.


Example No. 417
Step 1: [4-Dimethylamino-4-(5-fluorothiophen-2-yl)-cyclohexylidene]-acetic acid ethyl ester

Potassium tert-butanolate (1.21 g, 10.8 mmol) was added to a solution of phosphonoacetic acid triethyl ester (2.73 g, 2.42 ml, 12.2 mmol) in anhydrous N,N-dimethylformamide (15 ml) and the mixture was stirred for 1 h at 50° C. The solution was cooled to room temperature and a solution of 4-(dimethylamino)-4-(5-fluorothiophen-2-yl)cyclohexanone (1.85 g, 7.66 mmol) in anhydrous N,N-dimethylformamide (20 ml) was then added. The reaction mixture was stirred for 20 h at room temperature and then poured into ice-water (30 g). The suspension was extracted with diethyl ether (4×20 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. Toluene was repeatedly added to the residue and cyclohexane was then repeatedly added and in each case the mixture was concentrated again i. vac. The residue (2.42 g) was taken up in ethyl acetate (30 ml) and the solution was extracted with 10% strength aqueous formic acid (5×30 ml). The combined acid, aqueous phases were rendered alkaline with 4 N sodium hydroxide solution and extracted with methylene chloride (5×30 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac.


Yield: 2.0 g (84%), yellowish oil.



1H-NMR (CDCl3): 1.27 (3 H, t, J=7.1 Hz); 1.90-2.08 (2 H, m); 2.09-2.28 (4 H, m); 2.17 (6 H, s); 2.82-2.96 (1 H, m); 3.00-3.15 (1 H, m); 4.14 (2 H, q, J=7.1 Hz); 5.62 (1 H, s); 6.38 (1 H, dd, J=3.9 and 1.6 Hz); 6.47 (1 H, t, J=3.5 Hz).


Step 2: [4-Dimethylamino-4-(5-fluorothiophen-2-yl)-1-nitromethylcyclohexyl]-acetic acid ethyl ester

Tetra-n-butylammonium fluoride trihydrate (555 mg, 1.8 mmol) and nitromethane (5.40 g, 4.79 ml, 88 mmol) were added to a solution of [4-dimethylamino-4-(5-fluorothiophen-2-yl)-cyclohexylidene]-acetic acid ethyl ester (500 mg, 1.6 mmol) in tetrahydrofuran (30 ml) and the mixture was stirred for 3 h at 70° C. and then for 18 h at 45° C. The reaction solution was then concentrated i. vac. and the residue (1.31 g) was purified by flash chromatography on spherical silica gel (PuriFlash PF-50SIHP, 50 μm, 100 g, 20×4.0 cm) with cyclohexane/ethyl acetate (2:1→1:1). The target compound is obtained as a diastereoisomer mixture (approx. 1:1).


Yield: 415 mg (70%), pale yellow viscous oil



1H-NMR (CDCl3): 1.24 and 1.26 (3 H, 2 t, J=7.1 Hz); 1.46-1.53 (2 H, m), 1.77-1.86 (2 H, m); 1.93-2.01 (4 H, m); 2.10 (6 H, s); 2.48 (1 H, s); 2.60 (1 H, s); 4.12 and 4.16 (2 H, 2 q, J=7.2 Hz); 4.64 (1 H, s); 4.76 (1 H, s); 6.38-6.43 (2 H, m).


LC-MS: m/z: [M+H]=373.32 (55%) and [MH-NHMe2]+=328.2 (100%), Rt=2.7 and 2.9 min.


Step 3: 8-Dimethylamino-8-(5-fluorothiophen-2-yl)-2-azaspiro[4.5]decan-3-one

A solution of [4-dimethylamino-4-(5-fluorothiophen-2-yl)-1-nitromethylcyclohexyl]-acetic acid ethyl ester (415 mg, 1.1 mmol) in ethanol (10 ml) was added to a mixture of iron powder (307 mg, 5.5 mmol), ammonium chloride (1.42 g, 28 mmol) and water (1.1 ml) and the mixture was then stirred for 4 h at 80° C. The reaction mixture was filtered and the residue was washed with ethanol. The ethanolic solution was rendered alkaline with 5% strength sodium bicarbonate solution and the ethanol was removed i. vac. The aqueous suspension was extracted with methylene chloride (3×20 ml), the combined organic phases were washed with saturated sodium chloride solution (20 ml) and filtered through phase separation paper and the filtrate was concentrated i. vac. The crude product (306 mg) was cyclised completely.


Step 4: 8-Dimethylamino-8-(5-fluorothiophen-2-yl)-2-azaspiro[4.5]decan-3-one

Potassium tert-butylate (419 mg, 3.7 mmol) was added to a solution of step 3 (900 mg, 3.0 mmol) in anhydrous tetrahydrofuran (40 ml) and the mixture was stirred for 18 h overnight at room temperature. Saturated ammonium chloride solution (5 ml) was then added to the reaction solution, the mixture was concentrated i. vac. and water (50 ml) was added to the residue. The aqueous solution was extracted with methylene chloride (4×30 ml), the combined organic phases were washed with saturated sodium chloride solution (30 ml) and filtered through phase separation paper and the filtrate was concentrated i. vac.


Yield: 662 mg (66%), pale yellow, viscous foam



1H-NMR (CDCl3): 1.47-1.54 (2 H, m); 175-1.83 (2 H, m); 1.90-2.00 (4 H, m); 2.116 (3 H, s); 2.119 (3 H, s); 2.14 (1 H, s); 2.25 (1 H, s); 3.10 (1 H, s); 3.22 (1 H, s); 5.55 (1 H, br s); 6.38-6.40 (1 H, m); 8.42-6.44 (1 H, m).


LC-MS: m/z: [M+H]+=297.3 (60%) and [MH-NHMe2]+=252.2 (100%), Rt=1.8 min.


This is a diastereoisomer mixture in the ratio of approx. 1:1.


Step 5: 8-Dimethylamino-8-(5-fluorothiophen-2-yl)-3-oxo-2-azaspiro[4.5]decane-2-carboxylic acid tert-butyl ester (polar and non-polar diastereoisomer)

Di-tert-butyl dicarbonate (528 mg, 2.4 mmol) and 4-dimethylaminopyridine (25 mg, 0.2 mmol) were added to a solution of 8-dimethylamino-8-(5-fluorothiophen-2-yl)-2-azaspiro[4.5]decan-3-one (660 mg, crude product, maximum 2.2 mmol) in a mixture of anhydrous tetrahydrofuran (25 ml) and anhydrous acetonitrile (25 ml) and the mixture was stirred for 18 h at 50° C. The reaction solution was then concentrated i. vac. and the diastereoisomer mixture (890 mg) was separated by flash chromatography on spherical silica gel (PuriFlash PF-50SIHP, 50 μm, 38 g, 20×2.5 cm) with ethyl acetate which contained 1% methanol.


Non-Polar Diastereoisomer


Yield: 447 mg (51%), pale yellow solid


Melting point: 130-132° C.



1H-NMR (CDCl3): 1.43-1.51 (2 H, m); 1.53 (9 H, s); 175-1.81 (2 H, m); 1.89-2.02 (4H, m); 2.12 (6 H, s); 2.33 (2 H, s); 3.58 (3 H, s); 6.39 (1 H, dd, J=1.6 and 4.1 Hz); 8.42-0.43 (1 H, m).


Polar Diastereoisomer


Yield: 337 mg (41%), pale yellow solid


Melting point: 152-155° C.



1H-NMR (CDCl3): 1.46-1.51 (2 H, m, overlapped); 1.51 (9 H, s); 1.71-1.77 (2 M, m); 1.88-2.03(4 H, m); 2.11 (6 H, s); 2.43 (2 H, s); 3.45 (2 H, s); 6.39 (1 H, dd, J=1.5 and 4.1 Hz); 6.42-6.44 (1 H, m).


Step 6: 8-Dimethylamino-8-(5-fluorothiophen-2-yl)-2-azaspiro[4.5]decan-3-one (non-polar diastereoisomer)

Trifluoroacetic acid (2.5 ml, 25% v/v) was added to a solution of 8-dimethylamino-8-(5-fluorothiophen-2-yl)-3-oxo-2-azaspiro[4.5]decane-2-carboxylic acid tert-butyl ester (non-polar series, 430 mg, 1.1 mmol) in absolute methylene chloride (10 m) and the mixture was stirred for 1 h at room temperature. The reaction solution was then concentrated I. vac. and the residue was taken up in methylene chloride (50 ml). The solution was washed with 1 M potassium carbonate solution (3×30 ml) and saturated sodium chloride solution (30 ml) and filtered through phase separation paper and the filtrate was concentrated i. vac.


Non-Polar Diastereoisomer:


Yield: 248 mg (77%), pale pink-coloured solid


Melting point: 198-204° C.



1H-NMR (CDCl3): 1.48-1.54 (2 H, m); 1.76-1.83 (2 H, m); 1.91-1.97 (4 H, m); 2.11 (6 H, s); 2.14 (2 H, s); 3.22 (2 H, s); 5.70 (1 H, br s); 6.39 (1 H, dd, J=1.7 and 4.0 Hz); 6.42-6.44 (1 H, m).



13C-NMR (CDCl3): 32.0; 32.1; 32.4; 38.0; 38.9; 43.0; 52.5; 59.5; 106.3; 106.4; 121.1; 162.5; 165.4; 177.2.


LC-MS: m/z: [M+H]+=297.2 (72%) and [MH-NHMe2]+=252.2 (100%), Rt=1.7 min.


Step 7: 1-[8-Dimethylamino-8-(5-fluorothiophen-2-yl)-3-azaspiro[4.5]decan-3-yl]-3-methoxy-3-methylbutan-1-one (Example no. 549, non-polar diastereoisomer)

A suspension of powdered sodium hydroxide dried i. vac. (70 mg, 1.8 mmol) in absolute dimethylsulfoxide (5 ml) was stirred for 20 min at room temperature. A solution of 8-dimethylamino-8-(5-fluorothiophen-2-yl)-2-azaspiro[4.5]decan-3-one (non-polar diastereoisomer, 130 mg, 0.44 mmol) in absolute dimethylsulfoxide (5 ml) and a solution of 3-methoxy-3-methylbut-1-yl tosylate (144 mg, 0.53 mmol) in dimethylsulfoxide (5 ml) were then added to this and the mixture was stirred for 4 h at 80° C. Thereafter water (50 ml) was added to the reaction solution and the mixture was extracted with ethyl acetate (4×20 ml). The combined organic phases were washed with saturated sodium chloride solution (20 ml) and filtered through phase separation paper and the filtrate was concentrated i. vac. Toluene and methylene chloride (3×10 ml of each) were added several times in succession to the residue and the mixture was in each case concentrated again i. vac. at 60° C. in order to remove dimethylsulfoxide without trace. The crude product (154 mg) was purified by means of flash chromatography on spherical silica gel (PuriFlash PF-50SIHP, 50 μm, 5 g, 15×0.9 cm) with ethyl acetate/methanol (9:1).


Example No. 417 (Non-polar Diastereoisomer)

Yield: 116 mg (67%), white solid


Melting point: 93° C.



1H-NMR (CDCl3): 1.18 (6 H, m); 1.43-1.49 (2 H, m); 1.64-1.68 (2 H, m); 1.71-1.77 (2 H, m); 1.91-1.97 (4 H, m); 2.11 (6 H, s); 2.19 (2 H, s); 3.19 (3 H, s); 3.21 (2 H, s); 3.30-3.34 (2 H, m); 6.39 (1 H, dd, J=1.7 and 3.9 Hz); 6.41-6.43 (1 H, m).



13C-NMR (CDCl3): 24.9; 32.2; 32.6; 35.5; 36.8; 38.0; 38.3; 44.4; 49.2; 59.5; 73.6; 106.3; 106.4; 121.1; 162.5; 165.4; 173.3.


LC-MS: m/z: [M+H]+=397.3 (100%) and [MH-NHMe2]+=352.3 (35%), Rt=2.6 min.


Example No. 424
Step 1: 8-Cyclopent-1-enyl-8-dimethylamino-2-azaspiro[4.5]decan-1-one

A solution of cyclopentenylmethylmagnesium bromide (maximum 17 mmol) was added dropwise to a solution of 8-(dimethylamino)-1-oxo-2-azaspiro[4.5]decane-8-carbonitrile (958 mg, 4.32 mmol) in anhydrous tetrahydrofuran (20 ml) and the mixture was stirred for 1 h at room temperature. The mixture was heated to 60° C. and stirred for 1 h at this temperature. Saturated ammonium chloride solution (25 ml) and water (20 ml) were added to the suspension, while cooling with ice. The phases were separated and the aqueous phase was extracted with ethyl acetate (2×30 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The residue (900 mg) was purified by flash chromatography (85 g, 4.0×20 cm) with methylene chloride/methanol (9:1) and 1% ammonia (25% in water).


Yield: 527 mg (46%), white solid



1H-NMR (CDCl3): 1.18-1.26 (2 H, m); 1.31-1.41 (2 H, m); 1.75-1.85 (2 H, m); 1.97 (2 H, t, J=6.9 Hz); 2.01-2.10 (2 H, m); 2.11-2.20 (2 H, m); 2.18 (6 H, s); 2.22-2.36 (4 H, m); 3.25 (2 H, m); 5.44 (1 H, m); 6.38 (1 H, br s).



13C-NMR (CDCl3): 23.6; 28.2; 29.1; 31.9; 32.9; 34.0; 38.3; 38.6; 38.8; 43.2; 56.9; 125.8; 146.0; 183.2.


LC-MS: [M+H]+: m/z=263.4, R1=2.3 min.


Step 2: 8-Cyclopentyl-8-dimethylamino-2-azaspiro[4.5]decan-1-one

5% rhodium on aluminium oxide (960 mg, 0./47 mmol) was added to a solution of 8-cyclopent-1-enyl-8-dimethylamino-2-azaspiro[4.5]decan-1-one (2.5 g, 9.5 mmol) in anhydrous methanol (20 ml) and the mixture was stirred for 3 h under a hydrogen pressure of 2 bar. Methanol (20 ml) was added to the mixture again and the mixture was stirred for a further 2 h under a hydrogen pressure of 2 bar. Since the educt had not yet reacted, the reaction mixture was diluted with methanol (110 ml), 5% rhodium on aluminium oxide (1.92 g, 0.95 mmol) was again added and hydrogen was carried out for 20 h under a hydrogen pressure of 4 bar. The suspension was filtered through Celite, the residue was washed with methanol and the filtrate was concentrated i. vac. The residue was partitioned between ethyl acetate and 10% strength citric acid solution (40 ml of each). The organic phase was washed with 10% strength citric acid solution (3×80 ml). The combined acid, aqueous phases were rendered alkaline with 4 M sodium hydroxide solution and extracted with methylene chloride (4×50 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The crude product (202 mg) was purified by flash chromatography (85 g, 20×4.0 cm) with methylene chloride/methanol (95:5) and 1% ammonia (25% in water).


Yield: 757 mg (30%), white solid



1H-NMR (CDCl3): 1.14 (2 H, dd, J=11.8 and 1.2 Hz); 1.20-1.34 (4 H, m); 1.40-1.63 (6 H, m); 1.73 (2 H, dd, J=14.9 and 2.8 Hz); 1.98-2.14 (5 H, m); 2.28 (6 H, s); 3.29-3.30 (2 H, m); 6.20 (1 H, s).



13C-NMR (CDCl3): 25.0; 26.5; 27.3; 28.3; 31.9; 37.9; 38.9; 44.2; 44.4; 57.4; 183.4.


LC-MS: [M+H]+: m/z=265.4.4; Rt=2.2 min.


Step 3: 8-Cyclopentyl-8-dimethylamino-2-azaspiro[4.5]decane

A solution of 8-cyclopentyl-8-dimethylamino-2-azaspiro[4.5]decan-1-one (758 mg, 2.8 mmol) in anhydrous tetrahydrofuran (30 ml) was added dropwise to a suspension of lithium aluminium hydride (542 mg, 14.3 mmol) in anhydrous tetrahydrofuran (10 ml), while cooling with ice. The suspension was stirred for 4 h at 50° C. Water (560 μl), 1 M sodium hydroxide solution (1.1 ml) and again water (1.1 ml) were added to the mixture, while cooling with ice. The suspension was stirred for 1 h at room temperature and then filtered through sodium sulfate. The residue was washed with tetrahydrofuran and the filtrate was concentrated vac.


Yield: 689 mg (96%), colourless oil



1H-NMR (CDCl3): 1.11-1.20 (2 H, m); 1.22-1.38 (4 H, m); 1.40-1.70 (12 H, m); 1.98 (1 H, br s); 2.05 (1 H, m); 2.26 (6 H, s); 2.61 (2 H, s); 2.93 (2 H, t, J=7.0 Hz).


Example No. 425
Step 1: 8-(5-Chlorothiophen-2-yl)-8-dimethylamino-2-azaspiro[4.5]decan-4-one

A suspension of 8-(dimethylamino)-1-oxo-2-azaspiro[4.5]decane-8-carbonitrile (1.76 g, 7.9 mmol) in absolute tetrahydrofuran (75 ml) was slowly added dropwise to a 0.5 M suspension of 5-chloro-2-thienylmagnesium bromide (5.29 g, 48 ml, 23.9 mmol) in tetrahydrofuran under argon, a clear solution being formed. The solution was then stirred overnight at 50° C. After addition of saturated ammonium chloride solution (100 ml) the tetrahydrofuran was removed i. vac. The aqueous solution obtained was extracted with methylene chloride (3×50 ml) and the combined organic phases were washed with saturated sodium chloride solution (50 ml), dried with sodium sulfate and concentrated i. vac. The crude product (2.45 g) was purified by means of flash chromatography (100 g, 20×4.0 cm) with ethyl acetate/methanol (97:3).


Yield: 1.47 g (59%), yellow solid.


Melting point: 198-201° C.



1H-NMR (CDCl3): 1.28-1.34 (2 H, m); 1.61-1.68 (2 H, m); 2.01 (2 H, t, J=6.9 Hz); 2.12 (6 H, s); 2.17 (2 H, dt, J=13.1 and 3.1 Hz), 2.32-2.40 (2 H, m); 3.28-3.32 (2 H, m); 5.90 (1 H, br s); 6.60 (1 H, d, J=3.8 Hz); 6.83 (1 H, d, J=3.8 Hz).



13C-NMR (CDCl3): 27.9; 31.5; 32.7; 37.9; 38.7; 43.1; 58.9; 123.1; 125.2, 127.4; 144.4; 182.4.


LC-MS: m/z: [MH-HNMe2]+=268.2, Rt=2.6 min.


Step 2: [8-(5-Chloro-2-thiophen-2-yl)-2-azaspiro[4.5]dec-8-yl]-dimethylamine (Example no. 425)

A 2 M solution of boron-dimethyl sulfide complex in tetrahydrofuran (6.42 ml, 12.8 mmol) was added to a solution of 8-(5-chlorothiophen-2-yl)-8-dimethylamino-2-azaspiro[4.5]decan-4-one (1.34 g, 4.3 mmol) in absolute tetrahydrofuran (150 ml) and the mixture was stirred for 4 h under reflux and overnight at 50° C. Since the reaction was not yet complete, this same amount of 2 M borane-dimethyl sulfide complex was again added and the mixture was stirred for a further 6 h under reflux and over the weekend at room temperature. Water (100 ml) was added to the reaction solution and the mixture was concentrated i. vac. Toluene, methanol and methylene chloride (3×30 ml of each) were added in succession to the residue and the mixture was again concentrated i. vac. The crude product was reacted further without purification.


Yield: 1.95 g (151%), viscous yellow oil


The 1H-NMR spectrum shows all the expected signals.


LC-MS: m/z: [MH-HNMe2]+=254.3, Rt=2.7 min.


The product content is a maximum of 66%.


Example No. 426
Step 1: 8-Dimethylamino-8-(5-fluorothiophen-2-yl)-2-azaspiro[4.5]decane-2-carboxylic acid tert-butyl ester

A 2.5 M solution of n-butyllithium in hexane (2.2 ml, 5.5 mmol) was added dropwise to a solution of 8-dimethylamino-8-thiophen-2-yl-3-azaspiro[4.5]decane-3-carboxylic acid tert-butyl ester (Example no. 79) (1.55 g, 4.3 mmol) in absolute tetrahydrofuran (100 ml) in a thoroughly heated apparatus at −78° C. under argon and the mixture was stirred for 30 min at this temperature. The solution became yellow in colour. A solution of N-benzenesulfonyl-N-fluorobenzenesulfonamide (1.74 g, 5.5 mmol) in absolute tetrahydrofuran (50 ml) was added dropwise to this and the mixture was then warmed slowly to room temperature and further stirred for 18 h at this temperature. The solution became red in colour. After addition of saturated ammonium chloride solution (50 ml) the tetrahydrofuran was removed i. vac. The aqueous solution obtained was extracted with methylene chloride (3×30 ml) and the combined organic phases were washed with saturated sodium chloride solution (50 ml), dried with sodium sulfate and concentrated i. vac. The crude product (2.50 g) was purified by flash chromatography on spherical silica gel (PharmPrep 60 CC, 40-63 μm, 100 g, 20×4.0 cm) with ethyl acetate/isopropanol (99:1).


Yield: cannot be determined since various mixed fractions of differing purity were obtained, orange-coloured viscous oil



1H-NMR (CDCl3): 1.34-1.42 (2 H, m); 1.46 (9 H, s); 1.57-1.66 (4 H, m); 1.78-1.97 (4 H, m); 2.11 (2 H, s); 2.13 (4 H, s); 3.18 (0.7 H, s); 3.22 (1.3 H, s); 3.32 (0.7 H, t, J=7.1 Hz); 3.37 (1.3 H, t, J=7.1 Hz); 6.35-6.40 (1 H, m); 6.42 (1 H, t, J=3.5 Hz).



13C-NMR (DMSO-d6): 28.6; 31.3; 32.1; 32.9; 36.6; 37.0; 38.1; 40.7; 41.5, 44.0; 44.4; 55.6, 60.2; 79.1; 106.3; 121.3; 154.8; 162.5; 165.4.


Some C signals are doubled due to the amide structure (rotamers). For this reason, also no C-F coupling constants were determined.


LC-MS: m/z: [MH-NHMe2]+=383.4, Rt=3.3 min.


Step 2: [8-(5-Fluorothiophen-2-yl)-2-azaspiro[4.6]dec-8-yl]-dimethylamine (Example 426)

Trifluoroacetic acid (15 ml) was added to a solution of 8-dimethylamino-8-(5-fluorothiophen-2-yl)-2-azaspiro[4.5]decane-2-carboxylic acid tert-butyl ester (1.35 g, max. 3.5 mmol, slightly contaminated) in absolute methylene chloride (60 ml) and the mixture was stirred for 1 h at room temperature. The reaction solution was concentrated i. vac. and methylene chloride (50 ml) was added to the residue. The solution obtained was washed with saturated potassium bicarbonate solution (3×30 ml) and saturated sodium chloride solution (50 ml), dried with sodium sulfate and concentrated i. vac. The crude product was reacted further without purification.


Yield: 738 mg (crude product), orange-coloured viscous oil



1H-NMR (CDCl3): 1.43 (2 H, ddd, J=13.1, 8.1 and 4.9 Hz); 1.61 (2 H, t, J=7.3 Hz); 1.68-1.74 (2 H, m); 1.86-1.99 (4 H, m); 2.10 (6 H, s); 2.88 (2 H, s); 3.09 (2 H, t, J=7.3 Hz); 5.02 (1 H, br. s); 6.38 (1 H, dd, J=4.0 and 1.7 Hz); 6.42 (1 H, dd, J=4.0 and 3.1 Hz).


Example No. 427
Step 1: 2-[4-(Azetidin-1-yl)-4-(2-thienyl)cyclohexylidene]-acetic acid ethyl ester

Potassium tert-butylate (2.82 g, 25.1 mmol) was added to a solution of phosphonoacetic acid triethyl ester (5.60 g, 4.8 ml, 25.1 mmol) in anhydrous N,N-dimethylformamide (30 ml) under argon and the mixture was stirred for 10 min at room temperature. A solution of 4-(azetidin-1-yl)-4-(thiophen-2-yl)cyclohexanone (3.96 g, 16.8 mmol) in anhydrous N,N-dimethylformamide (60 ml) was then added to the mixture and the mixture was stirred for 1 h at room temperature and then poured into ice-water (80 g). The aqueous suspension was extracted with diethyl ether (4×40 ml). The combined organic extracts were dried with sodium sulfate and concentrated i. vac.


Yield: 4.79 g (93%), brownish oil



1H-NMR (CDCl3): 1.26 (t, 3H, J=7.1 Hz); 1.76-1.85 (m, 2H); 1.87-2.02 (m, 4H); 2.12-2.20 (m, 1H); 2.44-2.57 (m, 1H); 2.89-3.05 (m, 2H); 3.11 (t, 4H, J=6.9 Hz); 4.13 (q, 2H, J=7.1 Hz); 5.61 (br s, 1H); 6.89 (d, 1H, J=3.5 Hz); 7.08 (dd. 1H, J=5.1, 1.5 Hz); 7.25-7.28 (m, 1H, overlapped by the CDCl3 signal).


Step 2: 2-[4-(Azetidin-1-yl)-1-(nitromethyl)-4-(2-thienyl)cyclohexyl]-acetic acid ethyl ester

Nitromethane (1.24 g, 1.09 ml, 20.3 mmol) was added to a mixture of 2-[4-(azetidin-1-yl)-4-(2-thienyl)cyclohexylidene]-acetic acid ethyl ester (4.79 g, 15.7 mmol) and tetra-n-butylammonium fluoride trihydrate (5.43 g, 17.2 mmol) in tetrahydrofuran (150 ml) and the mixture was stirred for 6 h at 70° C. and for 18 h at 45° C. The reaction mixture was then concentrated in vacuo and the crude product (12.0 g) was purified by flash chromatography (200 g, 20×5.7 cm) with ethyl acetate/cyclohexane (9:1).


Yield: 4.18 g (74%), yellowish oil.



1H-NMR (DMSO-d6): 1.10-1.24 (m, 3H); 1.37-1.47 (m, 2H); 1.63-1.86 (m, 8H); 2.42 and 2.46 (2 s, 2H); 2.92-2.99 (m, 4H); 3.98-4.05 (m, 2H); 4.68 and 4.69 (2 s, 2H); 6.96 (dt, 1H, J=3.5, 1.1 Hz); 7.09-7.12 (m, 1H); 7.47 (dd, 1H, J=5.1, 1.0 Hz).


This is a diastereoisomer mixture in the ratio of approx. 2:3.


Step 3: 8-(Azetidin-1-yl)-8-(2-thienyl)-3-azaspiro[4.5]decan-2-one

A solution of 2-[4-(azetidin-1-yl)-1-(nitromethyl)-4-(2-thienyl)cyclohexyl]-acetic acid ethyl ester (3.90 g, 10.7 mmol) in ethanol (100 ml) was added to a mixture of iron powder (2.84 g, 53 mmol), ammonium chloride (14.2 g, 265 mmol) and water (10 ml) and the mixture was then stirred for 4 h at 80° C. The mixture was filtered and the residue was washed with ethanol. The filtrate was rendered alkaline by addition of 5% strength sodium bicarbonate solution (8 ml) and then concentrated i. vac. The crude product (6.30 g) was purified by flash chromatography (200 g, 20×5.7 cm) with methylene chloride/methanol (95:5) and 1% ammonia (25% in water). The mixture of non-polar and polar diastereoisomer isolated (1.60 g) was purified by medium pressure chromatography under 8-10 bar on a PuriFlash cartridge (PF-15SIHP, 40 g, 15 μm) and 2 PuriFlash cartridges (PF-15SIHP, 120 g, 15 μm) with methylene chloride/isopropanol (9:1) and 1% ammonia (25% in water).


Non-Polar Diastereoisomer


Yield: 504 mg (16%), white solid


Melting point: 180-183° C.



1H-NMR (DMSO-d6): 1.31-1.40 (m, 2H); 1.63-1.77 (m, 8H); 2.02 (s, 2H); 2.93 (s, 2H); 2.96 (t, 4H, J=6.9 Hz); 6.95 (d, 1H, J=3.5 Hz); 7.10 (dd, 1H, J=8.6, 3.5 Hz); 7.41 (br s, 1H); 7.46 (d, 1H, J=5.1 Hz).


Polar Diastereoisomer


Yield: 772 mg (25%), white solid


Melting point: 170-172° C.



1H-NMR (DMSO-d6): 1.30-1.40 (m, 2H); 1.62-1.82 (m, 8H); 1.93 (s, 2H); 2.96 (t, 4H, J=6.9 Hz); 3.03 (s, 2H); 6.95 (dd, 1H, J=3.5 Hz, 1.1 Hz); 7.10 (dd, 1H, J=5.1, 3.5 Hz); 7.45 (br s, 1H); 7.46 (dd, 2H, J=5.1 Hz, 1.0 Hz).


Step 4: 8-(Azetidin-1-yl)-8-(2-thienyl)-3-azaspiro[4.5]decane (polar diastereomer) (Example 427)

A solution of 8-(azetidin-1-yl)-8-(2-thienyl)-3-azaspiro[4.5]decan-2-one (polar diastereoisomer) (765 mg, 2.63 mmol) in anhydrous tetrahydrofuran (50 ml) was added dropwise to a suspension of lithium aluminium hydride (500 mg, 13.1 mmol) in anhydrous tetrahydrofuran (20 ml) at 0° C. under argon and the mixture was then stirred overnight at 60° C. After addition of water (500 μl), 1 N sodium hydroxide solution (1.3 ml) and water again (1.3 ml) the mixture was stirred for one hour at room temperature and thereafter filtered through sea sand and the filtrate was dried with sodium sulfate and concentrated i. vac.


Yield: 696 mg (96%), colourless oil



1H-NMR (CDCl3): 1.35 (ddd, 2H, J=13.1, 9.4, 3.7 Hz); 1.40-1.46 (m, 3H), 1.60-1.90 (m, 8H); 2.75 (s, 2H); 2.89 (t, 2H, J=7.1 Hz); 3.07 (t, 4H, J=7.0 Hz); 6.88 (dd, 1H, J=3.5, 1.1 Hz); 7.09 (dd, 1H, J=5.1, 3.5 Hz); 7.27 (dd, 1H, J=5.1, 1.1 Hz).


Example No. 414
8-(Azetidin-1-yl)-8-(2-thienyl)-3-azaspiro[4.5]decane (non-polar diastereomer) (Example no 428)

A solution of 8-(azetidin-1-yl)-8-(2-thienyl)-3-azaspiro[4.5]decan-2-one (non-polar diastereoisomer) (504 mg, 1.73 mmol) in anhydrous tetrahydrofuran (50 ml) was added dropwise to a suspension of lithium aluminium hydride (330 mg, 8.65 mmol) in anhydrous tetrahydrofuran (20 ml) at 0° C. under argon and the mixture was then stirred overnight at 60° C. After addition of water (300 μl), 1 N sodium hydroxide solution (800 μl) and water again (800 μl) the mixture was stirred for 1 h at room temperature and thereafter was filtered through sea sand. The filtrate was dried with sodium sulfate and concentrated i. vac.


Yield: 414 mg (87%), oil



1H-NMR (CDCl3): 1.35 (ddd, 2H, J=13.4, 9.9, 3.7 Hz); 1.56-1.64 (m, 3H); 1.70-1.93 (m, 8H); 2.55 (s, 2H); 2.94 M. 2H, J=7.1 Hz); 3.08 (t, 4H, J=7.1 Hz); 6.87 (dd, 1H, J=3.5, 1.1 Hz); 7.08 (dd, 1H, J=5.1, 3.5 Hz); 7.27 (dd, 1H, J=5.1, 1.1 Hz).


Example No. 429
Step 1: (4-Azetidin-1-yl-4-phenylcyclohexylidene)acetic acid ethyl ester

Potassium tert-butylate (3.52 g, 31.4 mmol) was added to a solution of phosphonoacetic acid triethyl ester (7.03 g, 6.2 ml, 31.4 mmol) in anhydrous N,N-dimethylformamide (30 ml) under argon and the mixture was stirred for 10 min at room temperature. A solution of 4-(azetidin-1-yl)-4-phenylcyclohexanone (4.81 g, 21 mmol) in anhydrous N,N-dimethylformamide (60 ml) was then added to the mixture and the mixture was stirred for 1 h at room temperature and then poured into ice-water 80 g). The aqueous suspension was extracted with diethyl ether (4×40 ml). The combined organic extracts were dried with sodium sulfate and concentrated i. vac.


Yield: 6.30 g (100%), yellowish oil.



1H-NMR (DMSO-d6): 1.18 (t, 3H, J=7.1 Hz); 1.65 (quin, 2H, J=7.0 Hz); 1.75-1.90 (m, 2H); 1.96-2.10 (m, 3H); 2.73-2.82 (m, 2H); 2.88-2.96 (m, 1H); 2.90 (t, 4H, J=6.9 Hz); 4.05 (q, 2H, J=7.1 Hz); 5.62 (s, 1H); 7.23-7.45 (m, 5H).


Step 2: (4-Azetidin-1-yl-1-nitromethyl-4-phenylcyclohexyl)acetic acid ethyl ester

Nitromethane (1.65 g, 1.45 ml, 27.1 mmol) was added to a mixture of (4-azetidin-1-yl-4-phenylcyclohexylidene)acetic acid ethyl ester (6.30 g, 21 mmol) and tetra-n-butylammonium fluoride trihydrate (7.26 g, 23 mmol) in tetrahydrofuran (150 ml) and the mixture was stirred for 6 h at 70° C. and for 18 h at 45° C. Since the reaction was not complete, tetra-n-butylammonium fluoride trihydrate (2.42 g, 7.6 mmol) and nitromethane (550 mg, 483 μl, 9 mmol) were again added and the mixture was stirred for a further 5 h at 70° C. and for 18 h at 45° C. The reaction mixture was concentrated in vacuo and the residue (17.0 g) was purified by flash chromatography (200 g, 20×5.7 cm) with ethyl acetate/methanol (95:5).


Yield: 4.92 g (65%), brownish oil



1H-NMR (DMSO-d6): 1.10 and 1.18 (2 t, 3H, J=7.1 Hz); 1.30-1.42 (m, 2H); 1.62 (t, 2H, J=6.8 Hz); 1.70-1.80 (m, 4H); 1.85-1.95 (m, 2H); 2.36 (s, 1H); 2.84 (t, 4H, J=6.8 Hz); 3.95-4.08 (m, 2H); 4.63 and 4.73 (m, 2H); 7.26-7.45 (m, 5H).


LC-MS: m/z: [M+H]+=361.4, Rt=2.6 and 2.7 min.


A diastereoisomer mixture in the ratio of 4:3 is present.


Step 3: 8-Azetidin-1-yl-8-phenyl-2-azaspiro[4.5]decan-3-one

A solution of (4-azetidin-1-yl-1-nitromethyl-4-phenylcyclohexyl)acetic acid ethyl ester (4.92 g, 13.5 mmol) in ethanol (130 ml) was added to a mixture of iron powder (3.58 g, 67 mmol), ammonium chloride (17.9 g, 334 mmol) and water (13 ml) and the mixture was then stirred for 4 h at 80° C. and overnight at 65° C. The mixture was filtered and the residue on the filter was washed with ethanol. The filtrate was rendered alkaline by addition of 5% strength sodium bicarbonate solution (8 ml) and then concentrated i. vac. The residue (10.0 g) was purified by flash chromatography (400 g, 20×7.5 cm) with methylene chloride/methanol (95:5) and 1% ammonia (25% in water). The mixture of non-polar and polar diastereoisomer isolated (1.80 g) was purified by flash chromatography on two columns with PharmPrep (40-63 μm, 200 g, 20×5.7 cm) and the mixed fractions (670 mg) thereby obtained were purified on a PuriFlash cartridge (PF-15SIHP, 200 g, 15 μm) in each case with methylene chloride/ethanol (95:5) and 1% ammonia (25% in water).


Non-Polar Diastereoisomer


Yield: 719 mg (19%), white solid


Melting point: 180-187° C.



1H-NMR (DMSO-d6): 1.21-1.31 (m, 2H); 1.56-1.84 (m, 8H); 2.06 (s, 2H); 2.85 (t, 4H, J=6.8 Hz); 2.88 (s, 2H); 7.22-7.46 (m, 6H).


LC-MS: m/z: [M+H]+=285.4, Rt=1.9 min.


Polar Diastereoisomer


Yield: 907 mg (24%), white solid


Melting point: 150-155° C.



1H-NMR (DMSO-d6): 1.20-1.33 (m, 2H); 1.58-1.87 (m, 8H); 1.88 (s, 2H); 2.84 (t, 4H, J=6.8 Hz); 3.07 (s, 2H); 7.25-7.49 (m, 6H).


LC-MS: m/z: [M+H]+=285.4, Rt=1.8 min.


Step 4: 8-Azetidin-1-yl-8-phenyl-2-azaspiro[4.5]decane (polar diastereoisomer) (Example 429)

A solution of 8-azetidin-1-yl-8-phenyl)-2-azaspiro[4.5]decan-3-one (polar diastereoisomer) (892 mg, 3.14 mmol) in anhydrous tetrahydrofuran (80 ml) was added dropwise to a suspension of lithium aluminium hydride (599 mg, 15.7 mmol) in anhydrous tetrahydrofuran (20 ml) at 0° C. under argon and the mixture was then stirred at 60° C. overnight. After addition of water (500 μl), 1 N sodium hydroxide solution (1.3 ml) and water again (1.3 ml) the mixture was stirred for one hour at room temperature and thereafter filtered through sea sand and the filtrate was dried with sodium sulfate and concentrated i. vac.


Yield: 830 mg (98%), colourless oil



1H-NMR (DMSO-d6): 1.12-1.22 (m, 2H); 1.23-1.30 (m, 2H); 1.52-1.66 (m, 4H); 1.70-1.81 (m, 3H); 2.53 (s, 2H); 2.70 (t, 2H, J=7.1 Hz); 2.82 (t, 4H, J=6.8 Hz); 3.34-3.42 (m, 2H); 7.24 (m, 3H); 7.37-7.43 (m, 2H).


LC-MS: m/z: [M+H]+=271.4, Rt=0.4 min.


Example No. 430
8-Azetidin-1-yl-8-phenyl-2-azaspiro[4.5]decane (non-polar diastereomer)

A solution of 8-azetidin-1-yl-8-phenyl)-3-azaspiro[4.5]decan-2-one (non-polar diastereoisomer) (701 mg, 2.46 mmol) in anhydrous tetrahydrofuran (100 ml) was added dropwise to a suspension of lithium aluminium hydride (470 mg, 12.3 mmol) in anhydrous tetrahydrofuran (20 ml) at 0° C. under argon and the mixture was then stirred at 60° C. overnight. After addition of water (500 μl), 1 N sodium hydroxide solution (1.3 ml) and water again (1.3 ml) the mixture was stirred for one hour at room temperature and thereafter filtered through sea sand and the filtrate was dried with sodium sulfate and concentrated i. vac.


Yield: 663 mg (95%), colourless oil



1H-NMR (DMSO-d6): 1.10-1.20 (m, 2H); 1.48 (t, 2H, J=7.0 Hz); 1.50-1.66 (m, 4H); 1.70 (m, 3H); 2.34 (s, 2H); 2.74 (t, 2H, J=7.0 Hz); 2.84 (t, 4H, J=6.8 Hz); 3.20-3.40 (m, 2H); 7.23-7.34 (m, 3H); 7.36-7.42 (m, 2H).


LC-MS: m/z: [M+H]+=271.4, Rt=0.2 min.


Example No. 431
8-Dimethylamino-8-phenyl-2-azaspiro[4.5]decan-3-one (polar diastereomer)

Trifluoroacetic acid (5 ml) was added to a solution of 8-dimethylamino-3-oxo-8-phenyl-2-azaspiro[4.5]decane-2-carboxylic acid tert-butyl ester (polar diastereoisomer) (1.28 g, 3.43 mmol) in anhydrous methylene chloride (50 ml) and the mixture was stirred for 3 h at room temperature. The reaction mixture was concentrated i. vac., the residue was dissolved in methylene chloride (50 ml) and the solution was washed with saturated sodium bicarbonate solution (3×20 ml). The organic phase was dried with sodium sulfate and concentrated i. vac.


Yield: 875 mg (94%), white solid


Melting point: 220-222° C.



1H-NMR (CDCl3): 1.34-1.44 (2 H, m); 1.72-1.81 (2 H, m); 1.86-2.02 (2 H, br s); 2.04 (6 H, s); 2.16-2.29 (2 H, m); 2.30 (2 H, s); 3.01 (2 H, s); 5.60 (1 H, s); 7.26-7.32 (3 H, m); 7.36-7.41 (2 H, m).


Example No. 432 and 433
Step 1: 8-Butyl-8-dimethylamino-2-azaspiro[4.5]decan-3-one

A suspension of 8-(dimethylamino)-3-oxo-2-azaspiro[4.5]decane-8-carbonitrile (2.21 g, 10 mmol) in anhydrous tetrahydrofuran (140 ml) was added dropwise to a 2 M solution of n-butylmagnesium chloride in anhydrous tetrahydrofuran (20 ml, 40 mmol) at 0° C. under argon and the mixture was stirred for 20 h at room temperature. Saturated ammonium chloride solution (50 ml) was then added to the solution. The phases were separated and the aqueous phase was extracted with methylene chloride (3×20 ml). The combined organic phases were dried with sodium sulfate and concentrated i. vac. The crude product (3.97 g) was taken up in methylene chloride and the suspension was washed with potassium carbonate solution. The organic phase was then dried with sodium sulfate and concentrated i. vac.


Yield: 1.88 g (75%), colourless oil which crystallized over time



1H-NMR (CDCl3): 0.90 and 0.91 (3 H, 2 t, J=7.2 Hz); 1.14-1.47 (10 H, m); 1.51-1.61 (2 H, m); 1.87-1.82 (2 H, m); 2.18 and 2.19 (2 H, 2 s); 2.21 (s, 6 H); 3.15 and 3.18 (2 H, 2 s); 5.90 and 5.93 (1 H, br s).


This is a diastereoisomer mixture in the ratio of approx. 1:1.


LC/MS: m/z: [M+H]+=253.3, Rt=1.3 min.


Step 2: 8-Butyl-8-dimethylamino-3-oxo-2-azaspiro[4.5]decane-2-carboxylic acid tert-butyl ester (polar and non-polar diastereoisomer)

Di-tert-butyl dicarbonate (2.71 g. 12.4 mmol) and 4-dimethylaminopyridine (90 mg, 0.75 mmol) were added to a solution of 8-butyl-8-dimethylamino-2-azaspiro[4.5]decan-3-one (1.84 g, 7.3 mmol) in anhydrous acetonitrile (60 ml) and anhydrous tetrahydrofuran (20 ml). The reaction mixture was stirred for 72 h at 50° C. It was then concentrated i. vac. The residue was taken up in methylene chloride (100 ml) and the solution was washed with water (3×80 ml) and saturated sodium chloride solution (50 ml). The organic phase was dried with sodium sulfate and concentrated i. vac. The crude product (2.37 g) was purified by flash chromatography (220 g, 20×5.7 cm) with methylene chloride/methanol (95:5-9:1-4:1).


Non-Polar Diastereoisomer:


Yield: 819 mg (32%), orange-coloured solid



1H-NMR (CDCl3): 0.90 (3 H, t, J=7.1 Hz); 1.17-1.40 (10 H, m); 1.51 (9 H, s); 1.54-1.76 (4 H, m); 2.21 (6 H, s); 2.39 (2 H, s); 3.49 (2 H, s).


Polar Diastereoisomer:


Yield: 647 mg (25%), yellow oil



1H-NMR (CDCl3): 0.90 (3 H, t, J=7.1 Hz); 1.22-1.48 (10 H, m); 1.53 (9 H, s); 1.58-1.76 (4 H, m); 2.25 (6 H, s); 2.39 (2 H, s); 3.52 (2 H, s).


Mixed Fraction:


Yield: 310 mg (12%), yellow oil


Step 3: 8-Butyl-8-dimethylamino-2-azaspiro[4.5]decan-3-one (polar diastereoisomer) (Example No. 432)

Trifluoroacetic acid (12.5 ml) was added to a solution of 8-butyl-8-dimethylamino-3-oxo-2-azaspiro[4.5]decane-2-carboxylic acid tert-butyl ester—polar diastereoisomer (603 mg, 1.71 mmol) in anhydrous methylene chloride (50 ml) and the mixture was stirred for 4 h at room temperature. The reaction mixture was then concentrated i. vac., the residue was taken up in methylene chloride (50 ml) and the solution was washed with 25% strength potassium carbonate solution (3×20 ml). The organic phase was dried with sodium sulfate and concentrated i. vac.


Polar Diastereoisomer:


Yield: 365 mg (85%), yellowish solid



1H-NMR (CDCl3): 0.90 (3 H, t, J=7.2 Hz); 1.11-1.48 (10 H, m); 1.53-1.64 (2 H, m); 1.69-1.79 (2 H, m); 2.17 (2 H, s); 2.21 (6 H, s); 3.17 (2 H, s); 6.10 (br s, 1 H).



13C-NMR (CDCl3): 14.1; 23.7; 26.5; 28.3; 30.7 (2 C); 31.9 (2 C); 37.3 (2 C); 39.0; 44.0; 52.6; 56.2; 177.9.


Step 4: 8-Butyl-8-dimethylamino-2-azaspiro[4.5]decan-3-one (non-polar diastereoisomer) (Example No. 433)

Trifluoroacetic acid (12.5 ml) was added to a solution of 8-butyl-8-dimethylamino-3-oxo-2-azaspiro[4.5]decane-2-carboxylic acid tert-butyl ester—non-polar diastereoisomer (740 mg, 2.09 mmol) in anhydrous methylene chloride (50 ml) and the mixture was stirred for 2 h at room temperature. The reaction mixture was then concentrated i. vac., the residue was taken up in methylene chloride (50 ml) and the solution was washed with 25% strength potassium carbonate solution (3×20 ml). The organic phase was dried with sodium sulfate and concentrated i. vac.


Non-Polar Diastereoisomer:


Yield: 416 mg (79%), yellow solid.



1H-NMR (CDCl3): 0.90 (3 H, t, J=7.2 Hz); 1.16-1.43 (10 H, m); 1.58-1.78 (4 H, m); 2.19 (2 M, s); 2.22 (6 H, s); 3.14 (2 H, s); 5.97 (br s, 1 H).



13C-NMR (CDCl3): 14.1; 23.8; 26.6; 28.6; 30.6 (2 C); 31.8 (2 C); 37.3 (2 C); 39.1; 42.1; 54.6; 177.7.


In accordance with the general synthesis instructions described and analogously to the concrete synthesis examples given by way of example, the following examples were prepared from the polar and non-polar precursors (8-benzyl-8-(dimethylamino)-3-azaspiro[4.5]decan-4-one, (8-benzyl-3-azaspiro[4.5]decan-8-yl)-dimethylamine, 8-dimethylamino-8-phenyl-3-azaspiro[4.5]decan-4-one, 8-(dimethylamino)-8-phenyl-3-azaspiro[4.5]decan-2-one, 8-butyl-8-dimethylamino-3-azaspiro[4.5]decan-4-one, 8-dimethylamino-8-thiophen-2-yl-3-azaspiro[4.5]decan-4-one, dimethyl-(8-thiophen-2-yl-3-azaspiro[4.5]decan-8-yl)-amine, 8-(dimethylamino)-8-thiophen-2-yl-2-azaspiro[4.5]decan-3-one, 8-(dimethylamino)-8-(5-methylthiophen-2-yl)-3-azaspiro[4.5]decan-4-one, dimethyl-[8-(5-methylthiophen-2-yl)-3-azaspiro[4.5]decan-8-yl]-amine, dimethyl-(8-phenyl-3-azaspiro[4.5]decan-8-yl)-amine, 8-(cyclohexylmethyl)-8-dimethylamino-3-azaspiro[4.5]decan-4-one, 8-(cyclopentylmethyl)-N,N-dimethyl-2-azaspiro[4.5]decan-8-amine, 8-cyclopentyl-N,N-dimethyl-2-azaspiro[4.5]decan-8-amine, 8-(azetidin-1-yl)-8-(thiophen-2-yl)-2-azaspiro[4.5]decane, 8-(azetidin-1-yl)-8-phenyl-2-azaspiro[4.5]decane, 8-(5-chlorothiophen-2-yl)-8-dimethylamino-3-azaspiro[4.5]decan-4-one, 8-(dimethylamino)-8-(5-methylthiophen-2-yl)-3-azaspiro[4.5]decan-2-one) by acylation, arylation, alkylation, reductive amination or reduction of amides.
















Ex.

Building
LC-MS



no.
Diastereomer*
Block/Method/Yield
[M + H]+/Rt
NMR spectrum



















36
1
Ex. no. 31/
[M + H]+ = 361.2,

1H-NMR (CDCl3): 1.37 (2 H, m); 1.53-1.65 (4 H, m); 1.81-1.93 (4 H,





Acylation/
Rt = 3.3 min.
m); 2.10 (9 H, m); 2.29 (2 H, m); 2.44 (3 H, s); 3.14 (2 H, m); 3.32 (2




19%

H, m); 3.43 (2 H, t); 6.60 (2 H, m).


37
1
Ex. no. 31/
[M + H]+ = 347.1,

1H-NMR (CDCl3): 0.73 (2 H, m); 0.98 (2 H, m); 1.40-1.46 (2 H, m);





Acylation/
Rt = 2.7 min.
1.56-1.73 (5 H, m); 1.89 (2 H, m); 2.09 (4 H, s); 2.12 (4 H, s); 2.45 (3




18%

H, s); 3.35 (1 H, s); 3.49 (3 H, t); 3.62 (1 H, t); 6.65 (2 H, m).


38
1
Ex. no. 31/
[M + H]+ = 349.2,

1H-NMR (CDCl3): 1.10 (6 H, d); 1.37-1.44 (2 H, m); 1.57-1.71 (4 H,





Acylation/
Rt = 2.9 min.
m); 1.80-1.94 (2 H, m); 2.01 (1 H, m); 2.11 (7 H, m); 2.45 (3 H, s);




18%

2.59 (1 H, m); 3.33 (2 H, m); 3.45 (2 H, m); 6.64 (2 H, m).


39
1
Ex. no. 31/
[M + H]+ = 363.2,

1H-NMR (DMSO-d6): 0.94 (6 H, m); 1.40 (2 H, m); 1.56-1.69 (4 H,





Acylation/
Rt = 3.3 min.
m); 1.95 (2 H, m); 2.05 (3 H, m); 2.12 (8 H, m); 2.45 (3 H, s); 3.30 (1




28%

H, s); 3.35 (1 H, s); 3.45 (2 H, m); 6.62 (1 H, m); 6.67 (1 H, m).


40
1
Ex. no. 31/
[M + H]+ = 335.2,

1H-NMR (CDCl3): 1.12 (3 H, t); 1.39 (2 H, m); 1.58 (4 H, m); 1.84 (2





Acylation/
Rt = 2.7 min
H, m); 2.06 (4 H, s); 2.09 (4 H, s); 2.22 (2 H, m); 2.43 (3 H, s); 3.25




27%

(1 H, s); 3.33 (1 H, s); 3.40 (2 H, m); 6.62 (2 H, m).


42
1
Ex. no. 18/
[M + H]+ = 337.2,

1H-NMR (CDCl3): 1.39 (2 H, m); 1.60-1.70 (4 H, m); 1.94 (2 H, m);





Acylation/
Rt = 2.0 min
2.09 (7 H, m); 2.15 (1 H, b s); 3.28 (1 H, s); 3.42 (5 H, m); 3.51 (1 H,




90%

s); 3.99 (2 H, s); 6.84 (1 H, s); 7.03 (1 H, s); 7.22 (1 H, s).


43
1
Ex. no. 18/
[M + H]+ = 347.2,

1H-NMR (CDCl3): 1.32 (2 H, m); 1.52 (1 H, t); 1.58 (3 H, t); 1.62-1.93





Acylation/
Rt = 1.8 mm
(4 H, m); 2.00-2.12 (10 H, m); 2.29 (2 H, m); 3.09 (2 H, m); 3.28 (1




88%

H, m); 3.38 (1 H, t); 6.77 (1 H, m); 6.97 (1 H, m); 7.16 (1 H, m).


44
1
Ex. no. 18/
[M + H]+ = 333.2,

1H-NMR (CDCl3): 0.73 (2 H, m); 0.98 (2 H, m); 1.40-1.75 (6 H, b m);





Acylation/
Rt = 2.4 mm
1.94 (2 H, b s); 2.09 (2 H, s); 2.12 (4 H, s); 2.20 (2 H, b s); 3.38 (1 H,




37%

s); 3.49 (2 H, m); 3.64 (1 H, t); 6.86 (1 H, m); 7.04 (1 H, m); 7.27 (1






H, m).


45
1
Ex. no. 18/
[M + H]+ = 335.2,

1H-NMR (CDCl3): 1.04 (6 H, m); 1.35 (2 H, m); 1.53 (1 H, t); 1.63 (3





Acylation/
Rt = 2.0 min
H, m); 1.88 (2 H, m); 2.03 (6 H, m); 2.11 (2 H, m); 2.55 (1 H, m);




57%

3.28 (2 H, m); 3.41 (2 H, m); 6.78 (1 H, m); 6.97 (1 H, m); 7.16 (1 H,






m).


46
1
Ex. no. 18/
[M + H]+ = 349.2,

1H-NMR (DMSO-d6): 0.93 (6 H, m); 1.37 (2 H, m); 1.56 (1 H, t); 1.63





Acylation/
Rt = 2.2 min
(3 H, m); 1.89 (2 H, m); 2.01-2.17 (11 H, b m); 3.27 (1 H, s); 3.33 (1




51%

H, s); 3.41 (2 H, m); 6.08 (1 H, m); 6.97 (1 H, m); 7.18 (1 H, m).


47
1
Ex. no. 70/
[M + H]+ = 323.2,

1H-NMR (CDCl3): 1.36 (2 H, m); 1.50 (2 H, t); 1.68 (2 H, m); 1.89 (2





Reduction/
Rt = 0.5 min
H, m); 2.08 (8 H, s); 2.46 (2 H, s); 2.54 (2 H, t); 2.60 (2 H, t); 3.33 (3




90%

H, s); 3.46 (2 H, t); 6.82 (1 H, m); 7.01 (1 H, m); 7.20 (1 H, m).


49
1
Ex. no. 18/
[MH − HNMe2]+ =

1H-NMR (DMSO-d6): 0.10-0.15 (2 H, m); 0.43-0.50 (2 H, m); 0.82-





Reductive
274.3 (100%)
0.92 (1 H, m); 1.27-1.35 (2 H, m); 1.52 (2 H, t, J = 6.8 Hz); 1.62-




amination/
[M + H]+ = 319.3
1.71 (2 H, m); 1.82-2.01 (4 H, m); 1.99 (6 H, s); 2.30-2.45 (2 H, m);




69%
(40%), Rt = 0.4
2.51-2.56 (2 H m); 2.63-2.72 (2 H, m); 6.92 (1 H, dd, J = 3.5 and





min.
1.1 Hz); 7.05 (1 H dd, J = 5.1 and 3.5 Hz); 7.41 (1 H, dd, J = 5.1






and 1.0 Hz).







13C-NMR (DMSO-d6): 3.6; 8.7; 32.7; 33.0; 36.0; 37.7; 40.5; 41.3;







41.6; 52.9; 58.6; 59.9; 65.0; 123.5; 124.7; 126.3; 143.2.


50
1
Ex. no. 18/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.32-1.44 (2 H, m); 1.59 (1 H, t, J = 7.1 Hz); 1.62-





Acylation/
316.3 (100%)
1.75 (5 H, m); 1.77-2.01 (4 H, m); 2.02-2.24 (4 H, m); 2.11 (6 H, s);




48%
[M + H]+ = 361.4
2.33-2.38 (2 H, m); 2.66-2.78 (1 H, m); 3.29 (1.2 H, s); 3.34 (0.8 H,





(65%), Rt = 3.0
s); 3.42 (0.8 H, t, J = 7.6 Hz); 3.45 (1.2 H, t, J = 7.8 Hz); 6.82-6.86





min.
(1 H, m); 7.00-7.06 (1 H, m); 7.20-7.26 (1 H, m).







13C-NMR (CDCl3): 18.71; 18.74; 28.5; 28.6; 31.1; 31.2; 32.3; 32.8;







33.5; 35.6; 37.0; 38.08; 38.09; 40.1; 41.2; 41.7; 42.0; 43.7; 45.1;






53.4; 55.3; 56.5; 59.8; 123.3; 123.5; 124.8; 125.1; 126.1; 126.3;






142.1; 143.7; 171.0; 171.1.


51
1
Ex. no. 48/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 0.01-0.06 (2 H, m); 0.38-0.44 (2 H, m); 0.59-0.72





Reduction/
288.3 (100%)
(1 H, m); 1.34-1.43 (4 H, m); 1.52 (2 H, t, J = 6.8 Hz); 1.66-1.74 (2




55%
[M+H]+ = 333.4
H, m); 1.84-1.99 (2 H, m); 2.05-2.18 (2 H, m); 2.10 (6 H, s); 2.45 (2





(25%), Rt = 0.7
H, s); 2.47-2.57 (4 H, m); 6.84 (1 H, dd, J = 3.6 and 1.1 Hz); 7.03 (1





min.h
H, dd, J = 5.1 and 3.6 Hz); 7.22 (1 H, dd, J = 5.1 and 1.0 Hz).







13C-NMR (CDCl3): 4.3; 9.1; 33.7; 34.3; 38.2; 40.9; 54.0; 56.9; 59.6;







65.5; 123.2; 125.0; 126.2.


52
1
Ex. no. 50/
MH − HNMe2]+ =

1H-NMR (CDCl3): 1.38 (2 H, ddd, J = 13.3, 10.0 and 3.5 Hz); 1.50 (2





Reduction/
302.3 (100%)
H, t, J = 6.8 Hz); 1.54-1.64 (4 H, m); 1.65-1.73 (2 H, m); 1.78-1.96




65%
[M + H]+ = 347.4
(4 H, m); 1.98-2.16 (4 H, m); 2.10 (6 H, s); 2.20-2.30 (3 H, m); 2.41





(25%), Rt = 1.9
(2 H, s); 2.49 (2 H, t, J = 6.8 Hz); 6.85 (1 H, dd, J = 3.6 and 1.1 Hz);





mm
7.03 (1 H, dd, J = 5.1 and 3.6 Hz); 7.22 (1 H, dd, J = 5.1 and 1.1






Hz).







13C-NMR (CDCl3): 18.7; 28.4; 33.7; 34.5; 36.1; 38.2; 40.8; 54.0;







54.8; 59.6; 65.8; 123.2; 124.9; 126.1.


53
1
Ex. no. 43/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.38-1.48 (2 H, m); 1.60-1.82 (8 H, m); 1.85-1.94





Reduction/
288.3 (100%)
(1 H, m); 1.94-2.04 (2 H, m); 2.06-2.18 (4 H, m); 2.12 (6 H, s);




60%
[M + H]+ = 333.4
2.55-2.95 (6 H, m); 6.85 (1 H, br d, J = 3.0 Hz); 7.03 (1 H, dd, J =





(20%), Rt = 1.1
5.1 and 3.6 Hz); 7.22-7.24 (1 H, dd, J = 5.0 and 0.8 Hz).





mm

13C-NMR (CDCl3): 18.7; 27.8; 30.3; 33.3; 33.6; 36.9; 38.1; 41.1;







53.5; 59.9; 62.2; 64.4; 123.6; 125.3; 126.3.


54
1
Ex. no. 18/
[M + H]+ = 363.3,

1H-NMR (CDCl3): 0.91 (6 H, t, J = 6.1 Hz); 1.34-1.45 (2 H, m); 1.50-





Acylation/
Rt = 3.1 min
1.73 (8 H, m); 1.80-2.08 (2 H, m); 2.09 and 2.11 (6 H, 2 s); 2.15-




55%

2.26 (3 H, m); 3.30 (1.2 H, s); 3.36 (0.8 H, s); 3.41-3.50 (2 H, m);






6.83-6.87 (1 H, m); 7.01-7.07 (1 H, m); 7.23-7.26 (1 H, m).







13C-NMR (CDCl3): 22.3; 22.38; 22.41; 27.9; 28.0; 31.1; 31.2; 32.4;







32.8; 33.4; 33.7; 33.8; 35.6; 37.2; 38.1; 40.1; 42.0; 44.0; 45.0; 55.5;






56.5; 59.9; 123.3; 123.5; 124.8; 125.0; 126.1; 126.3; 172.17; 172.2.


55
1
Ex. no. 18/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.38-1.46 (2 H, m); 1.60 and 1.61 (6 H, 2 s); 1.65





Acylation/
315.2 (100%)
(2 H, t, J = 7.4 Hz); 1.68-1.81 (3 H, m); 1.93-2.09 (3 H, m); 2.10




36%
[M + H]+ = 360.2
and 2.11 (6 H, 2 s); 3.43 (0.7 H, s); 3.63 (1.3 H, 3 s); 3.55 (1.3 H, t,





(10%), Rt = 2.6
J = 7.5 Hz); 3.83 (0.7 H, t, J = 7.0 Hz); 6.85 (1 H, dd, J = 3.5 and 0.9





min
Hz); 7.05 (1 H, dd, J = 5.1 and 3.5 Hz); 7.24 (1 H, d, J = 5.0 Hz).







13C-NMR (CDCl3): 25.07; 25.1; 30.4; 31.2; 33.0; 33.1; 34.0; 36.7;







38.0; 38.1; 39.2; 43.0; 46.2; 46.4; 57.9; 59.8; 121.7; 121.8; 123.4;






124.8; 124.9; 126.2; 126.3; 165.9.


56
1
Ex. no. 18/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.33-1.45 (2 H, m); 1.50-1.74 (5 H, m); 1.76-2.06





Acylation/
332.2 (100%)
(3 H, m); 2.09 and 2.10 (6 H, 2 s); 2.12-2.40 (2 H, m); 2.30-2.40 (2




50%
[M + H]+ = 377.3
H, m); 2.66-2.76 (1 H, m); 3.28 (1.2 H, s); 3.36 (0.8 H, s); 3.40-3.50





(50%), Rt = 2.5
(3 H, m); 3.70-3.78 (1 H, m); 3.82-3.89 (1 H, m); 3.93-4.00 (1 H,





min.
m); 6.84 (1 H, dt, J = 3.7 and 1.1 Hz); 7.01-7.06 (1 H, m); 7.22 (0.4






H, dd, J = 5.1 and 1.1 Hz); 7.24 (0.6 H, dd, J = 5.1 and 1.1 Hz).







13C-NMR (CDCl3): 31.1; 31.2; 32.3; 32.83; 32.85; 33.4; 35.3; 35.5;







37.0; 38.1; 38.5; 40.1; 42.1; 43.9; 45.1; 55.4; 56.4; 59.8; 67.6; 73.31;






73.33; 123.3; 123.5; 124.8; 125.1; 126.1; 126.3; 143.6; 170.40;






170.44.


57
1
Ex. no. 18/
[M + H]+ = 349.3,

1H-NMR (CDCl3): 1.33-1.44 (2 H, m); 1.60-1.72 (5 H, m); 1.85-2.08





Acylation/
Rt = 2.3 min.
(2 H, m); 2.09 and 2.11 (6 H, 2 s); 2.11-2.18 (1 H, m); 3.06 (1.2 H,




41%

s); 3.23 (0.8 H, t, J = 7.2 Hz); 3.40 (0.8 H, s); 3.52 (1.2 H, t, J = 7.2






Hz); 3.87-3.98 (1 H, m); 4.74-4.81 (2 H, m); 4.90-4.96 (2 H, m);






6.83-6.86 (1 H, m); 7.01-7.06 (1 H, m); 7.22-7.26 (1 H, m).







13C-NMR (CDCl3): 30.9; 31.2; 32.9; 32.3; 35.0; 36.9; 38.04; 38.09;







38.3; 38.5; 40.1; 42.1; 44.2; 44.3; 55.6; 55.9; 59.8; 73.01; 73.03;






123.4; 123.5; 124.9; 125.0; 126.2; 126.3; 169.6; 169.7.


58
1
Ex. no. 18/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.38-1.54 (4 H, m); 1.55-1.81 (8 H, m); 1.95-2.08





Acylation/
313.2 (100%)
(2 H, m); 2.10 and 2.12 (6 H, 2 s); 3.38 (0.8 H, s); 3.50 (1.2 H, t, J =




23%
[M + H]+ = 358.2
7.3 Hz); 3.71 (1.2 H, s); 3.90 (0.8 H, t, J = 1.1 Hz); 6.86 (1 H, br d,





(6%), Rt = 2.6
J = 3.5 Hz); 7.03-7.07 (1 H, m); 7.23-7.26 (1 H, m).





min.

13C-NMR (CDCl3): 16.3; 16.7; 30.7; 31.1; 33.2; 38.07; 38.1; 39.9;







42.5; 45.7; 46.1; 120.3; 123.4; 124.9; 126.2; 126.3; 163.0.


59
1
Ex. no. 18/
[M + H]+ = 393.3,

1H-NMR (CDCl3): 1.15 (2.4 H, s); 1.16 (3.6 H, s); 1.30-1.46 (2 H, m);





Acylation/
Rt = 2.8 min.
1.60 (1.2 H, t, J = 7.2 Hz); 1.63-1.74 (2.8 H, m); 1.80-2.02 (4 H, m);




84%

2.04-2.22 (8 H, m); 2.23-2.30 (2 H, m); 3.16 (1.2 H, s); 3.18 (1.8 H,






s); 3.32 (1.2 H, s); 3.36 (0.8 H, s); 3.44-3.50 (2 H, m); 6.83-6.87 (1






H, m); 7.01-7.07 (1 H, m); 7.21-7.26 (1 H, m).







13C-NMR (CDCl3): 24.7; 25.0; 28.7; 29.1; 31.0; 31.1; 32.7; 33.4;







34.0; 34.2; 35.6; 37.1; 38.1; 40.0; 42.0; 44.0; 45.0; 49.1; 53.4; 55.5;






56.4; 59.8; 73.90; 73.94; 123.2; 124.7; 126.0; 126.2; 171.91; 171.94.


60
1
Ex. no. 18/
[M + H]+ = 377.3,

1H-NMR (CDCl3): 1.34-1.46 (2 H, m); 1.56-1.74 (7 H, m); 1.84-2.02





Acylation/
Rt = 2.5 min.
(4 H, m); 2.09 and 2.12 (6 H, 2 s); 2.16-2.26 (1 H, m); 2.52-2.61 (1




57%

H, m); 3.34-3.54 (6 H, m); 3.99-4.05 (2 H, m); 6.83-6.87 (1 H, m);






7.01-7.07 (1 H, m); 7.21-7.27 (1 H, m).







13C-NMR (CDCl3): 28.58; 28.6; 31.0; 31.2; 32.8; 33.4; 35.5; 37.1;







38.1; 39.6; 39.8; 39.9; 42.0; 44.2; 44.7; 55.6; 56.0; 59.8; 67.3; 123.3;






123.6; 124.8; 125.1; 126.1; 126.4; 173.0; 173.1.


61
1
Ex. no. 18/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.37-1.46 (2 H, m); 1.63-1.78 (4 H, m); 1.93-2.09





Acylation/
327.2 (100%)
(4 H, m); 2.10 (6 H, s); 2.12-2.15 (1 H, m); 2.20-2.33 (1 H, m);




68%
[M + H]+ = 372.3
2.53-2.68 (2 H, m); 2.72-2.82 (2 H, m); 3.35 (1.2 H, s); 3.42 (0.8 H,





(5%), Rt = 2.7
s); 3.51-3.57 (2 H, m); 6.85 (1 H, dd, J = 3.5 and 0.9 Hz); 7.04 (1 H,





min.
td, J = 5.1 and 3.6 Hz); 7.22-7.26 (1 H, m).







13C-NMR (CDCl3): 16.5; 30.5; 30.6; 31.2; 33.0; 33.1; 34.4; 37.2;







38.0; 38.1; 38.8; 39.0; 39.8; 42.7; 44.9; 45.5; 56.7; 57.1; 59.8; 120.8;






120.9; 123.4; 124.9; 126.2; 126.3, 164.4; 164.7.


62
1
Ex. no. 18/
[M + H]+ = 361.3,

1H-NMR (CDCl3): 0.03-0.08 (2 H, m); 0.38-0.45 (2 H, m); 0.66-0.76





Acylation/
Rt = 3.0 min.
(1 H, m); 1.34-1.45 (2 H, m); 1.50-1.64 (3 H, m); 1.64-1.72 (3 H,




61%

m); 1.85-2.02 (3 H, m); 2.03 and 2.12 (6 H, 2 s); 2.14-2.25 (1 H, m);






2.31-2.38 (2 H, m); 3.32 (1.2 H, s); 3.36 (0.8 H, s); 3.34-3.50 (2 H,






m); 6.83-6.87 (1 H, m); 7.01-7.07 (1 H, m); 7.21-7.26 (1 H, m).







13C-NMR (CDCl3): 4.5; 10.7; 28.5; 30.12; 30.15; 31.1; 31.2; 32.8;







33.4; 34.4; 34.8; 35.6; 37.1; 38.1; 40.1; 42.0; 43.9; 45.0; 55.3; 56.5,






59.9; 123.3; 123.5; 124.9; 125.1; 126.1; 126.3; 143.6; 171.87; 171.9.


63
1
Ex. no. 18/
[M + H]+ = 365.3,

1H-NMR (CDCl3): 1.35-1.44 (8 H, m); 1.53-1.58 (1 H, m); 1.64-1.75





Acylation/
Rt = 2.5 min.
(3 H, m); 1.95-2.09 (3 H, m); 2.10 and 2.11 (6 H, 2 s); 2.12-2.18 (1




67%

H, m); 3.18 and 3.19 (3 H, 2 s); 3.42 (0.7 H, s); 3.57 (1.3 H, t, J = 7.4






Hz); 3.62 (1.3 H, s); 3.73 (0.7 H, t, J = 7.0 Hz); 6.85 (1 H, dd, J = 3.5






and 0.7 Hz); 7.04 (1 H, dd, J = 5.0 and 3.6 Hz); 7.22-7.26 (1 H, m).







13C-NMR (CDCl3): 24.1; 30.3; 30.6; 31.4; 32.9; 33.1; 34.0; 38.07;







38.1; 38.8; 42.4; 45.4; 45.8; 51.57; 51.59; 56.8; 57.7; 59.9; 79.5;






79.8; 123.3; 124.8; 126.1; 126.3; 172.6; 172.9.


64
1
Ex. no. 18/
[M + H]+ = 377.3,

1H-NMR (CDCl3): 1.34-1.45 (2 H, m); 1.51-1.73 (6 H, m); 1.84-2.00





Acylation/
Rt = 2.7 min.
(4 H, m); 2.09 and 2.11 (6 H, 2 s); 2.13-2.23 (2 H, m); 2.34-2.43 (1




58%

H, m); 2.57-2.65 (1 H, m); 3.28-3.40 (2 H, m); 3.40-3.55 (2 H, m);






3.70-3.77 (1 H, m); 3.82-3.90 (1 H, m); 4.25-4.32 (1 H, m); 6.84-






6.86 (1 H, m); 7.01-7.07 (1 H, m); 7.22-7.26 (1 H, m).







13C-NMR (CDCl3): 25.63; 25.66; 31.1; 31.15; 31.2; 31.5; 31.6, 32.8;







32.9; 33.3; 38.1; 40.1; 40.5; 40.9; 42.0; 43.9; 45.2; 55.4; 56.6; 59.9;






67.81; 67.84; 75.99; 76.0; 123.3; 124.8; 126.1; 126.3; 169.5; 169.6.


65
1
Ex. no. 18/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.22 (2.6 H, s); 1.23 (3.4 H, s); 1.32-4.47 (2 H, m);





Acylation/
334.3, Rt = 2.5
1.57-1.74 (4 H, m); 1.83 (2 H, t, J = 6.8 Hz); 1.87-2.02 (2 H, m);




28%
min.
2.02-2.24 (2 H, m); 2.08 (2.6 H, s); 2.11 (3.4 H, s); 2.36-2.44 (2 H,






m); 3.32 (1.2 H, s); 3.36 (0.8 H, s); 3.43-3.50 (2 H, m); 6.84 (0.4 H,






dd, J = 3.6 and 1.1 Hz); 6.85 (0.6 H, dd, J = 3.6 and 1.1 Hz); 7.02






(0.4 H, dd, J = 5.1 and 3.6 Hz); 7.05 (0.6 H, dd, J = 5.1 and 3.6 Hz);






7.23 (0.4 H, dd, J = 5.1 and 1.1 Hz); 7.25 (0.6 H, dd, J = 5.1 and 1.1






Hz). The OH signal could not be identified.







13C-NMR (CDCl3): 29.1; 29.4; 29.5; 31.1; 31.2; 32.7; 33.4; 35.5;







37.2; 38.1; 40.0; 42.1; 44.1; 45.2; 55.7; 56.7; 59.7; 69.51; 69.55;






123.2; 123.4; 124.7; 125.1; 126.0; 126.2; 172.6; 172.7.


66
1
Ex. no. 18/
[M + H]+ = 363.2

1H-NMR (DMSO-d6): 1.22-1.32 (2 H, m); 1.41-1.48 (1 H, m); 1.52-





Acylation/
(4%)
1.66 (6 H, m); 1.68-1.77 (1 H, m); 1.99 (4 H, s); 2.00 (2 H, s); 1.94-




50%
[MH − NHMe2]+ =
2.06 (4 H, m, overlapped); 2.45-2.52 (2 H, m, overlapped by the





318.3 (100%),
DMSO signal); 3.17 (0.8 H, s); 3.32 (1.2 H; t, J = 7.1 Hz, overlapped





Rt = 2.6 min.
by the water signal); 3.35 (1.2 H; s); 3.54 (0.8 H; t, J = 7.1 Hz);






5.747 (0.3 H, s); 5.754 (0.7 H, s); 6.92-6.94 (1 H, m); 7.04-7.07 (1






H, m); 7.40-7.42 (1 H, m).







13C-NMR (DMSO-d6): 12.2; 29.9; 30.0; 30.7; 32.4; 32.5; 33.4; 33.6;







37.7; 38.7; 41.5; 44.4; 44.5; 54.8; 59.0; 59.1; 75.2; 75.5; 123.6;






124.8; 124.9; 126.3; 171.1; 171.2.


67
1
Ex. no. 18/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 0.95-1.02 (2 H, m); 1.32-1.37 (2 H, m); 1.37-1.46





Acylation/
327.2 (100%)
(2 H, m); 1.61-1.75 (4 H, m); 1.87-2.06 (3 H, m); 2.10 (2.5 H, s);




30%
[M + H]+ = 372.3
2.11 (3.5 H, s); 2.13-2.22 (1 H, m); 2.45 (2 H, s); 3.29 (1.1 H, s);





(98%), Rt = 2.5
3.39 (0.9 H, s); 3.46 (0.9 H, t, J = 7.1 Hz); 3.52 (1.1 H, t, J = 7.3 Hz);





min.
6.83-6.86 (1 H, m); 7.02 (0.5 H, dd, J = 5.1 and 3.6 Hz); 7.04 (0.5 H,






dd, J = 5.1 and 3.6 Hz); 7.22 (0.5 H, dd, J = 5.1 and 1.1 Hz); 7.24






(0.5 H, dd, J = 5.1 and 1.1 Hz).







13C-NMR (CDCl3): 6.6; 6.7; 14.0; 31.0; 31.1; 32.8; 33.3; 35.4; 36.9;







38.1; 38.1; 39.3; 39.7; 40.1; 42.3; 44.2; 45.2; 55.6; 58.5; 59.8; 59.8;






123.1; 123.2; 123.3; 123.6; 124.8; 125.1; 126.1; 126.3; 143.5; 167.2;






167.2.


68
1
Ex. no. 18/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.34-1.46 (2 H, m); 1.60-1.75 (4 H, m); 1.85-2.06





Acylation/
341.2 (95%)
(4 H, m); 2.08 (2.5 H, s); 2.11 (3.5 H, s); 2.16-2.30 (4 H, m); 2.58-




44%
[M + H]+ = 386.3
2.67 (2 H, m); 2.69 (0.8 H, s); 2.70 (1.2 H, s); 3.30 (1.2 H, s); 3.37





(100%), Rt = 2.7
(0.8 H, s); 3.45 (0.8 H, t, J = 7.1 Hz); 3.50 (1.2 H, t, J = 7.3 Hz); 6.84





min.
(0.4 H, dd, J = 3.6 and 1.1 Hz); 6.86 (0.6 H, dd, J = 3.5 and 1.0 Hz);






7.02 (0.4 H, dd, J = 5.1 and 3.6 Hz); 7.05 (0.6 H, dd, J = 5.1 and 3.6






Hz); 7.23 (0.4 H, dd, J = 5.1 and 1.1 Hz); 7.25 (0.6 H, dd, J = 5.1






and 1.1 Hz).


69
1
Ex. no. 18/
[M + H]+ = 375.3,

1H-NMR (CDCl3): 1.35-1.45 (2 H, m); 1.46-1.76 (10 H, m); 1.78-





Acylation/
Rt = 3.2 min.
1.96 (3 H, m); 1.96-2.09 (3 H, m); 2.09 and 2.11 (6 H, 2 s); 2.16-




32%

2.32 (3 H, m); 3.29 (1.2 H, s); 3.36 (0.8 H, s); 3.40-3.50 (2 H, m);






6.83-6.87 (1 H, m); 7.01-7.09 (1 H, m); 7.21-7.25 (1 H, m).







13C-NMR (CDCl3): 18.2; 18.29; 18.30; 27.8; 27.9; 27.96; 28.0; 31.1;







31.2; 31.5; 31.7; 31.97; 31.99; 32.04; 32.5; 32.8; 33.4; 35.2; 35.5;






35.7; 35.73; 37.1; 38.1; 40.1; 42.0; 43.9; 45.0; 55.4; 56.4; 59.9; 77.2;






77.5; 123.3; 123.5; 124.9; 125.1; 126.1; 126.3; 171.9; 172.0.


70
1
Ex. no. 57/
[M + H]+ = 335.3,

1H-NMR (CDCl3): 1.32-1.40 (2 H, m); 1.48 (2 H, t, J = 6.9 Hz); 1.63-





Reduction/
Rt = 0.2 min.
1.71 (2 H, m); 1.75-2.00 (3 H, m); 2.00-2.08 (1 H, m); 2.09 (6 H, s);




44%

2.35 (2 H, s); 2.46 (2 H, t, J = 6.9 Hz); 2.73 (2 H, d, J = 7.3 Hz);






3.13-3.22 (1 H, m); 4.42 (2 H, t, J = 6.2 Hz); 4.78 (2 H, dd, J = 7.8






and 6.0 Hz); 6.84 (1 H, d, J = 3.5 Hz); 7.03 (1 H, dd, J = 5.1 and 3.5






Hz); 7.22 (1 H, d, J = 5.1 Hz).







13C-NMR (CDCl3): 19.8; 33.6; 34.3; 34.7; 38.1; 41.0; 53.8; 59.6;







59.8; 65.7; 76.5; 123.2; 124.9; 126.1.


71
1
Ex. no. 13/
[M + H]+ = 259.2,

1H-NMR (CDCl3): 1.31 (2 H, m); 1.43 (2 H, m); 1.63 (2 H, m); 1.91 (2





Reduction/
Rt = 0.6 min
H, m); 2.03 (6 H, s); 2.24 (2 H, m); 2.84 (2 H, s); 2.95 (2 H, m); 7.25-




77%

7.39 (5 H, m).


72
1
Ex. no. 71/
[M + H]+ = 329.4,

1H-NMR (CDCl3): 0.97 (t, 3H, J = 7.4 Hz); 1.23-1.35 (m, 2H); 1.52-





Acylation/
Rt = 2.8 min.
1.74 (m, 8H); 2.02 and 2.04 (2 s, 6H); 2.18-2.28 (m, 3H); 2.23-2.41




86%

(br s, 1 H); 3.34 and 3.41 (2 s, 2H); 3.39-3.48 (m, 2H); 7.23-7.42 (m,






5H).







13C-NMR (CDCl3): 13.7; 14.0; 18.4; 18.5; 18.9; 30.1; 30.9; 31.2;







31.5; 36.4; 36.9; 37.8; 38.0; 38.1; 40.3; 42.3; 43.9; 45.0; 55.1; 56.4;






60.8; 126.5; 126.7; 127.6; 127.63; 127.67; 127.7; 171.9; 172.0.


73
1
Ex. no. 71/
[M + H]+ = 301.2,

1H-NMR (CDCl3): 1.30 (2 H, m); 1.54 (1 H, m); 1.62 (3 H, m); 1.83-





Acylation/
Rt = 1.5 min
1.96 (2 H, m); 2.00-2.03 (9 H, m); 2.19 (1 H, m); 2.32 (1 H, m); 3.32-




56%

3.45 (4 H, m); 7.23-7.39 (5 H, m).


74
1
Ex. no. 71/
[M + H]+ = 315.3,

1H-NMR (CDCl3): 0.90 (3 H, t); 1.30 (4 H, m); 1.44 (4 H, m); 1.66 (2





Reductive
Rt = 1.4 min
H, m); 1.85 (2 H, m); 2.02 (6 H, s); 2.26 (2 H, m); 2.37 (2 H, m); 2.46




amination/

(4 H, m); 7.29 (5 H, m).




83%


75
1
Ex. no. 71/
[M + H]+ = 371.4,

1H-NMR (CDCl3): 1.23-1.34 (2 H, m); 1.51-1.70 (5 H, m); 1.83-1.98





Acylation/
Rt = 2.8 min.
(4 H, m); 2.03 and 2.05 (6 H, 2 s); 2.09-2.25 (2 H, m); 2.25-2.45 (2




51%

H, m); 2.59 (0.6 H, d, J = 6.9 Hz); 2.63 (0.4 H, d, J = 6.9 Hz); 3.33-






3.53 (4 H, m); 3.69-3.77 (1 H, m); 3.81-3.91 (1 H, m); 4.24-4.33 (1






H, m); 7.26-7.33 (3 H, m); 7.34-7.41 (2 H, m).







13C-NMR (CDCl3): 25.6; 30.0; 30.1; 30.7; 31.16; 31.2; 31.4; 31.5;







31.57; 31.6; 36.0; 37.6; 38.0; 38.1; 40.4; 40.5; 40.9; 42.3; 43.9; 45.2;






55.1; 56.5; 60.9; 67.81; 67.85; 76.0; 126.5; 126.7; 127.6; 127.7;






127.8; 137.4; 169.7; 169.7.


76
1
Ex. no. 71/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.24-1.36 (2 H, m); 1.56 (1 H, t, J = 7.3 Hz); 1.62





Acylation/
335.3 (22%)
(3 H, m); 1.83-2.11 (9 H, m); 2.15-2.31 (4 H, m); 2.33-2.44 (1 H,




29%
[M + H]+ = 380.4
m); 2.59-2.68 (2 H, m); 2.69 (0.8 H, s); 2.71 (1.2 H, s); 3.34 (1.2 H,





(100%), Rt = 2.7
s); 3.41 (0.8 H, s); 3.43-3.51 (2 H, m); 7.24-7.33 (3 H, m); 7.34-





min.
7.42 (2 H, m).







13C-NMR (CDCl3): 17.1; 30.0; 30.8; 31.2; 31.4; 32.5; 33.2; 33.3;







35.9; 37.5; 38.0; 38.1; 40.4; 41.5; 42.0; 42.5; 43.9; 45.2; 55.3, 56.2;






60.8; 124.5; 124.5; 126.5; 126.9; 127.6; 127.6; 127.7; 127.8; 137.5;






167.0; 167.1.


77
1
Ex. no. 71/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 0.96-1.02 (2 H, m); 1.25-1.37 (4 H, m); 1.57 (1 H,





Acylation/
321.3 (16%)
t, J = 7.3 Hz); 1.62-1.70 (3 H, m); 1.83-1.99 (2 H, m); 2.03 (2.6 H,




25%
[M + H]+ = 366.3
s); 2.04 (3.4 H, s); 2.16-2.25 (1 H, m); 2.29-2.38 (1 H, m); 2.45 (0.8





(100%), Rt = 2.6
H, s); 2.46 (1.2 H, s); 3.32 (1.2 H, s); 3.43 (0.8 H, s); 3.41-3.53 (2 H,





min.
s); 7.23-7.32 (3 H, m); 7.33-7.41 (2 H, m).







13C-NMR (CDCl3): 6.7; 6.7; 14.0; 30.1; 30.8; 31.1; 31.4; 35.8; 37.5;







38.0; 38.1; 39.3; 39.7; 40.4; 42.5; 44.2; 45.2; 55.4; 56.4; 60.8; 123.1;






123.2; 126.5; 126.8; 127.6; 127.6; 127.7, 127.8; 137.3; 167.2; 167.2.


78
1
Ex. no. 71/
[M + H]+ = 357.3,

1H-NMR (CDCl3): 1.26-1.36 (2 H, m); 1.55 (1 H, t, J = 7.3 Hz); 1.59-





Acylation/
Rt = 2.4 min.
1.70 (3 H, m); 1.82-2.00 (2 H, m); 2.02 and 2.05 (6 H, 2 s); 2.13-




25%

2.40 (2 H, m); 2.67 (2 H, t, J = 7.3 Hz); 3.34 (1.1 H, s); 3.37 (0.9 H,






s); 3.38-3.46 (3 H, m); 4.38-4.44 (2 H, m); 4.90 (2 H, dd, J = 7.8






and 6.3 Hz); 7.24-7.32 (3 H, m); 7.34-7.42 (2 H, m).







13C-NMR (CDCl3): 20.1; 30.1; 30.8; 31.1; 31.4; 31.5; 31.6; 35.8;







37.4; 37.9; 38.0; 38.1; 38.5; 39.8; 40.4; 42.3; 43.8; 44.9; 55.1; 56.3;






60.7; 77.4; 77.5; 126.5; 126.7; 127.5; 127.54; 127.6; 127.7; 137.3;






169.5; 169.6.


79
1
Ex. no. 71/
[M + H]+ = 357.4,

1H-NMR (CDCl3): 0.90 and 0.92 (6 H, 2 d, J = 6.3 Hz); 1.24-1.36 (2





Acylation/
Rt = 3.1 min.
H, m); 1.50-1.70 (7 H, m); 1.77-1.99 (2 H, m); 2.02 and 2.04 (6 H, 2




58%

s); 2.16-2.27 (3 H, m); 2.29-2.40 (1 H, m); 3.40 (1.2 H, s); 3.34 (0.8






H, s); 3.41-3.48 (2 H, m); 7.24-7.32 (3 H, m); 7.34-7.41 (2 H, m).







13C-NMR (CDCl3): 22.37; 22.4; 27.9; 28.0; 31.0; 30.9; 31.2; 31.5;







32.4; 32.9; 33.8; 36.0; 37.6; 38.0; 38.1; 40.3; 42.3; 43.9; 45.0; 55.2;






56.3; 60.8; 126.5; 126.7; 127.6; 127.63; 127.7; 127.8; 172.19; 172.2.


80
1
Ex. no. 71/
[M + H]+ = 354.4,

1H-NMR (CDCl3): 1.25-1.38 (2 H, m); 1.54-1.58 (1 H, m); 1.58 and





Acylation/
Rt = 2.6 min.
1.60 (6 H, 2 s); 1.62-1.73 (3 H, m); 1.88-2.00 (2 H, m); 1.98 and




58%

2.02 (6 H, 2 s); 2.17-2.30 (2 H, m); 3.45 (0.7 H, s); 3.65 (1.3 H, s);






3.51 (1.3 H, t, J = 7.0 Hz); 3.79 (0.7 H, t, J = 7.0 Hz); 7.23-7.31 (3






H, m); 7.34-7.40 (2 H, m).







13C-NMR (CDCl3): 25.01; 25.07; 30.2; 30.5; 30.6; 31.4; 34.4; 36.6;







37.9; 38.0; 39.3; 43.2; 46.1, 46.3; 57.5; 57.9; 60.8; 121.6; 121.8;






126.5; 126.6; 127.4; 127.5; 127.7; 165.6; 165.9.


81
1
Ex. no. 71/
[M + H]+ = 371.4,

1H-NMR (CDCl3): 1.24-1.35 (2 H, m); 1.52-1.68 (6 H, m); 1.80-1.98





Acylation/
Rt = 2.6 min.
(4 H, m); 2.02 and 2.04 (6 H, 2 s); 2.15-2.43 (2 H, m); 2.51-2.61 (1




40%

H, m); 3.36-3.51 (6 H, m); 3.98-4.05 (2 H, m); 7.25-7.32 (3 H, m);






7.33-7.41 (2 H, m).







13C-NMR (CDCl3): 28.6; 30.1; 31.0; 31.1; 31.4; 35.7; 37.6; 38.0;







39.6; 39.8; 40.1; 42.3; 44.1; 44.6; 55.4; 55.9; 60.7; 67.3; 67.32;






126.5; 126.7; 127.5; 127.6; 127.8; 135.2; 137.4; 173.0; 173.1.


82
1
Ex. no. 71/
[M + H]+ = 373.3,

1H-NMR (CDCl3): 1.23 (2.4 H, s); 1.24 (3.6 H, s); 1.27-1.35 (2 H, m);





Acylation/
R. = 2.5 min.
1.51-1.57 (1.2 H, m); 1.59-1.70 (2.8 H, m); 1.81-1.98 (4 H, m); 2.03




14%

(2.4 H, s); 2.06 (3.6 H, s); 2.16-2.45 (4 H, m); 3.35 (1.2 H, s); 3.40






(0.8 H, s); 3.41-3.49 (2 H, m); 7.23-7.41 (5 H, m). The OH signal






could not be identified.






The 1H-NMR spectrum in DMSO-d6 shows the OH signal at 4.22






and 4.25 ppm.







13C-NMR (CDCl3): 27.6; 29.1; 29.4; 29.5; 30.0; 30.7; 31.2; 31.3;







35.9; 37.2; 37.4; 37.9; 38.0; 40.3; 42.2; 44.2; 45.0; 55.3; 56.2; 60.7;






69.4; 74.7; 74.8; 75.2; 126.4; 126.9; 127.5; 127.7; 129.9, 137.4;






172.5; 172.6.


83
1
Ex. no. 71/
[M + H]+ = 387.4,

1H-NMR (CDCl3): 1.15 (2.6 H, s); 1.17 (3.4 H, s); 1.27-1.36 (2 H, m);





Acylation/
Rt = 2.8 min.
1.51-1.57 (1.2 H, m); 1.59-1.70 (2.6 H, m); 1.80-1.99 (4 H, m);




77%

2.02 (2.8 H, s); 2.03 (3.4 H, m); 2.16-2.40 (4 H, m); 3.16 (1.3 H, s);






3.18 (1.7 H, s); 3.35 (1.2 H, s); 3.40 (0.8 H, s); 3.41-3.48 (2 H, m);






7.23-7.42 (5 H, m).







13C-NMR (CDCl3): 25.0; 25.0; 28.7; 29.1; 30.1; 30.7; 31.3; 31.5;







34.0; 34.0; 34.2; 35.9; 37.5; 38.0; 40.4; 42.3; 44.0; 44.9; 49.1; 55.3;






56.2; 60.7; 73.90; 73.94; 126.5; 126.7; 127.6; 127.7; 171.92; 171.94.


84
1
Ex. no. 71/
[M + H]+ = 357.3

1H-NMR (DMSO-d6): 1.13-1.24 (2 H, m); 1.42-1.49 (2 H, m); 1.53-





Acylation/
(29%)
1.63 (2 H, m); 1.68-1.78 (1 H, m); 1.90 (4 H, s); 1.92 (2 H, s); 1.82-




54%
[MH − NHMe2]+ =
1.91 (1 H, m, overlapped); 1.95-2.13 (6 H, m); 2.46-2.54 (2 H, m,





312.3 (100%),
overlapped by the DMSO signal); 3.21 (0.8 H, s); 3.24 (1.2 H; t, J =





Rt = 2.7 min.
7.1 Hz, overlapped by the water signal); 3.39 (1.2 H; s); 3.52 (0.8 H;






t, J = 7.1 Hz); 5.70 (0.3 H, s); 5.77 (0.7 H, s); 7.23-7.26 (1 H, m);






7.31-7.39 (4 H, m).







13C-NMR (DMSO-d6): 12.2; 29.9; 30.2; 30.9; 33.4; 33.6; 37.7; 41.7;







44.4; 59.8; 60.0; 75.2; 75.5; 126.2; 127.2; 127.4; 171.1; 171.3.


85
1
Ex. no. 71/
[M + H]+ = 341.4,

1H-NMR (CDCl3): 0.10-0.19 (2 H, m); 0.51-0.58 (2 H, m); 1.08 (1 H,





Acylation/
Rt = 2.8 min.
m); 1.22-1.35 (2 H, m); 1.50-1.67 (4 H, m); 1.75-1.98 (2 H, m);




70%

2.02 (2.4 H, s); 2.03 (3.6 H, s); 3.31 (1.2 H, s); 2.17 (0.8 H, d, J = 6.7






Hz); 2.20 (1.2 H, d, J = 6.7 Hz); 2.18-2.40 (2 H, m); 3.38 (0.8 H, t,






J = 7.2 Hz); 3.41 (0.8 H, s); 3.46 (1.2 H, t, J = 7.2 Hz); 7.22-7.40 (5 H,






m).







13C-NMR (CDCl3): 4.3; 6.9; 30.1; 30.9; 31.2; 31.3; 35.9; 37.7; 37.9;







38.1; 39.5; 39.9; 40.2; 42.3; 43.9; 44.9; 55.0; 56.3; 60.8; 126.3;






126.7; 127.4; 127.5; 127.6; 135.6; 137.4; 171.38; 171.44.


86
1
Ex. no. 71/
[M + H]+ = 355.4,

1H-NMR (CDCl3): 1.24-1.35 (2 H, m); 1.53 (1 H, m); 1.56-176 (5 H,





Acylation/
Rt = 3.1 min.
m); 1.78-1.98 (4 H, m); 2.02 (2.5 H, s); 2.04 (3.5 H, s); 2.10-2.24 (3




79%

H, m); 2.30-2.42 (3 H, m); 2.74 (1 H, m); 3.33 (1.8 H, s); 3.37 (0.8






H, s); 3.38-3.46 (2 H, m); 7.22-7.42 (5 H, m).







13C-NMR (CDCl3): 18.6; 28.6; 30.0; 30.8; 31.2; 31.3; 32.2; 32.4;







35.8; 37.5; 38.0; 38.1; 40.2; 41.3; 41.6; 42.3; 43.6; 45.1; 53.4; 55.1;






56.3; 60.8; 126.3; 126.7; 127.6; 171.06; 171.09.


87
1
Ex. no. 83/
[M + H]+ = 373.4,

1H-NMR (CDCl3): 1.13 (6 H, s); 1.20-1.32 (2 H, m); 1.40-1.55 (6 H,





Reduction/
Rt = 2.1 min.
m); 1.60-1.70 (2 H, m); 1.75-1.92 (2 H, m); 2.02 (6 H, s); 2.27 (2 H,




55%

br s); 2.34-2.40 (2 H, m); 2.48-2.54 (4 H, m); 3.17 (3 H, s); 7.24-






7.40 (5 H, m).







13C-NMR (CDCl3): 23.2; 24.9; 31.0; 34.7; 37.6; 38.1; 38.2; 41.0;







49.1; 53.4; 53.9; 57.4; 60.4; 65.4; 74.3; 126.4; 127.4; 127.6.


88
3
Ex. no. 425/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 0.96 (3 H, dt, J = 7.4 and 2.8 Hz); 1.34-1.44 (2 H,





Acylation/
324.3, Rt = 3.0
m); 1.61-1.73 (6 H, m); 1.83-2.02 (4 H, m); 2.10 (3 H, s); 2.12 (3 H,




41%
min.
s); 2.21 (2 H, dt, J = 7.8 and 1.9 Hz); 3.29 (1 H, s); 3.36 (1 H, s);






3.46 (2 H, td, J = 14.6 and 7.2 Hz); 6.61 (1 H, t, J = 4.0 Hz); 6.84 (1






H, dd, J = 10.5 and 3.8 Hz).







13C-NMR (CDCl3): 18.3; 18.4; 31.0; 31.2; 32.4; 33.0; 35.5; 36.3;







36.8; 37.2; 37.9; 38.1; 40.1; 42.0; 43.9; 45.0; 55.2; 55.5; 124.3;






124.5; 125.4; 125.6; 127.7; 127.9; 142.7.


89
3
Ex. no. 425/
[M − HNMe2]+ =

1H-NMR (CDCl3): 0.91 (3 H, t, J = 7.3 Hz); 1.28-135 (2 H, m); 1.37-





Reductive
310.3, Rt = 2.0
1.41 (2 H, m); 1.43-1.47 (2 H, m); 1.51 (2 H, t, J = 6.9 Hz); 1.65-




amination/
min.
1.71 (2H, m); 1.81-1.87 (2 H, m); 1.98-2.06 (2 H, m); 2.11 (6 H, s);




44%

2.34-2.38 (2 H, m); 2.39 (2 H, s); 2.50 (2 H, t, J = 6.8 Hz); 6.60 (1 H,






dd, J = 3.8 and 0.9 Hz); 6.83 (1 H, dd, J = 3.8 and 0.9 Hz).







13C-NMR (CDCl3): 14.1; 20.9; 31.0; 33.3; 33.8; 34.4; 38.1; 38.2;







40.8; 53.9; 56.8; 60.1; 124.3; 125.4, 126.1; 127.5.


90
1
Ex. no. 426/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 0.96 (3 H, dt, J = 7.4 and 2.6 Hz); 1.35-1.44 (2 H,





Acylation/
308.3, Rt = 2.9
m); 1.61-1.73 (6 H, m); 1.81-1.99 (4 H, m); 2.10 (3 H, s); 2.12 (3 H,




42%
min.
s); 2.19-2.23 (2 H, m); 3.28 (1 H, s); 3.36 (1 H, s); 3.46 (2 H, td, J =






14.6 and 7.2 Hz); 6.38 (1 H, ddd, J = 12.6, 4.0 and 1.7 Hz); 6.42 (1






H, ddd, J = 4.8, 4.0 and 3.2 Hz).







13C-NMR (CDCl3): 14.0; 18.3; 18.4; 31.0; 31.2; 32.1; 32.8; 35.6;







36.3; 36.8; 37.2; 37.9; 38.05; 38.08; 40.1; 42.0; 43.9; 45.0; 55.2;






56.4; 60.0; 60.1; 106.0; 106.2; 160.3; 160.4; 121.0; 121.1; 121.3;






162.5; 165.4; 171.87; 171.91.


91
1
Ex. no. 426/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 0.91 (3 H, t, J = 7.3 Hz); 1.28-1.48 (6 H, m); 1.52





Reductive
294.3, Rt = 1.0
(2 H, t, J = 6.9 Hz); 1.64-1.70 (2 H, m); 1.83 (2 H, t, J = 11.4 Hz);




amination/
min
1.93-2.04 (2 H, m); 2.11 (6 H, s); 2.34-2.38 (2 H, m); 2.40 (2 H, s);




49%

2.50 (2 H, t, J = 6.9 Hz,); 6.37 (1 H, dd, J = 4.0 and 1.7 Hz.); 6.42 (1






H, dd, J = 4.0 and 3.2 Hz).







13C-NMR (CDCl3): 14.1; 20.9; 31.0; 33.1; 34.4; 38.0; 38.1; 40.8,







53.9; 56.8; 59.9; 65.6; 106.1 (d, J = 11 Hz); 121.1; 127.3; 129.2;






132.7; 133.1; 163.8 (d, J = 289 Hz).


94
3
Ex. no. 93/
[M + H]+ = 335.3,

1H-NMR (CDCl3): 0.90 (3 H, t, J = 7.3 Hz); 0.92-1.00 (2 H, m); 1.06-





Reduction/
low UV activity
1.75 (25 H, m); 2.17 (6 H, s); 2.30-2.39 (4 H, m); 2.53 (2 H, t, J =




72%

6.8 Hz).







13C-NMR (CDCl3): 14.1; 20.9; 26.2; 26.7; 29.4; 31.0; 33.1; 33.5;







36.1; 36.3; 37.3; 37.8; 41.0; 54.4; 56.8; 56.9; 68.3.


96
3
Ex. no. 95/
[M + H]+ = 321.3,

1H-NMR (CDCl3): 0.89 (3 H , t, J = 7.3 Hz); 1.00-1.10 (2 H, m); 1.22-





Reduction/
low UV activity
1.84 (23 H, m); 2.18 (6 H, s); 2.30-2.40 (4 H, m); 2.55 (2 H, t, J =




66%

6.7 Hz).







13C-NMR (CDCl3): 14.1; 20.9; 25.0; 29.5; 30.8; 33.3; 35.1; 36.0;







36.3; 36.7; 37.1; 37.3; 41.0; 54.2; 56.6; 56.7; 68.1.


97
3
Ex. no. 424/
[M + H]+ = 321.4,

1H-NMR (CDCl3): 0.948 and 0.953 (3 H, 2 t, J = 7.4); 1.16-1.39 (6





Acylation/
Rt = 2.8 min.
H, m); 1.40-1.84 (14 H, m); 2.00-2.12 (1 H, m); 2.16-2.23 (2 H, m);




89%

2.25 (2.4 H, s); 2.28 (3.6 H, s); 3.15 (1.2 H, s); 3.22 (0.8 H, s); 3.46






(0.8 H, t, J = 7.1 Hz); 3.50 (1.2 H, t, J = 7.2 Hz).


98
3
Ex. no. 97/
[M + H]+ = 307.4,

1H-NMR (CDCl3): 0.90 (3 H, t, J = 7.3 Hz); 1.20-1.36 (8 H, m); 1.38-





Reduction/
Rt = 1.3 min.
1.70 (14 H, m); 2.04 (1 H, tt, J = 10.9 and 7.6 Hz); 2.26 (6 H, s);




84%

2.30-2.40 (4 H, m); 2.57 (2 H, t, J = 6.5 Hz).







13C-NMR (CDCl3): 14.1; 20.7; 25.0; 27.2; 28.4; 30.7; 33.1; 34.9;







38.0; 41.5; 44.5; 54.6; 56.9; 57.6; 69.2.


99
3
Ex. no. 424/
[M + H]+ = 333.4,

1H-NMR (CDCl3): 1.12-1.38 (6 H, m); 1.40-2.18 (17 H, m); 2.25 (2





Acylation/
Rt = 2.9 min.
H, s); 2.28 (4 H, s); 2.28-2.37 (2 H, m); 3.05 (1.3 H, s); 3.15 (1 H,




86%

m); 3.21 (0.7 H, s); 3.37 (0.7 H, t, J = 7.1 Hz); 3.49 (1.3 H, t, J = 7.1






Hz).







13C-NMR (CDCl3): 18.0; 18.1; 24.7; 25.0; 25.1; 26.9; 27.1; 28.48;







28.53; 29.8; 29.9; 31.7; 33.4; 37.7; 37.9; 38.0; 38.4; 40.5; 42.5; 44.0;






44.1; 44.5; 44.7; 57.8; 57.8; 58.8; 59.4; 173.1; 173.3.


100
3
Ex. no. 424/
[M + H]+ = 319.4,

1H-NMR (CDCl3): 0.68-0.75 (2 H, m); 0.94-1.66 (2 H, m); 1.14-1.40





Acylation/
Rt = 2.7 min.
(6 H, m); 1.41-1.78 (12 H, m); 1.84 (1 H, t, J = 7.1 Hz); 2.07 (1 H,




75%

m); 2.26 (3.6 H, s), 2.28 (2.4 H, s); 3.23 (0.8 H, s); 3.35 (1.2 H, s);






3.51 (1.2 H, t, J = 7.1 Hz); 3.66 (0.8 H, t, J = 7.1 Hz).







13C-NMR (CDCl3): 7.2; 12.0; 12.3; 25.0; 25.2; 27.05; 27.1; 27.6;







28.51; 28.54; 29.7; 29.8; 32.1; 33.4; 37.7; 37.9; 37.8; 40.8; 42.4;






44.2; 44.3; 44.8; 45.3; 57.7; 57.9; 59.2; 60.3; 172.0; 172.1.


101
3
Ex. no. 100/
[M + H]+ = 305.4,

1H-NMR (CDCl3): 0.07-0.13 (2 H, m); 0.44-0.50 (2 H, m); 0.90 (1 H,





Reduction/
Rt = 0.6 min.
m); 1.20-1.35 (6 H, m), 1.38-1.74 (12 H, m); 2.04 (1 H, tt, J = 10.8




84%

and 7.6 Hz); 2.26 (6 H, s); 2.28 (2 H, d, J = 6.6 Hz); 2.42 (2 H, s);






2.63 (2 H, t, J = 6.8 Hz).







13C-NMR (CDCl3): 3.8; 9.7; 25.0; 27.2; 28.4; 33.0; 34.9; 37.9; 41.5;







44.3; 54.6; 57.7; 61.8; 69.4.


102
3
Ex. no. 99/
[M + H]+ = 319.4,

1H-NMR (CDCl3): 1.18-1.34 (6 H, m); 1.40-1.92 (16 H, m); 1.98-





Reduction/
Rt = 1.4 min.
2.10 (3 H, m); 2.26 (6 H, s); 2.31 (2 H, s); 2.44 (2 H, d, J = 6.9 Hz);




89%

2.48-2.60 (3 H, m).







13C-NMR (CDCl3): 18.6; 25.0; 27.2; 27.7; 28.4; 33.1; 34.9; 35.4;







37.9; 41.6; 44.3; 54.8; 57.6; 63.3; 69.3.


103
3
Ex. no. 424/
[M + H]+ = 333.4,

1H-NMR (CDCl3): 0.11-0.16 (2 H, m); 0.46-0.60 (2 H, m); 1.08 (1 H,





Acylation/
Rt = 2.8 min.
m); 1.12-1.84 (18 H, m); 2.05 (1 H, tt, J = 11.0 and 7.6 Hz); 2.17 (2




68%

H, dd, J = 6.7 and 4.8 Hz); 2.24 (2.5 H, s); 2.25 (3.5 H, s); 3.13 (1.2






H, s); 3.23 (0.8 H, s); 3.42 (0.8 H, t, J = 7.1 Hz); 3.51 (1.2 H, t, J =






7.2 Hz).







13C-NMR (CDCl3): 4.4; 6.9; 7.0; 25.10; 25.12; 26.9; 27.1; 28.46;







28.50; 29.8; 29.79; 29.83; 31.9; 33.6; 37.81; 37.83; 39.3; 39.7; 40.4;






42.6; 44.0; 44.1; 44.3; 45.4; 53.4; 57.76; 57.85; 58.8; 60.3; 171.1;






171.2.


104
3
Ex. no. 103/
[M + H]+ = 319.4,

1H-NMR (CDCl3): 0.00-0.05 (2 H, m); 0.32-0.44 (2 H, m); 0.64 (1 H,





Reduction/
Rt = 1.8 min.
m); 1.20-1.70 (20 H, m); 2.04 (1 H, tt, J = 10.7 and 7.6 Hz); 2.26 (6




58%

H, s); 2.31 (2 H, s); 2.42-2.48 (2 H, m); 2.54 (2 H, t, J = 6.8 Hz).







13C-NMR (CDCl3): 4.3; 9.2; 25.0; 27.2; 28.4; 33.2; 34.0; 35.1; 37.9;







41.3; 44.3; 54.6; 57.0; 57.7; 69.5.


105
3
Ex. no. 424/
[M + H]+ = 347.4,

1H-NMR (CDCl3): 1.13-1.95 (20 H, m); 2.00-2.19 (3 H, m); 2.25 (2.7





Acylation/
Rt = 3.1 min.
H, s); 2.27 (3.3 H, s); 2.34 (1.2 H, d, J = 7.4 Hz); 2.35 (0.8 H, d, J =




54%

7.4 Hz); 2.73 (1 H, m); 3.16 (1.2 H, s); 3.20 (0.8 H, s), 3.46 (0.8 H, t,






J = 7.1 Hz); 3.48 (1.2 H, t, J = 7.2 Hz).







13C-NMR (CDCl3): 18.6; 18.8; 25.11; 2515; 26.9; 27.1; 28.48; 28.54;







28.6; 29.7; 32.1; 32.37; 32.39; 33.6; 37.7; 37.9; 40.6; 41.1; 41.5;






42.4; 44.0; 44.1; 44.3; 45.6; 57.7; 57.8; 58.5; 60.3; 170.8; 171.0.


108
1
Ex. no. 427/
[M + H]+ = 347.4,

1H-NMR (CDCl3): 0.97 and 0.975 (2 t, 3H, J = 7.4 Hz); 1.30-1.42 (m,





Acylation/
Rt = 2.8 min.
2H); 1.58 (t, 1H, J = 7.2 Hz); 1.61-2.00 (m, 11H); 2.18-2.25 (m, 2H);




68%

3.05 and 3.06 (2 t, 4H, J = 7.0 Hz); 3.30 and 3.36 (2 s, 2H); 3.40-






3.49 (m, 2H); 6.87 and 6.89 (2 t, 1H, J = 3.6 Hz); 7.07 and 7.11 (2






dd, 1H, J = 5.1, 1.5 Hz); 7.26 and 7.29 (2 dd, 1H, J = 5.1, 1.5 Hz).







13C-NMR (CDCl3): 13.7; 14.0; 15.9; 16.1; 18.3; 18.4; 18.9; 30.8;







31.0; 31.04; 31.7; 36.4; 36.9; 37.8; 40.2; 42.2; 43.9; 45.0; 46.7; 46.8;






55.6; 56.7; 58.7; 59.0; 123.5; 123.7; 124.6; 125.0; 126.4; 126.6;






171.8; 171.9.


109
2
Ex. no. 428/
[M + H]+ = 347.2,

1H-NMR (CDCl3): 0.87-0.99 (m, 3H); 1.33-1.42 (m, 2H); 1.57-1.87





Acylation/
Rt = 1.8 min.
(m, 12H); 2.14 (t, 1H, J = 7.6 Hz); 2.20 (t, 1H, J = 7.5 Hz); 3.07 (t,




70%

4H, J = 6.8 Hz); 3.11 (s, 1H); 3.20 (s, 1H); 3.44-3.58 (m, 2H); 6.84






(d, 0.5H, J = 3.5 Hz); 6.87 (d, 0.5H, J = 3.5 Hz); 7.05-7.11 (m, 1H);






7.24-7.30 (m, 1H).







13C-NMR (CDCl3): 13.96; 14.0; 15.9; 16.4; 30.76; 30.81; 36.3; 36.7;







40.1; 42.2; 44.0; 45.1; 46.71; 46.72; 123.6; 124.7; 126.4, 126.5;






171.8.


110
1
Ex. no. 429/
[M + H]+ = 341.4,

1H-NMR (CDCl3): 0.92-1.00 (m, 3H); 1.21-1.32 (m, 2H); 1.50 (t, 1H,





Acylation/
Rt = 2.8 min.
J = 7.2 Hz); 1.58-1.82 (m, 9H); 1.94-2.14 (m, 2H); 2.17-2.26 (m,




73%

2H); 2.92-2.98 (m, 4H); 3.25 (s, 1H); 3.38-3.48 (m, 3H); 7.26-7.34






(m, 3H); 7.36-7.46 (m, 2H).







13C-NMR (CDCl3): 13.7; 14.01; 14.04; 16.5; 16.8; 18.3; 18.5; 18.9;







28.5; 29.4; 30.9; 31.2; 36.3; 36.9; 37.7; 40.4; 42.4; 43.8; 45.0; 46.6;






46.7; 55.3; 56.6, 59.3; 59.6; 126.5; 126.7; 127.5; 127.7; 127.87;






127.94; 171.8, 171.9.


194
2
Ex. no. 430/
[M + H]+ = 341.4,

1H-NMR (CDCl3): 0.89 and 0.94 (2 t, 3H, J = 7.4 Hz); 1.25-1.35 (m,





Acylation/
Rt = 2.7 min.
2H); 1.54-2.00 (m, 12H); 2.10 and 2.19 (2 t, 2H, J = 7.5 Hz); 2.96 (t,




60%

4H, J = 6.9 Hz); 3.14 and 3.05 (2s, 2H); 3.49 (td, 2H, J = 14.0, 7.1






Hz); 7.25-7.34 (m, 3H); 7.38-7.45 (m, 2H).







13C-NMR (CDCl3): 13.9; 14.0; 16.6; 18.4; 28.8; 28.9; 30.88; 30.9,







34.4; 36.3; 36.7; 40.4; 42.4; 44.1; 45.2; 46.6; 56.1; 57.7; 59.3; 126.6;






126.7; 127.5; 127.6; 127.8; 127.9; 137.6; 171.8.


112
1
Ex. no. 429/
[M + H]+ = 327.4,

1H-NMR (CDCl3): 0.95 (t, 3H, J = 7.3 Hz); 1.28-1.43 (m, 4H); 1.55-





Reductive
Rt = 0.7 min.
1.68 (m, 4H); 1.72-1.88 (m, 6H); 2.05 (br s, 2H); 2.66-2.73 (m, 2H);




amination/

2.80 (s, 2H); 2.83-2.90 (m, 2H); 3.10 (t, 4H, J = 7.0 Hz); 7.31-7.38




52%

(m, 3H); 7.42-7.49 (m, 2H).







13C-NMR (CDCl3): 13.8; 16.4; 20.4; 29.0; 29.2; 33.2; 41.5; 46.9;







56.4; 64.5; 127.4; 127.7; 128.3.


113
2
Ex. no. 430/
[M + H]+ = 327.4,

1H-NMR (CDCl3): 0.78-0.94 (m, 3H); 1.20-1.50 (m, 6H); 1.54-1.80





Reductive
Rt = 1.9 min.
(m, 8H); 1.90-2.10 (m, 2H); 2.17 (s, 2H); 2.28-2.43 (m, 2H); 2.46-




amination/

2.58 (m, 2H); 2.93-3.00 (m, 4H); 7.25-7.34 (m, 3H); 7.40 (t, 2H, J =




42%

7.6 Hz).







13C-NMR (CDCl3): 14.0; 16.7; 20.8; 26.9; 27.0; 29.1; 30.9; 34.2;







41.3; 46.7; 54.4; 56.7; 126.5; 127.8; 127.9.


114
3
Ex. no. 17/
[M + H]+ = 293.3,

1H-NMR (CDCl3): 1.20-1.28 (m, 2H); 1.68 (dt, 2H, J = 3.0 and 14.0





Alkylation/
Rt = 2.2 min.
Hz); 1.89 (t, 2H, J = 7.0 Hz); 2.11 (s, 6H); 2.20 (dt, 2H, J = 3.1 and




56%

13.0 Hz); 2.45 (br d, 2H, J = 13.8 Hz,); 2.85 (s, 3H); 3.23-3.28 (m,






2H); 6.85 (br d, 1H, J = 3.4 Hz); 7.02 (dd, 1H, J = 3.6 and 5.1 Hz);






7.20 (dd, 1H, J = 1.0 and 5.1 Hz).







13C-NMR (CDCl3): 28.3 (2C); 29.8 (2C); 30.3; 31.7; 38.0 (2C); 44.3;







46.1; 58.4; 122.7; 123.6; 125.9; 145.8; 178.9.


115
3
Ex. no. 17/
[M + H]+ = 335.3,

1H-NMR (CDCl3): 0.92 (dt, 3H, J = 7.4 Hz); 1.20-1.35 (m, 4H); 1.44-





Alkylation/
Rt = 2.8 min.
1.53 (m, 2H); 1.61-1.73 (m, 2H); 1.87 (t, 2H, J = 6.9 Hz); 2.10 (m,




67%

6H); 2.20 (dt, 2H, J = 13.1 Hz); 2.44 (d, 2H, J = 2.6 and 13.6 Hz);






3.21-3.30 (m, 4H); 6.83-6.86 (m, 1H); 6.99-7.03 (m, 1H); 7.18-7.21






(m, 1H).







13C-NMR (CDCl3): 13.7; 19.9; 28.2 (2C); 29.3; 30.4; 31.8 (2C); 37.9







(2C); 42.2; 43.7; 44.6; 58.4; 122.7; 123.6; 125.9; 145.9; 178.7.


116
3
Ex. no. 17/
[M + H]+ = 361.3,

1H-NMR (CDCl3): 1.16 (m, 4H); 1.47-1.58 (m, 2H); 1.60-1.74 (m,





Alkylation/
Rt = 3.0 min,
6H); 1.87 (t, 2H, J = 6.9 Hz); 2.11 (s, 6H); 2.12-2.25 (m, 3H); 2.45




18%

(d, 2H, J = 13.8 Hz); 3.21 (d, 2 H, J = 7.8 Hz); 3.25-3.30 (m, 2H);






6.86 (d, 1H, J = 3.5 Hz); 7.02 (dd, 1H, J = 3.6 and 5.1 Hz); 7.20 (dd,






1H, J = 1.1 and 5.1 Hz).







13C-NMR (CDCl3): 25.1 (2C); 28.2; 30.3 (2C); 30.6; 31.8; 37.9 (2C);







38.0; 44.1; 44.6; 47.5; 58.5; 122.8; 123.6; 126.0; 178.8.


118
2
Ex. no. 2/
[M + H]+ = 301.3,

1H-NMR (DMSO-d6): 0.93 (d, 2H, J = 13.0 Hz); 1.04 (dt, 2H, J =





Alkylation/
Rt = 2.4 min.
14.0, 3.3 Hz); 1.45 (t, 2H, J = 6.9 Hz); 1.71 (dd, 2H, J = 14.8, 2.6




71%

Hz); 1.82 (dt, 2H, J = 13.6, 3.0 Hz); 2.25 (s, 6H); 2.58 (s, 2H); 2.65






(s, 3H); 3.06-3.11 (m, 2H); 7.12-7.20 (m, 3H); 7.23-7.29 (m, 2H).







13C-NMR (DMSO-d6): 26.7; 27.9; 28.8; 29.1; 36.2; 36.8; 43.5; 45.1;







56.6; 125.5; 127.6; 130.5, 139.0; 177.7.


119
1
Ex. no. 1/
[M + H]+ = 301.3,

1H-NMR (CDCl3): 1.52-1.60 (m, 4H); 1.67-1.75 (m, 2H); 1.83-1.94





Alkylation/
Rt = 2.1 min.
(m, 4H); 2.28 (s, 6H); 2.78 (s, 3H); 2.79 (s, 2H); 3.21-3.42 (m, 2H);




45%

7.14-7.20 (m, 1H); 7.21-7.25 (m, 4H).







13C-NMR (CDCl3): 28.4; 29.4; 29.6; 32.8; 36.8; 37.4; 42.6; 46.0;







57.6; 125.7; 127.7; 130.7; 139.2; 179.0.


120
2
Ex. no. 2/
[M + H]+ = 343.3,

1H-NMR (CDCl3): 0.90 (t, 3H, J = 7.3 Hz); 1.02 (d, 2H, J = 13.3 Hz);





Alkylation/
Rt = 3.0 min
1.13 (dt, 2H, J = 14.0, 3.3 Hz); 1.26 (qd, 2H, J = 14.0, 7.3 Hz); 1.39-




34%

1.48 (m, 2H); 1.58 (t, 2H, J = 7.0 Hz); 1.71-1.78 (m, 2H); 2.10 (dt,






2H, J = 13.4, 2.9 Hz); 2.30 (s, 6H); 2.61 (s, 2H); 3.11 (t, 2H, J = 6.9






Hz); 3.22 (t, 2H, J = 7.2 Hz); 7.09-7.13 (m, 2H); 7.15-7.28 (m, 3H).







13C-NMR (CDCl3): 13.7; 19.9; 27.2; 28.6; 29.3; 29.6; 36.9; 37.0;







42.1; 43.6; 44.8; 57.2; 125.6; 127.6; 127.7; 130.7; 139.5; 179.0.


121
1
Ex. no. 1/
[M + H]+ = 343.3,

1H-NMR (CDCl3): 0.91 (t, 3H, J = 7.3 Hz); 1.23-1.34 (m, 2H); 1.41-





Alkylation/
Rt = 2.8 min.
1.61 (m, 6H); 1.69-1.77 (m, 2H); 1.82-1.92 (m, 4H); 2.28 (s, 6H);




35%

2.81 (s, 2H); 3.19-3.25 (m, 4H); 7.13-7.19 (m, 1H); 7.20-7.25 (m,






4H).







13C-NMR (CDCl3): 13.8; 20.0; 28.5; 29.3; 29.4; 32.7; 36.9; 37.5;







42.1; 43.1; 43.6; 57.6; 125.7; 127.8; 130.8; 139.4; 178.8.


222
2
Ex. no. 2/
[M + H]+ = 369.3,

1H-NMR (CDCl3): 1.00-1.20 (m, 6H); 1.45-1.65 (m, 8H); 1.70-1.78





Alkylation/
Rt = 3.2 min.
(m, 2H); 2.00-2.20 (m, 3H); 2.31 (s, 6H); 2.62 (s, 2H); 3.11-3.18 (m,




31%

4H); 7.09-7.28 (m, 5H).







13C-NMR (CDCl3): 25.1; 27.1; 28.6; 29.7; 30.2; 36.9; 37.0; 44.1;







44.7; 47.5; 57.3; 125.6; 127.7; 130.7; 139.4; 179.2.


123
1
Ex. no. 1/
[M + H]+ = 369.4,

1H-NMR (CDCl3): 1.16-1.26 (m, 2H); 1.48-1.80 (m, 13H); 1.84-1.94





Alkylation/
Rt = 3.0 min.
(m, 3H); 2.09-2.18 (m, 1H); 2.29 (s, 6H); 2.83 (s, 2H); 3.17 (d, 2H,




16%

J = 7.8 Hz); 3.26 (t, 2H, J = 6.9 Hz); 7.15-7.29 (m, 5H).







13C-NMR (CDCl3): 25.1; 28.6; 29.4; 30.3; 32.7; 37.0; 37.6; 38.0;







43.2; 44.0; 47.4; 57.7; 125.7; 127.8; 130.8; 139.4; 179.0.


124
1
Ex. no. 24a/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.43-1.51 (m, 2H); 1.73-1.82 (m, 2H); 1.96-2.09





Alkylation/
248.3 (100%)
(m, 4H); 2.10 (s, 6H); 2.18 (s, 2H); 2.83 (s, 3H); 3.21 (s, 2H); 6.85




38%
[M + H]+ = 293.3
(dd, 1H, J = 1.1, 3.6 Hz); 7.04 (dd, 1H, J = 3.6, 5.1 Hz); 7.24 (dd,





(70%), Rt = 1.4
1H, J = 1.1, 5.1 Hz).





min.

13C-NMR (CDCl3): 29.7; 32.7; 32.9; 35.3; 38.0; 44.0; 59.3; 62.4;







123.4; 124.9; 126.3; 173.8.


125
1
Ex. no. 24a/
[M + H]+ = 335.3,

1H-NMR (CDCl3): 0.93 (t, 3H, J = 7.3 Hz); 1.26-1.36 (m, 2H); 1.42-





Alkylation/
Rt = 2.1 min.
1.52 (m, 4H); 1.72-1.81 (m, 2H); 1.95-2.09 (m, 4H); 2.10 (s, 6H);




52%

2.18 (s, 2H); 3.20 (s, 2H); 3.25 (t, 2H, J = 7.3 Hz); 6.85 (dd, 1H, J =






1.1, 3.6 Hz); 7.04 (dd, 1H, J = 3.6, 5.1 Hz); 7.24 (dd, 1H, J = 1.1, 5.1






Hz).







13C-NMR (CDCl3): 13.8; 20.0; 29.3; 32.7; 32.8; 35.5; 38.1; 42.1;







44.3; 57.9; 59.3; 123.4; 124.9; 126.3; 142.5; 173.5.


126
1
Ex. no. 24a/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.16-1.26 (m, 2H); 1.42-1.59 (m, 4H); 1.60-1.82





Alkylation/
316.3 (100%)
(m, 7H); 1.97-2.17 (m, 4H); 2.12 (s, 6H); 2.19 (s, 2H); 3.19 (d, 2H,




33%
[M + H]+ = 361.4
J = 7.9 Hz); 3.24 (s, 2H); 6.87 (br s, 1H); 7.03-7.07 (m, 1H); 7.23-





(70%), Rt = 2.7
7.28 (m, 1H).





min.

1H-NMR (DMSO-d6): 1.09-1.19 (m, 2H); 1.30-138 (m, 2H); 1.44-







1.74 (m, 9H); 1.77-1.94 (m, 2H); 2.01 (s, 6H); 2.08 (s, 2H); 2.09-






2.18 (m, 2H); 3.07 (d, 2H, J = 7.8 Hz); 3.16 (s, 2H); 6.94 (s, 1H);






7.04-7.08 (m, 1H); 7.40-7.45 (m, 1H).







13C-NMR (DMSO-d6): 24.6; 29.7; 32.0; 35.1; 37.3; 37.6; 38.9; 43.0;







46.3; 57.8; 58.7; 123.5; 124.7; 126.3; 143.3; 172.4.


127
2
Ex. no. 24b/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.12-1.22 (m, 2H); 1.42-1.56 (m, 4H); 1.57-1.70





Alkylation/
316.3 (100%)
(m, 4H); 1.73-1.81 (m, 2H); 2.01-2.17 (m, 5H); 2.18 (s, 6H); 2.36 (s,




25%
[M + H]+ = 361.4
2H); 3.06 (s, 2H); 3.15 (d, 2H, J = 7.8 Hz); 6.91 (br d, 1H, J = 3.4





(8%), Rt = 3.1
Hz); 7.07 (dd, 1H, J = 3.6, 5.1 Hz); 7.29 (br d, 1H, 5.0 Hz).





min.

13C-NMR (CDCl3): 25.1; 30.4; 32.4; 32.8; 35.6; 38.0; 38.1; 43.4;







47.4; 59.0; 124.2; 125.8; 126.5; 173.6.


128
1
Ex. no. 24a/
[M + H]+ = 361.4,

1H-NMR (CDCl3): 1.41-1.50 (2 H, m); 1.55-1.70 (5 H, m); 1.72-1.91





Alkylation/
Rt = 2.7 min.
(4 H, m); 1.93-2.04 (5 H, m); 2.10 (6 H, s); 2.17 (2 H, s); 2.25 (1 H,




61%

td, J = 15.6 and 7.9 Hz); 3.14-3.20 (4 H, m); 6.85 (1 H, dd, J = 3.5






and 1.0 Hz); 7.04 (1 H, dd, J = 5.1 and 3.5 Hz); 7.24 (1 H, dd, J =






5.1 and 1.0 Hz).







13C-NMR (CDCl3): 18.6; 28.2; 32.7; 32.8; 33.7; 34.3; 35.5; 38.1;







40.5; 44.3; 58.2; 59.3; 123.4; 124.9; 126.3; 173.4.


129
2
Ex. no. 24b/
[M + H]+ = 361.3,

1H-NMR (CDCl3): 1.42-1.65 (6 H, m); 1.70-1.91 (4 H, m); 1.93-2.09





Alkylation/
Rt = 3.1 min.
(6 H, m); 2.10 (6 H, s); 2.22 (1 H, td, J = 15.6 and 7.9 Hz); 2.31 (2 H,




50%

s); 3.03 (2 H, s); 3.13 (2 H, t, J = 7.4 Hz); 6.85 (1 H, dd, J = 3.5 and






1.0 Hz); 7.04 (1 H, dd, J = 5.1 and 3.5 Hz); 7.24 (1 H, dd, J = 5.1






and 1.0 Hz).







13C-NMR (CDCl3): 18.5; 28.2; 32.7; 32.9; 33.6; 34.2; 35.5; 38.1;







40.5; 43.8; 58.7; 59.5; 123.4; 125.0; 126.2; 173.4.


130
1
Ex. no. 24a/
[M + H]+ = 347.3,

1H-NMR (CDCl3): 0.03-0.09 (2 H, m); 0.44-0.49 (2 H, m); 0.60-0.70





Alkylation/
Rt = 2.5 min.
(1 H, m); 1.38-1.50 (4 H, m); 1.72-1.80 (2 H, m); 1.90-2.09 (4 H,




58%

m); 2.10 (6 H, s); 2.18 (2 H, s); 3.23 (2 H, s); 3.34 (2 H, t, J = 7.3






Hz); 6.85 (1 H, d, J = 3.4 Hz); 7.04 (1 H, dd, J = 5.0 and 3.5 Hz);






7.24 (1 H, d, J = 5.0 Hz).







13C-NMR (CDCl3): 4.3; 8.6; 32.5; 32.7; 32.8; 35.5; 38.0; 42.6; 44.3;







58.5; 59.3; 123.4; 124.8; 126.3; 173.5.


131
2
Ex. no. 24b/
[M + H]+ = 347.3,

1H-NMR (CDCl3): 0.02 (2 H, q, J = 5.4 Hz); 0.39-0.45 (2 H, m);





Alkylation/
Rt = 2.9 min.
0.55-0.65 (1 H, m); 1.36 (2 H, dd, J = 14.4 and 7.0 Hz); 1.42-1.51




38%

(2 H, m); 1.70-1.79 (2 H, m); 1.92-2.09 (4 H, m); 2.10 (6 H, s); 2.32






(2 H, s); 3.08 (2 H, s); 3.30 (2 H, t, J = 7.3 Hz); 6.85 (1 H, d, J = 3.5






Hz); 7.04 (1 H, dd, J = 5.1 and 3.8 Hz); 7.24 (1 H, d, J = 5.1 Hz).







13C-NMR (CDCl3): 4.3; 8.6; 32.4; 32.7; 32.9; 35.5; 38.1; 42.6; 43.9;







59.0; 59.5; 123.4; 124.9; 126.2; 173.5.


132
1
Ex. no. 24a/
[M + H]+ = 347.3,

1H-NMR (CDCl3): 1.40-1.49 (2 H, m); 1.63-1.78 (4 H, m); 1.85-2.09





Alkylation/
Rt = 2.5 min.
(8 H, m); 2.10 (6 H, s); 2.17 (2 H, s); 2.52 (1 H, td, J = 15.6 and 7.8




69%

Hz); 3.17 (2 H, s); 3.29 (2 H, d, J = 7.6 Hz); 6.84 (1 H, d, J = 3.4 Hz);






7.04 (1 H, dd, J = 5.0 and 3.6 Hz); 7.24 (1 H, d, J = 5.0 Hz).







13C-NMR (CDCl3): 18.4; 26.4; 32.6; 32.8; 33.9; 35.7; 38.1; 44.1;







47.8; 58.2; 59.3; 123.4; 124.9; 126.3; 173.6.


133
2
Ex. no. 24b/
[M + H]+ = 347.3

1H-NMR (CDCl3): 1.40-1.48 (2 H, m); 1.63-1.77 (4 H, m); 1.80-2.09





Alkylation/
Rt = 2.9 min.
(8 H, m); 2.10 (6 H, s); 2.31 (2 H, s); 2.47 (1 H, sept, J = 7.7 Hz);




83%

3.01 (2 H, s); 3.25 (2 H, d, J = 7.6 Hz); 6.85 (1 H, d, J = 3.5 Hz);






7.04 (1 H, dd, J = 5.1 and 3.5 Hz); 7.24 (1 H, d, J = 5.1 Hz).







13C-NMR (CDCl3): 18.4; 26.4; 32.7; 32.8; 33.9; 35.7; 38.1, 43.6;







47.8; 58.9; 59.6; 123.4; 125.0; 126.2; 173.6.


134
1
Ex. no. 24a/
[M + H]+ = 333.3

1H-NMR (CDCl3): 0.18-0.23 (2 H, m); 0.49-0.55 (2 H, m); 0.83-0.94





Alkylation/
Rt = 2.2 min.
(1 H, m); 1.44-1.52 (2 H, m); 1.74-1.83 (2 H, m); 1.90-2.08 (4 H,




61%

m); 2.11 (6 H, s); 2.19 (2 H, s); 3.13 (2 H, d, J = 7.1 Hz); 3.32 (2 H,






s); 6.85 (1 H, d, J = 3.5 Hz); 7.05 (1 H, dd, J = 5.1 and 3.5 Hz); 7.24






(1 H, d, J = 4.4 Hz).







13C-NMR (CDCl3): 3.4; 9.1; 19.8; 32.7; 32.9; 35.6; 38.1; 44.2; 47.0;







58.2; 59.3; 123.4; 124.9; 126.3; 173.4.


135
2
Ex. no. 24b/
[M + H]+ = 333.3,

1H-NMR (CDCl3): 0.14-0.19 (2 H, m); 0.44-0.50 (2 H, m); 0.78-0.88





Alkylation/
Rt = 2.7 min.
(1 H, m); 1.44-1.53 (2 H, m); 1.72-1.81 (2 H, m); 1.93-2.09 (4 H,




40%

m); 2.10 (6 H, s); 2.33 (2 H, s); 3.10 (2 H, d, J = 7.1 Hz); 3.16 (2 H,






s); 6.86 (1 H, dd, J = 3.5 and 1.0 Hz); 7.05 (1 H, dd, J = 5.1 and 3.5






Hz); 7.25 (1 H, dd, J = 5.1 and 1.0 Hz).







13C-NMR (CDCl3): 3.4; 9.1; 32.7; 32.9; 35.7; 38.1; 43.7; 47.0; 58.7;







59.6; 123.4; 125.0; 126.2; 173.4.


136
1
Ex. no. 24a/
[M + H]+ = 377.3,

1H-NMR (CDCl3): 1.40-1.52 (3 H, m); 1.63-1.93 (6 H, m); 1.95-2.08





Alkylation/
Rt = 2.3 min.
(5 H, m); 2.10 (6 H, s); 2.17 (2 H, s); 3.20-3.27 (2 H, m); 3.28-3.41




57%

(2 H, m); 3.67-3.74 (1 H, m); 3.75-3.88 (2 H, m); 6.84 (1 H, dd, J =






3.5 and 1.1 Hz); 7.04 (1 H, dd, J = 5.1 and 3.1 Hz); 7.23 (1 H, dd,






J = 5.1 and 1.1 Hz).







13C-NMR (CDCl3): 25.6; 31.4; 32.67; 32.72; 32.74; 33.3; 35.6; 38.0;







40.0; 44.2; 58.4; 59.2; 67.7; 77.0, 123.4; 124.8; 126.2; 173.6.


137
2
Ex. no. 24b/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.39-1.50 (3 H, m); 1.60-1.80 (4 H, m); 1.80-1.90





Alkylation/
332.3 (100%)
(2 H, m); 1.94-2.09 (5 H, m); 2.10 (6 H, s); 2.31 (2 H, s); 3.05-3.12




53%
[M + H]+ = 377.4
(2 H, m); 3.24-3.38 (2 H, m); 3.64-3.71 (1 H, m); 3.72-3.85 (2 H,





(10%), Rt = 2.6
m); 6.84 (1 H, dd, J = 3.5 and 1.1 Hz); 7.04 (1 H, dd, J = 5.1 and 3.1





min.
Hz); 7.23 (1 H, dd, J = 5.1 and 1.0 Hz).







13C-NMR (CDCl3): 25.6; 31.4; 32.7; 32.73; 32.8; 33.2; 35.6; 39.9;







43.6; 58.9; 59.5; 67.7; 76.9; 123.4; 124.9; 126.2; 173.6.


138
1
Ex. no. 24a/
[M + H]+ = 377.4,

1H-NMR (CDCl3): 1.28-1.40 (2 H, m); 1.43-1.53 (4 H, m); 1.62-1.90





Alkylation/
Rt = 2.2 min.
(3 H, m); 1.95-2.09 (4 H, m); 2.10 (6 H, s); 2.20 (2 H, s); 3.14 (2 H,




51%

d, J = 7.3 Hz); 3.23 (2 H, s); 3.35 (2 H, dt, J = 11.8 and 1.9 Hz); 3.96






(2 H, br dd, J = 11.5 and 2.6 Hz); 6.85 (1 H, dd, J = 3.3 and 1.1 Hz);






7.04 (1 H, dd, J = 4.9 and 3.6 Hz); 7.24 (1 H, d, J = 4.9 Hz).







13C-NMR (CDCl3): 30.7; 32.7; 32.8; 33.7; 35.8; 38.0; 44.1; 48.4;







59.2; 59.9; 67.5; 67.7; 123.5; 124.8; 126.3; 174.1.


139
2
Ex. no. 24b/
[M + H]+ = 377.4,

1H-NMR (CDCl3): 1.31 (2 H, ddd, J = 17.6, 11.8 and 4.4 Hz); 1.43-





Alkylation/
Rt = 2.5 min.
1.54 (4 H, m); 1.71-1.85 (3 H, m); 1.93-2.09 (4 H, m); 2.10 (6 H, s);




45%

2.34 (2 H, s); 3.05-3.12 (4 H, m); 3.32 (2 H, dt, J = 11.7 and 2.2 Hz);






3.91-3.97 (2 H, m); 6.85 (1 H, dd, J = 3.6 and 1.1 Hz); 7.04 (1 H, dd,






J = 5.1 and 3.6 Hz); 7.24 (1 H, dd, J = 5.1 and 1.1 Hz).







13C-NMR (CDCl3): 30.7; 32.7; 32.9; 33.7; 35.8; 38.1; 43.3; 48.3;







59.6; 59.9; 67.5; 123.5; 125.0; 126.3, 174.1.


140
2
Ex. no. 24b/
[M + H]+ = 377.2,

1H-NMR (CDCl3): 1.40-1.61 (5 H, m); 1.70-1.80 (2 H, m); 1.91-2.09





Alkylation/
low UV activity
(5 H, m); 2.10 (6 H, s); 2.11-1.26 (1 H, m); 2.32 (2 H, s); 3.05 (2 H,




42%

s); 3.24 (2 H, t, J = 7.4 Hz); 3.32 (1 H, dd, J = 8.3 and 6.9 Hz); 3.72






(1 H, dd, J = 15.4 and 7.7 Hz); 3.79-3.90 (2 H, m); 6.84 (1 H, dd, J =






3.5 and 1.0 Hz); 7.04 (1 H, dd, J = 5.1 and 3.5 Hz); 7.24 (1 H, dd,






J = 5.1 and 0.9 Hz).







13C-NMR (CDCl3): 30.7; 32.2; 32.7; 32.72; 32.9; 35.6; 36.9; 38.1;



141



41.3; 43.7; 58.6; 59.5; 67.8; 73.1; 123.5; 125.0; 126.2; 173.6.



1
Ex. no. 24a/
[M + H]+ = 377.2,

1H-NMR (CDCl3): 1.41-1.70 (5 H, m); 1.72-1.81 (2 H, m); 2.00-2.09





Alkylation/
low UV activity
(4 H, m); 2.10 (6 H, s); 2.11-1.18 (2 H, m); 2.19 (2 H, s); 3.20 (2 H,




49%

s); 3.28 (2 H, t, J = 7.4 Hz); 3.36 (1 H, dd, J = 8.3 and 6.9 Hz); 3.71-






3.78 (1 H, m); 3.82-3.93 (2 H, m); 6.85 (1 H, dd, J = 3.5 and 1.0






Hz); 7.04 (1 H, dd, J = 5.1 and 3.5 Hz); 7.24 (1 H, dd, J = 5.1 and






1.0 Hz).







13C-NMR (CDCl3): ): 30.7; 32.2; 32.7; 32.79; 35.6; 36.1; 36.9; 38.1;







41.4; 44.2; 58.1; 59.2; 67.9; 73.1; 123.5; 124.8; 126.3; 173.6.


142
1
Ex. no. 24a/
[M + H]+ = 363.2,

1H-NMR (CDCl3): 1.43-1.51 (2 H, m); 1.57-1.67 (2 H, m); 1.73-1.82





Alkylation/
low UV activity
(2 H, m); 1.95-2.09 (4 H, m); 2.10 (6 H, s); 2.20 (2 H, s); 2.47-2.56




25%

(1 H, m); 3.19-3.26 (3 H, m); 3.36 (1 H, dd, J = 13.6 and 7.6 Hz);






3.47 (1 H, dd, J = 8.6 and 6.3 Hz); 3.76 (1 H, td, J = 8.5 and 7.3 Hz);






3.82-3.91 (2 H, m); 6.85 (1 H, dd, J = 3.5 and 0.9 Hz); 7.05 (1 H, dd,






J = 5.1 and 3.5 Hz); 7.25 (1 H, dd, J = 5.0 and 0.8 Hz).







13C-NMR (CDCl3): 30.1; 32.6; 32.8; 35.8, 38.0; 38.1; 44.0; 45.3;







58.8; 59.2; 67.7; 71.4; 123.5; 124.8; 126.3; 174.0.


143
2
Ex. no. 24b/
[M + H]+ = 363.2,

1H-NMR (CDCl3): 1.40-1.51 (2 H, m); 1.52-1.62 (1 H, m); 1.70-1.79





Alkylation/
low UV activity
(2 H, m); 1.89-2.09 (5 H, m); 2.10 (6 H, s); 2.32 (2 H, s); 2.42-2.50




22%

(1 H, m); 3.07 (2 H, s); 3.18 (1 H, dd, J = 13.7 and 7.5 Hz); 3.31 (1






H, dd, J = 13.7 and 7.6 Hz); 3.42 (1 H, dd, J = 8.6 and 6.2 Hz);






3.68-3.88 (3 H, m); 6.84 (1 H, dd, J = 3.5 and 1.1 Hz); 7.03 (1 H, dd,






J = 5.1 and 3.5 Hz); 7.24 (1 H, dd, J = 5.1 and 1.1 Hz).







13C-NMR (CDCl3): 30.1; 32.7; 32.8; 35.8; 37.9; 38.1; 43.5; 45.2;







59.2; 59.5; 67.6; 71.3; 123.5; 125.0; 126.3; 174.0.


144
1
Ex. no. 24a/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 0.87 (2 H, m); 1.26 (2 H, m); 1.44-1.52 (2 H, m);





Alkylation/
327.2 (95%)
1.70 (2 H, t, J = 7.0 Hz); 1.76-1.84 (2 H, m); 1.96-2.09 (4 H, m);




49%
[M + H]+ = 372.2
2.10 (6 H, s); 2.21 (2 H, s); 3.31 (2 H, s); 3.48 (2 H, t, J = 7.1 Hz);





(100%), Rt = 2.3
6.85 (1 H, dd, J = 3.6 and 0.8 Hz); 7.04 (1 H, dd, J = 5.0 and 3.6





min.
Hz); 7.24 (1 H, dd, J = 5.1 and 0.7 Hz).







13C-NMR (CDCl3): 7.6; 14.1; 32.6; 32.7; 35.7; 38.0; 41.2; 44.0; 59.2;







123.0; 123.4; 124.8; 126.3; 174.1.


145
2
Ex. no. 24b/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 0.85 (2 H, m); 1.23 (2 H, m); 1.49 (2 H, ddd, J =





Alkylation/
327.2 (100%)
13.2, 9.1 and 4.0 Hz); 1.66 (2 H, t, J = 7.1 Hz); 1.72-1.80 (2 H, m);




50%
[M + H]+ = 372.2
1.92-2.09 (4 H, m); 2.10 (6 H, s); 2.33 (2 H, s); 3.16 (2 H, s); 3.44 (2





(90%), Rt = 2.5
H, t, J = 7.1 Hz); 6.84 (1 H, dd, J = 3.6 and 1.1 Hz); 7.04 (1 H, dd,





min.
J = 5.1 and 3.6 Hz); 7.24 (1 H, dd, J = 5.1 and 1.1 Hz).







13C-NMR (CDCl3): 7.5; 14.0; 32.5; 32.7; 32.9; 35.7; 38.1; 41.1; 43.4;







59.5; 122.9; 123.5; 125.0; 126.3; 174.1.


146
1
Ex. no. 24a/
[M + H]+ = 349.2,

1H-NMR (CDCl3): 1.42-1.53 (2 H, m); 1.73-1.85 (3 H, m); 1.97-2.08





Alkylation/
Rt = 2.1 min.
(3 H, m); 2.09 (6 H, s); 2.21 (2 H, d, J = 2.8 Hz); 2.41-2.52 (1 H, m);




51%

2.62-2.70 (1 H, m); 3.34 (1 H, d, J = 10.1 Hz); 3.44-3.57 (3 H, m);






4.46-4.53 (1 H, m); 4.62-4.69 (1 H, m); 4.93-5.00 (1 H, m); 6.84 (1






H, dd, J = 3.5 and 1.1 Hz); 7.04 (1 H, dd, J = 5.1 and 3.5 Hz); 7.23






(1 H, dd, J = 5.1 and 1.1 Hz).







13C-NMR (CDCl3): 24.8; 32.6; 32.84; 32.7; 35.8; 38.0; 43.8; 48.1;







59.3; 60.0; 68.5; 81.3; 123.4; 124.8; 126.2; 142.8; 174.3.


147
2
Ex. no. 24b/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.41-1.56 (2 H, m); 1.64-1.83 (3 H, m); 1.90-2.09





Alkylation/
304.2, Rt = 2.3
(3 H, m); 2.10 (6 H, s); 2.35 (2 H, d, J = 5.0 Hz); 2.39-2.49 (1 H, m);




32%
min.
2.58-2.60 (1 H, m); 3.20 (1 H, d, J = 10.0 Hz); 3.32 (1 H, d, J = 10.0






Hz); 3.42-3.53 (2 H, m); 4.41-4.48 (1 H, m); 4.59-4.65 (1 H, m);






4.90-4.97 (1 H, m); 6.83 (1 H, dd, J = 3.5 and 1.1 Hz); 7.03 (1 H, dd,






J = 5.1 and 3.5 Hz); 7.23 (1 H, dd, J = 5.1 and 1.1 Hz).







13C-NMR (CDCl3): 24.8; 32.66; 32.7; 32.8; 35.9; 38.1; 43.4; 48.1;







59.5; 60.4; 68.5; 81.5; 123.4; 124.9; 126.2; 142.7; 174.3.


148
1
Ex. no. 24a/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.40-1.50 (2 H, m); 1.67 (1 H, br s); 1.70-1.80 (2





Alkylation/
304.2 (100%)
H, m); 1.93-2.09 (3 H, m); 2.10 (6 H, s); 2.18 (2 H, s); 3.16 (2 H, s);




44%
[M + H]+ = 349.3
3.17-3.25 (1 H, m); 3.59 (2 H, d, J = 7.2 Hz); 4.46 (2 H, t, J = 6.2





(100%), Rt = 2.0
Hz); 4.78 (2 H, dd, J = 7.8 and 6.2 Hz); 6.84 (1 H, dd, J = 3.6 and





min.
1.1 Hz); 7.04 (1 H, dd, J = 5.1 and 3.6 Hz); 7.25 (1 H, dd, J = 5.1






and 1.1 Hz).







13C-NMR (CDCl3): 32.6; 32.7; 34.1; 35.9; 38.0; 43.9; 45.4; 59.2;







75.4; 123.5; 124.8; 126.3; 174.0.


149
2
Ex. no. 24b/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.40-1.49 (2 H, m); 1.62-1.77 (3 H, m); 1.90-2.09





Alkylation/
304.2 (100%)
(3 H, m); 2.10 (6 H, s); 2.32 (2 H, s); 3.01 (2 H, s); 3.13-3.21 (1 H,




48%
[M + H]+ = 349.2
m); 3.55 (2 H, d, J = 7.2 Hz); 4.42 (2 H, t, J = 6.2 Hz); 4.74 (2 H, dd,





(100%), Rt = 2.2
J = 7.8 and 6.2 Hz); 6.84 (1 H, dd, J = 3.5 and 1.1 Hz); 7.04 (1 H,





min.
dd, J = 5.1 and 3.5 Hz); 7.25 (1 H, dd, J = 5.1 and 1.1 Hz).







13C-NMR (CDCl3): 32.7; 32.8; 34.0; 35.9; 38.1; 43.2; 45.4; 59.5;







75.4; 123.5; 125.0; 126.3; 174.0.


150
1
Ex. no. 24a/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.43-1.51 (2 H, m); 1.74-1.83 (2 H, m); 1.93-1.98





Alkylation/
346.3 (95%
(2 H, m); 1.99-2.07 (4 H, m); 2.10 (6 H, s); 2.11-2.27 (6 H, m);




58%
[M + H]+ = 386.3
2.49-2.59 (2 H, m); 3.25 (2 H, s); 3.38-3.41 (2 H, m); 6.84 (1 H, dd,





(100%), Rt = 2.5
J = 3.5 and 0.9 Hz); 7.04 (1 H, dd, J = 5.1 and 3.6 Hz); 7.24 (1 H,





min.
dd, J = 5.1 and 0.9 Hz).







13C-NMR (CDCl3): 16.8; 32.1; 32.7; 33.8; 34.8; 35.6; 38.0; 39.0;







44.0; 58.5; 59.2; 123.4; 124.1; 124.8; 126.3; 174.0.


151
2
Ex. no. 24b/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.43-1.52 (2 H, m); 1.72-1.80 (2 H, m); 1.89-1.94





Alkylation/
341.2 (100%)
(2 H, m); 1.95-2.07 (4 H, m); 2.11 (6 H, s); 2.12-2.23 (4 H, m); 2.33




85%
[M + H]+ = 386.3
(2 H, s); 2.47-2.56 (2 H, m); 3.11 (2 H, s); 3.33-3.38 (2 H, m); 6.85





(85%), Rt = 2.7
(1 H, dd, J = 3.6 and 1.1 Hz); 7.04 (1 H, dd, J = 5.1 and 3.6 Hz);





min.
7.24 (1 H, dd, J = 5.1 and 1.1 Hz).







13C-NMR (CDCl3): 16.8; 32.1; 32.7; 32.9; 33.8; 34.8; 35.7; 38.1;







39.0; 59.0; 59.6; 123.5; 124.1; 125.0; 126.3; 174.0.


154
2
Ex. no. 153/
[M + H]+ = 307.3,

1H-NMR (CDCl3): 1.42-1.51 (2 H, m); 1.66-1.79 (2 H, m); 1.82-2.09





Alkylation/
Rt = 2.2 min.
(4 H, m); 2.11 (6 H, s); 2.17 (2 H, s); 2.47 (3 H, d, J = 1.1 Hz); 2.82




64%

(3 H, s); 3.20 (2 H, s); 6.51 (1 H, d, J = 3.5 Hz); 6.66-6.69 (1 H, m).







13C-NMR (CDCl3): 15.2; 29.7; 32.6; 33.0; 35.3; 38.1; 44.1; 59.4;







60.5; 124.5; 124.9; 137.9; 173.8.


155
1
Ex. no. 152/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.43-1.52 (2 H, m); 1.68-1.76 (2 H, m); 1.85-2.09





Alkylation/
262.3 (100%)
(4 H, m); 2.10 (6 H, s); 2.30 (2 H, s); 2.46 (3 H, d, J = 1.1 Hz); 2.79




63%
[M + H]+ = 307.3
(3 H, s); 3.05 (2 H, s); 6.60 (1 H, d, J = 3.5 Hz); 6.66-6.68 (1 H, m).





(10%), Rt = 2.4

1H-NMR (CDCl3): 15.2, 29.6; 32.6; 33.1; 35.4; 38.2; 43.3; 59.6; 61.2;






min.
124.4; 124.9; 137.8; 173.8.


156
2
Ex. no. 153/
[M + H]+ = 349.4,

1H-NMR (CDCl3): 0.92 (3 H, t, J = 7.3 Hz); 1.25-1.36 (2 H, m); 1.43-





Alkylation/
Rt = 2.6 min.
1.52 (4 H, m); 1.68-1.77 (2 H, m); 1.85-2.10 (4 H, m); 2.11 (6 H, s);




68%

2.18 (2 H, s); 2.46 (3 H, d, J = 1.1 Hz); 3.19 (2 H, s); 3.25 (2 H, t, J =






7.3 Hz); 6.61 (1 H, d, J = 3.5 Hz); 6.66-6.69 (1 H, m).







13C-NMR (CDCl3): 13.8; 15.2; 20.0; 29.3; 32.7; 32.8; 35.5; 38.1;







42.0; 44.5; 57.8; 59.4; 124.5; 124.9; 137.8; 173.6.


157
1
Ex. no. 152/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 0.90 (3 H, t, J = 7.3 Hz); 1.22-1.33 (2 H, m); 1.39-





Alkylation/
304.3 (100%)
1.51 (4 H, m); 1.66-1.76 (2 H, m); 1.86-2.09 (4 H, m); 2.10 (6 H, s);




68%
[M + H]+ = 349.4
2.31 (2 H, s); 2.46 (3 H, d, J = 1.0 Hz); 3.04 (2 H, s); 3.21 (2 H, t, J =





(10%), Rt = 3.0
7.3 Hz); 6.60 (1 H, d, J = 3.5 Hz); 6.65-6.68 (1 H, m).





min.

13C-NMR (CDCl3): 13.7; 15.2; 20.0; 29.3; 32.6; 32.9; 35.8; 38.2;







42.0; 43.6; 58.7; 59.6; 124.4; 124.9; 137.8; 173.6.


158
2
Ex. no. 153/
[M + H]+ = 375.4,

1H-NMR (CDCl3): 1.16-1.27 (2 H, m); 1.42-1.80 (11 H, m); 1.84-





Alkylation/
Rt = 2.9 min.
2.20 (12 H, m); 2.48 (3 H, s); 3.19 (2 H, d, J = 7.8 Hz); 3.24 (2 H, br




13%

s); 6.63 (1 H, br s); 6.70 (1 H, br s).







13C-NMR (CDCl3): 15.3; 25.1; 30.4; 32.3, 32.7; 35.5; 38.0; 47.4;







124.7; 173.6 . . All the other signals could not be identified due to a






low sample concentration.


159
1
Ex. no. 152/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.11-1.22 (2 H, m); 1.42-1.76 (10 H, m); 1.85-





Alkylation/
330.3 (100%)
1.97 (2 H, m); 2.00-2.09 (3 H, m); 2.10 (6 H, s); 2.31 (2 H, s); 2.46




32%
[M + H]+ = 375.4
(3 H, d, J = 1.0 Hz); 3.06 (2 H, s); 3.15 (2 H, d, J = 7.8 Hz); 6.61 (1





(10%), Rt = 3.2
H, d, J = 3.5 Hz); 6.65-6.88 (1 H, m).





min.

13C-NMR (CDCl3): 15.2; 25.1; 30.4; 32.6; 32.9; 35.7; 38.0; 38.2;







43.5; 47.4; 59.1; 59.7; 126.4; 125.0; 137.8; 173.8.


160
1
Ex. no. 152/
[M + H]+ = 347.3,

1H-NMR (CDCl3): 0.12-0.18 (2 H, m); 0.43-0.49 (2 H, m); 0.77-0.87





Alkylation/
Rt = 2.9 min.
(1 H, m); 1.43-1.52 (2 H, m); 1.68-1.77 (2 H, m); 1.85-2.08 (4 H,




66%

m); 2.10 (6 H, s); 2.31 (2 H, s); 2.45 (3 H, s); 3.08 (2 H, d, J = 7.1






Hz); 3.14 (2 H, s); 6.60 (1 H, d, J = 3.4 Hz); 6.65-6.69 (1 H, m).







13C-NMR (CDCl3): 3.4; 9.0; 15.2; 32.5; 32.9; 35.6; 38.1; 43.5; 46.9;







58.8; 59.6; 124.4; 124.9; 137.8; 173.4.


161
1
Ex. no. 152/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.40-1.49 (2 H, m); 1.65-1.75 (4 H, m); 1.80-2.10





Alkylation/
316.3 (100%)
(8 H, m); 2.11 (6 H, s); 2.30 (2 H, s); 2.42-2.51 (1 H, m); 2.47 (3 H,




69%
[M + H]+ = 361.3
d, J = 1.0 Hz); 3.01 (2 H, s); 3.25 (2 H, d, J = 7.6 Hz); 6.61 (1 H, d,





(10%), Rt = 3.1
J = 3.5 Hz); 6.66-6.69 (1 H, m).





min.

13C-NMR (CDCl3): 15.2; 18.4; 18.5; 24.8; 26.4; 26.5; 32.6; 32.8;







33.9; 35.7; 38.2, 43.4; 47.8; 59.0; 59.7; 124.4; 124.9; 137.8; 173.7.


163
2
Ex. no. 162
[M + H]+ = 329.4,

1H-NMR (CDCl3): 0.93 (3 H, t, J = 7.3 Hz); 1.27-1.42 (4 H, m); 1.45-





Step 3/
Rt = 2.4 min.
1.53 (2 H, m); 1.70-1.78 (2 H, m); 1.85-2.20 (2 H, m); 2.03 (6 H, s);




Alkylation/

2.13 (2 H, s); 2.14-2.25 (2 H, m); 3.23 (2 H, s); 3.26 (2 H, t, J = 7.3




87%

Hz); 7.26-7.32 (3 H, m); 7.35-7.41 (2 H, m).







13C-NMR (CDCl3): 13.8; 20.0; 29.4; 30.2; 32.9; 35.7; 38.0; 42.1;







44.6; 57.9; 60.2; 126.7; 127.4; 127.8; 173.6.


164
1
Ex. no. 431/
[M + H]+ = 329.4,

1H-NMR (CDCl3): 0.88 (3 H, t, J = 7.3 Hz); 1.22-1.46 (6 H, m); 1.66-





Alkylation/
Rt = 2.9 min.
1.75 (2 H, m); 1.85-2.00 (2 H, m); 2.03 (6 H, s); 2.15-2.31 (2 H, m);




61%

2.35 (2 H, s); 2.97 (2 H, s); 3.20 (2 H, t, J = 7.3 Hz); 7.24-7.32 (3 H,






m); 7.35-7.40 (2 H, m).







13C-NMR (CDCl3): 13.7; 20.0; 29.3; 30.1; 30.11; 30.2; 30.25; 32.9;







33.0; 35.8; 38.0; 41.9; 43.6; 58.9; 60.5; 126.6; 126.7; 127.6; 127.7;






136.4; 173.6.


165
2
Ex. no. 162
[M + H]+ = 355.4,

1H-NMR (CDCl3): 1.14-1.27 (2 H, m); 1.33-1.43 (2 H, m); 1.50-1.80





Step 3/
Rt = 2.7 min.
(9 H, m); 1.90-2.20 (2 H, m); 2.03 (6 H, s); 2.08-2.20 (4 H, m); 3.19




Alkylation/

(2 H, d, J = 7.8 Hz); 3.26 (2 H, s); 7.27-7.31 (3 H, m); 7.35-7.41 (2




26%

H, m).







13C-NMR (CDCl3): 25.1; 30.2; 30.5; 32.8; 35.8; 38.0; 38.1; 44.5;







47.4; 58.3; 60.1; 126.7; 127.4; 127.7; 173.8.


166
1
Ex. no. 431
[M + H]+ = 355.4,

1H-NMR (CDCl3): 1.10-1.20 (2 H, m); 1.30-1.40 (2 H, m); 1.42-1.75





Alkylation/
Rt = 3.1 min.
(8 H, m); 1.84-2.20 (3 H, m); 2.02 (6 H, s); 2.10-2.30 (2 H, br s);




27%

2.35 (2 H, s); 3.00 (2 H, s); 3.11 (2 H, d, J = 7.8 Hz); 7.24-7.31 (3 H,






m); 7.34-7.40 (2 H, m).







13C-NMR (CDCl3): 25.1; 30.0; 30.2, 30.3; 33.0; 35.9; 37.9; 38.0;







43.6; 47.3; 59.2; 60.4; 126.6; 127.5; 127.7; 173.7.


167
2
Ex. no. 162
[M + H]+ = 369.4,

1H-NMR (CDCl3): 1.30-1.39 (2 H, m); 1.65-1.73 (2 H, m); 1.80-195





Step 3/
Rt = 2.5 min.
(2 H, m); 2.00 (6 H, s); 2.13-2.25 (2 H, m); 2.16 (2 H, s); 3.20 (2 H,




Alkylation/

s); 4.62 (2 H, s); 6.95-6.98 (2 H, m); 7.23-7.30 (4 H, m); 7.35-7.40




58%

(2 H, m).







13C-NMR (CDCl3): 30.2; 32.7; 35.7; 38.0; 41.0; 44.6; 56.9; 60.1;







125.5; 126.72; 126.74; 126.8; 127.4; 127.8; 139.0; 173.4.


167
2
Ex. no. 162
[M + H]+ = 341.4,

1H-NMR (CDCl3): 0.03-0.09 (2 H, m); 0.43-0.49 (2 H, m); 0.59-0.70





Step 3/
Rt = 2.5 min.
(1 H, m); 1.33-1.45 (4 H, m); 1.69-1.78 (2 H, m); 1.85-2.01 (2 H,




Alkylation/

m); 2.03 (6 H, d, J = 1.3 Hz); 2.13 (2 H, s); 2.15-2.26 (2 H, m); 3.26




45%

(2 H, s); 3.34 (2 H, t, J = 7.2 Hz); 7.27-7.31 (3 H, m); 7.35-7.41 (2






H, m).







13C-NMR (CDCl3): 4.7; 8.9; 30.6; 32.8; 33.4; 36.0; 38.3; 43.0; 44.9;







58.6; 60.4; 127.0; 127.7; 128.0; 173.9.


168
1
Ex. no. 431/
[M + H]+ = 341.4,

1H-NMR (CDCl3): 0.01-0.04 (2 H, m); 0.38-0.44 (2 H, m); 0.54-0.64





Alkylation/
Rt = 2.9 min.
(1 H, m); 1.30-1.40 (4 H, m); 1.66-1.76 (2 H, m); 1.85-2.00 (2 H,




50%

m); 2.03 (6 H, s); 2.16-2.32 (2 H, m); ); 2.36 (2 H, s); 3.01 (2 H, s);






3.38 (2 H, t, J = 7.2 Hz); 7.24-7.32 (3 H, m); 7.34-7.40 (2 H, m).







13C-NMR (CDCl3): 4.3; 8.6; 30.1; 32.4; 33.1; 35.8; 38.1; 42.6; 43.7;







59.2; 60.6; 126.6; 127.6; 127.7; 173.6.


169
2
Ex. no. 162
[M + H]+ = 341.3,

1H-NMR (CDCl3): 1.32-1.41 (2 H, m); 1.65-1.79 (5 H, m); 1.85-1.95





Step 3/
Rt = 2.5 min.
(3 H, m); 2.03 (6 H, s); 2.03-2.09 (2 H, m); 2.12 (2 H, s); 2.12-2.27




Alkylation/

(2 H, m); 2.53 (1 H, td, J = 15.6, 7.8 Hz); 3.20 (2 H, s); 3.29 (2 H, d,




64%

J = 7.6 Hz); 7.26-7.30 (3 H, m); 7.35-7.41 (2 H, m).







13C-NMR (CDCl3): 18.4; 26.4; 30.3; 32.8; 34.0; 35 8; 38.0; 44.3;







47.9; 58.1; 60.1; 126.7; 127.4; 127.7; 173.7.


170
1
Ex. no. 431/
[M + H]+ = 341.5,

1H-NMR (CDCl3): 1.30-1.40 (2 H, m); 1.60-1.73 (4 H, m); 1.80-2.02





Alkylation/
Rt = 3.0 min,
(6 H, m); 2.03 (6 H, s); 2.15-2.33 (2 H, m); 2.35 (2 H, s); 2.45 (1 H,




45%

td, J = 15.6, 7.8 Hz); 2.95 (2 H, s); 3.24 (2 H, d, J = 7.6 Hz); 7.27-






7.32 (3 H, m); 7.35-7.41 (2 H, m).







13C-NMR (CDCl3): 18.3; 26.3; 30.1; 33.0; 33.8; 36.0; 38.1; 43.5;







47.8; 59.3, 60.5; 126.6; 127.6; 127.7; 173.7.


171
2
Ex. no. 162
[M + H]+ = 327.4,

1H-NMR (CDCl3): 0.18-0.23 (2 H, m); 0.49-0.55 (2 H, m); 0.83-0.94





Step 3/
Rt = 2.3 min.
(1 H, m); 1.35-1.43 (2 H, m); 1.71-1.79 (2 H, m); 1.85-2.02 (2 H,




Alkylation/

m); 2.04 (6 H, s); 2.13 (2 H, s); 2.16-2.30 (2 H, m); 3.13 (2 H, d, J =




56%

7.1 Hz); 3.35 (2 H, s); 7.26-7.31 (3 H, m); 7.36-7.41 (2 H, m).







13C-NMR (CDCl3): 3.4; 9.1; 30.3; 32.9; 35.8; 38.0; 44.6; 47.0; 57.9;







60.2; 126.7; 127.5; 127.7; 173.4.


172
1
Ex. no. 431/
[M + H]+ = 327.4,

1H-NMR (CDCl3): 0.11-0.16 (2 H, m); 0.42-0.47 (2 H, m); 0.75-0.85





Alkylation/
Rt = 2.8 min.
(1 H, m); 1.32-1.41 (2 H, m); 1.67-1.76 (2 H, m); 1.87-2.00 (2 H,




58%

m); 2.03 (6 H, s); 2.15-2.33 (2 H, m); 2.36 (2 H, s); 3.05-3.10 (4 H,






m); 7.24-7.31 (3 H, m); 7.35-7.40 (2 H, m).







13C-NMR (CDCl3): 3.3; 9.0; 30.1; 33.0; 35.9; 38.0; 43.5; 46.9; 59.0;







60.4; 126.6; 127.5; 127.7; 173.4.


173
2
Ex. no. 162
[M + H]+ = 355.4,

1H-NMR (CDCl3): 1.33-142 (2 H, m); 1.56-1.68 (5 H, m); 1.68-2.02





Step 3/
Rt = 2.7 min.
(6 H, m); 2.03 (6 H, s); 2.04-2.10 (2 H, m); 2.12 (2 H, s); 2.13-2.30




Alkylation/

(2 H, m); 3.14-3.20 (2 H, m); 3.22 (2 H, s); 7.26-7.31 (3 H, m);




60%

7.35-7.41 (2 H, m).







13C-NMR (CDCl3): 18.6; 28.2; 30.2; 32.9; 33.7; 34.3; 35.6 38.0;







40.5; 44.6; 58.0; 60.1; 126.7; 127.4; 127.7, 173.5.


174
1
Ex. no. 431/
[M + H]+ = 355.4,

1H-NMR (CDCl3): 1.31-1.40 (2 H, m); 147-153 (4 H, m); 1.66-1.85





Alkylation/
Rt = 3.2 min.
(5 H, m); 188-2.02 (3 H, m); 2.03 (6 H, s); 2.14-2.30 (3 H, m); 2.35




51%

(2 H, s); 2.97 (2 H, s); 3.08-3.14 (2 H, m); 7.26-7.32 (3 H, m);






7.35-7.41 (2 H, m).







13C-NMR (CDCl3): 18.5; 28.2; 30.1; 33.1; 33.6; 34.2; 35.8; 38.1;







40.4; 43.7, 59.0; 60.5; 126.6; 127.6; 127.7; 173.5.


175
2
Ex. no. 162
[MH − HNMe2]+ =

1H-NMR (CDCl3): 0.87 (2 H, dd, J = 5.1 Hz); 1.26 (2 H, dd, J = 5.0





Step 3/
321.3 (20%)
Hz); 135-1.44 (2 H, m); 1.71 (2 H, t, J = 7.1 Hz); 1.74-1.82 (2 H,




Alkylation/
[M + H]+ = 366.3
m); 2.03 (8 H, s); 2.10-2.21 (4 H, s); 3.35 (2 H, s); 3.48 (2 H, t, J =




47%
(100%), Rt = 2.3
7.1 Hz); 7.29 (3 H, d, J = 7.5 Hz); 7.35-7.41 (2 H, m).





min.

13C-NMR (CDCl3): 7.6; 14.1; 30.1; 32.6; 32.9; 35.8; 38.0; 41.2; 44.2;







58.9; 60.1; 123.0; 126.7; 127.4; 127.7; 174.2.


176
1
Ex. no. 431/
[MH-HNMe2]+ =

1H-NMR (CDCl3): 0.84 (2 H, dd, J = 5.2 Hz); 1.22 (2 H, dd, J = 4.9





Alkylation/
321.3 (25%)
Hz); 1.34-1.42 (2 H, m); 1.65 (2 H, t, J = 7.1 Hz); 169-1.77 (2 H,




54%
[M + H]+ = 366.3
m); 187-2.00 (2 H, m); 2.03 (6 H, s); 2.18-2.33 (2 H, m); 2.37 (2 H,





(100%), Rt = 2.6
s); 3.10 (2 H, s); 3.42 (2 H, t, J = 7.1 Hz); 7.25-7.31 (3 H, m); 7.35-





min.
7.40 (2 H, m).







13C-NMR (CDCl3): 7.5; 14.0; 30.1; 32.5; 33.1; 36.0; 38.0; 41.1; 43.4;







59.9; 60.5; 122.9; 126.7; 127.6; 127.8; 174.2.


177
2
Ex. no. 162
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.34-1.43 (2 H, m); 1.72-180 (2 H, m); 1.93-1.98





Step 3/
335.3 (12%)
(2 H, m); 1.99-2.07 (3 H, m); 2.03 (6 H, s); 2.11-2.25 (7 H, m);




Alkylation/
[M + H]+ = 380.3
2.49-2.58 (2 H, m); 3.29 (2 H, s); 3.37-3.41 (2 H, m); 7.27-7.30 (3




58%
(100%), Rt = 2.3
H, m); 7.35-7.40 (2 H, m).





min.

13C-NMR (CDCl3): 16.8; 30.1; 32.1; 32.9; 33.8; 34.9; 35.8; 38.0;







39.0; 44.3; 58.3; 60.2; 124.1; 126.8; 127.4; 127.8; 174.0.


178
1
Ex. no. 431/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.32-1.41 (2 H, m); 1.68-1.76 (2 H, m); 1.87-1.92





Alkylation/
335.3 (20%)
(2 H, m); 1.94-2.32 (8 H, m); 2.05 (6 H, s); 2.37 (2 H, s); 2.46-2.55




65%
[M + H]+ = 380.3
(2 H, m); 3.04 (2 H, s); 3.30-3.36 (2 H, m); 7.28-7.32 (3 H, m);





(100%), Rt = 2.6
7.36-7.41 (2 H, m).





min.

13C-NMR (CDCl3): 16.8; 30.1; 32.1; 33.1; 33.8; 34.8; 38.0; 38.1;







39.0; 43.4; 59.3; 60.5; 124.1; 126.7; 127.6; 127.8; 174.1.


179
2
Ex. no. 162
[M + H]+ = 357.3

1H-NMR (CDCl3): 1.37-1.43 (2 H, m); 1.49-1.59 (1 H, m); 1.72-1.81





Step 3/
(100%)
(4 H, m); 2.04 (6 H, s); 2.03-2.09 (5 H, m, overlapped); 2.18 (2 H,




Alkylation/
[MH − NHMe2]+ =
s); 2.12-2.22 (2 H, m, overlapped); 3.44 (2 H, s); 3.46 (2 H, s); 4.09




83%
312.3 (92%),
(1 H, s); 7.27-7.31 (3 H, m); 7.37-7.41 (2 H, m).





Rt = 2.3 min.

13C-NMR (CDCl3): 11.9; 30.1; 32.7; 34.5; 36.7; 38.0; 44.1; 51.7;







61.3; 75.6; 126.9; 127.4; 127.8; 176.3.


180
1
Ex. no. 431/
[M + H]+ = 357.3

1H-NMR (CDCl3): 1.35-1.43 (2 H, m); 1.45-1.50 (1 H, m); 1.67-1.77





Alkylation/
(43%)
(4 H, m); 2.04 (6 H, s); 2.00-2.08 (5 H, m, overlapped); 2.11-2.33 (2




63%
[MH − NHMe2]+ =
H, m); 2.41 (2 H, s); 3.20 (2 H, s); 3.38 (2 H, s); 4.06 (1 H, br s);





312.3 (100%),
7.28-7.30 (3 H, m); 7.36-7.40 (2 H, m).





Rt = 2.5 min.

13C-NMR (CDCl3): 11.9; 30.1; 32.9; 34.5; 36.8; 38.1; 43.2; 51.6;







62.3; 75.6; 126.7; 127.6; 127.8; 176.3.


181
2
Ex. no. 21/
[M + H]+ = 345.4,

1H-NMR (CDCl3): 1.23 (6 H, s); 1.36-1.46 (2 H, m); 1.72-1.82 (2 H,





Alkylation/
Rt = 2.2 min.
m); 1.90-2.01 (2 H, m); 2.02 (6 H, s); 2.04-2.16 (2 H, m); 2.18 (2 H,




78%

s); 3.26 (2 H, s); 3.45 (2 H, s); 3.53 (1 H, br s); 7.26-7.31 (3 H, m);






7.35-7.41 (2 H, m).







13C-NMR (CDCl3): 27.6; 29.9; 30.0; 32.7; 35.8; 36.3; 37.9; 43.9;







55.0; 60.0; 61.4; 71.9; 126.6; 127.3; 127.6; 136.3; 174.6; 175.7.


182
2
Ex. no. 162
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.18 (6 H, s); 1.32-1.41 (2 H, m); 1.64-1.69 (2 H,





Step 3/
328.3 (72%)
m); 1.70-1.77 (2 H, m); 1.91-2.01 (2 H, m); 2.02 (6 H, s); 2.11 (2 H,




Alkylation/
[M + H]+ = 373.4
s); 2.13-2.27 (2 H, m); 3.20 (3 H, s); 3.25 (2 H, s); 3.29-3.34 (2 H,




55%
(100%), Rt = 2.5
m); 7.25-7.31 (3 H, m); 7.35-7.41 (2 H, m).





min.

13C-NMR (CDCl3): 24.9; 30.2; 32.9; 35.7; 36.7; 38.0; 38.2; 44.6;







49.2; 58.0; 60.2; 73.6; 126.7; 127.4; 127.7; 173.4.


183
1
Ex. no. 431/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.14 (6 H, s); 1.31-140 (2 H, m); 1.57-162 (2 H,





Alkylation/
328.3 (100%)
m); 1.67-1.74 (2 H, m); 1.90-2.02 (2 H, m); 2.03 (6 H, s); 2.14-2.29




82%
[M + H]+ = 373.4
(2 H, m); 2.34 (2 H, s); 3.00 (2 H, s); 3.15 (3 H, s); 3.23-3.29 (2 H,





(75%), Rt = 2.9
m); 7.25-7.31 (3 H, m); 7.35-7.40 (2 H, m).





min.

13C-NMR (CDCl3): 24.8; 30.1; 33.0; 35.8; 36.8; 38.1; 38.1; 43.7;







49.1; 59.1; 60.5; 73.5; 126.6; 127.6; 127.7; 173.5.


184
2
Ex. no. 162
[M + H]+ = 385.4

1H-NMR (CDCl3) 1.32-1.44 (2 H, m); 1.52-1.66 (1 H, m); 1.69-1.80





Step 3/
[MH − HNMe2]+ =
(3 H, m); 1.82-1.93 (4 H, m); 1.94-2.02 (2 H, m); 2.03 (6 H, s);




Alkylation/
340.3, Rt = 2.5
2.07-2.18 (5 H, m); 2.19-2.31 (1 H, m); 3.15 (3 H, s); 3.23-3.30 (4




47%
min.
H, m); 7.26-7.32 (3 H, m); 7.34-7.43 (2 H, m).







13C-NMR (CDCl3): 12.4; 30.2; 31.3; 31.8; 32.9; 35.6; 37.8; 38.0;







44.7; 49.3; 58.3; 60.2; 78.2; 126.7; 127.4; 127.7, 173.4.


185
1
Ex. no. 431/
[M + H]+ = 385.4

1H-NMR (CDCl3) 1.32-1.41 (2 H, m); 1.54 (1 H, dq, J = 11.6 and





Alkylation/
[MH − HNMe2]+ =
8.9 Hz); 1.66-1.75 (3 H, m); 1.76-1.89 (4 H, m); 1.91-2.01 (2 H,




54%
340.3, Rt = 2.9
m); 2.03-2.13 (8 H, m); 2.16-2.30 (2 H, m); 2.35 (2 H, s); 3.02 (2





min.
H, s); 3.11 (3 H, s); 3.21 (2 H, ddd, J = 15.9, 7.9 and 5.1 Hz); 7.25-






7.32 (3 H, m); 7.35-7.40 (2 H, m).







13C-NMR (CDCl3): 12.4; 30.1; 31.2; 31.9; 33.1; 35.8; 37.7; 38.1;







43.7; 49.3; 59.4; 60.5; 78.2; 126.6; 127.6; 127.7; 136.4; 173.5.


188
1
Ex. no. 71/
[M + H]+ = 371.4,

1H-NMR (CDCl3): 1.24-1.34 (2 H, m); 1.50-1.68 (5 H, m); 1.78-1.98





Acylation/
Rt = 2.7 min.
(2 H, m); 2.01 and 2.03 (6 H, 2 s); 2.10-2.23 (2 H, m); 2.29-2.40 (3




57%

H, m); 2.64-2.76 (1 H, m); 3.31 (1 H, s); 3.36-3.47 (4 H, m); 3.70-






3.78 (1 H, m); 3.81-3.89 (1 H, m); 3.93-4.00 (1 H, m); 7.24-7.31 (3






H, m); 7.33-7.40 (2 H, m).







13C-NMR (CDCl3): 30.0; 30.8; 31.1; 31.2; 31.4; 32.3; 35.3; 35.33;







35.8; 37.5; 38.0; 38.04; 38.06; 38.5; 40.3; 42.3; 43.9; 45.0; 55.2;






56.4; 60.7; 67.6; 73.29; 73.31; 126.5; 126.7; 127.5; 127.6; 127.65;






127.7; 135.6; 137.4; 170.39; 170.4.


189
1
Ex. no. 71/
[M + H]+ = 343.3,

1H-NMR (CDCl3): 1.22-1.35 (2 H, m); 1.54-1.67 (4 H, m); 1.70-2.02





Acylation/
Rt = 2.5 min.
(2 H, m); 2.03 and 2.04 (6 H, 2 s); 2.05-2.36 (2 H, m); 3.09 (1.2 H,




35%

s); 3.20 (0.8 H, t, J = 7.2 Hz); 3.43 (0.8 H, s); 3.49 (1.2 H, t, J = 7.3






Hz); 3.87-3.98 (1 H, m); 4.73-4.83 (2 H, m); 4.91-4.96 (2 H, m);






7.26-7.34 (3 H, m); 7.34-7.42 (2 H, m).







13C-NMR (CDCl3): 30.1; 30.8; 31.0; 31.4; 35.5; 38.0; 38.1; 38.3;







38.5; 40.4; 42.3; 44.16; 44.2; 55.4; 55.7; 60.7; 73.03; 73.04; 126.5;






126.8; 127.5; 127.6; 127.7; 127.8; 169.6; 169.7.


190
1
Ex. no. 71/
[M + H]+ = 359.4,

1H-NMR (CDC3): 1.25-1.35 (2 H, m); 1.41 and 1.42 (6 H, 2 s); 1.49





Acylation/
Rt = 2.8 min.
(1 H, t, J = 7.4 Hz); 1.55-1.70 (3 H, m); 1.85-2.03 (2 H, m); 2.04 (6




66%

H, s); 2.16-2.34 (2 H, m); 3.18 (1 H, s); 3.20 (2 H, s); 3.46 (0.6 H, s);






3.50 (1.4 H, t, J = 7.2 Hz); 3.66 (1.4 H, s); 3.71 (0.6 H, t, J = 7.0 Hz);






7.26-7.33 (3 H, m); 7.34-7.41 (2 H, m).







13C-NMR (CDCl3): 24.1; 30.2; 30.6; 30.8; 31.7; 34.6; 38.0; 38.1;







38.8; 42.6; 45.3; 45.7; 51.5; 51.6; 56.6; 57.4; 60.8; 79.5; 79.8; 126.5;






126.6; 127.5; 127.6; 127.68; 127.7; 172.6; 172.9.


191
1
Ex. no. 85/
[M + H]+ = 327.4,

1H-NMR (CDCl3): 0.01-0.06 (2 H, m); 0.38-0.44 (2 H, m); 0.66 (1 H,





Reduction/
Rt = 1.3 min.
m); 1.22-1.32 (2 H, m); 1.34-1.48 (4 H, m); 1.60-1.70 (2 H, m);




100%

1.76-1.94 (2 H, m); 2.02 (8 H, s); 2.26 (2 H, br s); 2.44-2.52 (6 H,






m); 7.22-7.40 (5 H, m).







13C-NMR (CDCl3): 4.3; 9.2; 31.0; 34.1; 34.6; 38.1; 38.3; 41.0; 53.9;







56.9; 60.4; 65.6; 70.6; 126.4; 127.4; 127.6; 136.9.


192
1
Ex. no. 86/
[M + H]+ = 341.4,

1H-NMR (CDCl3): 1.22-1.33 (2 H, m); 1.44 (2 H, t, J = 6.8 Hz); 1.54-





Reduction/
Rt = 2.2 min.
1.72 (6 H, m); 1.74-1.92 (4 H, m); 1.95-2.08 (2 H, m); 2.02 (6 H, s);




88%

2.20-2.32 (5 H, m); 2.41-2.50 (4 H, m); 7.22-7.40 (5 H, m).







13C-NMR (CDCl3): 18.7; 28.2; 31.1; 34.5; 34.7; 36.0; 38.1; 41.0;







53.8; 54.7; 65.5; 70.6; 126.4; 127.4; 127.6; 136.8.


193
1
Ex. no. 84/
[M + H]+ = 343.4,

1H-NMR (DMSO-d6): 1.14-1.24 (2 H, m); 1.30 (1 H, t, J = 7.0 Hz);





Reduction/
Rt = 0.5 min.
1.36 (2 H, t, J = 6.9 Hz); 1.40-1.47 (1 H, m); 1.57-1.67 (4 H, m);




69%

1.90 (6 H, s); 1.82-1.92 (2 H, m, overlapped); 1.94-2.03 (4 H, m);






2.448 (2 H, s); 2.453 (2 H, s); 2.53-2.57 (2 H, m); 4.58 (1 H, br s);






7.21-7.25 (1 H, m); 7.30-7.37 (4 H, m).







13C-NMR (DMSO-d6): 12.0; 26.8; 30.3; 33.8; 33.8; 37.7; 40.7; 54.4;







63.2; 73.4; 126.1; 127.2; 127.3.


194
1
Ex. no. 71/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.24-1.32 (2 H, m); 1.46 (2 H, t, J = 6.9 Hz); 1.63-





Reductive
321.3 (100%)
1.70 (2 H, m); 1.79-1.95 (4 H, m); 2.03 (6 H, s); 2.05-2.22 (4 H, m);




amination/
[M + H]+ = 366.4
2.23-2.34 (2 H, m); 2.48-2.55 (8 H, m); 7.24-7.32 (3 H, m); 7.34-




56%
(80%), Rt = 0.5
7.39 (2 H, m);





min.

13C-NMR (CDCl3): 17.0; 31.1; 32.3; 34.5; 36.7; 38.1; 41.3; 50.8;







52.6; 53.4; 53.8; 60.6; 65.6; 124.5; 126.5; 127.6; 127.7.


195
1
Ex. no. 71/
[M + H]+ = 369.4,

1H-NMR (CDCl3): 1.24-1.35 (2 H, m); 1.51-1.68 (6 H, m); 1.69-1.76





Acylation/
Rt = 3.2 min.
(3 H, m); 1.78-1.99 (4 H, m); 2.03 and 2.05 (6 H, 2 s); 2.06-2.17 (3




49%

H, m); 2.18-2.40 (3 H, m); 3.32 (1 H, s); 3.32-3.49 (3 H, m); 7.26-






7.33 (3 H, m); 7.34-7.42 (2 H, m).







13C-NMR (CDCl3): 18.28; 18.3; 27.97; 28.0; 30.0; 30.9; 31.2; 31.5;







32.0; 32.1; 32.5; 35.71; 35.74; 36.0; 37.6; 38.0; 38.1; 40.3; 42.3;






43.9; 45.0; 55.2; 56.4; 60.8; 126.5; 126.7; 127.6; 127.63; 127.67;






127.8; 171.98; 172.0.


196
1
Ex. no. 189/
[M + H]+ = 329.4,

1H-NMR (CDCl3): 1.20-1.30 (2 H, m); 1.41 (2 H, t, J = 6.8 Hz); 1.58-





Reduction/
Rt = 0.6 min.
1.70 (2 H, m); 1.79-1.99 (2 H, m); 2.01 (6 H, s); 2.10-2.30 (2 H, m);




23%

2.39 (2 H, s); 2.43 (2 H, t, J = 6.8 Hz); 2.72 (1 H, s); 2.74 (1 H, s);






3.12-3.22 (1 H, m); 4.41 (2 H, dd, J = 6.2 and 6.2 Hz); 4.77 (2 H, dd,






J = 7.8 and 6.0 Hz); 7.22-7.39 (5 H, m).







13C-NMR (CDCl3): 31.0; 34.5; 34.7; 38.0; 41.2; 53.7; 59.9; 60.4;







65.7; 76.5; 126.4; 126.5; 127.5; 127.6; 127.7.


197
1
Ex. no. 71/
[M + H]+ = 355.4,

1H-NMR (CDCl3): 0.02-0.09 (2 H, m); 0.38-0.46 (2 H, m); 0.65-0.78





Acylation/
Rt = 3.0 min.
(1 H, m); 1.24-1.35 (2 H, m); 1.50-1.70 (6 H, m); 1.80-2.00 (2 H,




76%

m); 2.02 and 2.04 (6 H, 2 s); 2.16-2.26 (1 H, m); 2.28-2.40 (3 H, m);






3.32 (1 H, s); 3.40 (1 H, s); 3.45 (2 H, dt, J = 7.3 and 1.9 Hz); 7.25-






7.32 (3 H, m); 7.34-7.41 (2 H, m).







13C-NMR (CDCl3): 4.41; 4.45; 10.5; 10.71; 10.76; 28.5; 30.0; 30.1;







30.5; 30.9; 31.2; 31.4; 34.4; 34.8; 35.9; 37.6; 38.0; 38.1; 40.4; 42.3;






43.9; 45.0; 55.2; 56.4; 60.8; 126.5; 126.7; 127.6; 127.62; 127.66;






127.7; 137.4; 171.87; 171.92.


198
1
Ex. no. 71/
[M + H]+ = 352.3,

1H-NMR (CDCl3): 1.32 (1 H, dd, J = 10.6 and 3.1 Hz); 1.35 (1 H, dd,





Acylation/
Rt = 2.6 min.
J = 10.6 and 3.1 Hz); 1.45-1.54 (2 H, m); 1.56-1.74 (6 H, m); 1.85-




92%

2.01 (2 H, m); 2.02 and 2.04 (6 H, 2 s); 2.16-2.35 (2 H, m); 3.41 (0.8






H, s); 3.48 (1.2 H, t, J = 7.3 Hz); 3.73 (1.2 H, s); 3.87 (0.8 H, t, J =






7.1 Hz); 7.26-7.32 (3 H, m); 7.35-7.42 (2 H, m).







13C-NMR (CDCl3): 13.2; 13.7; 16.2; 16.6; 30.2; 30.7; 30.8; 31.2;







35.1; 37.6; 38.0; 38.04; 40.1; 42.7; 45.6; 46.0; 57.2; 57.4; 60.7;






120.0; 120.2; 126.6; 126.7; 127.4; 127.5; 127.71; 127.73, 136.0;






137.0; 162.8; 163.0.


199
1
Ex. no. 71/
[M + H]+ = 366.3,

1H-NMR (CDCl3): 1.28-1.37 (2 H, m); 1.56-1.74 (5 H, m); 1.88-2.00





Acylation/
Rt = 2.7 min.
(2 H, m); 2.028 and 2.03 (6 H, 2 s); 2.17-2.33 (3 H, m); 2.53-2.69 (2




84%

H, m); 2.73-2.82 (2 H, m); 3.38 (1.2 H, s); 3.45 (0.8 H, s); 3.49-






3.55 (2 H, m); 7.26-7.32 (3 H, m); 7.35-7.41 (2 H, m).







13C-NMR (CDCl3): 16.47; 16.5; 30.3; 30.5; 30.56; 30.6; 30.7; 31.4;







34.9; 37.7; 38.0; 38.05; 38.8; 38.98; 40.0; 42.9; 44.9; 45.5; 56.4;






56.9; 60.7; 120.8; 120.9; 126.6; 126.7; 127.5; 127.6; 127.71; 127.75;






137.0; 164.4; 164.7.


200
1
Ex. no. 71/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 0.79-0.83 (2 H, m); 1.20-1.23 (2 H, m); 1.24-1.32





Reductive
307.3 (100%)
(2 H, m); 1.45 (2 H, t, J = 6.9 Hz); 1.60-1.70 (4 H, m); 1.77-1.92 (2




amination/
[M + H]+ = 352.4
H, m); 2.02 (6 H, s); 2.16-2.34 (2 H, m); 2.47 (2 H, s); 2.52 (2 H, t,




51%
(82%), Rt = 0.8
J = 6.9 Hz); 2.62-2.67 (2 H, m); 7.23-7.32 (3 H, m); 7.34-7.39 (2 H,





min.
m).







13C-NMR (CDCl3): 8.2; 13.9; 31.1; 34.3; 34.5; 38.1; 41.3; 53.8; 54.5;







60.5; 65.5; 123.3; 126.4; 126.5; 127.7.


201
1
Ex. no. 188/
[M + H]+ = 357.4,

1H-NMR (CDCl3): 1.23-1.32 (2 H, m); 1.45 (2 H, t, J = 6.8 Hz); 1.49-





Reduction/
Rt = 1.3 min.
1.62 (3 H, m); 1.62-1.70 (2 H, m); 1.80-1.93 (2 H, m); 2.03 (6 H, s);




20%

2.03-2.09 (1 H, m); 2.15-2.31 (3 H, m); 2.34-2.45 (2 H, m); 2.45 (2






H, s); 2.48 (2 H, t, J = 6.8 Hz); 3.33 (1 H, t, J = 7.9 Hz); 3.74 (1 H,






dd, J = 15.4 and 7.9 Hz); 3.84 (1 H, dt, J = 8.2 and 4.7 Hz); 3.89-






3.95 (1 H, m); 7.23-7.40 (5 H, m).







13C-NMR (CDCl3): 31.1; 32.4; 32.5; 34.6; 37.8; 38.0; 38.5; 41.08;







53.8; 55.8; 60.5; 65.6; 67.8; 73.4; 126.4; 127.5; 127.7; 136.6.


202
1
Ex. no. 190/
[M + H]+ = 345.4,

1H-NMR (CDCl3): 1.16 (6 H, s); 1.22-1.30 (2 H, m); 1.46 (2 H, t, J =





Reduction/
Rt = 2.0 min.
6.9 Hz); 1.63-1.70 (2 H, m); 1.80-1.95 (2 H, m); 2.03 (6 H, s); 2.15-




10%

2.30 (2 H, m); 2.43 (2 H, s); 2.57 (2 H, s); 2.60 (2 H, t, J = 6.9 Hz);






3.21 (3 H, s); 7.23-7.40 (5 H, m).







13C-NMR (CDCl3): 23.6; 30.9; 31.0; 34.2; 38.1; 41.5; 49.3; 55.4;







60.7; 64.5; 67.3; 75.9; 126.4; 127.5; 127.8.


203
1
Ex. no. 195/
[M + H]+ = 355.4,

1H-NMR (CDCl3): 1.22-1.32 (2 H, m); 1.34-1.48 (6 H, m); 1.52-1.70





Reduction/
Rt = 2.7 min.
(4 H, m); 1.74-1.90 (4 H, m); 1.98-2.01 (1 H, m); 2.03 (6 H, s);




67%

2.04-2.08 (1 H, m); 2.19-2.38 (5 H, m); 2.46 (2 H, s); 2.48 (2 H, t,






J = 6.9 Hz); 7.23-7.40 (5 H, m).







13C-NMR (CDCl3): 18.4; 26.5; 28.3; 31.1; 34.7; 35.0; 36.1; 38.1;







38.4; 41.1; 53.9; 57.1; 60.5; 65.5; 126.4; 127.3; 127.7.


204
1
Ex. no. 197/
[M + H]+ = 341.4,

1H-NMR (CDCl3): −0.02-0.03 (2 H, m); 0.37-0.43 (2 H, m); 0.60-





Reduction/
Rt = 2.3 min.
0.70 (1 H, m); 1.18-1.52 (4 H, m); 1.44 (2 H, t, J = 6.8 Hz); 1.54-




72%

1.70 (4 H, m); 1.75-1.95 (2 H, m); 2.03 (6 H, s); 2.15-2.35 (2 H, m);






2.37-2.43 (2 H, m); 2.45-2.51 (4 H, m); 7.24-7.40 (5 H, m).







13C-NMR (CDCl3): 4.4; 10.8; 28.4; 28.9; 31.1; 32.8; 33.7; 34.7, 38.1;







38.3; 41.1; 53.9; 56.8; 56.9; 60.5; 65.6; 126.4; 127.5; 127.7.


205
1
Ex. no. 71/
[M + H]+ = 343.3

1H-NMR (DMSO-d6): 0.73-0.81 (2 H, m); 0.91-0.97 (2 H, m); 1.14-





Acylation/
(99%)
1.24 (2 H, m); 1.49 (1 H, t, J = 6.9 Hz); 1.54-1.64 (3 H, m); 1.92 (6




59%
[MH − NHMe2]+ =
H, s); 1.93-2.13 (4 H, m, overlapped); 3.20 (0.8 H, s); 3.26-3.30





298.3 (100%),
(1.2 H, m, overlapped by the water signal); 3.63 (1.2 H; s); 3.74-





Rt = 2.6 min.
3.78 (0.8 H, m); 6.02 (0.3 H, s); 6.08 (0.7 H, s); 7.23-7.28 (1 H, m);






7.32-7.39 (4 H, m).







13C-NMR (DMSO-d6): 13.9, 14.1; 29.1; 30.4; 30.7; 33.9; 36.6; 37.7;







41.6; 44.7; 45.2; 55.4; 56.9; 59.9; 126.2; 127.2; 127.4; 170.5.


206
1
Ex. no. 205/
[M + H]+ = 329.3

1H-NMR (DMSO-d6): 0.37 (2 H, dd, J = 6.7 and 4.6 Hz); 0.54 (2 H,





Reduction/
(100%)
dd, J = 6.9 and 4.6 Hz); 1.16-1.23 (2 H, m); 1.38 (2 H, t, J = 6.9 Hz);




85%
[MH − NHMe2]+ =
1.60-1.66 (2 H, m); 1.86-2.08 (4 H, m, overlapped); 1.91 (6 H, s),





284.3 (58%),
2.41 (2 H, s); 2.44 (2 H, s); 2.51-2.53 (2 H, m, overlapped by the





Rt = 0.3 min.
DMSO signal); 4.82 (1 H, s); 7.21-7.26 (1 H, m); 7.30-7.38 (4 H,






m).







13C-NMR (DMSO-d6): 12.1; 30.4; 34.0; 37.7; 40.6; 52.8; 53.6; 54.8;







59.5; 63.1; 126.1; 127.2; 127.4.


207
1
Ex. no. 66/
[M + 1]+ = 349.3

1H-NMR (DMSO-d6): 1.25-1.31 (2 H, m); 1.40-1.47 (4 H, m); 1.57-





Reduction/
(43%)
1.67 (4 H, m); 1.86-2.02 (6 H, m, overlapped); 1.99 (6 H, s); 2.42 (2




73%
[MH − NHMe2]+ =
H, s); 2.44 (2 H, s); 2.56 (2 H, t, J = 6.9 Hz); 4.57 (1 H, br s); 6.91 (1





304.3 (100%),
H, dd, J = 3.6 and 1.2 Hz); 7.04 (1 H, dd, J = 5.1 and 3.5 Hz); 7.40





Rt = 0.3 min.
(1 H, dd, J = 5.1 and 1.1 Hz).







13C-NMR (DMSO-d6): 12.0; 26.8; 32.9; 33.6; 34.8; 37.7; 40.4; 54.5;







58.7; 63.1; 73.4; 123.4; 124.6; 126.2.


208
1
Ex. no. 18/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.38 (2 H, ddd, J = 13.2, 9.8 and 3.5 Hz); 1.51 (2





Reductive
327.3 (100%)
H, t, J = 6.9 Hz); 1.65-1.73 (2 H, m); 1.86-1.97 (4 H, m); 1.98-2.21




amination/
[M + H]+ = 372.3
(2 H, m); 2.10 (6 H, s); 2.45 (2 H, s); 2.47-2.56 (6 H, m); 6.85 (1 H,




40%
(15%), Rt = 0.4
dd, J = 3.5 and 1.1 Hz); 7.02 (1 H, dd, J = 5.1 and 3.5 Hz); 7.22 (1





min.
H, dd, J = 5.1 and 1.0 Hz).







13C-NMR (CDCl3): 17.0; 32.3; 33.7; 34.3; 34.5; 36.7; 38.1; 41.0;







52.6; 53.9; 59.6; 65.7; 123.3; 124.4; 124.9; 126.1.


209
1
Ex. no. 18/
[M + H]+ = 349.3

1H-NMR (DMSO-d6): 0.72-0.80 (2 H, m); 0.91-0.97 (2 H, m); 1.24-





Acylation/
(3%)
1.35 (2 H, m); 1.54-1.69 (4 H, m); 1.93-1.99 (4 H, m); 2.01 (6 H, s);




49%
[MH − NHMe2]+ =
3.17 (0.8 H, s); 3.28-3.37 (1.2 H, m, overlapped by the water





304.2 (100%),
signal); 3.61 (1.2 H; s); 3.75-3.82 (0.8 H, m); 6.06 (1 H, br s); 6.94





Rt = 2.5 min.
(1 H, dd, J = 3.6 and 1.1 Hz); 7.06 (1 H, dd, J = 5.1 and 3.5 Hz);






7.42 (1 H, dd, J = 5.1 and 1.1 Hz).







13C-NMR (DMSO-d6): 13.9; 14.1; 30.3; 30.4; 32.5; 33.5; 37.7; 41.4;







44.7; 45.3; 57.1; 59.1; 123.6; 124.8; 126.3; 170.5.


210
1
Ex. no. 209/
[M + H]+ = 335.3

1H-NMR (DMSO-d6): 0.36 (2 H, dd, J = 6.7 and 4.6 Hz); 0.54 (2 H,





Reduction/
(40%)
dd, J = 6.9 and 4.6 Hz); 1.26-1.32 (2 H, m); 1.44 (2 H, t, J = 6.8 Hz);




69%
[MH − NHMe2]+ =
1.62-1.68 (2 H, m); 1.83-1.97 (4 H, m); 1.99 (6 H, s), 2.41 (4 H, s);





290.3 (100%),
2.51-2.55 (2 H, m, overlapped by the DMSO signal); 4.82 (1 H, s);





Rt = 0.2 min.
6.91 (1 H, dd, J = 3.5 and 1.1 Hz); 7.05 (1 H, dd, J = 5.1 and 3.5






Hz); 7.40 (1 H, dd, J = 5.1 and 1.0 Hz).







13C-NMR (DMSO-d8): 12.6; 33.4; 34.2; 36.9; 38.2; 40.9; 53.2; 54.2;







59.2; 63.5; 123.9; 125.2; 128.7.


211
1
Ex. no. 18/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 0.79-0.83 (2 H, m); 1.19-1.23 (2 H, m); 1.38 (2 H,





Reductive
313.3 (100%)
ddd, J = 13.3, 9.9 and 3.5 Hz); 1.51 (2 H, t, J = 6.9 Hz); 1.60-1.65 (2




amination/
[M + H]+ = 358.3
H, m); 1.66-1.73 (2 H, m); 1.84-1.97 (2 H, m); 2.04-2.18 (8 H, m);




45%
(10%), Rt = 0.7
2.43 (2 H, s); 2.59 (2 H, t, J = 6.9 Hz); 2.61-2.67 (2 H, m); 6.84 (1 H,





min.
dd, J = 3.6 and 1.1 Hz); 7.03 (1 H, dd, J = 5.1 and 3.6 Hz); 7.22 (1






H, dd, J = 5.1 and 1.1 Hz).







13C-NMR (CDCl3): 8.2; 13.9; 33.7; 34.3; 37.8; 38.1; 41.0; 53.9; 54.4;







59.6; 65.7; 123.2; 123.3; 124.9; 126.1; 143.2.


212
1
Ex. no. 18/
[M + H]+ = 363.3,

1H-NMR (CDCl3): 1.33-1.46 (2 H, m); 1.59-1.80 (5 H, m); 1.83-2.07





Acylation/
Rt = 2.3 min.
(3 H, m); 2.08 and 2.12 (6 H, 2 s); 2.66 (2 H, dd, J = 7.8 and 2.5 Hz);




33%

3.30 (1.2 H, s); 3.33 (0.8 H, s); 3.36-3.50 (3 H, m); 4.40 (0.8 H, dd,






J = 6.3 and 2.5 Hz); 4.41 (1.2 H, dd, J = 6.3 and 2.5 Hz); 4.88 (1.2






H, dd, J = 6.3 and 1.4 Hz); 4.90 (0.8 H, dd, J = 6.3 and 1.4 Hz);






6.83-6.87 (1 H, m); 7.01-7.07 (1 H, m); 7.22-7.26 (1 H, m).







13C-NMR (CDCl3): 19.8; 31.1; 31.2; 31.5; 31.6; 32.8; 33.0; 33.4;







35.4; 38.03; 38.07; 38.09; 38.2; 38.5; 40.1; 42.1; 43.9; 45.0; 55.4;






56.4; 59.8; 77.5; 77.54; 123.3; 123.6; 124.9; 125.1; 126.1; 126.4;






169.58; 169.64.


215
2
Ex. no. 24b/
[MH − NHMe2]+ =

1H-NMR (CDCl3): 1.44-1.54 (4 H, m); 1.68-1.81 (4 H, m); 1.98-2.68





Alkylation/
318.2, Rt = 2.5
(6 H, m); 2.10 (6 H, s); 2.37 (2 H, s); 3.27 (2 H, s); 3.39 (2 H, s);




79%
min.
4.03 (1 H, br. s); ); 6.85 (1 H, dd, J = 3.6 and 1.0 Hz); 7.04 (1 H, dd,






J = 5.1 and 3.6 Hz); 7.24 (1 H, dd, J = 5.1 and 1.0 Hz).







13C-NMR (CDCl3): 11.9; 30.3; 32.7; 34.5; 36.5; 38.1; 43.3; 51.5;







59.5; 60.4; 75.6; 123.5; 125.0; 126.3; 176.2.


216
1
Ex. no. 24a/
[M + 1]+ = 363.3

1H-NMR (CDCl3): 1.46-1.58 (4 H, m); 171-1.83 (4 H, m); 2.04-2.09





Alkylation/
(61%)
(6 H, m); 2.10 (6 H, s); 2.23 (2 H, s); 3.42 (2 H, s); 3.43 (2 H, s);




81%
[MH − NHMe2]+ =
4.07 (1 H, brs); ); 6.85 (1 H, dd, J = 3.6 and 1.1 Hz); 7.05 (1 H, dd,





318.3 (100%),
J = 5.1 and 3.6 Hz); 7.25 (1 H, dd, J = 5.1 and 1.0 Hz).





Rt = 2.2 min.

13C-NMR (CDCl3): 11.9; 32.5; 32.8; 34.5; 36.5; 38.1; 43.8; 51.6;







59.3; 75.6; 123.5, 124.9; 126.3; 176.2.


217
1
Ex. no. 24a/
[M + H]+ = 391.3,

1H-NMR (CDCl3): 1.47 (2 H, ddd, J = 13.1, 7.6 and 4.9 Hz); 1.54-





Alkylation/
Rt = 2.5 min.
1.64 (1 H, m); 1.72-1.80 (3 H, m); 1.83-1.93 (4 H, m); 1.99-2.13




52%

(12 H, m); 2.17 (2 H, s); 3.15 (3 H, s); 3.22-3.30 (4 H, m); 6.85 (1 H,






d, J = 2.9 Hz); 7.05 (1 H, dd, J = 5.1 and 3.6 Hz); 7.25 (1 H, d, J =






4.8 Hz).







13C-NMR (CDCl3): 12.4; 31.2; 31.8; 32.7; 32.8; 35.4; 37.7; 38.0;







44.3; 49.3; 58.3; 59.3; 78.2; 123.4; 124.9; 126.3; 173.3.


218
2
Ex. no. 24b/
[M + H]+ = 391.4,

1H-NMR (CDCl3): 1.43-1.51 (2 H, m); 1.52-1.62 (1 H, m); 1.68-1.90





Alkylation/
[M − HNMe2]+ =
(7 H, m); 1.98-2.14 (12 H, m); 2.31 (2 H, s); 3.09 (2 H, s); 3.12 (3 H,




47%
346.4, Rt = 2.8
s); 3.23 (2 H, ddd, J = 16.0, 7.9 and 5.1 Hz); 6.85 (1 H, dd, J = 3.6





min.
and 1.1 Hz); 7.04 (1 H, dd, J = 5.1 and 3.6 Hz); 7.24 (1 H, dd, J =






5.1 and 1.1 Hz).







13C-NMR (CDCl3): 12.4; 31.2; 31.9; 32.7; 32.9; 35.5; 37.8; 38.1;







43.8; 49.3; 59.1; 59.5; 78.2; 123.5; 125.0; 126.2; 173.4.


219
2
Ex. no. 24b/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.14 (6 H, s); 1.41-1.49 (2 H, m); 1.58-1.63 (2 H,





Alkylation/
334.2 (100%)
m); 1.69-1.78 (2 H, m); 1.93-2.08 (4 H, m); 2.09 (6 H, s), 2.30 (2 H,




54%
[M + H]+ = 379.3
s); 3.06 (2 H, s); 3.15 (3 H, s); 3.25-3.30 (2 H, m); 6.83-6.85 (1 H,





(2%), Rt = 2.8
m); 7.03 (1 H, dd, J = 5.1 and 3.5 Hz); 7.22-7.24 (1 H, m).





min.

13C-NMR (CDCl3): 24.8; 32.7; 32.8; 35.5; 36.8; 38.1; 38.2; 43.7;







49.1; 58.7; 59.5; 73.5; 123.4; 124.9; 126.2; 142.9; 173.4.


220
1
Ex. no. 24a/
[MH − HNMe2]+

1H-NMR (CDCl3): 1.17 (6 H, s); 1.41-1.49 (2 H, m); 1.63-1.68 (2 H,





Alkylation/
334.2 (100%)
m); 1.71-1.79 (2 H, m); 1.93-2.08 (4 H, m); 2.09 (6 H, s); 2.16 (2 H);




70%
[M + H]+ = 379.3
3.19 (3 H, s); 3.21 (2 H, s); 3.28-3.33 (2 H, m); 6.84 (1 H, dd, J =





(55%), Rt = 2.5
3.6 and 1.0 Hz); 7.04 (1 H, dd, J = 5.1 and 3.6 Hz); 7.23 (1 H, dd,





min.
J = 5.1 and 1.0 Hz).







13C-NMR (CDCl3); 24.9; 32.7; 32.8; 35.5; 36.7; 38.1; 38.2; 44.3;







49.2; 58.1; 59.3; 73.5; 123.4; 124.9; 126.3; 142.5; 173.4.


221
1
Ex. no. 24a/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.23 (6 H, s); 1.38-1.47 (2 H, m); 1.62-1.67 (2 H,





Alkylation/
320.3 (95%)
m); 1.73-1.81 (2 H, m); 2.05-2.20 (4 H, m); 2.15 (2 H, s,




37%
[M + H]+ = 365.3
overlapped); 2.17 (6 H, s, overlapped); 2.52 (1 H, br s); 3.27 (2 H,





(100%), Rt = 2.3
s); 3.36-3.41 (2 H, m); 6.89 (1 H, dd, J = 3.5 and 0.9 Hz); 7.05 (1 H,





min.
dd, J = 5.1 and 3.6 Hz); 7.28 (1 H, dd, J = 5.1 and 0.8 Hz).







13C-NMR (CDCl3): 29.5; 32.3; 32.6; 35.5; 37.9; 38.7; 40.0; 44.4;







57.8; 60.5; 69.5; 124.3; 125.7; 126.6; 173.8.


222
2
Ex. no. 24b/
[MH − HNMe2]+ =

1H-NMR (CDCl3): 1.21 (6 H, s); 1.41-1.49 (2 H, m); 1.57-1.62 (2 H,





Alkylation/
320.2 (100%)
m); 1.70-1.78 (2 H, m); 1.98-2.17 (4 H, m); 2.14 (6 H, s,




56%
[M + H]+ = 365.3
overlapped); 2.32 (2 H, s); 2.44 (1 H, s); 3.07 (2 H, s); 3.32-3.37 (2





(1%), Rt = 2.5
H, m); 6.86-6.89 (1 H, m); 7.04 (1 H, dd, J = 5.1 and 3.6 Hz); 7.24-





min.
7.27 (1 H, m).







13C-NMR (CDCl3): 29.5; 32.4; 32.8; 35.6; 38.0; 38.6; 40.0; 43.4;







58.9; 69.5; 124.0; 125.4; 126.4; 173.9.


223
1
Ex. no. 18/
m/z: [M + H]+ =

1H-NMR (DMSO-d6): 1.28 (2 H, s); 1.29 (6 H, s); 1.51 (1 H, t, J = 7.4





Acylation;
351.3 (43%)
Hz); 1.57-1.67 (3 H, m); 1.93-1.98 (4 H, m); 2.00 (6 H, s); 3.18 (0.7




58%
[MH − NHMe2]+ =
H, s); 3.33 (1.3 H; t, J = 7.0 Hz, overlapped by the water signal);





306.3 (100%),
3.59 (1.3 H, s); 3.76 (0.7 H, t, J = 6.8 Hz); 5.07 (0.4 H, s); 5.14 (0.6





Rt = 2.4 min.
H, s); 6.94 (1 H, dd, J = 3.5 and 1.0 Hz); 7.06 (1 H, dd, J = 4.8 and






3.7 Hz); 7.42 (1 H, dd, J = 5.1 and 0.7 Hz). 13C-NMR (DMSO-d6):






27.8; 30.0; 30.6; 32.5; 32.9; 37.7; 38.0; 41.8; 45.5; 45.8; 57.4; 59.0;






59.1; 72.6; 72.8; 123.6; 124.8; 126.3; 142.9; 173.7.


224
2
Ex. no. 24b/
[M + H]+ = 351.3,

1H-NMR (CDCl3): 1.22 (6 H, s); 1.45-1.54 (2 H, m); 1.77-1.85 (2 H,





Alkylation/
Rt = 2.2 min.
m); 2.00-2.10 (4 H, m); 2.11 (6 H, s); 2.23 (2 H, s); 3.25 (2 H, s);




55%

3.33 (1 H, s); 3.41 (2 H, s); 6.85 (1 H, dd, J = 3.5 and 1.0 Hz); 7.05






(1 H, dd, J = 5.1 and 3.5 Hz); 7.25 (1 H, dd, J = 5.1 and 1.0 Hz).







13C-NMR (CDCl3): 27.7; 32.6; 32.7; 36.3; 38.0; 43.8; 55.1; 59.4;







61.4; 72.1; 123.6; 124.9; 126.3; 175.8.


225
1
Ex. no. 24a/
m/z: [MH −

1H-NMR (CDCl3): 1.19 (6 H, s); 1.45-1.54 (2 H, m); 1.74-1.83 (2 H,





Alkylation/
HNMe2]+ =
m); 1.96-2.09 (4 H, m); 2.10 (6 H, s); 2.37 (2 H, s); 3.21 (2 H, s);




71%
306.2, Rt = 2.3
3.25 (2 H, s); 3.26 (1 H, s); 6.85 (1 H, dd, J = 3.5 and 1.0 Hz); 7.02





min.
(1 H, dd, J = 5.1 and 3.5 Hz); 7.24 (1 H, dd, J = 5.1 and 1.0 Hz).







13C-NMR (CDCl3): 27.7; 32.6; 32.8; 36.3; 38.1; 43.2; 55.0; 59.6;







62.0; 72.1; 123.5; 125.0; 126.3; 175.8.


226
1
Ex. no. 18/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.21 (6 H, s); 1.30-1.40 (2 H, m); 1.48-1.52 (2 H,





Alkylation/
351.3, Rt = 0.3
m); 1.55-1.60 (2 H, m); 1.60-1.70 (2 H, m); 180-2.05 (3 H, m);




Reduction/
min.
2.08 (6 H, s); 2.10 (2 H, s); 2.49 (2 H, s); 2.56-2.61 (2 H, m); 2.70-




2 Steps 27%

2.74 (2 H, m); 6.83 (1 H, dd, J = 3.6 and 1.2 Hz); 7.02 (1 H, dd, J =






5.2 and 3.6 Hz); 7.21 (1 H, dd, J = 5.2 and 1.2 Hz).







13C-NMR (CDCl3): 29.6; 33.6; 33.9; 37.4; 38.1; 38.3; 40.9; 52.7;







53.5; 59.6; 65.5; 71.0; 123.2; 124.8; 126.1.


227
1
Ex. no. 223/
m/z: [M + H]+ =

1H-NMR (DMSO-d6): 1.04 (6 H, s) 1.20-1.28 (2 H, m); 1.38 (2 H, t,





Reduction/
337.3 (42%)
J = 6.9 Hz); 1.57-1.63 (2 H, m); 1.79-1.92 (4 H, m); 1.95 (6 H, s);




79%
[MH − NHMe2]+ =
2.25 (2 H, s); 2.41 (2 H, s); 2.54 (2 H, t, J = 7.0 Hz); 3.93 (1 H, s);





292.2 (100%),
6.87 (1 H, dd, J = 3.6 and 1.1 Hz); 7.01 (1 H, dd, J = 5.1 and 3.5





Rt = 0.3 min.
Hz); 6.87 (1 H, dd, J = 5.1 and 1.1 Hz).







13C-NMR (DMSO-d6): 28.2; 32.9; 33.4; 37.7; 40.6; 55.1; 58.8; 67.2;







69.8; 123.4; 124.6; 126.2.


228
1
Ex. no. 71/
m/z [M + H]+ =

1H-NMR (DMSO-d6): 1.14-1.24 (2 H, m); 1.28 (2 H, s); 1.30 (4 H, s);





Acylation/
345.4 (100%)
1.44 (1 H, t, J = 7.3 Hz); 1.54-1.64 (3 H, m); 1.91 (6 H, s); 1.95-2.15




74%
[MH − NHMe2]+ =
(4 H, m); 3.21 (0.7 H, s); 3.30 (1.3 H, t, J = 7.3 Hz, overlapped by





303.3 (73%),
the water signal); 3.63 (1.3 H; s); 3.74 (0.7 H, t, J = 7.0 Hz); 5.07





Rt = 2.5 min.
(0.3 H, s); 5.15 (0.7 H, s); 7.23-7.27 (1 H, m); 7.32-7.39 (4 H, m).







13C-NMR (DMSO-d6): 27.7; 27.8; 29.9; 30.2; 30.8; 33.4; 37.1; 37.7;







38.1; 42.0; 45.4; 45.8; 57.3; 59.8; 59.9; 72.6; 72.8; 126.2; 127.2;






127.4, 136.8, 173.7.


229
1
Ex. no. 228/
m/z: [M + H]+ =

1H-NMR (DMSO-d6): 1.09 (6 H, s); 1.16-1.24 (2 H, m); 1.35 (2 H, t,





Reduction/
331.3 (100%)
J = 6.9 Hz); 1.58-1.65 (2 H, m); 1.90 (6 H, s); 1.92-2.02 (4 H, m);




82%
[MH − NHMe2]+ =
2.30 (2 H, s); 2.48 (2 H, s); 2.56 (2 H, t, J = 6.9 Hz); 3.97 (1 H, s);





236.3 (36%),
7.22-7.25 (1 H, m); 7.30-7.37 (4 H, m).





Rt = 0.3 min.

13C-NMR (DMSO-d6): 28.2; 30.3; 33.7; 37.1; 37.7; 40.8; 55.1; 67.2,







67.7; 69.8; 126.1; 127.2; 127.3; 137.4.


230
2
Ex. no. 162
m/z: [MH −

1H-NMR (CDCl3): 1.34-1.43 (8 H, m); 1.72-1.80 (4 H, m); 1.96-2.07





Step 3/
HNMe2]+ = 323.3
(8 H, m); 2.12-2.24 (4 H, m); 3.29 (2 H, s); 3.43-3.49 (2 H, m);




Alkylation/
(14%)
7.25-7.30 (3 H, m); 7.35-7.40 (2 H, m).




48%
[M + H]+ = 368.4





(100%), Rt = 2.4





min.


231
1
Ex. no. 431/
m/z: [MH −

1H-NMR (CDCl3): 1.33-1.41 (8 H, m); 1.65-1.76 (4 H, m); 1.88-2.01





Alkylation/
HNMe2]+ = 323.3
(2 H, m); 2.04 (6 H, s); 2.15-2.32 (2 H, m); 2.37 (2 H, s); 3.04 (2 H,




60%
(20%)
s); 3.37-3.42 (2 H, m); 7.25-7.31 (3 H, m); 7.35-7.40 (2 H, m).





[M + H]+ = 368.4

13C-NMR (CDCl3): 26.6; 30.0; 30.5; 33.0; 35.9; 37.4; 38.0; 38.9;






(100%), Rt = 2.7
43.3; 59.0; 60.6; 124.4; 126.7; 127.6; 127.8; 136.2; 173.9.





min.


232
1
Ex. no. 71/
m/z: [MH −

1H-NMR (CDCl3): 1.27-1.36 (2 H, m); 1.52 (6 H, s); 1.54-1.59 (1.2





Acylation/
HNMe2]+ = 323.3
H, m); 1.62-1.70 (2.8 H, m); 1.82-2.00 (2 H, m); 2.03 (2.4 H, s);




54%
(10%)
2.05 (3.6 H, s); 2.14-2.24 (0.8 H, m); 2.31-2.43 (1.2 H, m); 2.48 (0.8





[M + H]+ = 368.4
H, s); 2.49 (1.2 H, s); 3.36 (1.2 H, s); 3.43 (0.8 H, s); 3.46 (0.8 H, t,





(100%), Rt = 2.7
J = 7.2 Hz); 3.50 (1.2 H, t, J = 7.3 Hz); 7.27-7.32 (3 H, m); 7.34-7.42





min.
(2 H, m).







13C-NMR (CDCl3): 27.05; 27.11; 30.0; 30.3; 30.4; 30.8; 31.2; 31.3;







35.9; 37.5; 37.95; 38.03; 40.3; 42.5; 43.7; 44.1; 45.4; 55.4; 56.4;






60.8; 61.0; 124.6; 124.7; 126.5; 126.8; 127.58; 127.59; 127.7; 127.8;






135.1; 137.4; 166.9; 167.0.


233
1
Ex. no. 18/
m/z: [MH −

1H-NMR (CDCl3): 1.34-1.46 (2 H, m); 1.51 (6 H, s); 1.60-1.64 (1.3





Acylation/
HNMe2]+ = 329.3
H, m); 1.65-1.75 (2.7 H, m); 1.86-2.06 (2.7 H, m); 2.09 (2.4 H, s);




39%
(63%)
2.12 (3.6 H, s); 2.17-2.26 (1.3 H, m); 2.48 (2 H, s); 3.32 (1.2 H, s);





[M + H]+ = 374.3
3.39 (0.8 H, s); 3.45-3.54 (2 H, m); 6.84 (0.4 H, dd, J = 3.8 and 1.1





(100%), Rt = 2.6
Hz); 6.86 (0.6 H, dd, J = 3.6 and 1.0 Hz); 7.03 (0.4 H, dd, J = 5.1





min.
and 3.6 Hz); 7.05 (0.6 H, dd, J = 5.1 and 3.6 Hz); 7.23 (0.4 H, dd,






J = 5.1 and 1.1 Hz); 7.24-7.26 (0.6 H, m).







13C-NMR (CDCl3): 27.05; 27.11; 30.65; 30.44; 31.09; 31.11; 32.8;







33.5; 35.5; 36.9; 38.1; 40.1; 42.3; 43.7; 44.0; 44.08; 44.11; 45.5;






55.7; 56.6; 59.8; 67.7; 123.3; 123.6; 124.6; 124.7; 124.8; 125.2;






126.1; 126.4; 166.8; 166.9.


235
1
Ex. no. 18/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.35-1.44 (2 H, m); 1.58-1.63 (2 H, m), 1.66-1.76





Acylation/
391.3 (42%)
(4 H, m); 1.81-2.05 (4 H, m); 2.04 (2 H, s); 2.11 (4 H, s); 2.14-2.22




48%
[MH − NHMe2]+ =
(2 H, m); 2.23-2.34 (2 H, m); 2.58 (0.7 H, s); 2.60 (1.3 H, s); 3.23 (1





346.3 (100%),
H, s); 3.24 (2 H, s); 3.37 (0.7 H, s); 3.41 (1.3 H, s), 3.48 (1.3 H, t, J =





Rt = 2.9 min.
7.2 Hz); 3.54 (0.7 H, t, J = 7.2 Hz); 6.84-6.86 (1 H, m); 7.04 (1 H,






ddd, J = 9.7, 5.1 and 3.6 Hz); 7.22-7.25 (1 H, m).







13C-NMR (CDCl3): 12.5; 12.6; 30.5; 30.7; 31.1; 31.2; 32.8; 33.4;







35.8; 37.1; 38.1; 40.1; 40.4; 41.0; 42.0; 43.9; 45.7; 50.19; 50.22;






55.5; 56.9; 59.9; 76.9; 77.2; 77.5; 79.48; 79.50; 123.3; 123.5; 124.8;






125.1; 126.1; 126.3; 169.5; 169.6.


236
2
Ex. no. 234
[M + H]+: m/z =

1H-NMR (CDCl3): 1.12-1.36 (4 H, m); 1.38-1.92 (17 H, m); 1.98-





Step
347.4, Rt = 2.9
2.12 (3 H, m); 2.18-2.30 (2 H, m); 2.25 (8 H, s); 3.06 (2 H, s); 3.15




Alkylation/
min.
(2 H, t, J = 7.3 Hz).




77%







13C-NMR (CDCl3): 18.6; 25.1; 26.9; 28.1; 28.5; 31.8; 33.7; 34.3;







36.3; 37.9; 40.3; 42.4; 44.2; 57.7; 60.8; 173.6.


237
1
Ex. no. 71/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.25-1.33 (2 H, m); 1.51-1.55 (1 H, m); 1.58-1.66





Acylation/
385.4 (83%)
(3 H, m); 1.68-1.79 (1 H, m); 1.81-1.88 (2.6 H, m); 1.91-1.99 (1.4




53%
[MH − NHMe2]+ =
H, m); 2.03 (2 H, s); 2.04 (4 H, s); 2.11-2.19 (2 H, m); 2.23-2.34 (2





340.3 (100%),
H, m); 2.35-2.42 (1 H, m); 2.58 (0.7 H, s); 2.60 (1.3 H, s); 3.23 (1.2





Rt = 3.0 min;
H, s); 3.25 (1.8 H, s); 3.41 (0.7 H, s); 3.45 (1.3 H, s); 3.46 (1.3 H, t,






J = 7.2 H); 3.51 (0.7 H, t, J = 7.2 Hz); 7.27-7.32 (3 H, m); 7.35-7.40






(2 H, m).







13C-NMR (CDCl3): 12.5; 12.6; 30.0; 30.5; 30.7; 30.8; 31.2; 31.4;







36.1; 37.7; 38.0; 38.1; 40.3; 40.4, 41.0; 42.3; 43.9; 45.6; 50.19;






50.22; 55.2; 56.9; 60.8; 76.8; 77.2; 77.5; 79.48; 79.50; 126.5; 126.7;






127.6; 127.66; 127.75; 137.7; 169.5; 169.6.


238
1
Ex. no. 235/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.39 (2 H, ddd, J = 13.4, 10.2 and 3.4 Hz); 1.53 (2





Reduction/
377.4 (100%)
H, t, J = 6.8 Hz); 1.58-1.83 (1 H, m); 1.65-1.89 (4 H, m); 1.83-1.94




79%
[MH − NHMe2]+ =
(5 H, m); 2.03-2.09 (2 H, m); 2.10 (6 H, s); 2.11-2.19 (2 H, m);





332.3 (38%),
2.39-2.43 (2 H, m); 2.46 (2 H, s); 2.54 (2 H, t, J = 6.8 Hz); 3.12 (3 H,





Rt = 0.5 min.
s); 6.85 (1 H, dd, J = 3.6 and 1.1 Hz); 7.04 (1 H, dd, J = 5.1 and 3.6






Hz); 7.23 (1 H, dd, J = 5.1 and 1.1 Hz).







13C-NMR (CDCl3): 12.5; 28.4; 31.7; 33.3; 33.8; 34.6; 38.2; 40.9;







49.2; 51.3; 54.3; 59.7; 77.5; 78.6; 123.2; 125.0; 126.2.


239
1
Ex. no. 237/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.26-1.32 (2 H, m); 1.47 (2 H, t, J = 6.8 Hz); 1.53-





Reduction/
371.4 (100%)
1.63 (1 H, m); 1.64-1.71 (2 H, m); 1.72-1.80 (2 H, m); 1.84-1.93 (5




78%
[MH − NHMe2]+ =
H, m); 2.03 (6 H, s); 2.04-2.11 (2 H, m); 2.22-2.36 (2 H, m); 2.40-





326.3 (22%),
2.44 (2 H, m); 2.49-2.55 (4 H, m); 3.13 (3 H, s); 7.25-7.39 (5 H, m).





Rt = 2.0 min.

13C-NMR (CDCl3): 12.5; 31.2; 31.7; 33.3; 34.7; 38.1; 38.4; 41.2;







49.2; 51.3; 54.2; 60.6; 65.8; 76.8; 77.1; 77.2; 77.4; 78.6; 126.4;






127.6; 127.8.


240
1
Ex. no. 24a/
m/z: [MH −

1H-NMR (CDCl3): 1.37 (6 H, s); 1.43-1.51 (2 H, m); 1.67-1.72 (2 H,





Alkylation/
HNMe2]+ = 329.3
m); 1.73-1.80 (2 H, m); 1.98-2.18 (4 H, m); 2.14 (6 H, s); 2.34 (2 H,




93%
(100%)
s); 3.10 (2 H, s); 3.39-3.44 (2 H, m); 6.86-6.89 (1 H, m); 7.05 (1 H,





[M + H]+ = 374.3
dd, J = 5.1 and 3.6 Hz); 7.25-7.28 (1 H, m).





(98%), Rt = 2.6

13C-NMR (CDCl3): 26.6; 30.5; 32.5; 32.9; 35.6; 37.4; 37.9; 38.1;






min.
38.9; 43.3; 58.7; 123.9; 124.4; 125.4; 126.4; 173.8.


241
2
Ex. no. 24b/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.42-1.50 (2 H, m); 1.72-1.82 (2 H, m); 1.90 (2 H,





Alkylation/
363.3, Rt = 2.2
dd, J = 14.4 and 7.5 Hz); 1.97-2.09 (4 H, m); 2.10 (6 H, s); 2.18 (2




55%
min.
H, s); 2.90-3.01 (1 H, m); 3.17-3.23 (4 H, m); 4.38 (2 H, t, J = 6.1






Hz); 4.79 (2 H, dd, J = 7.8 and 6.0 Hz); 6.85 (1 H, d, J = 3.2 Hz);






7.04 (1 H, dd, J = 5.1 and 3.6 Hz); 7.24 (1 H, d, J = 5.0 Hz).







13C-NMR (CDCl3): 31.2; 32.7; 33.0; 35.5; 38.0; 40.2; 44.1; 58.2;







59.2; 77.3; 123.5; 124.9; 126.3; 174.0.


242
1
Ex. no. 24a/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.42-1.50 (2 H, m); 1.70-1.80 (2 H, m); 1.85 (2 H,





Alkylation/
363.3, Rt = 2.4
dd, J = 14.4 and 7.5 Hz); 1.94-2.10 (4 H, m); 2.11 (6 H, s); 2.32 (2




66%
min.
H, s); 2.90-2.99 (1 H, m); 3.04 (2 H, s); 3.14-3.20 (2 H, m); 4.36 (2






H, t, J = 6.1 Hz); 4.77 (2 H, dd, J = 7.8 and 6.0 Hz); 6.86 (1 H, dd,






J = 3.5 and 0.7 Hz); 7.05 (1 H, dd, J = 5.1 and 3.5 Hz); 7.25 (1 H, dd,






J = 5.0 and 0.9 Hz).







13C-NMR (CDCl3): 31.2; 32.7; 32.9; 33.0; 35.6; 38.1; 38.1; 40.1;







43.5; 58.8; 77.2; 123.6; 125.1; 126.3; 173.6.


243
1
Ex. no. 234
[M + H]+: m/z =

1H-NMR (CDCl3): 0.03-0.09 (2 H, m); 0.40-0.48 (2 H, m); 0.64 (1 H,





Step 10/
333.4, Rt = 2.9
m); 1.10-1.85 (18 H, m); 2.07 (1 H, m); 2.21 (2 H, s); 2.26 (6 H, s);




Alkylation/
min.
3.19 (2 H, s); 3.33 (2 H, t, J = 7.3 Hz).




86%


13C-NMR (CDCl3): 4.2; 8.5; 25.1; 26.9; 28.4; 31.8; 32.3; 35.8; 37.8;







41.0; 42.6; 44.0; 46.9; 56.8; 57.2; 173.8.


244
2
Ex. no. 234
[M + H]+: m/z =

1H-NMR (CDCl3): 1.14-1.34 (6 H, m); 1.36-1.62 (6 H, m); 1.62-1.76





Step 9/
335.4, Rt = 2.1
(4 H, m); 2.04 (1 H, m); 2.25 (6 H, s); 2.26 (2 H, s); 3.03 (2 H, s);




Alkylation/
min.
3.20 (1 H, m); 3.57 (2 H, d, J = 7.3 Hz); 4.45 (2 H, t, J = 6.1 Hz);




89%

4.76 (2 H, dd, J = 6.1 and 7.7 Hz).







13C-NMR (CDCl3): 25.0; 26.7; 28.5; 31.6; 34.0; 36.7; 37.9; 41.9;







44.1; 45.3, 57.5; 61.4; 75.4; 174.2.


245
2
Ex. no. 234
M + H]+: m/z =

1H-NMR (CDCl3): 0.85 (2 H, m); 1.14-1.36 (8 H, m); 1.38-1.62 (6 H,





Step 9/
358.4, Rt = 2.4
m); 1.62-1.80 (6 H, m); 2.04 (1 H, m); 2.26 (6 H, s); 2.28 (2 H, s);




Alkylation/
min.
3.18 (2 H, s); 3.45 (2 H, t, J = 7.0 Hz).




59%


13C-NMR (CDCl3): 7.5; 14.0; 25.0; 26.9; 28.3; 31.6; 32.5; 36.3; 37.7;







40.9; 42.0; 44.0; 57.6; 61.8; 122.8, 174.4.


246
2
Ex. no. 234
[M + H]+: m/z =

1H-NMR (CDCl3): 1.16-1.36 (6 H, m); 1.38-1.62 (6 H, m); 1.62-1.82





Step 9/
349.4, Rt = 2.2
(4 H, m); 1.87 (2 H, q, J = 7.3 Hz); 2.05 (1 H, m); 2-22-2.30 (2 H,




Alkylation/
min.
m); 2.26 (6 H, s); 2.96 (1 H, m); 3.06 (2 H, s); 3.18 (2 H, t, J = 7.1




87%

Hz); 4.37 (2 H, t, J = 6.1 Hz); 4.77 (2 H, dd, J = 6.2 and 7.6 Hz).







13C-NMR (CDCl3): 25.0; 26.7; 28.5; 31.1; 31.8; 32.9; 36.2; 37.9;







40.0; 41.0; 42.2; 44.0, 57.5; 60.8; 77.3; 173.9.


247
3
Ex. no. 424/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.17-1.37 (6 H, m); 1.41-1.60 (6 H, m); 1.63-2.21





Acylation/
377.4 (100%)
(7 H, m); 2.02-2.21 (5 H, m); 2.24-2.30 (1 H, m, overlapped); 2.26




72%
[MH − NHMe2]+ =
(6 H, s); 2.570 (1 H, s), 2.575 (1 H, s); 3.221 (1.8 H, s); 3.224 (1.2 H,





332.4 (56%),
s); 3.23 (0.8 H, s); 3.26 (1.2 H, s); 3.52 (0.8 H, t, J = 7.3 Hz); 3.56





Rt = 2.9 min.
(1.2 H, t, J = 7.3 Hz).







13C-NMR (CDCl3): 12.6; 25;1; 25.2; 27.0; 27.1; 28.49; 28.52; 29.78;







29.82; 30.8; 32.1; 33.6; 37.9; 40.3; 40.57; 40.60; 40.61, 42.6; 44.2;






44.3; 44.5; 46.1, 50.21; 50.24; 57.9; 58.8; 61.0; 76.8; 77.16; 77.21;






79.46; 79.52; 169.3; 169.4.


248
1
Ex. no. 18/
m/z: [MH −

1H-NMR: 1.34-1.42 (2 H, m); 1.37 (6 H, s); 1.51 (2 H, t, J = 6.9 Hz);





Reductive
HNMe2]+ = 315.2
1.66-1.74 (4 H, m); 1.82-1.97 (2 H, m); 2.06-2.16 (2 H, m); 2.10 (6




Amination/
(100%)
H, s); 2.45 (2 H, s); 2.54 (2 H, t, J = 6.9 Hz); 2.56-2.61 (2 H, m);




33%
[M + H]+ = 360.3
6.84-6.86 (1 H, m); 7.03 (0.4 H, dd, J = 3.6 and 0.4 Hz); 7.04 (0.6 H,





(17%), Rt = 0.6
dd, J = 3.6 and 0.4 Hz); 7.21-7.24 (1 H, m).





min.

13C-NMR (CDCl3): 27.0; 31.2; 33.7; 34.3; 38.1; 39.4; 40.9; 52.7;







53.9; 59.6; 65.6; 123.2; 124.8; 124.9; 126.2.


249
1
Ex. no. 71/
m/z: [MH −

1H-NMR (CDCl3): 1.24-1.32 (2 H, m); 1.37 (6 H, s); 1.46 (2 H, t, J =





Reductive
HNMe2]+ = 309.3
6.8 Hz); 1.63-1.70 (2 H, m); 1.70-1.75 (2 H, m); 1.79-1.95 (2 H, m);




amination/
(70%)
2.03 (6 H, s); 2.20-2.35 (2 H, m); 2.49 (2 H, s); 2.53 (2 H, t, J = 6.8




54%
[M + H]+ = 354.4
Hz); 2.57-2.62 (2 H, m); 7.24-7.34 (3 H, m); 7.35-7.40 (2 H, m).





(100%), Rt = 0.5

13C-NMR (CDCl3): 27.0; 31.1; 31.2; 34.5; 38.1; 39.5; 41.2; 52.8;






min.
53.8; 60.5; 65.6; 124.8; 126.5; 127.6; 127.7.


250
2
Ex. no. 24b/
m/z: [MH −

1H-NMR (CDCl3): 1.40 (6 H, s); 1.42-1.50 (2 H, m); 1.72-1.83 (4 H,





Alkylation/
HNMe2]+ = 329.2
m); 2.00-2.11 (4 H, m); 2.12 (6 H, s); 2.19 (2 H, s); 3.27 (2 H, s);




64%
(67%)
3.43-3.48 (2 H, m); 6.85-6.87 (1 H, m); 7.05 (1 H, dd, J = 5.1 and





[M + H]+ = 374.3
3.6 Hz); 7.24-7.26 (1 H, m).





(100%), Rt = 2.3

13C-NMR (CDCl3): 26.6; 30.5; 32.7; 35.6; 37.5; 38.0; 39.0; 44.0;






min.
58.0; 59.6; 123.6; 124.4; 125.0; 126.4; 173.9.


251
2
Ex. no. 162
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.33-1.41 (2 H, m); 1.68-1.77 (2 H, m); 1.90-2.02





Step3/
343.3, Rt = 2.1
(2 H, m); 2.03 (6 H, s); 2.12 (2 H, s); 2.13-2.22 (2 H, m); 3.19 (2 H,




Alkylation/
min.
s); 3.20-3.26 (1 H, m); 3.59 (2 H, d, J = 7.2 Hz); 4.46 (2 H, t, J = 6.2




49%

Hz); 4.78 (2 H, dd, J = 7.8 and 6.2 Hz); 7.25-7.31 (3 H, m); 7.35-






7.41 (2 H, m).







12C-NMR (CDCl3): 30.2; 32.7; 34.0; 36.0; 37.9; 44.0; 45.4; 58.7;







60.1; 75.4; 126.8; 127.4; 127.8; 174.0.


252
1
Ex. no. 431/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.29-1.38 (2 H, m); 1.65-1.73 (2 H, m); 1.85-2.00





Alkylation/
343.3, Rt = 2.3
(2 H, m); 2.03 (6 H, s); 2.15-2.31 (2 H, m); 2.35 (2 H, s); 2.94 (2 H,




55%
min.
s); 3.10-3.19 (1 H, m); 3.53 (2 H, d, J = 7.2 Hz); 4.40 (2 H, t, J = 6.2






Hz); 4.72 (2 H, dd, J = 7.8 and 6.2 Hz); 7.25-7.31 (3 H, m); 7.35-






7.41 (2 H, m).







13C-NMR (CDCl3): 30.0; 32.9; 34.0; 36.2; 38.0; 43.1; 45.3; 59.6;







60.6; 75.3; 126.7; 127.5; 127.8; 136.1; 174.0.


253
1
Ex. no. 18/
[M + H]+ = 349.3,

1H-NMR (CDCl3): 0.35-0.46 (2 H, m); 0.70-0.74 (2 H, m); 1.32-1.41





Alkylation/
Rt = 0.5 min.
(2 H, m); 1.53 (2 H, t, J = 7.0 Hz); 1.62-1.74 (4 H, m); 1.90-2.09 (5




2Steps 19%

H, m); 2.09 (6 H, s); 2.54 (2 H, s); 2.64 (2 H, t, J = 6.8 Hz); 2.79 (2






H, t, J = 5.5 Hz); 6.84 (1 H, dd, J = 3.5 and 0.8 Hz); 7.03 (1 H, dd,






J = 5.1 and 3.5 Hz); 7.22 (1 H, dd, J = 5.0 and 0.8 Hz).







13C-NMR (CDCl3): 12.8; 33.5; 34.0; 34.3; 37.5; 38.1; 41.0; 53.6;







55.5; 57.7; 59.6; 65.6; 123.2; 124.9; 126.2.


254
2
Ex. no. 162
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.34-1.43 (2 H, m); 1.70-1.79 (2 H, m); 1.91 (2 H,





Step3/
357.3, Rt = 2.2
dd, J = 14.4 and 7.4 Hz); 2.05 (8 H, br s); 2.12 (2 H, s); 2.14-2.27 (2




Alkylation/
min.
H, m); 2.93-3.03 (1 H, m); 3.18-3.26 (4 H, m); 4.40 (2 H, t, J = 6.1




57%

Hz); 4.80 (2 H, dd, J = 7.8 and 6.0 Hz); 7.26-7.33 (3 H, m); 7.36-






7.42 (2 H, m).







13C-NMR (CDCl3): 30.1; 31.2; 32.9; 33.0; 35.7; 38.0; 40.2; 44.4;







58.0; 77.3; 126.9; 127.4; 127.8; 147.2; 173.7.


255
1
Ex. no. 431/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.32-1.41 (2 H, m); 1.62-1.75 (2 H, m); 1.83 (2 H,





Alkylation/
357.4, Rt = 2.5
dd, J = 14.4 and 7.4 Hz); 1.91-2.04 (2 H, m); 2.05 (6 H, s); 2.17-




58%
min.
2.33 (2 H, m); 2.35 (2 H, s); 2.88-2.96 (1 H, m); 2.98 (2 H, s); 3.15






(2 H, t, J = 7.1 Hz); 4.34 (2 H, t, J = 6.1 Hz); 4.76 (2 H, dd, J = 7.8






and 6.0 Hz); 7.25-7.32 (3 H, m); 7.36-7.41 (2 H, m).







13C-NMR (CDCl3): 30.0; 31.2; 33.0; 33.1; 35.9; 38.0; 40.1; 43.4;







59.0; 77.2; 126.8; 127.6; 127.8; 173.7.


256
2
Ex. no. 234
[M + H]+: m/z =

1H-NMR (CDCl3): 1.14-1.36 (6 H, m); 1.38-1.62 (6 H, m); 1.62-1.78





Step9/
372.4, Rt = 2.6
(4 H, m); 1.91-1.97 (2 H, m); 1.98-2.22 (5 H, m); 2.26 (6 H, s); 2.28




Alkylation/
min.
(2 H, s); 2.47-2.58 (2 H, m); 3.12 (2 H, s); 3.33-3.40 (2 H, m).




42%


13C-NMR (CDCl3): 16.9; 25.1; 26.9; 28.5; 31.6; 32.1; 33.7; 34.9;







36.3; 37.9; 38.8; 42.0; 44.2; 57.5; 61.1; 124.0; 174.3.


257
3
Ex. no. 247/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.21-1.34 (6 H, m); 1.43-1.76 (14 H, m); 1.85-





Reduction/
363.4 (100%)
1.92 (4 H, m); 2.00-2.10 (3 H, m); 2.27 (6 H, s); 2.37-2.44 (4 H, m);




87%
[MH − NHMe2]+ =
2.57-2.64 (2 H, m); 3.12 (3 H, s).





318.4 (13%),

13C-NMR (CDCl3): 12.5; 25.1; 27.4; 28.5; 31.6; 33.1; 35.1; 38.0;






Rt = 1.9 min
41.5, 44.3; 49.2; 51.4; 54.8; 57.6; 69.5; 76.9, 77.2; 77.5; 78.6.


258
3
Ex. no. 424/
m/z: [MH −

1H-NMR (CDCl3): 1.20-1.34 (6 H, m); 1.35 (6 H, s); 1.39-1.67 (12 H,





Reductive
HNMe2]+ = 301.3
m); 1.68-1.74 (2 H, m); 1.99-2.10 (1 H, m); 2.26 (6 H, s); 2.33 (2 H,




amination/
(15%)
s); 2.53-2.60 (4 H, m).




52%
[M + H]+ = 346.4

13C-NMR (CDCl3): 25.1; 27.0; 27.3; 28.5; 31.2; 33.0; 35.0; 38.0;






(100%), Rt = 0.3
39.4; 41.5; 44.3; 52.8; 54.5; 57.7; 69.4; 124.9.





min.


259
3
Ex. no. 424/
m/z: [MH −

1H-NMR (CDCl3): 1.16-1.38 (6 H, m); 1.43-1.61 (4 H, m); 1.49 (3.6





Acylation/
HNMe2]+ = 315.3
H, s); 1.50 (2.4 H, s); 1.63-1.77 (5.2 H, m); 1.83 (0.8 H, t, J = 7.1




26%
(2%)
Hz); 2.01-2.12 (1 H, m); 2.26 (6 H, s); 2.47 (1.2 H, s); 2.48 (0.8 H,





[M + H]+ = 360.4
s); 3.17 (1.2 H, s); 3.24 (0.8 H, s); 3.49 (0.8 H, t, J = 7.1 Hz); 3.54





(100%), Rt = 2.7
(1.2 H, t, J = 7.2 Hz).





min.

13C-NMR (CDCl3): 25.09; 25.12; 27.00; 27.03; 28.48; 28.51; 29.8;







30.36; 30.43; 32.0; 33.5; 37.8; 40.6; 42.8; 43.6; 43.9; 44.1; 44.2;






44.6; 45.9; 57.77; 57.84; 58.8; 60.5; 124.7; 124.8; 166.7; 166.8.


260
2
Ex. no. 162
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.34-1.43 (2 H, m); 1.58-1.67 (1 H, m); 1.70-1.79





Step3/
357.3, Rt = 2.2
(2 H, m); 1.95-2.02 (3 H, m); 2.04 (6 H, s); 2.14 (2 H, s); 2.15-2.30




Alkylation/
min.
(2 H, m); 2.47-2.57 (1 H, m); 3.23 (1 H, dd, J = 13.7 and 7.5 Hz);




45%

3.28 (2 H, s); 3.36 (1 H, dd, J = 13.6 and 7.6 Hz); 3.47 (1 H, dd, J =






8.6 and 6.3 Hz); 3.73-3.80 (1 H, m); 3.82-3.91 (2 H, m); 7.26-7.32






(3 H, m); 7.36-7.42 (2 H, m).







13C-NMR (CDCl3): 30.2; 32.7; 32.8; 35.9; 38.0; 44.2; 45.3; 58.6;







60.1; 71.4; 126.8; 127.4; 127.8; 174.0.


261
1
Ex. no. 431/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.32-1.41 (2 H, m); 1.58-1.62 (1 H, m); 1.67-1.76





Alkylation/
357.3, Rt = 2.5
(2 H, m); 1.85-2.03 (3 H, m); 2.05 (6 H, s); 2.15-2.35 (2 H, m); 2.37




42%
min.
(2 H, s); 2.40-2.49 (1 H, m); 3.01 (2 H, s); 3.17 (1 H, dd, J = 13.7






and 7.6 Hz); 3.30 (1 H, dd, J = 13.7 and 7.6 Hz); 3.41 (1 H, dd, J =






8.6 and 6.3 Hz); 3.68-3.88 (3 H, m); 7.26-7.32 (3 H, m); 7.36-7.42






(2 H, m).







13C-NMR (CDCl3): 30.0; 31.1; 32.9; 33.0; 36.1; 37.9; 38.0; 43.3;







45.2; 59.6; 60.7; 67.7; 71.3; 126.8, 127.6; 127.8; 136.1; 174.0.


262
2
Ex. no. 162
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.32-1.41 (2 H, m); 1.44-1.58 (1 H, m); 1.64-1.93





Step3/
371.3, Rt = 2.5
(7 H, m); 1.95-2.03 (2 H, m); 2.04 (6 H, br s); 2.12 (2 H, s); 2.13-




Alkylation/
min.
2.30 (2 H, m); 3.24-3.42 (4 H, m); 3.67-3.74 (1 H, m); 3.76-3.89 (2




58%

H, m); 7.26-7.33 (3 H, m); 7.35-7.41 (2 H, m).







13C-NMR (CDCl3): 25.6; 30.1; 31.4; 32.9; 33.3; 35.7; 38.0; 40.0;







44.6; 58.3; 67.7; 77.02; 126.8; 127.5; 128.0; 173.6.


263
1
Ex. no. 431/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.31-1.49 (3 H, m); 1.58-1.76 (4 H, m); 1.78-1.89





Alkylation/
371.4, Rt = 2.7
(2 H, m); 1.90-2.03 (3 H, m); 2.04 (6 H, s); 2.15-2.33 (2 H, m); 2.35




57%
min.
(2 H, s); 2.99-3.06 (2 H, m); 3.23-3.38 (2 H, m); 3.63-3.84 (3 H,






m); 7.27-7.32 (3 H, m); 7.35-7.41 (2 H, m).







13C-NMR (CDCl3): 25.6; 30.0; 30.01; 31.3; 33.0; 33.2; 35.8; 38.0;







39.8; 43.6; 59.2; 60.6; 67.6; 76.9; 126.7; 127.5; 127.7; 173.6.


264
2
Ex. no. 162
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.33-1.42 (2 H, m); 1.47-1.67 (4 H, m); 1.69-1.77





Step3/
371.4, Rt = 2.4
(2 H, m); 1.90-2.01 (3 H, m); 2.03 (6 H, s); 2.05-2.21 (4 H, m); 3.23




Alkylation/
min.
(2 H, s); 3.28 (2 H, t, J = 7.4 Hz); 3.35 (1 H, dd; J = 8.2 and 6.9 Hz);




50%

3.70-3.77 (1 H, m); 3.81-3.93 (2 H, m); 7.26-7.32 (3 H, m); 7.35-






7.41 (2 H, m).







13C-NMR (CDCl3): 30.2; 30.7; 32.2; 32.8; 35.7; 36.9; 38.0; 41.4;







44.4; 57.9; 60.1; 67.8; 73.1; 126.8; 127.4; 127.7; 173.6.


265
3
Ex. no. 424/
[M + H]+: m/z =

1H-NMR (CDCl3): 1.18-1.36 (10 H, m); 1.38-1.74 (15 H, m); 2.04 (1





Reductive
349.4, Rt = 0.6
H, m); 2.12-2.36 (2 H, m); 2.26 (6 H, s); 2.53 (2 H, br s); 3.35 (2 H,




amination/
min.
dt, J = 1.8 and 12.1 Hz); 3.94 (2 H, dd, J = 3.7 and 10.9 Hz).




68%


13C-NMR (CDCl3): 25.0; 27.2; 28.4; 31.7; 33.0; 34.3; 34.8; 38.0;







41.6; 44.2; 55.0; 57.8; 63.2; 68.0; 69.2.


266
3
Ex. no. 424/
[M + H]+: m/z =

1H-NMR (CDCl3): 0.91 (6 H, d, J = 6.5 Hz); 1.16-1.40 (6 H, m);





Reductive
321.4, Rt = 1.9
1.40-1.78 (13 H, m); 1.81 (2 H, t, J = 7.1 Hz); 2.05 (1 H, m); 2.28 (6




amination/
min.
H, s); 2.60-2.76 (4 H, m); 2.96 (2 H, br s).




30%


13C-NMR (CDCl3): 22.3; 25.1; 26.3; 27.2; 28.4; 31.9; 33.7; 35.6;







37.8; 41.7; 44.0; 54.0; 55.1; 67.3.


267
3
Ex. no. 424/
[M + H]+: m/z =

1H-NMR (CDCl3): 0.81 (2 H, dd, J = 5.0 and 7.1 Hz); 1.20 (2 H,





Reductive
344.4, Rt = 0.6
partially overlapped dd, J = 4.9 and 7.1 Hz); 1.16-1.36 (6 H, m);




amination/
min.
1.38-1.74 (14 H, m); 2.04 (1 H, m); 2.26 (6 H, s); 2.33 (2 H, s);




74%

2.54-2.67 (4 H, m).







13C-NMR (CDCl3): 8.1; 13.9; 25.0; 27.3; 28.4; 32.9; 34.1; 34.9; 38.0;







41.4; 44.3; 54.4; 57.7; 69.3; 123.4.


268
3
Ex. no. 424/
[M + H]+: m/z =

1H-NMR (CDCl3): 1.57-1.36 (6 H, m); 1.38-1.75 (12 H, m); 1.87-





Reductive
358.4, Rt = 1.3
1.95 (2 H, m); 1.97-2.21 (5 H, m); 2.26 (6 H, s); 2.34 (2 H, s); 2.45-




amination/
min.
2.54 (4 H, m); 2.58 (2 H, t, J = 6.8 Hz).




83%


13C-NMR (CDCl3): 17.0; 25.0; 27.3; 28.4; 32.2; 33.0; 34.6; 35.0;







36.6; 37.9; 41.4; 44.3; 52.5; 54.6; 57.7; 69.4; 124.5.


269
2
Ex. no. 162
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.25-1.45 (4 H, m); 1.50-1.58 (2 H, m); 1.70-1.80





Step3/
371.4, Rt = 2.4
(2 H, m); 1.80-1.93 (1 H, m); 2.00 (8 H, s); 2.14 (2 H, s); 2.15-2.22




Alkylation/
min.
(2 H, m); 3.14 (2 H, d, J = 7.3 Hz); 3.26 (2 H, s); 3.35 (2 H, dt, J =




44%

11.7 and 2.1 Hz); 3.94-3.99 (2 H, m); 7.26-7.32 (3 H, m); 7.35-7.41






(2 H, m).







13C-NMR (CDCl3): 30.1; 30.7; 32.8; 33.7; 35.9; 37.9; 44.3; 48.4;







59.2; 60.0; 67.5; 126.8; 127.4; 127.8; 174.1.


270
1
Ex. no. 431 /
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.23-1.40 (4 H, m); 1.45-1.52 (2 H, m); 1.68-1.84





Alkylation/
371.3, Rt = 2.6
(3 H, m); 1.90-2.02 (2 H, m); 2.05 (6 H, s); 2.18-2.35 (2 H, m); 2.38




35%
min.
(2 H, s); 3.01 (2 H, s); 3.09 (2 H, d, J = 7.3 Hz); 3.30 (2 H, dt, J =






11.7 and 2.2 Hz); 3.90-3.96 (2 H, m); 7.26-7.32 (3 H, m); 7.36-7.41






(2 H, m).







13C-NMR (CDCl3): 30.0; 30.7; 33.1; 33.7; 36.1; 38.0; 43.4; 48.3;







60.2; 67.5; 126.8; 127.6; 127.8; 174.1.


271
1
Ex. no. 431/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.30-1.40 (2 H, m); 1.41-1.59 (3 H, m); 1.67-1.76





Alkylation/
371.4, Rt = 2.6
(2 H, m); 1.90-2.01 (2 H, m); 2.04 (6 H, s); 2.05-2.15 (2 H, m);




40%
min.
2.16-2.33 (2 H, m); 2.36 (2 H, s); 2.98 (2 H, s); 3.23 (2 H, t, J = 7.4






Hz); 3.30 (1 H, dd; J = 8.2 and 6.9 Hz); 3.68-3.75 (1 H, m); 3.78-






3.90 (2 H, m); 7.26-7.32 (3 H, m); 7.35-7.41 (2 H, m).







13C-NMR (CDCl3): 30.0; 30.6; 32.2; 33.1; 35.9; 36.9; 38.0; 41.3;







43.5; 58.9; 60.7; 67.8; 73.1; 126.7; 127.6; 127.8; 173.6.


272
1


273
3
Ex. no. 424/
[M + H]+: m/z =

1H-NMR (CDCl3): 0.89 (6 H, d, J = 6.5 Hz); 1.18-1.36 (6 H, m);





Reductive
307.4, Rt = 0.6
1.38-1.80 (13 H, m); 2.64 (1 H, m); 2.13 (2 H, d, J = 7.3 Hz); 2.25 (2




amination/
min.
H, s); 2.27 (6 H, s); 2.51 (2 H, t, J = 6.5 Hz).




62%


13C-NMR (CDCl3): 21.0; 25.1; 27.2; 27.4; 28.4; 33.1; 34.7; 38.0;







41.5; 44.4; 54.8; 57.8; 65.3; 69.1.


274
2
Ex. no. 234
[M + H]+ m/z =

1H-NMR (CDCl3): 1.14-1.36 (6 H, m); 1.38-1.60 (6 H, m); 1.60-1.78





Step9/
333.4, Rt = 2.6
(6 H, m); 1.80-1.94 (2 H, m); 1.96-2.10 (3 H, m); 2.25 (8 H, s); 2.51




Alkylation/
min.
(1 H, m); 3.03 (2 H, s); 7.57 (2 H, d, J = 7.6 Hz).




90%


13C-NMR (CDCl3): 18.4; 25.1; 26.4; 26.9; 28.5; 31.5; 33.8; 36.5;







37.9; 42.0; 44.0; 47.6; 57.7; 61.2; 173.8.


276
2
Ex. no. 234
[M + H]+: m/z =

1H-NMR (CDCl3): 0.19 (2 H, td, J = 4.6 and 5.8 Hz); 0.49 (2 H, m);





Step9/
319.4, Rt = 2.4
8.58 (1 H, m); 1.16-1.37 (6 H, m); 1.38-1.62 (6 H, m); 1.64-1.79 (4




Alkylation/
min.
H, m); 2.06 (1 H, m); 2.27 (6 H, s); 2.28 (2 H, s); 3.11 (2 H, d, J = 7.1




50%

Hz); 3.19 (2H, s).







13C-NMR (CDCl3): 3.3; 9.0; 25.1; 26.8; 28.5; 31.8; 36.3, 37.9; 42.3;







44.2; 46.8; 57.7; 60.9; 173.6.


277
2
Ex. no. 234
[M + H]+: m/z =

1H-NMR (CDCl3): 0.84-1.02 (2 H, m); 1.06-1.36 (10 H, m); 1.38-





Step9/
361.4, Rt = 3.0
1.84 (15 H, m); 2.04 (1 H, m); 2.26 (6 H, s); 2.28 (2 H, s); 3.06 (2 H,




Alkylation/
min.
d, J = 7.9 Hz), 3.07 (2 H, s).




51%


13C-NMR (CDCl3): 25.1; 25.7; 26.3; 26.9; 28.5; 30.1; 30.8; 31.8;







35.9; 36.4; 37.9; 42.3; 44.2; 48.6; 57.7; 61.6; 174.3.


278
2
Ex. no. 234
[M + H]+: m/z =

1H-NMR (CDCl3): 1.10-1.36 (8 H, m); 1.38-180 (16 H, m); 1.98-





Step9/
347.4, Rt = 2.8
2.18 (2 H, m); 2.26 (6 H, s); 2.28 (2 H, s); 3.09 (2 H, s); 3.17 (2 H, d,




Alkylation/
min.
J = 7.9 Hz).




61%


13C-NMR (CDCl3): 25.07; 25.14; 26.9; 28.5; 30.3; 31.7; 36.3; 37.9;







38.0; 42.2; 44.2; 47.2; 57.7; 61.1; 174.0.


279
2
Ex. no. 24b/
m/z: [M + H]+ =
Optical rotation□□□□□□□□□ = +4.74°, (c = 1.0, MeOH)




Alkylation/
363.3, Rt = 2.2

1H-NMR (CDCl3): 1.41-1.50 (2 H, m); 1.57-1.67 (1 H, m); 1.72-1.82





58%
min.
(2 H, m); 1.94-2.07 (5 H, m); 2.10 (6 H, s); 2.19 (2 H, s); 2.45-2.57





According to
(1 H, m); 3.18-3.26 (3 H, m); 3.35 (1 H, dd, J = 13.6 and 7.6 Hz);





HPLC on
3.46 (1 H, dd, J = 8.6 and 6.3 Hz); 3.72-3.79 (1 H, m); 3.81-3.91 (2





Chiracel OD
H, m); 6.82-6.86 (1 H, m); 7.04 (1 H, dd, J = 5.0 and 3.6 Hz); 7.22-





[(cyclohexane/
7.26 (1 H, m).





2 PrOH/Et2NH

13C-NMR (CDCl3): 30.1; 32.6; 32.7; 35.8; 38.0; 38.02; 44.0; 45.3;






(70:30:0.1)] the
58.7; 59.2; 67.7; 71.4; 123.4; 124.8; 126.3; 173.9.





enantiomer





excess is > 98%.


280
2
Ex. no. 24b/
m/z: [M + H]+ =
Optical rotation□□□□□□□□□□□ −3.28°, (c = 1.0, MeOH)




Alkylation/
363.3, Rt = 2.2




60%
min

1H-NMR (CDCl3): 1.42-1.50 (2 H, m); 1.57-1.67 (1 H, m); 1.73-1.83






According to
(2 H, m); 1.94-2.08 (5 H, m); 2.10 (6 H, s); 2.19 (2 H, s); 2.46-2.56





HPLC on
(1 H, m); 3.19-3.27 (3 H, m); 3.35 (1 H, dd, J = 13.6 and 7.6 Hz);





Chiracel OD
3.46 (1 H, dd, J = 8.6 and 6.3 Hz); 3.72-3.79 (1 H, m); 3.82-3.92 (2





[(cyclohexane/
H, m); 6.83-6.88 (1 H, m); 7.03-7.07 (1 H, m); 7.22-7.27 (1 H, m).





2 PrOH/Et2NH

13C-NMR (CDCl3): 30.1; 32.6; 32.7; 35.8; 37.9; 38.0; 44.0; 45.3;






(70:30:0.1)] the
58.8; 59.2; 67.7; 71.4; 123.5; 124.8; 126.3; 173.9.





enantiomer





excess is 91%.


281
2
Ex. no. 347
[M + H]+: m/z =

1H-NMR (CDCl3): 0.91 (3 H, t, J = 7.3 Hz); 1.16-1.36 (8 H, m); 1.40-





Step9/
321.4, Rt = 2.6
1.80 (12 H, m); 2.04 (1 H, m); 2.26 (6 H, s); 2.27 (2 H, s); 3.06 (2 H,




Alkylation/
min.
s); 3.23 (2 H, t, J = 7.3 Hz).




65%


13C-NMR (CDCl3): 13.6; 19.9; 25.1; 26.9; 28.5; 29.2; 31.5; 31.6;







36.2; 41.8; 42.2; 44.2; 57.7; 60.7; 173.9.


282
2
Ex. no. 234
[M + H]+: m/z =

1H-NMR (CDCl3): 1.12-1.34 (6 H, m); 1.38-1.60 (6 H, m); 1.61-1.78





Step9/
279.3, Rt = 1.4
(4 H, m); 2.04 (1 H, s); 2.25 (8 H, s); 2.80 (3 H, s); 3.07 (2 H, s).




Alkylation/
min.

13C-NMR (CDCl3): 25.0; 26.9; 28.3; 29.5; 31.9; 36.0; 37.9; 42.0;





78%

44.0; 57.6; 63.3; 174.0.


283
1
Ex. no. 71/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.23-1.32 (2 H, m); 1.44 (2 H, t, J = 6.9 Hz); 1.61-





Reductive
343.3, Rt = 0.3
1.69 (2 H, m); 1.81-1.89 (4 H, m); 1.98-2.02 (1 H, m); 2.03 (6 H, s);




amination/
min.
2.18-2.33 (3 H, m); 2.43 (2 H, s); 2.47 (2 H, t, J = 6.9 Hz); 2.97-3.07




9%

(1 H, m); 4.41 (2 H, t, J = 6.2 Hz); 4.78 (2 H, dd, J = 7.9 and 5.9 Hz);






7.27-7.33 (3 H, m); 7.34-7.39 (2 H, m).







13C-NMR (CDCl3): 31.1; 32.8; 34.0; 37.9; 37.93; 38.1; 41.2; 53.9;







54.3; 60.5; 65.7; 77.8; 126.4; 127.6; 127.7.


284
1
Ex. no. 71/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.23-1.31 (2 H, m); 1.40-1.46 (2 H, m); 1.56-1.70





Reductive
343.3, Rt = 0.7
(3 H, m); 1.80-1.95 (2 H, m); 1.97-2.02 (1 H, m); 2.04 (6 H, s);




amination/
min.
2.17-2.33 (2 H, m); 2.34-2.42 (3 H, m); 2.42-2.54 (4 H, m); 3.47-




10%

3.52 (1 H, m); 3.70-3.77 (1 H, m); 3.80-3.90 (2 H, m); 7.24-7.40 (5






H, m).







13C-NMR (CDCl3): 31.0; 31.02; 34.5; 37.9; 38.0; 38.7; 41.2; 53.9;







59.8; 65.6; 67.7; 72.4; 126.5; 127.6; 127.7.


285
1
Ex. no. 71/
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.38 (2 H, dd, J = 6.3 and 5.1 Hz); 0.73 (2 H, dd,





Alkylation/
343.4, Rt = 0.5
J = 6.3 and 5.1 Hz); 1.24-1.33 (2 H, m); 1.44-1.51 (2 H, m); 1.63-




2Steps 6%
min.
1.72 (4 H, m); 1.87-2.00 (2 H, m); 2.05 (6 H, s); 2.15-2.28 (2 H, m);






2.55-2.67 (4 H, m); 2.78-2.84 (2 H, m); 6.40-6.80 (1 H, br s); 7.26-






7.34 (3 H, m); 7.35-7.40 (2 H, m).







13C-NMR (CDCl3): 12.7; 30.9; 34.3; 38.0; 41.2; 51.0; 53.4; 53.5;







55.6; 57.7; 65.4; 126.5; 127.6; 127.65.


286
2
Ex. no. 234
[M + H]+: m/z =

1H-NMR (CDCl3): 1.16-1.34 (6 H, m); 1.38-1.86 (18 H, m); 2.04 (1





Step9/
333.4, Rt = 2.6
H, m); 2.26 (6 H, s); 2.27 (2 H, s); 3.03 (2 H, s); 4.48 (1 H, m).




Alkylation/
min.

13C-NMR (CDCl3): 24.3; 25.1; 26.9; 28.5; 28.8; 31.3; 36.4; 37.9;





33%

42.5; 44.2; 51.9; 56.6; 57.6; 173.6.


287
2
Ex. no. 234
[M + H]+: m/z =

1H-NMR (CDCl3): 1.14-1.34 (6 H, m); 1.38-178 (12 H, m); 1.80-





Step9/
377.4, Rt = 2.7
1.94 (4 H, m); 1.98-2.16 (3 H, m); 2.25 (6 H, s); 2.26 (2 H, s); 3.10




Alkylation/
min.
(2 H, s); 3.13 (3 H, s); 3.20-3.27 (2 H, m).




79%


13C-NMR (CDCl3): 12.3; 25.0; 26.9; 28.3; 31.3; 31.6; 31.9; 36.3;







37.5; 37.9; 42.4; 44.2; 49.2; 57.5; 61.2; 78.1; 173.6.


288
2
Ex. no. 24b/
m/z: [MH −

1H-NMR (CDCl3): 1.37 (6 H, s); 1.44-1.53 (2 H, m); 1.80-1.88 (2 H,





Alkylation/
HNMe2]+ = 315.3
m); 1.95-2.15 (4 H, m); 2.10 (6 H, s); 2.23 (2 H, s); 3.39 (2 H, s);




14%
(100%)
3.53 (2 H, s); 6.86 (1 H, dd, J = 3.6 and 1.0 Hz); 7.04 (1 H, dd, J =





[M + H]+ = 380.3
5.1 and 3.6 Hz); 7.24 (1 H, dd, J = 5.1 and 1.1 Hz).





(35%), Rt = 2.5

13C-NMR (CDCl3): 24.8; 32.4; 32.5; 33.0; 36.1; 38.0; 43.4; 51.2;






min.
59.4; 59.7; 123.5; 124.6; 124.8; 128.3; 142.8; 175.2.


289
1
Ex. no. 24a/
m/z: [MH −

1H-NMR (CDCl3): 1.34 (6 H, s); 1.52 (2 H, ddd, J = 13.3, 9.4 and 4.0





Alkylation/
HNMe2]+ = 315.2
Hz); 1.73-1.81 (2 H, m); 1.94-2.05 (2 H, m); 2.07-2.16 (2 H, m);




28%
(100%)
2.10 (6 H, s); 2.36 (2 H, s); 3.35 (2 H, s); 3.37 (2 H, s); 6.84 (1 H, dd,





[M + H]+ = 360.3
J = 3.6 and 1.0 Hz); 7.03 (1 H, dd, J = 5.1 and 3.5 Hz); 7.24 (1 H,





(50%), Rt = 2.6
dd, J = 5.1 and 0.9 Hz).





min.

13C-NMR (CDCl3): 24.7; 32.6; 32.9; 36.1; 38.1; 43.0; 51.2; 59.6;







60.0; 123.6; 124.6; 125.1; 126.3; 142.3; 175.2.


290
2
Ex. no. 130/
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.03-0.07 (2 H, m); 0.41-0.48 (2 H, m); 0.59-0.69





N-Demethyl-
333.3 and
(1 H, m); 1.41 (2 H, dd, J = 14.4 and 7.0 Hz); 1.47-1.57 (2 H, m);




ation/23%
302.2, Rt = 2.6
1.71-2.03 (6 H, m); 2.11 (3 H, s); 2.24 (2 H, s); 3.21 (2 H, s); 3.31-





min.
3.36 (2 H, m); 6.87 (1 H, dd, J = 3.5 and 1.0 Hz); 6.95 (1 H, dd, J =






5.1 and 3.5 Hz); 7.21 (1 H, dd, J = 5.1 and 1.0 Hz). The replaceable






proton was not identified.







13C-NMR (CDCl3): 4.3; 8.6; 28.7; 32.4; 32.5; 33.7; 35.8; 42.6; 43.3;







56.3; 59.3; 123.6, 126.4; 173.4.


291
3
Ex. no. 424/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.10-1.38 (6 H, m); 1.40-1.88 (10 H, m); 2.04 (1





Acylation/
335.4, Rt = 2.4
H, m); 2.25 (6 H, s); 2.91 (2 H, s); 3.22-3.27 (2 H, m); 3.53 (2 H, t,




37%
min.
J = 7.3 Hz); 3.90 (1 H, m); 4.75 (2 H, dd, J = 5.6 and 8.6 Hz); 4.89-






4.93 (2 H, m).







13C-NMR (CDCl3): 25.08; 25.10; 26.8; 27.0; 28.5; 29.7; 31.6, 33.4;







37.7; 38.3; 38.4; 40.6; 42.6; 44.0; 44.2; 44.5; 44.6; 57.6; 57.7; 58.8;






59.6; 73.03; 73.07; 169.3; 169.4.


292
3
Ex. no. 424/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.15 (6 H,s); 1.19-1.35 (6 H, m); 1.39-1.75 (14 H,





Alkylation/
351.4, Rt = 2.0
m); 2.04 (1 H, m); 2.26 (6 H, s); 2.31 (2 H, s); 2.36-2.43 (2 H, m);




60%
min.
2.54 (2 H, t, J = 6.8 Hz); 3.17 (3 H, s).







13C-NMR (CDCl3): 25.0; 25.2; 27.2; 28.5; 33.1; 35.0; 37.9; 38.0;







41.4; 44.2; 49.1; 52.0; 54.8; 57.7; 69.5; 73.9.


293
2
Ex. no. 234
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.17-1.35 (5 H, m); 1.40-1.78 (12 H, m); 1.93-





Step9/
349.4, Rt = 2.3
2.10 (2 H, m); 2.26 (6 H, s); 2.29 (2 H, s); 2.51 (1 H, td, J = 14.2 and




Alkylation/
min. According
6.9 Hz); 3.10 (2 H, s); 3.20 (1 H, dd, J = 13.6 and 7.6 Hz); 3.35 (1 H,




60%
to HPLC on
dd, J = 13.6 and 7.6 Hz); 3.46 (1 H, dd, J = 8.6 and 6.2 Hz); 3.70-





Chiracel OD
3.79 (1 H, m), 3.80-3.90 (2 H, m).





[(cyclohexane/

13C-NMR (CDCl3): 25.0; 26.9; 28.5; 30.1, 31.62; 31.65; 36.6; 37.9;






2 PrOH/Et2NH
37.94; 42.1; 44.1; 45.2; 57.7; 61.5; 67.7; 71.4; 174.3.





(90:10:0.1)] the
Optical rotation:□□□□D□□□□□4.57°, (c = 1.13, MeOH).





enantiomer





excess is ≥ 97%.


294
2
Ex. no. 234
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.16-1.33 (6 H, m); 1.39-1.76 (11 H, m); 1.91-





Step9/
349.4, Rt = 2.3
2.09 (2 H, m); 2.25 (6 H, s); 2.27 (2 H, s); 2.49 (1 H, td, J = 14.1 and




Alkylation/
min.
7.0 Hz); 3.09 (2 H, s); 3.18 (1 H, dd, J = 13.6 and 7.6 Hz); 3.33 (1 H,




44%
According to
dd, J = 13.6 and 7.6 Hz); 3.44 (1 H, dd, J = 8.6 and 6.3 Hz); 3.73 (1





HPLC on
H, dd, J = 15.4 and 7.6 Hz); 3.78-3.88 (2 H, m).





Chiracel OD

13C-NMR (CDCl3): 25.0; 26.8; 28.4; 30.1; 31.57; 31.59; 36.5; 37.8;






[(cyclohexane/
37.9; 42.0; 44.1; 45.1; 57.8; 61.4, 67.6; 71.3; 174.2.





2 PrOH/Et2NH
LC-MS (Method 1): m/z: [M + H]+ = 349.4, Rt = 2.3 min.





(90:10:0.1)] the
Optical rotation: □□□□D□□□□□□□6.24°, (c = 1.0, MeOH).





enantiomer





excess = 93%.


295
1
Ex. no. 18/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.33-1.42 (2 H, m); 1.50 (2 H, t, J = 6.9 Hz); 1.64-





Reductive
349.3, Rt = 0.3
1.73 (2 H, m); 1.86 (2 H, dd, J = 15.0 and 7.6 Hz); 1.89-1.97 (2 H,




amination/
min.
m); 2.04-2.10 (2 H, m); 2.10 (6 H, s); 2.26-2.34 (2 H, m); 2.41 (2 H,




10%

s); 2.50 (2 H, t, J = 6.8 Hz); 2.96 (1 H, m); 4.41 (2 H, t, J = 6.2 Hz);






4.78 (2 H, dd, J = 7.9 and 6.0 Hz); 6.85 (1 H, dd, J = 3.5 and 1.0






Hz); 7.04 (1 H, dd, J = 5.1 and 3.6 Hz); 7.23 (1 H, dd, J = 5.1 and






1.0 Hz).







13C-NMR (CDCl3): 32.9; 33.7; 34.0; 34.4; 38.1; 40.9; 53.9; 54.3;







59.7; 65.7; 77.8; 123.2; 124.9; 126.2.


296
1
Ex. no. 18/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.32-1.76 (8 H, m); 1.85-2.06 (4 H, m); 2.13 (6 H,





Reductive
349.3, Rt = 0.4
s); 2.34-2.57 (7 H, m); 3.47-3.52 (1 H, m); 3.69-3.77 (1 H, m);




amination/
min.
3.80-3.90 (2 H, m); 6.87(1 H, dd, J = 3.1 Hz); 7.04 (1 H, dd, J = 5.1




12%

and 3.5 Hz); 7.24 (1 H, br d, J = 5.2 Hz).







13C-NMR (CDCl3): 31.0; 33.6; 34.2; 38.1; 38.6; 41.0; 53.9; 59.8;







67.8; 72.4; 123.4; 125.2; 126.2.


297
3
Ex. no. 424/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.08-1.38 (6 H, m); 1.40 and 1.41 (6 H, 2 s);





Acylation/
351.4, Rt = 2.8
1.42-1.82 (12 H, m); 2.08 (1 H, m); 2.26 (6 H, m); 3.17 (2 H, s); 3.18




70%
min.
(1 H, s); 3.28 (0.5 H, s); 3.48 (1.5 H, s); 3.54 (1.6 H, t, J = 7.4 Hz);






3.74 (0.4 H, t, J = 7.0 Hz).







13C-NMR (CDCl3): 24.1; 25.0; 26.9; 27.0; 28.4; 29.4; 30.0; 30.6;







30.9; 34.4; 37.7; 39.1; 42.8; 44.1; 45.8; 46.3; 51.5; 51.7; 57.8; 57.9;






60.3; 60.9; 79.6; 79.8; 172.5.


298
3
Ex. no. 297/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.15 (6 H, s); 1.20-1.35 (6 H, m); 1.39-1.72 (12 H,





Reduction/
337.4, Rt = 1.3
m); 2.04 (1 H, m); 2.26 (6 H, s); 2.39 (2 H, s) 2.41 (2 H, s); 2.65 (2




84%
min.
H, t, J = 6.9 Hz); 3.20 (3 H, s).







13C-NMR (CDCl3): 23.7; 25.2; 27.3; 28.4; 32.6; 34.9; 37.9; 41.7;







44.4; 49.3; 56.0; 57.9; 64.5; 71.1; 75.9.


299
1
Ex. no. 18/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.16 (6 H, s); 1.39 (2 H, ddd, J = 13.3 and 10.2





Alkylation/
385.3, Rt = 1.9
and 3.4 Hz); 1.52 (2 H, t, J = 6.7 Hz); 1.65-1.74 (4 H, m); 1.85-1.96




2Steps 82%
min.
(2 H, m); 2.10 (6 H, s); 2.11-2.18 (2 H, m); 2.41-2.49 (4 H, m);






2.50-2.57 (2 H, m); 3.18 (3 H, s); 6.84 (1 H, dd, J = 3.5 and 1.1 Hz);






7.03 (1 H, dd, J = 5.1 and 3.5 Hz); 7.22 (1 H, dd, J = 5.1 and 1.1






Hz).







13C-NMR (CDCl3): 25.3; 33.7; 34.4; 38.0; 38.1; 40.9; 49.1; 52.0;







54.1; 59.6; 65.8; 73.9; 123.2; 124.9; 126.1.


300
1
Ex. no. 71/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.16 (6 H, s); 1.24-1.33 (2 H, m); 1.47 (2 H, t, J =





Alkylation/
359.4, Rt = 2.0
6.6 Hz); 1.63-1.74 (4 H, m); 1.80-1.93 (2 H, m); 2.03 (6 H, s); 2.19-




2Steps 60%
min.
2.33 (2 H, m); 2.43-2.58 (6 H, m); 3.19 (3 H, s); 7.23-7.40 (5 H, m).







13C-NMR (CDCl3): 25.3; 31.1; 34.6; 37.9; 38.0; 38.1; 41.2; 49.1;







52.1; 54.0; 60.5; 65.7; 73.9; 126.4; 127.6; 127.7.


301
3
Ex. no. 291/
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.71 (3 H, d, J = 6.8 Hz); 1.12-1.32 (6 H, m);





Reduction/
323.4, Rt = 0.4
1.36-1.74 (12 H; m); 1.96-2.12 (2 H, m); 2.22 (1 H, d, J = 9.3 Hz);




25%
min.
2.24 (6 H, s); 2.32 (1 H, td, J = 2.8 and 11.9 Hz); 2.46-2.54 (2 H, m);






2.64 (1 H, t, J = 11.8 Hz); 2.69-2.77 (1 H, m); 3.47 (1 H, t, J = 10.3






Hz); 3.66 (1 H, ddd, J = 2.6, 3.7 and 10.4 Hz); 6.53 (1 H, br s).







13C-NMR (CDCl3): 15.0; 25.0; 27.15; 27.20; 28.5; 32.3; 32.5; 32.6;







34.7; 37.8; 41.5; 44.3; 54.4; 57.6; 64.8; 69.5; 71.7.


302
3
Ex. no. 291/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.15-1.34 (6 H, m); 1.38-1.74 (12 H, m); 2.04 (1





Reduction/
321.4, Rt = 0.3
H, m); 2.23 (2 H, s); 2.26 (6 H, s); 2.49 (2 H, t, J = 6.8 Hz); 2.69 (2




20%
min.
H, d, J = 7.2 Hz); 3.18 (1 H, m); 4.41 (2 H, t, J = 6.2 Hz); 4.76 (2 H,






dd, J = 6.0 and 7.9 Hz).







13C-NMR (CDCl3): 25.0; 27.3; 28.4; 33.1; 34.9; 35.0; 37.9; 41.6;







44.3; 54.6; 57.6; 59.9; 69.4; 76.6.


303
1
Ex. no. 71/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.21-1.34 (4 H, m); 1.43 (2 H, t, J = 6.7 Hz); 1.62-





Reductive
357.3, Rt = 1.3
1.73 (5 H, m); 1.80-2.00 (2 H, m); 2.05 (6 H, s); 2.23-2.37 (4 H, m);




amination/
min.
2.41-2.56 (4 H, m); 3.37 (2 H, dt, J = 12.0 and 1.9 Hz); 3.96 (2 H,




51%

dd, J = 10.8 and 3.5 Hz); 7.25-7.33 (3 H, m); 7.35-7.41 (2 H, m).







13C-NMR (CDCl3): 31.1; 31.8; 34.4; 34.5; 38.0; 41.3; 54.2; 63.1;







65.2; 68.0; 126.6; 127.6; 127.8.


304
1
Ex. no. 18/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.20-1.42 (4 H, m); 1.50 (2 H, t, J = 6.5 Hz); 1.63-





Reductive
363.4, Rt = 0.6
1.73 (5 H, m); 1.85-1.97 (2 H, m); 2.11 (6 H, s); 2.12-2.18 (2 H, m);




amination/
min.
2.27 (2 H, d, J = 6.3 Hz); 2.40 (2 H, s); 2.45-2.54 (2 H, m); 3.37 (2




70%

H, dt, J = 12.1 and 1.9 Hz); 3.95 (2 H, dd, J = 10.7 and 3.4 Hz); 6.85






(1 H, d, J = 3.4 Hz); 7.04 (1 H, dd, J = 5.1 and 3.5 Hz); 7.23 (1 H,






dd, J = 5.1 and 0.7 Hz).







13C-NMR (CDCl3): 31.8; 33.8; 34.3; 34.4; 37.8; 38.1; 41.0; 54.3;







60.0; 63.1; 65.4; 68.0; 123.3; 125.0; 126.2.


305
1
Ex. no. 71/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.25-1.53 (2H, m); 1.43-1.53 (3 H, m); 1.65-1.80





Reductive
357.4, Rt = 1.9
(4 H, m); 1.82-1.93 (4 H, m); 1.95-2.02 (1 H, m); 2.04 (6 H, s);




amination/
min.
2.13-2.32 (2 H, m); 2.50-2.65 (6 H, m); 3.67-3.74 (1 H, m); 3.80-




36%

3.89 (2 H, m); 7.23-7.33 (3 H, m); 7.34-7.40 (2 H, m).







13C-NMR (CDCl3): 25.6; 30.9; 31.5; 34.3; 34.5; 38.0; 41.2; 53.7;







54.0; 60.7; 65.4; 67.6; 77.6; 126.6; 127.6; 127.7.


306
1
Ex. no. 18/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.35-1.59 (5 H, m); 1.65-2.05 (9 H, m); 2.10 (6 H,





Reductive
363.3, Rt = 1.3
s); 2.05-2.15 (2 H, m); 2.48-2.65 (6 H, m); 3.67-3.74 (1 H, m);




amination/
min.
3.79-3.89 (2 H, m); 6.84 (1 H, dd, J = 3.5 and 1.0 Hz); 7.03 (1 H,




34%

dd, J = 5.1 and 3.5 Hz); 7.22 (1 H, dd, J = 5.1 and 1.0 Hz).







13C-NMR (CDCl3): 25.6; 31.5; 33.6; 34.2; 34.5; 37.6; 38.1; 41.0;







53.8; 54.0; 59.6; 65.6; 67.6; 77.6; 123.3; 124.9; 126.2.


307
1
Ex. no. 129/
m/z: [MH −

1H-NMR (CDCl3): 1.33 (1 H, br s); 1.47-1.68 (6 H, m); 1.70-1.92 (6





N-Demethyl-
HNMe]+ =
H, m); 1.93-2.09 (4 H, m); 2.11 (3 H, s); 2.23 (1 H, td, J = 15.4, 7.8




ation/18%
316.3, Rt = 3.1
Hz); 2.29 (2 H, s); 3.10 (2 H, s); 3.11-3.18 (2 H, m); 6.88 (1 H, dd,





min.
J = 3.5 and 1.1 Hz); 6.96 (1 H, dd, J = 5.1 and 3.5 Hz); 7.22 (1 H, dd,






J = 5.1 and 1.1 Hz).







13C-NMR (CDCl3): 18.5; 28.2; 28.7; 32.7; 33.6; 33.8; 34.2; 35.7;







38.1; 40.5; 44.6; 56.3; 57.7, 123.7; 126.3; 173.3.


308
2
Ex. no. 128/


1H-NMR (CDCl3): 1.37 (1 H, s); 1.47-1.69 (6 H, m); 1.69-2.11 (10





N-Demethyl-

H, m); 2.12 (3 H, s); 2.22-2.25 (2 H, m); 2.21-2.30 (1 H, m); 3.15-




ation/35%

3.20 (4 H, m); 6.86-6.90 (1 H, m); 6.96 (1 H, dd, J = 5.0 and 3.6






Hz); 7.22 (1 H, dd, J = 5.0 and 0.6 Hz).







13C-NMR (CDCl3): 18.5; 28.2; 28.7; 32.5; 336.; 33.7; 34.3; 35.7;







40.5; 43.3; 56.3; 58.9; 132.6; 126.4; 173.3.


309
1
Ex. no. 18/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.38 (2 H, ddd, J = 13.2 and 10.0 and 3.4 Hz);





Reductive
363.3, Rt = 0.6
1.46-1.62 (5 H, m); 1.65-1.74 (2 H, m); 1.84-1.98 (2 H, m); 1.99-




amination/
min.
2.08 (2 H, m); 2.10 (6 H, s); 2.11-2.27 (2 H, m); 2.33-2.47 (4 H, m);




63%

2.52 (2 H, t, J = 6.6 Hz); 3.30-3.36 (1 H, m); 3.74 (1 H, dd, J = 15.8






and 7.5 Hz); 3.83 (1 H, dt, J = 8.2 and 4.7 Hz); 3.91 (1 H, dd, J = 8.1






and 7.4 Hz); 6.85 (1 H, dd, J = 3.5 and 0.9 Hz); 7.03 (1 H, dd, J =






5.1 and 3.5 Hz); 7.22 (1 H, dd, J = 5.1 and 0.6 Hz).







13C-NMR (CDCl3): 32.3; 32.5; 33.7; 34.3; 37.8; 38.1; 40.9; 53.9;







55.8; 59.6; 65.6; 67.8; 73.4; 77.2; 123.2; 125.0; 126.2; 143.1.


310
1
Ex. no. 431/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.33 (6 H, s); 1.37-1.47 (2 H, m); 1.69-1.79 (2 H,





Alkylation/
354.3, Rt = 2.6
m); 1.85-2.02 (2 H, m); 2.03 (6 H, s); 2.18-2.30 (2 H, m); 2.39 (2 H,




58%
min.
s); 3.31 (2 H, s); 3.34 (2 H, s); 7.24-7.31 (3 H, m); 7.34-7.41 (2 H,






m).







13C-NMR (CDCl3): 24.7; 30.1; 32.78; 32.84; 36.2; 38.0; 42.9; 51.0;







60.3; 124.5; 126.6; 127.5; 127.8; 175.3.


311
2
Ex. no. 24b/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.42-1.49 (2 H, m); 1.64-1.81 (4 H, m); 1.86-1.92





Alkylation/
377.3 (100%)
(2 H, m); 1.94-2.05 (4 H, m); 2.06-2.14 (2 H, m, overlapped); 2.10




43%
[MH − NHMe2]+ =
(6 H, s); 2.18 (2 H, s); 3.19 (3 H, s); 3.34 (2 H, s); 3.50 (2 H, s); 6.84





332.3 (99%),
(1 H, dd, J = 3.5 and 0.8 Hz); 7.05 (1 H, dd, J = 5.1 and 3.5 Hz);





Rt = 2.5 min.
7.24 (1 H, dd, J = 5.1 and 0.7 Hz).







13C-NMR (CDCl3): 12.2; 29.6; 32.6; 32.8; 35.8; 38.1; 43.9; 45.0;







49.6; 59.4; 79.8; 123.4; 124.9; 126.3, 174.6.


312
1
Ex. no. 431/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.32-1.39 (2 H, m); 1.66-1.78 (4 H, m); 1.82-1.88





Alkylation/
371.3 (47%)
(2 H, m); 1.90-1.99 (2 H, m); 2.01-2.09 (2 H, m, overlapped); 2.03




55%
[MH − NHMe2]+ =
(6 H, s); 2.11-2.33 (2 H, m); 2.36 (2 H, s); 3.11 (5 H, s); 3.44 (2 H,





326.3 (100%),
s); 7.28-7.31 (3 H, m); 7.36-7.40 (2 H, m).





Rt = 2.9 min.

13C-NMR (CDCl3): 12.2; 29.5; 30.1; 32.9; 36.2; 38.1; 44.9; 49.5;







60.2; 79.7; 126.6; 127.6; 127.7, 174.6.


313
2
Ex. no. 24b/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.19 (3 H, t, J = 7.0 Hz); 1.42-1.51 (2 H, m); 1.73-





Alkylation/
351.3, Rt = 2.3
1.82 (2 H, m); 1.93-2.07 (4 H, m); 2.11 (6 H, s); 2.18 (2 H, s); 3.35




79%
min.
(2 H, s); 3.44 (2 H, t, J = 5.3 H); 3.48 (2 H, q, J = 7.0 Hz); 3.52-3.57






(2 H, m); 6.85 (1 H, dd, J = 3.5 and 1.1 Hz); 7.05 (1 H, dd, J = 5.1






and 3.5 Hz); 7.24 (1 H, dd, J = 5.1 and 1.1 Hz).







13C-NMR (CDCl3): 15.2; 32.6; 32.7; 35.8; 38.1; 42.4; 44.2; 59.3;







66.2; 68.5; 123.4; 124.9; 126.2; 173.8.


314
1
Ex. no. 18/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.25 (2 H, s); 1.32 (6 H, s); 1.36-1.46 (2 H, m);





Acylation/
379.3, Rt = 2.8
1.58-1.74 (4 H, m); 1.84-2.06 (1.5 H, m); 2.09 (2.5 H, s); 2.11 (3.5




47%
min.
H, s); 2.14-2.24 (0.5 H, m); 2.45 (0.7 H, s); 2.46 (1.3 H, s); 3.21 (1.4






H, s); 3.22 (1.6 H, s); 3.36 (0.8 H, s); 3.40 (1.2 H, s); 3.47 (1.2 H, t,






J = 7.3 Hz); 3.53 (0.8 H, t, J = 7.2 Hz); 6.83 (1 H, m); 7.04 (1 H, m);






7.24 (1 H, m).







13C-NMR (CDCl3): 19.1; 24.6; 24.8; 29.7; 31.0; 32.8; 33.2; 35.7;







37.0; 38.08; 38.10; 40.0; 42.0; 43.9; 45.0; 45.5; 45.8; 49.2; 49.3;






53.4; 55.6; 57.0; 59.7; 59.8; 74.9; 75.0; 123.3; 123.4; 124.8; 125.0;






126.1; 126.3; 143.7; 169.3; 169.4.


315
1
Ex. no. 18/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.32-1.46 (2 H, m); 1.56-1.74 (4 H, m); 1.84-2.22





Acylation/
351.3, Rt = 2.6
(4 H, m); 2.09 (3.5 H, s); 2.11 (2.5 H, s); 2.51 (2 H, t, J = 6.4 Hz);




48%
min.
3.34 (1.2 H, s); 3.35 (3 H, s); 3.37 (0.8 H, s); 3.47 (2 H, dd, J = 6.8






and 13.8 Hz); 3.60-3.73 (2 H, m); 6.83-6.86 (1 H, m); 7.01-7.06 (1






H, m); 7.21-7.25 (1 H, m).







13C-NMR (CDCl3): 31.0; 31.2; 32.9; 33.3; 34.6; 35.0; 35.4; 36.9;







38.1; 40.0; 42.0; 43.9; 45.1; 56.6; 58.8; 58.9; 59.9; 68.5; 123.2;






123.5; 124.9; 125.0; 126.0; 126.3; 169.6; 169.7.


316
1
Ex. no. 131/
m/z: [MH −

1H-NMR (CDCl3): 0.00-0.05 (2 H, m); 0.40-0.45 (2 H, m); 0.55-0.66





N-Demethyl-
HNMe]+ =
(1 H, m); 1.38 (2 H, dd, J = 14.4 and 7.0 Hz); 1.43-1.57 (3 H, m);




ation/12%
302.3, Rt = 2.8
1.69-1.81 (2 H, m); 1.82-2.04 (4 H, m); 2.11 (3 H, s); 2.30 (2 H, s);





min.
3.13 (2 H, s); 3.28-3.34 (2 H, m); 6.88 (1 H, dd, J = 3.5 and 1.1 Hz);






6.95 (1 H, dd, J = 5.1 and 3.5 Hz); 7.21 (1 H, dd, J = 5.1 and 1.1






Hz).







13C-NMR (CDCl3): 4.3; 8.5; 28.7; 32.4; 32.7; 33.7; 35.7; 38.1; 42.6;







44.5; 56.3; 58.1; 123.7; 126.3; 173.4.


317
2
Ex. no. 24b/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.16 (3 H, d, J = 6.1 Hz); 1.42-1.51 (2 H, m);





Alkylation/
365.3, Rt = 2.4
1.56-1.81 (4 H, m); 1.95-2.09 (4 H, m); 2.10 (6 H, s); 2.18 (2 H, s);




72%
min.
3.21 (2 H, s); 3.30-3.38 (3 H, m); 3.31 (3 H, s); 6.85 (1 H, d, J = 3.5






Hz); 7.04 (1 H, dd, J = 5.0 and 3.6 Hz); 7.24 (1 H, d, J = 5.0 Hz).







13C-NMR (CDCl3): 19.0; 32.8; 34.1; 35.6; 38.1; 39.4; 44.3; 56;1;







58.4; 59.3; 74.7; 123.4; 124.8; 126.3; 173.6.


318
2
Ex. no. 24b/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.12 (3 H, d, J = 6.2 Hz); 1.40-1.51 (2 H, m);





Alkylation/
351.3, Rt = 2.2
1.72-1.82 (2 H, m); 1.95-2.09 (4 H, m); 2.10 (6 H, s); 2.18 (2 H, s);




54%
min.
3.23 (1 H, dd, J = 14.1 and 6.8 Hz); 3.31-3.37 (3 H, m); 3.32 (3 H,






s); 3.48-3.55 (1 H, m); 6.85 (1 H, d, J = 3.3 Hz); 7.05 (1 H, dd, J =






5.1 and 3.5 Hz); 7.24 (1 H, br d, J = 5.1 Hz).







13C-NMR (CDCl3): 16.8; 32.6; 32.7; 32.8; 35.8; 39.1; 44.0; 47.4;







56.1; 59.4; 75.9; 123.4; 124.9; 126.3; 174.1.


319
2
Ex. no. 162
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.35-1.48 (4 H, m); 1.37 (6 H, s); 1.64-1.88 (2 H,





Step3/
354.3, Rt = 2.5
m); 2.00-2.16 (2 H, m); 2.02 (6 H, s); 2.17 (2 H, s); 3.39 (2 H, s);




Alkylation/
min.
3.55 (2 H, s); 7.23-7.32 (3 H, m); 7.34-7.41 (2 H, m).




12%


13C-NMR (CDCl3): 24.8; 29.9; 32.4; 33.0; 36.3; 37.9; 43.5; 49.0;







50.2; 51.1; 59.5; 59.7; 124.6; 126.7; 127.3; 127.7; 175.3.


320
1
Ex. no. 71/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.24-1.31 (2 H, m); 1.33 (6 H, s); 1.48-1.70 (4 H,





Acylation/
373.4, Rt = 2.9
m); 1.74-2.00 (2 H, m); 2.02 (2.6 H, s); 2.04 (3.4 H, s); 2.13-2.25




40%
min.
(0.8 H, m); 2.28-2.44 (1.2 H, m); 2.45 (0.8 H, s); 2.47 (1.2 H, s);






3.20 (1.2 H, s); 3.22 (1.8 H, s); 3.38-3.54 (4 H, m); 7.22-7.42 (5 H,






m).







13C-NMR (CDCl3): 24.6; 24.8; 29.9; 30.6; 31.0; 31.4; 36.1; 37.6;







38.0; 40.3; 42.3; 43.8; 44.9; 45.5; 45.6; 49.19; 49.23; 55.2; 57.0;






60.6; 60.7; 74.7; 74.8; 126.3; 126.5; 127.57; 127.59; 127.63; 127.70;






137.5; 169.3; 169.4.


321
1
Ex. no. 24a/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.42-1.49 (2 H, m); 1.64-1.78 (4 H, m); 1.82-1.89





Alkylation/
377.3 (1%)
(2 H, m); 1.92-2.01 (2 H, m); 2.02-2.09 (4 H, m); 2.10 (6 H, s); 2.32




64%
[MH − NHMe2]+ =
(2 H, s); 3.13 (3 H, s); 3.18 (2 H, s); 3.46 (2 H, s); 6.85 (1 H, dd, J =





332.3 (100%),
3.6 and 1.1 Hz); 7.04 (1 H, dd, J = 5.1 and 3.6 Hz); 7.24 (1 H, dd,





Rt = 2.8 min.
J = 5.1 and 1.1 Hz).







13C-NMR (CDCl3): 12.2; 29.5; 32.7; 35.9; 38.1; 45.0; 49.5; 59.9;







79.7; 123.5; 125.0; 126.3, 174.6.


322
2
Ex. no. 162
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.31-1.38 (2 H, m); 1.66-1.81 (4 H, m); 1.87-1.93





Step3/
371.3 (100%)
(2 H, m); 1.95-2.03 (2 H, m); 2.06 (6 H, s); 2.09-2.15 (4 H, m);




Alkylation/
[MH − NHMe2]+ =
2.35-2.46 (2 H, m); 3.20 (3 H, s); 3.40 (2 H, s); 3.50 (2 H, s); 7.28-




40%
326.3 (73%),
7.32 (3 H, m); 7.38-7.41 (2 H, m).





Rt = 2.5 min.

13C-NMR (CDCl3): 12.2; 29.6, 30.0; 32.8; 35.9; 37.9; 44.2; 45.0;







49.6; 58.7; 79.8; 126.9; 127.7; 127.9, 174.6.


323
2
Ex. no. 162
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.13 (3 H, d, J = 6.2 Hz); 1.32-1.42 (2 H, m);





Step3/
345.4, Rt = 2.3
1.70-1.79 (2 H, m); 1.86-2.03 (2 H, m); 2.04 (6 H, s); 2.12 (2 H, d,




Alkylation/
min.
J = 1.3 Hz); 2.15-2.26 (2 H, m); 3.24 (1 H, dd, J = 14.0 and 6.8 Hz);




51%

3.30-3.43 (3 H, m); 3.33 (3 H, s); 3.48-3.56 (1 H, m); 7.26-7.32 (3






H, m); 7.36-7.42 (2 H, m).







13C-NMR (CDCl3): 16.8; 30.1; 32.8; 36.0; 38.0; 44.4; 47.3; 56.1;







59.7; 75.9; 126.8; 127.5; 127.8; 174.1.


324
2
Ex. no. 162
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.16 (3 H, d, J = 6.1 Hz); 1.32-1 42 (2 H, m);





Step3/
359.4, Rt = 2.5
1.55-1.80 (5 H, m); 1.90-2.00 (2 H, m); 2.04 (6 H, s); 2.12 (2 H, s);




Alkylation/
min.
2.14-2.28 (1 H, m); 3.26 (2 H, s); 3.30-3.37 (3 H, m); 3.32 (3 H, s);




69%

7.26-7.32 (3 H, m); 7.35-7.42 (2 H, m).







13C-NMR (CDCl3): 19.0; 30.1; 32.9; 34.1, 35.7; 38.0; 39.4; 44.6;







56.1; 58.1; 74.7; 126.6; 127.4; 127.8; 173.6.


325
2
Ex. no. 162
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.32-1.41 (2 H, m); 1.470-1.79 (2 H, m); 1.70-





Step3/
331.3, Rt = 2.2
2.02 (2 H, m); 2.04 (6 H, s); 2.12 (2 H, s); 2.13-2.30 (2 H, m); 3.34




Alkylation/
min.
(3 H, s); 3.37 (2 H, s); 3.42-3.47 (2 H, m); 3.48-3.53 (2 H, m); 7.27-




53%

7.32 (3 H, m); 7.35-7.41 (2 H, m).







13C-NMR (CDCl3): 30.1; 32.8; 36.0; 38.0; 42.2; 44.4; 58.6; 59.0;







70.7; 126.7; 127.5; 127.8; 173.9.


326
2
Ex. no. 162
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.20 (3 H, t, J = 7.0 Hz); 1.30-1.41 (2 H, m); 1.54-





Step3/
345.4, Rt = 2.3
1.56 (2 H, m); 1.99-2.00 (2 H, m); 2.00 (6 H, s); 2.10 (2 H, s); 2.20




Alkylation/
min.
(2 H, br s); 3.38 (2 H, s); 3.44 (2 H, t, J = 5.3 Hz); 3.48 (2 H, q, J =




65%

7.0 Hz); 3.52-3.57 (2 H, m); 7.26-7.32 (3 H, m); 7.35-7.41 (2 H, m).







13C-NMR (CDCl3): 15.2; 30.1; 32.8; 36.0; 38.0; 42.4; 44.5; 59.2;







60.2; 66.2.; 68.6; 126.7; 127.5; 127.8; 173.8.


327
1
Ex. no. 18/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.20 (3 H, d, J = 6.1 Hz); 1.33-1.46 (2 H, m);





Acylation/
385.3, Rt = 2.7
1.57-1.74 (4 H, m); 1.82-2.20 (4 H, m); 2.08 (2.5 H, s); 2.11 (3.5 H,




42%
min.
s); 2.20-2.27 (1 H, m); 2.58 (1 H, dd, J = 7.2 and 14.8 Hz); 3.24-






3.58 (7 H, m); 3.82-3.94 (1 H, m); 6.83-6.86 (1 H, m); 7.01-7.06 (1






H, m); 7.21-7.25 (1 H, m).







13C-NMR (CDCl3): 19.46; 19.52; 30.9; 31.0; 31.2; 32.7; 33.1; 33.4;







38.1; 40.0; 41.5; 41.9; 42.0; 43.9; 45.3; 56.4; 56.5; 59.7; 74.26;






74.29; 123.3; 123.4; 124.7; 124.9; 126.0; 126.3; 169.9.


328
1
Ex. no. 71/
m/z: [M + H]+: =

1H-NMR (CDCl3): 1.21 (1.3 H, d, J = 6.1 Hz); 1.22 (1.7 H, J = 6.1





Acylation/
359.4, Rt = 2.8
Hz); 1.24-1.36 (2 H, m); 1.54 (1.2 H, t, J = 7.3 Hz); 1.58-1.70 (2.8




40%
min.
H, m); 1.72-2.00 (2 H, m); 2.02 (2.6 H, s); 2.03 (3.4 H, s); 2.12-2.40






(3 H, m); 2.52-2.64 (1 H, m); 3.24-3.56 (7 H, m); 3.80-3.94 (1 H,






m); 7.20-7.44 (5 H, m).







13C-NMR (CDCl3): 19.46; 19.53; 30.0; 30.1; 30.5; 30.8; 31.0; 31.3;







31.36; 31.40; 35.9; 37.5; 38.0; 38.1; 40.4; 41.5; 42.0; 42.3; 43.8;






45.1; 55.2; 56.3; 56.5; 60.8; 74.3; 77.5; 126.5; 126.7; 127.58;






127.60; 127.67; 127.73; 169.8; 169.9.


329
1
Ex. no. 71/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.22-1.36 (2 H, m); 1.50-1.70 (4 H, m); 1.78-2.00





Acylation/
345.3, Rt = 2.7
(2 H, m); 2.02 (2.8 H, s); 2.03 (3.2 H, s); 2.14-2.40 (2 H, m); 2.51 (2




50%
min.
H, dd, J = 12.5 and 6.3 Hz); 3.348 (1.4 H, s); 3.353 (1.6 H, s); 3.37






(1.2 H, s); 3.41 (0.8 H, s); 3.35 (2 H, dd, J = 14.5 and 7.3 Hz); 3.68-






3.73 (2 H, m); 7.22-7.40 (5 H, m).







13C-NMR (CDCl3): 30.1; 30.6; 31.2; 31.4; 34.6; 35.0; 38.0; 38.1;







40.4; 42.3; 43.8; 45.1; 58.7; 58.8; 68.58; 68.60; 126.5; 126.6;






127.55; 127.60; 127.65; 127.71; 169.7.


330
1
Ex. no./168
[M + H]+ = 327.3

1H-NMR (CDCl3): 0.04 (2 H, m); 0.39-0.45 (2 H, m); 0.56-0.66 (1 H,





N-Demethyl-
(22%)
m); 1.37 (3 H, dd, J = 14.4 and 7.0 Hz); 1.43-1.53 (2 H, m); 1.73-




ation/31%
[MH − HNMe]+ =
1.88 (4 H, m); 1.94 (1 H, s); 1.99 (3 H, s); 2.32 (2 H, s); 3.13 (2 H,





296.3 (100%),
s); 3.27-3.33 (2 H, m); 7.20-7.26 (1 H, m); 7.31-7.37 (4 H, m).





Rt = 2.9 min.

13C-NMR (CDCl3): 4.3; 8.5; 28.6; 31.9; 32.4; 32.6; 35.3; 35.7; 42.6;







45.0; 56.7; 57.8; 126.0; 126.5; 128.3; 145.1; 173.5.


331
2
Ex. no. 173/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.40 (1 H , br s); 1.44-1.53 (2 H, m); 1.56-1.69 (4





N-Demethyl-
341.4 (22%)
H, m); 1.72-1.98 (8 H, m); 2.00 (3 H, s); 2.02-2.12 (1 H, m); 2.23 (2




ation/60%
[MH − HNMe]+ =
H, s); 2.24-2.31 (1 H, m); 3.15-3.20 (4 H, m); 7.19-7.27 (2 H, m);





310.3 (100%),
7.34-7.38 (4 H, m).





Rt = 2.5 min.

13C-NMR (CDCl3): 18.6; 28.2; 28.7; 31.9; 32.5; 33.7; 34.3; 35.8;







40.5; 43.1; 56.8; 59.5; 125.9; 126.5; 128.3; 173.4.


332
2
Ex. no. 24b/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.15 (6 H, s); 1.43-1.49 (2 H, m); 1.74-1.80 (2 H,





Alkylation/
365.3 (98%)
m); 1.97-2.08 (4 H, m); 2.10 (6 H, s); 2.18 (2 H, s); 3.20 (3 H; s);




36%
[MH − NHMe2]+ =
3.26 (2 H; s); 3.41 (2 H, s); 6.85 (1 H, dd, J = 3.6 and 0.9 Hz); 7.04





320.3 (100%),
(1 H, dd, J = 5.1 and 3.6 Hz); 7.24 (1 H, dd, J = 5.0 and 0.8 Hz).





Rt = 2.4 min.

13C-NMR (CDCl3): 22.7; 32.65; 32.74; 35.6; 38.1; 43.9; 49.2; 50.5;







59.4; 76.2; 123.4; 124.9; 126.3; 174.4.


333
1
Ex. no. 50/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.39-1.51 (3 H, m); 1.64-1.93 (10 H, m); 1.94-





N-Demethyl-
347.3 (26%)
2.09 (2 H, m); 2.11 (1.4 H, s); 2.13 (1.6 H, s); 2.13-2.20 (2 H, m);




ation/ 29%
[MH − HNMe]+ =
2.36 (1 H, d, J = 7.4 Hz); 2.37 (1 H, d, J = 7.4 Hz); 2.68-2.80 (1 H,





316.3 (100%),
m); 3.28 (1.2 H, s); 3.33 (0.8 H, s); 3.43-3.51 (2 H, m); 6.88-6.91 (1





Rt = 2.9 min.
H, m); 6.96 (1 H, dt, J = 5.1 and 3.5 Hz); 7.22 (1 H, ddd, J = 5.1, 3.3






and 1.15 Hz).







13C-NMR (CDCl3): 18.74; 18.76; 28.58; 28.62; 28.65; 28.68; 30.79;







30.95; 32.23; 32.37; 34.17; 34.18; 35.82; 38.10; 40.25; 41.24; 41.68;






42.31; 43.90; 45.20; 56.19; 56.76; 56.83; 57.6; 123.70; 123.72;






126.29; 126.44; 171.08.


334
2
Ex. no. 24b/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.12 (3 H, d, J = 6.2 Hz); 1.19 (3 H, t, J = 7.0 Hz);





Alkylation/
365.3, Rt = 2.4
1.41-1.51 (2 H, m); 1.73-1.82 (2 H, m); 1.95-2.09 (4 H, m); 2.10 (6




69%
min.
H, s); 2.18 (2 H, s); 3.17 (1 H, dd, J = 14.0 and 7.2 Hz); 3.31-3.44 (4






H, m); 3.52-3.67 (2 H, m); 6.85 (1 H, br d, J = 3.0 Hz); 7.04 (1 H, dd,






J = 5.1 and 3.5 Hz); 7.24 (1 H, br d, J = 5.2 Hz).







13C-NMR (CDCl3): 15.7; 17.6; 32.7; 35.8; 38.1; 44.0; 47.9; 59.3;







60.2; 63.9; 74.1; 123.4; 124.8; 126.3; 174.0.


335
2
Ex. no. 162
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.13 (3 H, d, J = 6.2 Hz); 1.20 (3 H, t, J = 7.0 Hz);





Step3/
359.4, Rt = 2.5
1.30-1.44 (2 H, m); 1.71-1.79 (2 H, m); 1.90-2.02 (2 H, m); 2.03 (6




Alkylation/
min.
H, s); 2.12 (2 H, d, J = 1.7 Hz); 2.13-2.25 (2 H, m); 3.18 (1 H, dd,




47%

J = 14.0 and 7.2 Hz); 3.33-3.47 (4 H, m); 3.53-3.68 (2 H, m); 7.26-






7.32 (3 H, m); 7.35-7.41 (2 H, m).







13C-NMR (CDCl3): 15.7; 17.6; 30.1, 32.8; 35.9; 38.0; 44.4; 47.9;







60.1; 63.9; 74.1; 126.7; 127.5; 127.7; 174.0.


336
2
Ex. no. 153/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.18 (6 H, s); 1.41-1.50 (2 H, m); 1.63-1.76 (4 H,





Alkylation/
393.4, Rt = 2.7
m); 1.85-1.97 (2 H, m); 1.99-2.09 (2 H, m); 2.12 (6 H, s); 2.16 (2 H,




71%
min.
s); 2.46 (3 H, d, J = 1.0 Hz); 3.19 (3 H, s); 3.21 (2 H, s); 3.28-3.34 (2






H, m); 6.61 (1 H, d, J = 3.5 Hz); 6.66-6.69 (1 H, m).







13C-NMR (CDCl3): 15.2; 24.9; 32.7; 32.8; 35.5; 36.7; 38.1; 38.2;







44.5; 49.1; 49.2; 57.9; 59.4; 73.5; 124.5; 124.9; 137.9; 173.4.


338
1
Ex. no. 71/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.15 (1.4 H, t, J = 7.0 Hz); 1.17 (1.6 H, t, J = 7.0





Acylation/
373.4, Rt = 3.0
Hz); 1.21 (1.4 H, d, J = 6.1 Hz); 1.22 (1.6 H, d, J = 6.1 Hz); 1.24-




30%
min.
1.36 (2 H, m); 1.50-1.70 (4 H, m); 1.80--2.0 (2 H, m); 2.02 (3 H, s);






2.03 (3 H, s); 2.14-2.40 (2 H, m); 2.23 (0.5 H, dd, J = 5.7 and 2.2






Hz, overlapped); 2.26 (0.5 H, dd, J = 5.7 and 2.1 Hz, overlapped);






2.58 (0.6 H, dd, J = 13.8 and 6.4 Hz); 2.60 (0.4 H, dd, J = 13.9 and






7.0 Hz); 3.26-3.70 (6 H, m); 3.90-4.01 (1 H, m); 7.20-7.42 (5 H, m).







13C-NMR (CDCl3): 15.61; 15.63; 20.28; 20.32; 29.5; 30.0; 30.7; 30.8;







31.0; 31.4; 36.0; 37.4; 38.0; 38.1; 40.4; 42.0; 42.1; 42.3; 43.8; 45.3;






53.4; 55.1; 56.7; 60.7; 64.09; 64.13; 72.7; 72.8; 126.5; 126.6;






127.58; 127.61; 127.67; 127.72; 137.5; 169.9; 170.1.


339
1
Ex. no. 18/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.151 (1.4 H, t, J = 7.0 Hz); 1.158 (1.6 H, t, J = 7.0





Acylation/
379.3, Rt = 2.9
Hz); 1.21 (3 H, d, J = 6.1 Hz); 1.33-1.46 (2 H, m); 1.57-1.74 (4 H,




40%
min.
m); 1.76-2.20 (4 H, m); 2.09 (2.5 H, s); 2.10 (3.5 H, s); 2.22 (0.4 H,






dd, J = 5.7 and 2.1 Hz); 2.26 (0.6 H, dd, J = 5.7 and 2.1 Hz); 2.58 (1






H, dd, J = 7.4 and 14.5 Hz); 3.20-3.70 (6 H, m); 3.90-4.00 (1 H, m);






6.83-6.87 (1 H, m); 7.00-7.06 (1 H, m); 7.21-7.25 (1 H, m).







13C-NMR (CDCl3): 15.61; 15.63; 20.27; 20.32; 30.9; 31.1; 31.2;







32.80; 32.83; 33.28; 33.35; 35.6; 36.8; 38.08; 38.09; 40.0; 41.9;






42.0; 42.3; 43.8; 45.2; 53.4; 55.4; 56.7; 59.9; 64.09; 64.13; 72.6;






72.8; 123.3; 123.4; 124.7; 124.9; 126.0, 126.3; 169.9; 170.1.


340
2
Ex. no. 162
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.15 (6 H, s); 1.34-1.41 (2 H, m); 1.72-1.78 (2 H,





Step3/
359.4 (100%)
m); 1.92-2.06 (2 H, m, overlapped); 2.04 (6 H, s); 2.12 (2 H, s);




Alkylation/
[MH − NHMe2]+ =
2.15-2.25 (2 H, m); 3.21 (3 H; s); 3.27 (2 H; s); 3.45 (2 H, s); 7.28-




33%
314.3 (99%),
7.30 (3 H, m); 7.37-7.41 (2 H, m).





Rt = 2.4 min.

13C-NMR (CDCl3): 22.7; 30.2; 32.8; 35.8; 38.0; 44.2; 49.2; 50.4;







60.3; 76.2; 126.7; 127.5; 127.7; 174.5.


341
2
Ex. no. 217/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.43 (1 H, s); 1.49-1.66 (3 H, m); 1.68-2.05 (11 H,





N-Demethyl-
377.3 (100%)
m); 2.05-2.19 (2 H, m); 2.12 (3 H, s); 2.24 (2 H, s); 3.16 (3 H, s);




ation/40%
[MH − HNMe]+ =
3.23 (2 H, s); 3.24-3.30 (2 H, m); 6.88 (1 H, dd, J = 3.5 and 1.1 Hz);





346.3 (50%),
6.97 (1 H, dd, J = 5.1 and 3.5 Hz); 7.22 (1 H, dd, J = 5.1 and 1.0





Rt = 2.5 min.
Hz).







13C-NMR (CDCl3): 12.5; 28.8; 31.3; 32.0; 32.5; 33.7; 35.8; 37.8;







43.5; 49.4; 56.3; 78.3; 123.7; 126.5; 173.4.


342
1
Ex. no. 71/
[M + H]+: m/z =

1H-NMR (CDCl3): 1.22-1.36 (2 H, m); 1.48-1.68 (4 H, m); 1.72-2.00





Acylation/
341.3, Rt = 2.9
(4 H, m); 2.02 (2.6 H, s); 2.03 (3.4 H, s); 2.06-2.42 (6 H, m); 3.01-




71%
min.
3.21 (1 H, m); 3.23 (1.2 H, s); 3.32 (0.8 H, t, J = 7.1 Hz); 3.39 (0.8 H,






s); 3.44 (1.2 H, t, J = 7.2 Hz); 7.20-7.42 (5 H, m).







13C-NMR (CDCl3): 18.1; 24.7; 24.65; 24.71; 25.4; 25.4; 30.1; 30.9;







31.0; 31.5; 35.7; 38.0; 38.1; 38.2; 38.3; 39.1; 40.1; 42.2; 43.8; 44.2;






47.8; 55.3; 55.5; 60.7; 126.5; 126.7; 127.59; 127.63, 127.66, 127.73;






137.3; 173.4.


343
1
Ex. no. 71/
[M + H]+: m/z =

1H-NMR (CDCl3): 1.11 and 1.13 (6 H, 2 d, J = in each case 4.5 Hz);





Acylation/
329.4, Rt = 2.8
1.20-1.38 (2 H, m); 1.54 (1.2 H, t, J = 7.3 Hz); 1.58-1.70 (2.8 H, m);




86%
min.
1.74-2.00 (2 H, m); 2.02 (2.6 H, s); 2.04 3.4 H, s); 2.14-2.44 (2 H,






m); 2.54-2.68 (1 H, m); 3.28 (1.2 H, s); 3.40 (0.8 H, s); 3.42-3.50 (2






H, m); 7.22-7.44 (5 H, m).







13C-NMR (CDCl3): 19.07; 19.08; 30.1; 30.9; 31.0; 31.5; 32.0; 32.2;







35.8; 37.7; 38.0; 38.1; 40.2; 42.1; 44.0; 44.7; 53.4; 55.2; 56.0; 60.8;






126.5; 126.7; 127.58; 127.62; 127.66; 127.75; 137.5; 175.79;






175.83.


344
2
Ex. no. 24b/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.07 (2 H, dd, J = 7.3 and 5.1 Hz); 1.28 (2 H, dd,





Alkylation/
358.3, Rt = 2.2
J = 7.3 and 5.1 Hz); 1.46-1.56 (2 H, m); 1.80-1.92 (2 H, m); 2.00-




68%
min.
2.15 (4 H, m); 2.10 (6 H, s); 2.23 (2 H, s); 3.35 (2 H, s); 3.47 (2 H,






s); 6.85 (1 H, dd, J = 3.5 and 1.0 Hz); 7.05 (1 H, dd, J = 5.1 and 3.5






Hz); 7.24 (1 H, dd, J = 5.1 and 1.0 Hz).







13C-NMR (CDCl3): 9.3; 13.4; 32.5; 32.6; 36.1; 38.0; 41.0; 43.6; 46.9;







58.6; 59.1; 122.3; 123.3; 124.7; 126.3; 142.8; 174.4.


345
1
Ex. no. 71/
[M + H]+ = 357.3,

1H-NMR (CDCl3): 0.88-0.98 (2 H, m); 1.08-1.16 (2 H, m); 1.27-1.37





Acylation/
Rt = 2.7 min.
(2 H, m); 1.50-1.58 (1 H, m); 1.58-1.72 (3 H, m); 1.85-2.01 (2 H,




19%

m); 2.05 (6 H, s); 2.16-2.39 (2 H, m); 3.28 (3 H, s); 3.44 (0.8 H, s);






3.49 (1.2 H, t, J = 7.4 Hz); 3.67 (1.2 H, s); 3.74 (0.8 H, t, J = 7.2 Hz);






7.26-7.43 (5 H, m).







13C-NMR (CDCl3): 12.3; 12.5; 29.7; 30.2; 30.6; 31.0; 31.5; 35.3;







38.0; 38.1; 39.7; 42.1; 44.8; 45.2; 56.1; 56.2; 56.5; 64.1; 1266.;






127.6; 127.7; 169.7.


346
1
Ex. no. 333/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.43-1.51 (2 H, m); 1.54-1.71 (8 H, m); 1.77-1.88





Reduction/
333.3,
(4 H, m); 1.90-2.08 (5 H, m); 2.11 (3 H, s); 2.21-2.30 (3 H, m); 2.39




48%
[MH − HNMe]+ =
(2 H, s); 2.52 (2 H, t, J = 6.9 Hz); 6.88 (1 H, dd, J = 3.5 and 1.1 Hz);





302.3, Rt = 1.3
6.94 (1 H, dd, J = 5.1 and 3.5 Hz); 7.20 (1 H, dd, J = 5.1 and 1.1





and 1.7 min.
Hz).







13C-NMR (CDCl3): 18.7; 28.4; 28.7; 34.1; 34.5; 36.1; 36.4; 41.0;







54.2; 54.8; 56.5; 66.9; 123.5; 126.2.


347
2
Ex. no. 24b/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.22-1.35 (2 H, m); 1.40-1.50 (5 H, m); 1.60-1.68





Alkylation/
391.3, Rt = 2.4
(2 H, m); 1.70-1.81 (2 H, m); 1.95-2.09 (4 H, m); 2.10 (6 H, s); 2.13




67%
min.
(2 H, s); 3.19 (2 H, s); 3.30 (2 H, t, J = 7.2 Hz); 3.36 (2 H, dt, J =






11.8 and 2.0 Hz); 3.94 (2 H, br dd, J = 10.5 and 3.2 Hz); 6.85 (1 H,






d, J = 3.2 Hz); 7.05 (1 H, dd, J = 5.0 and 3.6 Hz); 7.24 (1 H, d, J =






4.9 Hz).







13C-NMR (CDCl3): 32.7; 32.8; 32.9; 34.1; 35.6; 38.0; 39.6; 44.2;







57.8; 59.2; 67.9; 123.4; 124.9; 126.3; 173.5.


348
2
Ex. no. 162
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.23-1.52 (7 H, m); 1.60-1.68 (2 H, m); 1.69-1.79





Step3/
385.4, Rt = 2.4
(2 H, m); 1.80-2.03 (2 H, m); 2.05 (6 H, s); 2.13 (2 H, s); 2.14-2.30




Alkylation/
min.
(2 H, m); 3.24 (2 H, s); 3.30 (2 H, t, J = 7.2 Hz); 3.36 (2 H, dt, J =




52%

11.8 and 2.2 Hz); 3.95 (2 H, br dd, J = 10.6 and 4.5 Hz); 7.27-7.33






(3 H, m); 7.36-7.42 (2 H, m).







13C-NMR (CDCl3): 30.2; 32.7; 32.8; 32.9; 34.1; 35.7; 38.0; 39.6;







44.5; 57.7; 60.1; 67.9; 126.8; 127.5; 127.8; 173.6.


349
2
Ex. no. 162
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.07 (2 H, dd, J = 7.5 and 5.1 Hz); 1.29 (2 H, dd,





Step3/
352.3, Rt = 2.3
J = 7.4 and 5.1 Hz); 1.37-1.49 (2 H, m); 1.76-1.89 (2 H, m); 1.96-




Alkylation/
min.
2.12 (2 H, m); 2.03 (6 H, s); 2.12-2.25 (4 H, m); 3.36 (2 H, s); 3.51




70%

(2 H, s); 7.24-7.32 (3 H, m); 7.35-7.42 (2 H, m).







13C-NMR (CDCl3): 9.3; 13.4; 30.2; 32.7; 36.3; 37.9; 43.7; 46.9; 58.5;







60.0; 122.3; 126.6; 127.4; 127.6; 174.3.


350
1
Ex. no. 71/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.23-1.39 (4 H, m); 1.52-1.73 (6 H, m); 1.80-2.01





Acylation/
385.4, Rt = 2.7
(2 H, m); 2.03 and 2.06 (6 H, 2 s); 2.10-2.26 (4 H, m); 2.32-2.43 (1




62%
min.
H, m); 3.35 (1 H, s); 3.38-3.49 (5 H, m); 3.90-3.97 (2 H, m); 7.27-






7.42 (5 H, m).







13C-NMR (CDCl3): 30.1; 30.8; 31.2; 31.4; 32.0; 33.10; 33.13; 35.9;







37.5; 38.0; 38.1; 40.3; 41.2; 41.7; 42.3; 43.9; 45.2; 55.2; 56.5; 60.9;






67.9; 126.5; 126.8; 127.6; 127.7; 127.9; 170.4; 170.5.


351
1
Ex. no. 18/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.20-1.45 (4 H, m); 1.58-1.64 (1 H, m); 1.64-1.74





Acylation/
391.3, Rt = 2.7
(5 H, m); 1.80-2.08 (3 H, m); 2.10 and 2.12 (6 H, 2 s); 2.14-2.28 (4




78%
min.
H, m); 3.31 (1 H, s); 3.36-3.50 (5 H, m); 3.90-3.97 (2 H, m); 6.83-






6.88 (1 H, m); 7.01-7.08 (1 H, m); 7.22-7.26 (1 H, m).







13C-NMR (CDCl3): 31.1; 31.2; 31.9; 32.0; 32.8; 33.10; 33.14; 33.4;







35.5; 37.0; 38.1; 40.1; 41.3; 41.7; 42.0; 43.9; 45.2; 55.4; 56.6; 59.9;






67.9; 123.3; 123.6; 124.9; 125.1; 126.2; 126.4; 170.40; 170.44.


352
1
Ex. no. 71/
m/z [M + H]+ =

1H-NMR (CDCl3): 0.84 (2 H, dd, J = 7.1 and 5.1 Hz); 1.24 (2 H, dd,





Reductive
338.3, Rt = 0.4
J = 7.1 and 5.0 Hz); 1.26-1.35 (2 H, m); 1.47 (2 H, t; J = 6.9 Hz);




amination/
min.
1.62-1.76 (2 H, m); 1.77-1.96 (2 H, m); 2.03 (6 H, s); 2.12-2.40 (2




37%

H, m); 2.47 (2 H, s); 2.54 (2 H, s); 2.59 (2 H, t, J = 6.9 Hz); 7.23-






7.41 (5 H, m).







13C-NMR (CDCl3): 9.7; 13.1; 28.4; 31.2; 34.3; 38.1; 41.4; 53.4; 60.2;







60.6; 65.4; 123.2; 126.3; 127.6.


353
2
Ex. no. 24b/
[M + H]+: m/z =

1H-NMR (CDCl3): 1.43-1.53 (2 H, m); 1.77-1.87 (2 H, m); 1.90-2.32





Alkylation/
372.3, Rt = 2.4
(8 H, m); 2.10 (6 H, s); 2.22 (2 H, s); 2.43-2.53 (2 H, m); 3.42 (2 H,




73%
min.
s); 3.62 (2 H, s); 6.84 (1 H, dd, J = 3.5 and 1.1 Hz); 7.04 (1 H, dd,






J = 5.1 and 3.5 Hz); 7.24 (1 H, dd, J = 5.1 and 1.0 Hz).







13C-NMR (CDCl3): 16.7; 30.4; 32.4; 32.6; 35.3; 36.0; 38.0; 42.7;







43.3; 48.2; 53.4; 59.3; 123.3; 123.9; 124.8; 126.3; 175.0.


354
1
Ex. no. 71/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.25-1.35 (2 H, m); 1.53-1.57 (1 H, m); 1.58-1.69





Acylation/
354.3 (100%)
(3 H, m); 1.70-1.80 (2 H, m); 1.83-1.89 (3 H, m); 1.92-2.00 (1 H,




51%
[MH − NHMe2]+ =
m); 2.01-2.14 (4 H, m, overlapped); 2.03 (4 H, s); 2.04 (2 H, s);





399.4 (87%),
2.20-2.26 (3 H, m); 2.28-2.37 (1 H, m); 3.11 (1 H, s); 3.13 (2 H, s);





Rt = 4.5 min.
3.35 (1 H, s); 3.41 (1 H, s); 3.46 (2 H, dd, J = 13.4 and 7.0 Hz);






7.27-7.32 (3 H, m); 7;35-7.40 (2 H, m).







13C-NMR (CDCl3): 12.3; 12.4; 28.1; 28.5; 29.3; 29.4; 30.1; 30.7;







31.2; 31.29; 31.33; 31.5; 36.0; 37.7; 38.0; 38.1; 40.4; 42.3; 44.1;






45.0; 49.2; 49.3, 55.3, 55.4; 78.87; 78.89; 126.5, 126.7; 127.60;






127.65, 127.70; 127.8; 171.9; 172.0.


355
1
Ex. no. 18/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.35-1.45 (2 H, m); 1.56-1.80 (8 H, m); 1.83-1.89





Acylation/
405.3 (26%)
(2 H, m); 1.92-1.99 (2 H, m); 2.01-2.06 (2 H, m); 2.07-2.13 (2 H, m,




36%
[MH − NHMe2]+ =
overlapped); 2.10 (3 H, s); 2.11 (3 H, s); 2.20-2.26 (2 H, m); 3.11





360.3 (100%),
(1.3 H, s); 3.13 (1.7 H, s); 3.32 (1 H, s); 3.38 (1 H, s); 3.47 (2 H, td,





Rt = 4.5 min.
J = 12.0 and 7.2 Hz); 6.85-6.87 (1 H, m); 7.02-7.06 (1 H, m); 7.22-






7.26 (1 H, m).







13C-NMR (CDCl3): 12.4; 28.1; 28.5; 29.3; 29.4; 31.15; 31.22; 31.3;







32.9; 33.3; 38.1; 40.1; 42.1; 44.1; 45.0; 49.2; 78.9; 123.4; 123.5;






124.9; 126.2; 126.3; 171.9.


356
1
Ex. no. 18/
[M + H]+: m/z =

1H-NMR (CDCl3): 0.89-0.96 (2 H, m); 1.08-1.15 (2 H, m); 1.35-1.46





Acylation/
363.3. Rt = 2.6
(2 H, m); 1.57-1.64 (1 H, m); 1.64-1.76 (3 H, m); 1.90-2.05 (2 H,




21%
min.
m); 2.05-2.20 (2 H, m); 2.10 and 2.11 (6 H, 2s); 3.28 (3 H, s); 3.40






(0.8 H, s); 3.51 (1.2 H, t, J = 7.4 Hz); 3.62 (1.2 H, s); 3.76 (0.8 H, t,






J = 7.1 Hz); 6.85 (1 H, dd, J = 3.6 and 1.1 Hz); 7.02-7.07 (1 H, m);






7.22-7.26 (1 H, m).







13C-NMR (CDCl3): 12.3; 12.5; 30.8; 31.2; 32.9; 33.2; 34.8; 37.2;







38.1; 39.5; 41.9; 44.8; 45.2; 56.1; 56.2; 56.7; 59.9; 64.1; 64.2; 123.3;






123.4; 124.8; 126.1, 126.2; 169.6.


357
2
Ex. no. 162
[M + H]+: m/z =

1H-NMR (CDCl3): 1.33-1.45 (2 H, m); 1.72-1.85 (2 H, m); 2.01 (6 H,





Step3/
366.3, Rt = 2.4
s); 2.03-2.30 (8 H, m); 2.16 (2 H, s); 2.42-2.53 (2 H, m); 3.44 (2 H,




Alkylation/
min.
s); 3.62 (2 H, s); 7.24-7.31 (3 H, m); 7.34-7.41 (2 H, m).




67%


13C-NMR (CDCl3): 16.5; 30.0; 30.4; 32.4; 35.3; 36.3; 37.9; 41.0;







43.7; 48.2; 59.0; 59.9; 123.9; 126.7; 127.2; 127.7; 175.1.


358
1
Ex. no. 356/
[M + H]+: m/z =

1H-NMR (CDCl3): 0.44-0.48 (2 H, m); 0.74-0.80 (2 H, m); 1.34-1.44





Reduction/
349.3, Rt = 0.3
(2 H, m); 1.52 (2 H, t, J = 6.8 Hz); 1.66-1.77 (2 H, m); 1.85-2.00 (2




80%
min.
H, m, 2H); 2.1 (6 H, s); 2.06-2.15 (2 H, m); 2.53 (2 H, s); 2.58 (2 H,






s); 2.61 (2 H, t, J = 6.8 Hz); 3.34 (3 H, s); 6.85 (1 H, dd, J = 3.6 and






1.1 Hz); 7.03 (1 H, dd, J = 5.1 and 3.6 Hz); 7.22 (1 H, dd, J = 5.1






and 1.1 Hz,).







13C-NMR (CDCl3): 11.7; 29.7; 33.7; 34.2; 38.1; 41.0; 54.2; 54.6;







59.4; 59.8; 60.3; 66.1; 123.3; 125.0; 126.1.


359
1
Ex. no. 71/
[M + H]+: m/z =

1H-NMR (CDCl3): 1.23-1.33 (2 H, m); 1.44 (2 H, t, J = 6.9 Hz); 1.65-





Reductive
352.4, Rt = 0.6
1.75 (2 H, m); 1.80-2.35 (8 H, m); 2.05 (6 H, br s); 2.43-2.52 (2 H,




amination/
min.
m); 2.57 (2 H, s); 2.62 (2 H, t, J = 6.9 Hz); 2.72 (2 H; s); 7.25-7.42




19%

(5 H, m).







13C-NMR (CDCl3): 17.00; 25.9; 30.9; 31.3; 34.1; 36.5; 38.0; 41.6;







54.1; 62.1; 66.1; 124.7; 126.5; 127.5; 127.6.


360
1
Ex. no. 18/
m/z: [M + H]+ =

1H-NMR (CDCl3): 6.83 (2 H, dd, J = 7.1 and 5.0 Hz); 1.24 (2 H, dd,





Reductive
344.3, Rt = 0.5
J = 7.1 and 5.0 Hz); 1.34-1.44 (2 H, m); 153 (2 H, t, J = 8.9 Hz);




amination/
min.
1.68-1.80 (2 H, m); 1.84-2.20 (2 H, m); 2.30-2.22 (8 H, m); 2.47 (2




28%

H, s); 2.51 (2 H, s); 2.61 (2 H, t, J = 8.9 Hz); 6.86 (1 H, d, J = 3.2






Hz); 7.04 (1 H, d, J = 5.1 and 3.6 Hz); 7.23 (1 H, d, J = 4.9 Hz).







13C-NMR (CDCl3): 9.7; 13.0; 33.7; 34.1; 38.0; 41.1; 53.6; 60.0;







123.2; 124.9; 126.2.


361
1
Ex. no. 18/
[M + H]+: m/z =

1H-NMR (CDCl3): 1.33-1.43 (2 H, m); 1.56 (2 H, t, J = 6.9 Hz); 1.65-





Reductive
358.3, Rt = 0.4
1.78 (2 H, m); 1.80-2.26 (8 H, m); 2.10 (6 H, s); 2.42-2.55 (2 H, m);




amination/
min.
2.52 (2 H, s); 2.64 (2 H, t, J = 8.9 Hz); 3.80 (2 H, s); 6.85 (1 H, br d,




20%

J = 3 Hz); 7.03 (1 H, dd, J = 5.0 and 3.6 Hz); 7.23 (1 H, br d, J = 5






Hz).







13C-NMR (CDCl3): 16.6; 16.9; 28.4; 31.3; 33.4; 33.7; 36.6; 37.4; 38.1;







41.3; 54.0; 62.0; 65.9; 123.3; 124.8; 126.0.


362
1
Ex. no. 71/
[M + H]+: m/z =

1H-NMR (CDCl3): 1.23-1.37 (2 H, m); 1.56 (1 H, t, J = 7.2 Hz); 1.59-





Acylation/
394.4, Rt = 2.9
1.72 (3 H, m); 1.84-1.99 (2 H, m); 2.024 (2.7 H, s); 2.035 (3.3 H, s);




51%
min.
2.05-2.40 (10 H, m); 2.44-2.57 (2 H, m); 3.34 (1.1 H, s); 3.40 (0.9






H, s); 3.44 (2 H, m); 7.23-7.32 (3 H, m); 7.33-7.41 (2 H, m).







13C-NMR (CDCl3): 16.7; 30.1; 30.3; 30.7; 31.0; 31.4; 31.8; 32.6;







32.7; 35.3; 35.95; 38.03; 37.5; 37.8; 40.4; 42.2; 44.0; 44.8; 55.2;






56.3; 60.7; 124.23; 124.33; 126.4; 126.7; 127.5; 127.6; 127.67;






127.73; 169.8.


363
1
Ex. no. 18/
[M + H]+: m/z =

1H-NMR (CDCl3): 1.32-1.46 (2 H, m); 1.58-1.76 (4 H, m); 1.85-2.22





Acylation/
400.3, Rt = 2.9
(16 H, m); 2.30-2.38 (2 H, m); 2.42-2.58 (2 H, m); 3.30 (1.1 H, s);




60%
min.
3.36 (0.9 H, s); 3.47 (2 H, m); 6.81-6.87 (1 H, m); 7.00-7.06 (1 H,






m), 7.20-7.25 (1 H, m).







13C-NMR (CDCl3): 16.6; 30.1; 30.3; 30.9; 31.2; 31.80; 31.83;







32.71; 32.77; 33.1; 35.3; 35.2; 36.8; 38.0; 38.1; 40.0; 42.1; 44.2;






45.0; 55.4; 56.4; 59.9; 64.1; 123.4; 123.5; 124.28; 124.33; 124.9;






126.0; 126.3; 169.8.


365
1
Ex. no. 71/
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.70-0.78 (2 H, m); 0.95-1.01 (2 H, m); 1.26-1.37





Acylation/
327.3, Rt = 2.7
(2 H, m); 1.52-1.73 (5 H, m); 1.85-2.00 (2 H, m); 2.03 and 2.08 (5




64%
min.
H, 2 s); 2.15-2.30 (1 H, m); 2.33-2.45 (1 H, m); 3.41 (1 H, s); 3.44-






3.49 (1 H, m); 3.56 (1 H, s); 3.62 (1 H, t, J = 7.2 Hz); 7.24-7.43 (5 H,






m).







13C-NMR (CDCl3): 7.3; 7.33; 12.2; 12.5; 30.0; 30.7; 31.3; 31.4; 36.1;







37.6; 38.0; 38.1; 40.3; 42.2; 44.2; 44.9; 54.5; 56.1; 126.5; 127.6;






127.7; 127.9; 172.1; 172.2.


366
1
Ex. no. 71/
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.97 (6 H, t, J = 6.5 Hz); 1.24-1.35 (2 H, m); 1.51-





Acylation/
343.4, Rt = 3.0
1.56 (1 H, m); 1.59-1.68 (3 H, m); 1.75-2.03 (2 H, m); 2.04 and 2.07




63%
min.
(6 H, 2 s); 2.10-2.25 (4 H, m); 2.30-2.45 (1 H, m); 3.36 (1 H, s);






3.40-3.49 (3 H, m); 7.24-7.43 (5 H, m).







13C-NMR (CDCl3): 22.7; 22.73; 25.57; 25.6; 30.0; 30.8; 31.2; 31.4;







36.1; 38.0; 38.1; 40.3; 42.2; 43.3; 43.75; 43.8; 45.2; 55.1; 56.4;






126.5; 127.6; 127.7; 127.8; 171.4; 171.5.


367
1
Ex. no. 364
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.03-0.07 (2 H, m); 0.39-0.43 (2 H, m); 0.67-0.77





Step1/
335.4 (100%),
(1 H, m); 0.91 (3 H, t, J = 7.1 Hz); 1.16-1.68 (16 H, m); 1.71 (1 H, t,




Acylation/
Rt = 3.0 min.
J = 7.2 Hz); 1.78 (1 H, t, J = 7.1 Hz); 2.20 (3 H, s); 2.22 (3 H, s);




45%

2.31-2.36 (2 H, m); 3.23 (1 H, s); 3.28 (1 H, s); 3.49 (2 H, dt, J = 7.2






and 2.7 Hz).







13C-NMR (CDCl3): 4.5; 10.73; 10.74; 14.17; 14.19; 23.7; 23.8; 26.1;







26.6; 28.0; 28.9; 30.17; 30.20; 30.5; 30.6; 30.8; 33.8; 34.4; 34.8;






36.3; 37.3; 37.4; 40.3; 42.2; 44.2; 45.3; 56.5; 58.7, 171.85; 171.89.


368
1
Ex. no.
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.88 (3 H, J = 7.1 Hz); 1.125 (3 H, s); 1.128 (3 H,





364Step1/
367.4 (100%),
s); 1.15-1.42 (10 H, m); 1.49-1.65 (4 H, m); 1.68 (1 H, t, J = 7.3




Acylation/
Rt = 2.9 min,
Hz); 1.76 (1 H, t, J = 7.1 Hz); 1.79-1.83 (2 H, m); 2.17 (3 H, s); 2.18




17%

(3 H, s); 2.21-2.26 (2 H, m); 3.14 (3 H, s); 3.19 (1.2 H, s); 3.25 (0.8






H, s); 3.44-3.48 (2 H, m).







13C-NMR (CDCl3): 14.1; 14.2; 23.7; 23.8; 25.0; 25.1, 26.1; 26.6,







28.0; 28.6, 28.8, 29.1; 30.2; 30.46; 30.52; 30.7; 33.8; 34.0; 34.1;






36.2; 37.29; 37.34; 40.3; 42.2; 44.3; 45.2, 49.15; 49.17; 56.4; 56.5;






56.6; 58.6; 73.90; 73.93; 171.88; 171.91.


389
1
Ex. no. 345/
[M + H]+: m/z =

1H-NMR (CDCl3): 0.44-0.48 (2 H, m); 0.75-0.80 (2 H, m); 1.22-1.34





Reduction/
343.4, Rt = 0.3
(2 H, m); 1.45 (2 H, t, J = 6.8 Hz); 1.64-1.73 (2 H, m); 1.78-1.96 (2




68%
min.
H, m); 2.03 (6 H, s); 2.20-2.34 (2 H, m); 2.55-2.62 (6 H, m); 3.34 (3






H, s); 7.23-7.40 (5 H, m).







13C-NMR (CDCl3): 11.6 (2 C); 31.13 (2 C); 34.5 (2 C); 38.1 (2 C);







38.3; 41 2; 54.2; 54.7; 59.6; 60.3; 60.6; 66.2; 126.4; 127.6 (2 C);






127.8 (2 C); 136.6.


370
2
Ex. no. 24b/
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.92 (6 H, d, J = 6.6 Hz); 1.34-1.60 (5 H, m);





Alkylation/
349.3, Rt = 2.6
1.70-1.80 (3 H, m); 1.90-2.09 (3 H, m); 2.11 (6 H, s); 2.17 (2 H, s);




65%
min.
3.20 (2 H, s); 3.24-3.30 (2 H, m); 6.85 (1 H, d, J = 3.1 Hz); 7.05 (1






H, dd, J = 5.1 and 3.5 Hz); 7.24 (1 H, d, J = 5.0 Hz).







13C-NMR (CDCl3): 22.5; 25.9; 32.7; 32.8; 35.5; 36.0; 38.1; 40.7;







44.4; 57.8; 59.3; 123.5; 124.9; 126.3; 173.4.


371
1
Ex. no. 71/
[M + H]+: m/z =

1H-NMR (CDCl3): 0.84-0.89 (2 H, m); 1.14-1.22 (2 H, m); 1.23-1.36





Acylation/
380.4, Rt = 2.7
(2 H, m); 1.51-1.71 (4 H, m); 1.79-1.85 (2 H, m); 1.86-1.98 (2 H,




62%
min
m); 2.00 (2.8 H, s); 2.03 (3.2 H, s); 2.12-2.40 (2 H, m); 2.46-2.55 (2






H, m); 3.37 (1.1 H, s); 3.38 (0.9 H, s); 3.40-3.50 (2 H, m); 7.20-7.40






(5 H, m).







13C-NMR (CDCl3): 9.4; 13.97; 13.99; 30.1; 30.2; 30.5; 30.6; 31.0;







31.2; 32.0; 32.5; 35.7; 37.5; 37.9; 38.0; 40.4; 42.2; 44.0; 45.0; 55.2;






56.5; 60.7; 123.16; 123.25; 126.4; 126.6; 127.5; 127.6; 127.69 ;






127.74; 137.0; 169.8; 169.8.


372
1
Ex. no. 18/
[M + H]+: m/z =

1H-NMR (CDCl3): 0.85-0.90 (2 H, m); 1.17-1.26 (2 H, m); 1.32-1.46





Acylation/
386.3, Rt = 2.7
(2 H, m); 1.56-1.77 (4 H, m); 1.80-1.87 (2 H, m); 1.89-2.05 (4 H,




59%
min.
m); 2.06-2.25 (6 H, m); 2.49-2.57 (2 H, m); 3.31 (0.4 H, s); 3.36






(1.6 H, s); 3.41-3.55 (2 H, m); 6.83-6.88 (1 H, m); 7.01-7.07 (1 H,






m); 7.21-7.26 (1 H, m).







13C-NMR (CDCl3): 9.4; 30.1; 30.2; 31.0; 32.1; 32.5; 32.9; 33.2; 37.1;







38.05; 38.12; 40.0; 40.2; 42.0; 42.1; 43.9; 44.2; 45.1; 45.8; 55.4;






56.8; 59.8; 114.6; 123.2; 123.3; 123.4; 123.5; 124.8; 126.13; 126.18;






126.3; 169.7.


373
1
Ex. no. 18/
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.64-0.68 (2 H, m); 0.83-0.87 (2 H, m); 1.35-1.45





Acylation/
377.3 (77%)
(2 H, m); 1.63 (1.2 H, t, J = 7.2 Hz); 1.66-1.78 (2 H, m, overlapped);




80%
[MH − NHMe2]+ =
1.72 (0.8 H, t, J = 7.2 Hz); 1.94-2.21 (4 H, m, overlapped); 2.09 (2.5





332.3 (100%),
H, s); 2.11 (3.5 H, s); 2.67 (2 H, d, J = 3.3 Hz); 3.28 (1.2 H, s), 3.30





Rt = 2.7 min.
(1.8 H, s); 3.37 (0.8 H, s); 3.40 (1.2 H, s); 3.49 (0.8 H, t, J = 7.1 Hz);






3.56 (1.2 H, t, J = 7.1 Hz); 6.84-686 (1 H, m); 7.02-7.06 (1 H, m);






7.22-725 (1 H, m).







13C-NMR (CDCl3): 11.8; 11.87; 11.90; 31.0; 31.2; 32.8; 33.2; 35.4;







37.0; 38.1; 38.4; 38.7, 40.1; 42.1; 44.1; 45.5; 54.42; 54.44; 55.6;






57.2; 59.7; 59.76; 59.81; 123.3; 123.4; 124.8; 125.0; 126.1; 126.3;






169.2; 169.3.


374
1
Ex. no. 71/
m/z: [M + H]+ =

1H-NMR (CDCl3): ): 0.64-0.68 (2 H, m); 0.83-0.88 (2 H, m); 1.32 (2





Acylation/
371.4 (100%)
H, ddd, J = 13.6, 8.0 and 3.0 Hz); 1.56 (1.2 H, t, J = 7.2 Hz); 1.62-




65%
[MH − NHMe2]+ =
1.70 (2 H, m, overlapped); 1.65 (0.8 H, t, J = 7.2 Hz); 1.86-1.99 (2





326.3 (87%),
H, m); 2.03 (2 H, s); 2.04 (4 H, s); 2.16-2.25 (0.8 H, m); 2.27-2.35





Rt = 2.8 min.
(1.2 H, m); 2.66 (0.8 H, s), 2.68 (1.2 H, s); 3.28 (1.2 H, s); 3.31 (1.8






H, s); 3.41 (0.8 H, s); 3.44 (1.2 H; s); 3.47 (1.2 H, t, J = 7.2 Hz); 3.54






(0.8 H, t, J = 7.2 Hz); 7.26-7.32 (3 H, m); 7.35-7.41 (2 H, m).







13C-NMR (CDCl3): 11.90; 30.0; 30.7; 31.2; 31.5; 35.8; 37.6; 38.0;







38.1; 38.4; 38.8; 40.3; 42.4; 44.1; 45.5; 54.45; 54.46; 55.4; 57.0;






59.80; 59.83; 60.8; 126.5; 126.7; 127.56; 127.62; 127.68; 127.75;






169.27; 169.31.


375
1
Ex. no. 364
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.91 (3 H, t, J = 7.2 Hz); 1.16-1.46 (10 H, m);





Step1/
335.4 (100%),
1.51-1.94 (10 H, m); 2.10-2.17 (2 H, m); 2.20 (3 H, s); 2.22 (3 H, s);




Acylation/
Rt = 3.1 min.
2.35 (2 H, dd; J = 7.4-2.7 Hz); 2.66-2.78 (1 H, m); 3.19 (1.2 H, s);




37%

3.26 (0.8 H, s); 3.43-3.49 (2 H, m).







13C-NMR (CDCl3): 14.16; 14.18; 18.74; 18.75; 23.7; 23.8, 26.1; 26.6;







28.0; 28.57; 28.62; 28.9; 30.2; 30.4; 30.6; 30.8; 32.3; 32.4; 33.8;






36.3; 37.3; 37.4; 40.3; 41.2; 41.6; 42.2; 44.1; 45.3; 56.4; 56.6; 58.7;






171.06; 171.08.


376
2
Ex. no. 162
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.93 (6 H, d, J = 6.6 Hz); 1.33-1.42 (4 H, m); 1.57





Step3/
343.4, Rt = 2.7
(1 H, td, J = 13.4 and 6.7 Hz); 1.61-1.78 (3 H, m); 1.85-2.03 (1 H,




Alkylation/
min.
m); 2.05 (6 H, s); 2.12 (2 H, s); 2.14-2.32 (2 H, m); 3.23 (2 H, s);




78%

3.25-3.30 (2 H, m); 7.27-7.32 (3 H, m); 7.36-7.42 (2 H, m).







13C-NMR (CDCl3): 22.5; 25.9; 30.2; 32.9; 35.7; 36.0; 38.0; 40.7;







44.6; 57.7; 126.8; 127.5; 127.8; 173.5.


377
2
Ex. no. 24b/
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.90 (6 H, d, J = 6.7 Hz); 1.43-1.52 (2 H, m);





Alkylation/
335.3, Rt = 2.4
1.56-1.71 (1 H, m); 1.72-1.82 (2 H, m); 1.84-1.95 (1 H, m); 1.97-




50%
min.
2.10 (3 H, m); 2.11 (6 H, s); 2.20 (2 H, s); 3.06 (2 H, d, J = 7.5 Hz);






3.21 (2 H, s); 6.86 (1 H, d, J = 3.0 Hz); 7.05 (1 H, dd, J = 5.1 and 3.5






Hz); 7.25 (1 H, d, J = 4.7 Hz).







13C-NMR (CDCl3): 20.1; 26.7; 32.7; 35.6; 38.0; 40.7; 44.2; 50.0;







59.3; 123.5; 124.9; 126.3; 173.9.


378
2
Ex. no. 162
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.90 (6 H, d, J = 6.6 Hz); 1.34-1.43 (2 H, m);





Step3/
329.4, Rt = 2.4
1.71-1.79 (3 H, m); 1.85-2.02 (3 H, m); 2.04 (6 H, s); 2.15 (2 H, s);




Alkylation/
min.
2.16-2.25 (1 H, m); 3.07 (2 H, d, J = 7.5 Hz); 3.24 (2 H, s); 7.26-




63%

7.31 (3 H, m); 7.36-7.41 (2 H, m).







13C-NMR (CDCl3): 20.1; 26.7; 30.2; 32.9; 35.7; 38.0; 44.5; 50.0;







58.6; 126.8; 127.4; 127.8; 174.0.


379
1
Ex. no. 71/
[M + H]+: m/z =

1H-NMR (CDCl3): 0.75 (2 H, br s); 0.94-1.00 (2 H, m); 1.20-1.35 (2





Acylation/
371.4, Rt = 2.7
H, m); 1.44-1.70 (4 H, m); 1.76-1.98 (2 H, m); 2.04 (6 H, s); 2.21




71%
min.
(0.6 H, br s); 2.37 (1.4 H, br s); 3.32 (3 H, s); 3.36-3.48 (2 H, m);






3.45 (2 H, s); 3.61 (1.7 H, s); 3.69 (0.3 H, br s); 7.20-7.44 (5 H, m).







13C-NMR (CDCl3): 10.5; 26.5; 29.5, 30.0; 30.6; 30.7; 31.7; 35.9;







38.0; 42.0; 44.3; 44.8; 56.1; 58.7; 77.4; 126.7; 127.7; 170.9.


380
1
Ex. no. 71/
[M + H]+: m/z =

1H-NMR (CDCl3): 1.20-1.35 (2 H, m); 1.27 (6 H, s); 1.49 (2 H, br s);





Acylation/
373.4, Rt = 2.8
1.58-1.68 (2 H, m); 1.91 (2 H, br s); 2.04 (6 H, s); 2.30 (2 H, br s);




76%
min.
3.35 (3 H, s); 3.45 (2 H, s); 3.47-3.60 (4 H, m); 7.24-7.44 (5 H, m).







13C-NMR (CDCl3): 22.9; 30.9; 38.0; 43.4; 46.1; 59.3; 80.2; 126.5;







127.7; 127.6; 174.8.


381
1
Ex. no. 71/
[M + H]+: m/z =

1H-NMR (CDCl3): 1.17-1.33 (2 H, m); 1.42-1.48 (2 H, m); 1.49-2.00





Acylation/
385.4, Rt = 2.9
(8 H, m); 2.03 (6 H, s); 2.14-2.38 (2 H, m); 2.39-2.50; (2 H, m);




65%
min.
3.30-3.50 (7 H, m); 3.61 (0.6 H, s); 3.62 (1.4 H, s); 7.22-7.44 (5 H,






m).







13C-NMR (CDCl3): 15.3; 28.3; 28.5; 30.1; 30.6; 30.8; 31.6; 35.7;







38.0; 38.1; 38.2; 39.5; 42.4; 44.3; 44.9; 48.7; 48.8; 55.3; 56.3; 59.1;






59.3; 61.1; 77.6; 77.7; 126.5; 127.7; 136.1; 137.3; 174.8; 175.2.


382
1
Ex. no. 18/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.34-1.44 (2 H, m); 1.55-1.76 (6 H, m); 1.77-1.90





Acylation/
377.3, Rt = 2.9
(1 H, m); 1.90-2.10 (3 H, m); 2.11 (6 H, 2 s); 2.14-2.22 (2 H, m);




58%
min.
2.50-2.60 (2 H, m); 3.091 and 3.094 (3 H, 2 s); 3.41 and 3.42 (2 H,






2 s); 3.50-3.55 (2 H, m); 6.85-6.89 (1 H, m); 7.02-7.07 (1 H, m);






7.23-7.26 (1 H, m).







13C-NMR (CDCl3): 12.7; 12.8; 29.8; 30.0, 30.1; 30.6; 31.3; 32.9;







33.0; 38.0; 38.1; 39.2; 42.1; 44.6; 44.7; 51.3; 51.4; 55.9; 56.7; 59.9;






81.8; 82.1; 123.3; 123.4; 124.9; 125.0; 126.1; 126.2; 170.5; 170.8.


383
1
Ex. no. 18/
[M + H]+: m/z =

1H-NMR (CDCl3): 0.74 (2 H, br s); 0.96 (2 H, m); 1.37 (2 H, ddd, J =





Acylation/
377.3, Rt = 2.6
13.7, 10.4 and 3.5 Hz); 1.50-1.74 (4 H, m); 1.80-2.02 (2 H, m); 2.11




78%
min.
(6 H, s); 2.13-2.28 (2 H, m); 3.31 (3 H, s); 3.33-3.39 (2 H, m); 4.49






(2 H, s); 3.57 (1.4 H, br s); 3.71 (0.6 H, br s); 6.84 (1 H, br d, J = 3.2






Hz); 6.99-7.08 (1 H, m); 7.23 (1 H, br d, J = 4.6 Hz).







13C-NMR (CDCl3): 10.5; 26.6; 30.6; 31.4; 32.9; 33.1; 35.5; 37.1;







38.1; 39.6; 41.7; 44.5; 44.9; 56.1; 58.7; 60.2; 77.3; 123.6; 125.2;






126.3; 142.0; 143.7; 170.9.


384
1
Ex. no. 18/
[M + H]+: m/z =

1H-NMR (CDCl3): 1.25 (6 H, s); 1.32-1.43 (2 H, m); 1.47-1.61 (2 H,





Acylation/
379.3, Rt = 2.8
br s); 1.62-1.71 (2 H, m); 1.95 (2 H, br s); 2.02-2.20 (8 H, br s);




76%
min.
3.34 (3 H, s); 3.43 (2 H, s); 3.46 (2 H, br s); 3.54 (2 H, very br s);






6.84 (1 H, d, J = 3.0 Hz); 7.03 (1 H, dd, J = 5.1 and 3.5 Hz); 7.23 (1






H, d, J = 4.9 Hz).







13C-NMR (CDCl3): 22.7; 30.7; 33.0; 38.1; 43.4; 46.0; 57.2; 59.1;







59.8; 80.2; 123.4; 124.8; 126.1; 174.6.


385
1
Ex. no. 18/
[M + H]+: m/z =

1H-NMR (CDCl3): 1.28-1.42 (2 H, m); 1.49-1.55 (2 H, m); 1.56-1.76





Acylation/
391.3, Rt = 2.9
(4 H, m); 1.76-2.24 (12 H, m); 2.35-2.48 (2 H, m); 3.32 (1.4 H, s);




65%
min.
3.33 (3 H, s); 3.37 (0.6 H, s); 3.42-3.52 (2 H, m); 3.61 (2 H, s); 8.83






(1 H, dd, J = 3.5 and 0.9 Hz); 7.00-7.05 (1 H, m); 7.20-7.25 (1 H,






m).







13C-NMR (CDCl3): 15.24; 15.27; 28.4; 28.5; 30.5; 31.3; 32.9; 33.0;







35.0; 38.1; 39.1; 42.1; 44.3; 44.7; 48.7; 48.8; 55.3; 56.5; 59.0; 59.3;






59.9; 60.1; 77.57; 77.63; 123.1; 123.3; 124.7; 125.1; 126.1; 126.3;






174.8; 175.0.


386
2
Ex. no. 24b/
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.40-0.44 (2 H, m); 0.75-0.78 (2 H, m); 1.43-1.49





Alkylation/
377.3 (100%)
(2 H, m); 1.74-1.80 (4 H, m); 1.93-2.13 (4 H, m, overlapped); 2.10




67%
[MH − NHMe2]+ =
(6 H, s); 2.17 (2 H, s); 3.25 (3 H, s); 3.29 (2 H, s); 3.40-3.43 (2 H,





332.3 (65%),
m); 6.85 (1 H, dd, J = 3.8 and 1.1 Hz); 7.04 (1 H, dd, J = 5.1 and 3.6





Rt = 2.4 min.
Hz); 7.24 (1 H, dd, J = 5.1 and 1.1 Hz).







13C-NMR (CDCl3): 12.0; 30.4; 32.8; 34.5; 38.1; 39.9; 44.4; 53.8;







59.3; 60.0; 123.5; 123.9; 126.3; 173.6.


387
2
Ex. no. 162
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.41-0.44 (2 H, m); 0.76-0.79 (2 H, m); 1.37 (2 H,





Step3/
371.4 (100%)
ddd; J = 13.1, 10.4 and 3.0 Hz); 1.71-1.79 (4 H, m); 1.89-2.04 (2 H,




Alkylation/
[MH − NHMe2]+ =
m, overlapped); 2.03 (6 H, s); 2.12 (2 H, s); 2.15-2.30 (2 H, m);




66%
326.3 (51%),
3.26 (3 H, s); 3.33 (2 H, s); 3.40-3.44 (2 H, m); 7.28-7.30 (3 H, m);





Rt = 2.5 min.
7.36-7.40 (2 H, m).







13C-NMR (CDCl3): 12.1; 30.3; 30.4; 33.0; 35.7; 38.0; 39.9; 44.7;







53.9; 58.8; 60.0; 126.7; 127.5; 127.8; 173.6.


388
1
Ex. no.
m/z [M + H]+ =

1H-NMR (CDCl3): 0.92 (3 H, dt, J = 7.2 and 2.0 Hz); 1.22-1.33 (8 H,





364Step1/
365.4 (100%),
m);); 1.37-1.44 (2 H, m); 1.55-1.74 (8 H, m, overlapped); 1.70 (1 H,




Acylation/
Rt = 3.0 min.
t, J = 7.3 Hz, overlapped); 1.77 (1 H, t, J = 7.1 Hz); 2.12-2.19 (2 H,




29%

m); 2.22-2.30 (6 H, m); 2.58 (0.8 H, s); 2.60 (1.2 H, br. s); 3.23 (3 H,






s); 3.30 (1 H, s); 3.35 (1 H, br s); 3.49-3.57 (2 H, m).







13C-NMR (CDCl3): 12.57; 12.59; 14.1; 14.2; 23.71; 23.74; 26.0; 26.6;







27.9; 28.7; 30.1; 30.5; 30.6; 30.8; 34.2; 36.5; 37.4; 40.2; 40.4; 40.6;






42.1; 44.2, 45.8; 50.20; 50.23; 79.47; 79.52; 169.5; 169.6.


389
1
Ex. no.
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.91 (3 H, J = 7.3 = Hz); 1.18-1.69 (14 H, m); 1.71





364Step1/
351.4 (100%),
(1 H, t, J = 7.2 Hz); 1.79 (1 H, t, J = 7.1 Hz); 2.10-2.19 (2 H, m);




Acylation/
Rt = 2.7 min.
2.21 (3 H, s), 2.25 (3 H, br s); 2.28-2.39 (2 H, m); 2.64-2.76 (1 H,




41%

m); 3.21 (1 H, br s); 3.28 (1 H, s); 3.40-3.36 (2 H, m); 3.50 (1 H, t,






J = 7.3 Hz); 3.71-3.77 (1 H, m); 3.82-3.88 (1 H, m); 3.94-3.98 (1 H,






m).







13C-NMR (CDCl3): 14.1; 14.2, 23.7; 23.8; 26.1; 26.7; 28.0; 28.91;







28.93; 30.1; 30.2; 30.4; 30.5, 30.7; 32.3; 33.9; 35.36; 35.41; 36.1;






37.4; 38.1; 38.4, 40.3; 42.2; 44.2; 45.3, 56.5; 58.5; 67.6; 73.32;






73.35; 170.4; 170.5.


390
1
Ex. no. 71/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.22-1.35 (2 H, m); 1.47-1.53 (1 H, m); 1.55-1.75





Acylation/
371.4, Rt = 3.0
(4 H, m); 1.80-2.00 (4 H, m); 2.03 and 2.04 (6 H, 2 s); 2.06-2.20 (2




62%
min.
H, m); 2.23-2.34 (1 H, m); 2.51-2.60 (2 H, m); 3.09 (3 H, s); 3.43






and 3.45 (2 H, 2 s); 3.47-3.53 (2 H, m); 7.27-7.33 (3 H, m); 7.34-






7.40 (2 H, m).







13C-NMR (CDCl3): 12.7; 12.8; 30.0; 30.1; 30.2; 30.5; 30.8; 31.6;







35.1; 38.0; 38.1; 39.5; 42.4; 44.6; 44.7; 51.3; 51.4; 55.8; 56.5; 60.9;






81.8; 82.1; 126.5; 126.7; 127.6; 127.7; 127.74; 170.5; 170.8.


391
1
Ex. no. 31/
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.70-0.78 (2 H, m); 0.94-0.99 (2 H, m); 1.35-1.44





Acylation/
391.3, Rt = 2.9
(2 H, m); 1.53-1.70 (4 H, m); 1.73-1.97 (3 H, m); 2.00-2.10 (1 H,




65%
min.
m); 2.13 (6 H, br s); 2.46 (3 H, s); 3.32 (3 H, s); 3.42-3.50 (2 H, m);






3.44 (2 H, s); 3.57 (2 H, br s); 6.59-6.64 (1 H, m); 6.65-6.70 (1 H,






m).







13C-NMR (CDCl3): 10.5; 15.2; 26.6; 30.8; 31.5; 32.7; 33.1; 35.7;







38.1; 41.8; 44.5; 45.0; 50.8; 56.1; 58.7; 60.3; 77.4; 124.5; 125.2;






137.9; 171.0.


392
1
Ex. no. 31/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.32-1.42 (2 H, m); 1.49-1.62 (3 H, m); 1.63-1.96





Acylation/
405.3, Rt = 3.0
(6 H, m); 1.97-2.08 (3 H, m); 2.10 and 2.13 (6 H, 2 s); 2.37-2.45 (2




62%
min.
H, m); 2.46 (3 H, s); 3.33 (3 H, s); 3.32 and 3.37 (2 H, 2 s); 3.42-






3.52 (2 H, m); 3.62 (2 H, s); 6.57-6.63 (1 H, m); 6.64-6.69 (1 H, m).







13C-NMR (CDCl3): 15.2; 28.4; 28.5; 30.7; 31.6; 32.7; 33.0; 35.4;







38.1; 39.2; 42.3; 44.3; 44.9; 48.7; 48.8; 55.3; 58.5; 59.1; 59.3; 60.0;






77.6; 124.3; 124.5; 124.8; 125.1; 137.7; 175.0; 175.2.


393
1
Ex. no. 31/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.26 (6 H, s); 1.39 (2 H, ddd, J = 13.6 and 10.3





Acylation/
393.3, Rt = 3.0
and 3.5 Hz); 1.50-1.72 (5 H, m); 1.81-1.97 (2 H, m); 1.81-1.97 (2




60%
min.
H, m); 2.00-2.10 (1 H, m); 2.12 (6 H, s); 2.47 (3 H, s); 3.35 (3 H, s);






3.44 (2 H, br s); 3.54 (2 H, br s); 6.60-6.64 (1 H, m); 6.66-6.70 (1 H,






m).







13C-NMR (CDCl3): 15.2; 22.9; 30.9; 33.0; 38.1; 43.5; 46.2; 56.8;







59.2; 60.1; 80.2; 124.4; 125.0; 137.8; 174.8.


394
1
Ex. no. 71/
[M + H]+: m/z =

1H-NMR (CDCl3): 1.24-1.34 (2 H, m); 1.36 (2.7 H, s); 1.38 (3.3 H, s);





Acylation/
382.4, Rt = 2.8
1.53-1.59 (1.1 H, m); 1.60-1.72 (2.9 H, m); 1.84-1.98 (4 H, m); 2.03




51%
min.
(2.7 H, s); 2.05 (3.3 H, s); 2.14-2.37 (2 H, m); 2.38-2.48 (2 H, m);






3.36 (1.1 H, s); 3.40 (0.9 H s); 3.46 (2 H, t, J = 7.0 Hz); 7.22-7.42 (5






H, m).







13C-NMR (CDCl3): 26.5; 30.1; 30.2; 30.6; 30.7; 31.2; 31.4; 31.8;







31.9; 32.00; 32.02; 35.5; 35.7; 37.5; 37.9; 38.0; 40.37; 40.41; 42.2;






44.2; 44.9; 55.2; 58.4; 60.9; 124.5; 124.7; 126.4; 126.8; 127.4;






127.6; 127.7; 127.8; 137.0; 169.8.


395
1
Ex. no. 18/
[M + H]+: m/z =

1H-NMR (CDCl3): 1.34-1.46 (2 H, m); 1.36 (2.7 H, s); 1.37 (3.3 H, s);





Acylation/
388.3, Rt = 2.8
1.58-1.76 (4 H, m); 1.85-2.04 (4 H, m); 2.05-2.21 (2 H, m); 2.09




64%
min.
(2.7 H, s); 2.12 (3.3 H, s); 2.38-2.47 (2 H, m); 3.32 (1.2 H, s); 3.36






(0.8 H, s); 3.48 (2 H, t, J = 7.2 Hz); 6.82-6.88 (1 H, m); 7.01-7.07 (1






H, m); 7.21-7.26 (1 H, m).







13C-NMR (CDCl3): 26.4; 26.5; 30.0; 30.2; 30.6; 31.0; 31.2; 31.8;







31.9; 32.0; 32.9; 33.1; 35.1; 35.6; 35.7; 36.8; 37.9; 38.1; 40.0; 42.1;






44.2; 44.9; 55.4; 56.4; 59.9; 123.4; 123.6; 124.60; 124.64; 124.9;






126.2; 126.2; 169.8.


396
1
Ex. no. 425/
m/z: [MH −

1H-NMR (CDCl3): 0.70-0.78 (2 H, m); 0.93-1.00 (2 H, m); 1.32-1.42





Acylation/
HNMe2]+ = 366.2
(2 H, m); 1.54-1.70 (4 H, m); 1.80-2.00 (4 H, m); 2.04-2.10 (1 H,




24%
(100%), Rt = 3.0
m); 2.13 (6 H, br s); 3.32 (3 H, s); 3.42 (2 H, s); 3.44-3.50 (1 H, m);





min.
3.54-3.76 (2 H, m); 6.61 (1 H, br d, J = 3.6 Hz); 8.84 (1 H, br d, J =






2.7 Hz).







13C-NMR (CDCl3): 10.5; 28.6; 30.6; 31.3; 32.4; 32.8; 35.4; 38.0;







41.8; 44.4; 44.9; 56.1; 58.7; 60.4; 77.5; 124.6; 125.5; 171.0.


397
1
Ex. no. 425/
m/z: [MH −

1H-NMR (CDCl3): 1.30-1.41 (2 H, m); 1.52-1.77 (6 H, m); 1.78-2.08





Acylation/
HNMe2]+ = 380.2
(6 H, m); 2.10 and 2.11 (6 H, 2 s); 2.37-2.48 (2 H, m); 3.33 and




24%
(100%), Rt = 3.2
3.37 (5 H, 2 s); 3.44-3.57 (2 H, m); 3.62 (2 H, s); 6.60 (1 H, d, J =





min.
3.8 Hz); 6.82-6.86 (1 H, m).







13C-NMR (CDCl3): 15.3; 28.4; 28.5; 30.5; 31.4; 32.5; 32.7; 35.2;







38.1; 39.2; 42.2; 44.3; 44.9; 48.7; 48.8; 55.4; 56.5; 59.1; 59.3; 60.5;






77.6; 77.7; 124.5; 125.4; 125.5; 127.8; 175.0; 175.2.


398
1
Ex. no. 425/
m/z: [MH −

1H-NMR (CDCl3): 1.26 (6 H, s); 1-34-1.42 (2 m); 1.50-1.70 (5 H, m);





Acylation/
HNMe2]+ = 368.2
1.80-1.95 (2 H, m); 1.95-2.10 (2 H, m); 2.11 (6 H, s); 3.35 (3 H, s);




28%
(100%), Rt = 3.1
3.44 (2 H, s); 3.44-3.60 (3 H, m); 6.60 (1 H, br d, J = 3.5 Hz); 6.84





min.
(1 H, br d, J = 3.6 Hz).







13C-NMR (CDCl3): 22.9; 30.7; 31.5; 32.7; 37.9; 38.0; 43.6; 46.2;







57.5; 59.2; 60.4; 80.2; 124.4; 125.2; 125.5; 174.8.


399
1
Ex. no. 432/
[M + H]+: m/z =

1H-NMR (CDCl3): 0.90 (3 H, t, J = 7.2 Hz); 1.10-1.45 (10 H, m);





Alkylation/
351.4, Rt = 2.6
1.46-1.80 (7 H, m); 2.20-2.18 (2 H, m); 2.19 (6 H, s); 2.23 (2 H, m);




76%
min.
3.13 (2 H, s); 3.26-3.30 (2 H, m); 3.35 (1 H, dd; J = 8.3 and 6.9 Hz);






3.72 (1 H, dd, J = 15.4 and 7.7 Hz); 3.80-3.92 (2 H, m).







13C-NMR (CDCl3): 14.2; 23.6; 26.5; 28.2; 30.7; 30.6; 32.1; 32.4;







35.5; 36.8; 37.3; 41.5; 45.3; 55.8; 57.6; 67.7; 73.0; 76.7; 77.0; 77.2;






173.9.


400
2
Ex. no. 433/
[M + H]+ m/z =

1H-NMR (CDCl3): 0.90 (3 H, t, J = 7.1 Hz); 1.10-1.42 (10 H, m);





Alkylation/
351.4, Rt = 2.4
1.46-1.80 (7 H, m); 2.02-2.19 (2 H, m); 2.20 (6 H, s); 2.26 (2 H, s);




59%
min.
3.10 (2 H, s); 3.26 (2 H, t, J = 7.4 Hz); 3.35 (1 H, dd, J = 8.3 and 6.9






Hz); 3.70-3.77 (1 H, m); 3.80-3.93 (2 H, m).







13C-NMR (CDCl3): 14.0; 23.8; 26.5; 28.5; 30.4; 30.6; 31.8; 32.3;







35.9; 36.8; 37.3; 41.2; 43.2; 56.0; 59.8; 67.9; 73.2; 173.7.


401
1
Ex. no. 432/
[M + H]+: m/z =

1H-NMR (CDCl3): 0.87 (2 H, m); 0.91 (3 H, t, J = 7.2 Hz); 1.10-1.44





Alkylation/
346.4, Rt = 2.6
(12 H, m); 1.52-1.64 (2 H, m); 1.66-1.80 (4 H, m); 2.20 (6 H, s);




67%
min.
2.25 (2 H, s); 3.26 (2 H, s); 3.46 (2 H, m).







13C-NMR (CDCl3): 7.8; 13.9; 14.2; 23.8; 26.4; 28.4; 30.7; 30.8; 31.8;







32.1; 32.6; 35.7; 37.2; 41.1; 45.2; 55.8; 58.7; 123.0; 174.4.


402
2
Ex. no. 433/
[M + H]+: m/z =

1H-NMR (CDCl3): 0.83-0.88 (2 H, m); 0.90 (3 H, t, J = 7.1 Hz); 1.12-





Alkylation/
346.4, Rt = 2.3
1.45 (12 H, m); 1.50-1.84 (6 H, m); 2.20 (6 H, s); 2.27 (2 H, s); 3.22




37%
min.
(2 H, s); 3.47 (2 H, t, J = 7.2 Hz).







13C-NMR (CDCl3): 7.5; 14.1; 14.0; 23.8; 26.5; 28.6; 30.6; 31.8; 32.5;







36.0; 37.3; 41.1; 43.0; 56.0; 60.7; 122.8; 174.2.


403
1
Ex. no. 432/
[M + H]+: m/z =

1H-NMR (CDCl3): 0.90 (3 H, t, J = 7.2 Hz); 1.12-1.44 (8 H, m); 1.52-





Alkylation/
360.4, Rt = 2.8
1.64 (2 H, m); 1.67-1.77 (2 H, m); 1.92-1.98 (2 H, m); 1.92-1.98 (2




57%
min.
H, m); 1.99-2.18 (4 H, m); 2.19 (6 H, s); 2.24 (2 H, s); 2.43-2.58 (2






H, m); 3.19 (2 H, s); 3.34-3.40 (2 H, m).







13C-NMR (CDCl3): 14.2; 16.9; 23.8; 26.4; 28.4; 30.5; 32.0; 33.7;







34.7; 35.6; 37.3; 39.1; 45.2; 53.4; 55.9; 58.0; 124.2; 174.1.


404
2
Ex. no. 433/
[M + H]+: m/z =

1H-NMR (CDCl3): 0.90 (3 H, t, J = 7.1 Hz); 1.10-1.45 (10 H, m);





Alkylation/
360.4, Rt = 2.6
1.46-1.82 (4 H, m); 1.88-2.24 (6 H, m); 2.21 (6 H, s); 2.27 (2 H, s);




57%
min.
2.48-2.58 (2 H, m); 3.16 (2 H, s); 3.33-3.41 (2 H, m).







13C-NMR (CDCl3): 14.5; 17.2; 24.1; 26.8; 28.9; 30.9; 32.1; 32.3;







34.0; 35.2; 36.2; 37.6; 39.3; 43.4; 56.2; 60.5; 124.5; 174.4.


405
1
Ex. no. 71/
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.40-0.46 (2 H, m); 0.70-0.77 (2 H, m); 1.20-1.36





Acylation/
385.4, Rt = 2.9
(2 H, m); 1.52-1.57 (2 H, m); 1.60-1.70 (2 H, m); 1.85-2.00 (4 H,




60%
min.
m); 2.03 and 2.05 (6 H, 2 s); 2.17-2.36 (2 H, m); 2.41-2.48 (2 H, m);






3.23 and 3.25 (3 H, 2 s); 3.39 and 3.40 (2 H, 2 s); 3.43-3.50 (2 H,






m); 7.26-7.33 (3 H, m); 7.34-7.41 (2 H, m).







13C-NMR (CDCl3): 12.27; 12.3; 28.0; 28.1; 30.1; 30.6; 30.64; 31.0;







31.3; 31.4; 36.0; 37.6; 38.0; 38.1; 40.4; 42.3; 44.0; 45.0; 53.75; 55.2;






56.4; 60.9; 61.56; 61.59; 126.5; 126.7; 127.6; 127.63; 127.7; 127.74;






171.7.


406
1
Ex. no. 432/
[M + H]+: m/z =

1H-NMR (CDCl3): 0.91 (3 H, t, J = 7.1 Hz); 1.10-1.40 (10 H, m);





Alkylation/
365.4, Rt = 2.9
1.52-1.80 (6 H, m); 1.82-1.94 (4 H, m); 2.06-2.18 (2 H, m); 2.21 (6




66%
min.
H, s); 2.24 (2 H, s); 3.16 (3 H, s); 3.18 (2 H, s); 3.23-3.29 (2 H, m).







13C-NMR (CDCl3): 12.5; 14.2; 23.8; 26.5; 28.4; 30.8; 31.2; 32.0;







32.2; 35.5; 37.4; 37.9; 45.4; 49.3; 56.8; 58.4; 78.3; 173.8.


407
1
Ex. no. 426/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.31-1.42 (2 H, m); 1.54-2.04 (14 H, m); 2.11 (2





Acylation/
409.3 (58%)
H, s); 2.12 (4 H, s); 2.39-2.46 (2 H, m); 3.33 (3 H, s); 3.44-3.53 (2




91%
[MH − NHMe2]+ =
H, m); 3.62 (2 H, s); 6.36-6.39 (1 H, m); 6.41-6.43 (1 H, m).





364.3 (100%),

13C-NMR (CDCl3): 15.3; 28.45; 28.52; 30.6; 31.4; 32.2; 32.5; 35.2,






Rt = 3.0 min,
38.1; 39.3; 42.3; 44.3; 44.9, 45.3, 47.3, 48.7, 48.8, 55.4; 56.5, 59.1;






59.3; 77.6; 77.7; 106.0; 106.2; 106.3; 121.4; 162.5, 165.4, 175.2.


409
2
Ex. no. 433/
[M + H]+: m/z =

1H-NMR (CDCl3): 0.89 (3 H, t, J = 7.2 Hz); 1.10-1.42 (10 H, m);





Alkylation/
337.3, Rt = 2.1
1.52-1.62 (2 H, m); 1.66-1-78 (2 H, m); 1.87 (2 H, dd, J = 14.5 and




43%
min.
7.4 Hz); 2.19 (6 H, s); 2.24 (2 H, s); 2.90-3.02 (1 H, m); 3.09 (2 H,






s); 3.18 (2 H, t, J = 7.1 Hz); 4.37 (2 H, t, J = 6.1 Hz); 4.77 (2 H, dd,






J = 7.7 and 5.9 Hz).







13C-NMR (CDCl3): 14.0; 23.6; 26.6; 28.6; 30.5; 31.2; 31.8; 32.9;







35.7; 37.1; 40.0; 43.1; 55.9; 59.9; 77.5; 173.9.


410
1
Ex. no. 432/
[M + H]+: m/z =

1H-NMR (CDCl3): 0.91 (3 H, t, J = 7.2 Hz); 1.10-1.40 (10 H, m);





Alkylation/
337.4, Rt = 2.5
1.52-1.64 (2 H, m); 1.66-1.78 (2 H, m); 1.89 (2 H, dd, J = 14.5 and




35%
min.
7.5 Hz); 2.20 (6 H, s); 2.23 (2 H, s); 2.90-3.02 (1 H, m); 3.14 (2 H,






s); 3.19 (2 H, t, J = 7.1 Hz); 4.38 (2 H, t, J = 6.1 Hz); 4.78 (2 H, dd,






J = 7.7 and 6.0 Hz).







13C-NMR (CDCl3): 14.2; 23.8; 26.4; 28.4; 30.7; 31.1; 32.0; 33.0;







35.5; 37.2; 40.2; 45.1; 55.8; 57.7; 77.6; 173.9.


411
1
Ex. no. 426/
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.72-0.76 (2 H, m); 0.94-0.98 (2 H, m); 1.35-1.42





Acylation/
395.3 (55%)
(2 H, m); 1.58-1.68 (4 H, m); 1.82-1.95 (2 H, m); 1.95-2.15 (2 H, m,




45%
[MH − NHMe2]+ =
overlapped); 2.12 (6 H, s); 3.32 (3 H, s); 3.33-3.40 (0.7 H, m); 3.43-





350.2 (100%),
3.50 (1.1 H, m, overlapped); 3.44 (2 H, s); 3.56 (1.3 H, br. s); 3.72





Rt = 2.7 min.
(0.7 H, br. s); 6.36-6.40 (1 H, m); 6.41-6.43 (1 H, m).







13C-NMR (CDCl3): 10.5; 26.6; 30.6; 31.4; 32.1; 32.6; 35.5; 38.1;







41.9; 44.5; 56.2, 58.7; 60.2; 77.5; 106.3; 121.3; 126.5; 165.4; 171.0.


412
1
Ex. no. 18/
m/z [M + H]+ =

1H-NMR (CDCl3): 0.41-0.46 (2 H, m); 0.71-0.77 (2 H, m); 1.23-1.45





Acylation/
391.3, Rt = 2.8
(2 H, m); 1.58-1.74 (5 H, m); 1.87-2.08 (4 H, m); 2.09 and 2.11 (6




29%
min.
H, 2 s); 2.13-2.22 (1 H, m); 2.41-2.48 (2 H, m); 3.23 and 3.25 (3 H,






2 s); 3.36 and 3.37 (2 H, 2 s); 3.49 (2 H, q, J = 7.2 Hz); 6.84-6.87 (1






H, m); 7.02-7.06 (1 H, m); 7.22-7.26 (1 H, m).







13C-NMR (CDCl3): 12.28; 12.3; 28.0; 28.1; 30.6; 31.0; 31.1; 31.2;







32.9; 33.2; 35.6; 37.1; 38.1; 38.11; 40.2; 42.0; 44.0; 45.1; 53.75;






53.77; 55.4; 56.5; 59.9; 61.57; 61.6; 123.4; 124.9; 126.2; 126.3;






171.7.


413
2
Ex. no. 433;
[M + H]+: m/z =

1H-NMR (CDCl3): 0.90 (3 H, t, J = 7.1 Hz); 1.10-1.46 (10 H, m);





Alkylation/
365.4, Rt = 2.7
1.50-1.92 (12 H, m); 2.05-2.16 (2 H, m); 2.20 (6 H, s); 2.26 (2 H, s);




36%
min.
3.15 (3 H, s); 3.22-3.28 (2 H, m).







13C-NMR (CDCl3): 12.5; 14.0; 23.8; 26.5; 28.7; 29.7; 30.4; 31.3;







31.8; 35.7; 37.2; 37.6; 41.0; 43.4; 49.4; 56.1; 60.1; 78.3; 173.7.


414
2
Ex. no. 408
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.27-1.37 (2 H, m); 1.57-1.75 (4 H, m); 1.75-1.92





Step1/
355.4, Rt = 3.0
(4 H, m); 1.93-2.03 (1 H, m); 2.04 (6 H, s); 2.06-2.22 (5 H, m); 2.26




Acylation/
min.
(1 H, d, J = 7.4 Hz); 2.34 (1 H, d, J = 7.4 Hz); 2.62-2.76 (1 H, m);




44%

3.07 and 3.14 (2 H, 2 s); 3.48 (2 H, t, J = 7.2 Hz); 3.50 (2 H, t, J =






7.2 Hz); 7.28-7.32 (3 H, m); 7.33-7.41 (2 H, m).







13C-NMR (CDCl3): 18.69; 18.74; 28.5; 28.6; 30.4; 30.5; 31.1; 31.11;







32.27; 32.34; 34.3; 36.0; 38.0; 40.2; 41.2; 41.6; 42.3; 44.0; 45.3,






56.2; 58.1; 60.7; 128.6; 127.4; 127.5; 127.86; 127.72; 171.0.


415
2
Ex. no. 25/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.36-1.46 (2 H, m); 1.63-1.74 (2 H, m); 1.77 (1 H,





Acylation/
351.3, Rt = 2.4
t, J = 7.2 Hz); 1.85 (1 H, t, J = 7.2 Hz); 196-2.09 (4 H, m); 2.10 (6




46%
min.
H, s); 2.45 (1 H, t, J = 6.4 Hz); 2.51 (1 H, t, J = 6.6 Hz); 3.18 and






3.24 (2 H, 2 s); 3.31 and 3.34 (3 H, 2 s); 3.48-3.55 (2 H, m); 3.66 (1






H, t, J = 6.4 Hz); 3.69 (1 H, t, J = 6.6 Hz); 6.80-6.86 (1 H, m); 7.00-






7.06 (1 H, m); 7.20-7.25 (1 H, m).







13C-NMR (CDCl3): 30.9; 33.1; 34.7; 35.1; 36.3; 38.1; 40.1; 42.1;







44.1; 45.2; 55.9; 57.5; 58.8; 58.9; 59.7; 68.6; 123.4; 124.8; 126.17;






126.24; 143.0; 169.58; 169.61.


416
2
Ex. no. 25/
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.92 (3 H, d, J = 6.3 Hz); 0.95 (3 H, d, J = 6.3 Hz);





Acylation/
349.3, Rt = 2.9
1.37-1.45 (2 H, m); 1.62-1.74 (2 H, m); 1.77 (1 H, t, J = 7.2 Hz);




65%
min.
1.85 (1 H, t, J = 7.1 Hz); 2.00-2.10 (5 H, m); 2.109 and 2.11 (6 H, 2






s); 2.12-2.20 (2 H, m); 3.15 and 3.24 (2 H, 2 s); 3.46-3.55 (2 H, m);






6.82-6.87 (1 H, m); 7.00-7.06 (1 H, m); 7.21-7.26 (1 H, m).







13C-NMR (CDCl3): 22.6; 22.7; 25.5; 25.6; 30.9; 33.1; 34.4; 36.3;







38.1; 40.0; 42.1; 43.3; 43.7; 44.1; 45.4; 56.0; 57.7; 59.8; 123.4;






124.9; 126.2; 126;3; 143.0; 171.38; 17144.


418
1
Ex. no. 426/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.26 (6 H, s); 1.34-1.42 (2 H, m); 1.55-1.68 (4 H,





Acylation/
397.3 (41%)
m); 1.84-1.91 (2 H, m); 1.96-2.05 (2 H, m); 2.12 (6 H, s); 3.35 (3 H,




73%
[MH − NHMe2]+ =
s); 3.43 (2 H, s); 3.45 (2 H, s); 3.56 (2 H, br. s); 6.37-6.39 (1 H, m);





352.3 (100%),
6.41-6.43 (1 H, m).





Rt = 2.9 min.

13C-NMR (CDCl3): 22.9; 30.7; 32.5; 38.1; 43.6; 46.2; 53.4; 57.2;







59.3; 60.1; 80.2; 106.2; 106.3; 110.0; 121.1; 162.5; 165.4; 174.8.


552
2
Ex. no. 86/
m/z: [M + H]+ =

1H-NMR (CDCl3): 1.34-1.46 (2 H, m); 1.45-1.64 (1 H, m); 1.64-1.98





N-Demethyl-
341.3 (88%)
(11 H, m); 2.00 (1.3 H, s); 2.01 (1.7 H, s); 2.02-2.10 (1 H, m); 2.20-




ation/
[MH − H2NMe]+ =
2.10 (2 H, m); 2.36 (1 H, d, J = 7.3 Hz); 2.38 (1 H, d, J = 7.3 Hz);




34%
310.3 (100%),
2.70-2.80 (1 H, m); 3.30 (1.2 H, s); 3.34 (0.8 H, s); 3.43-3.51 (2 H,





Rt = 3.0 min.
m); 7.20-7.28 (1 H, m); 7.32-7.44 (4 H, m).







13C-NMR (CDCl3): 4.4; 6.88; 6.99; 28.6; 30.7; 31.0; 32.2; 32.3; 34.0;







35.6; 39.5; 39.9; 40.3; 42.4; 44.1; 45.2; 56.8; 57.3; 58.1; 126.1;






126.3; 126.5; 128.3; 128.4; 128.5; 171.41; 171.45.


521
2
Ex. no. 417
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.40-0.43 (2 H, m); 0.75-0.78 (2 H, m); 1.43-1.49





Step6/
395.3 (100%)
(2 H, m); 1.72-178 (4 H, m); 191-197 (4 H, m); 2.11 (6 H, s); 2.19




Alkylation/
[MH − NHMe2]+ =
(2 H, s); 3.25 (3 H, s); 3.28 (2 H, s); 3.39-3.43 (2 H, m); 6.39 (1 H,




85%
350.3 (37%),
dd, J = 4.0 and 1.7 Hz); 6.42 (1 H, m).





Rt = 2.6 min.

13C-NMR (CDCl3): 12.1; 30.4; 32.2; 32.7; 35.5; 38.0; 39.9; 44.4;







53.9; 58.9; 59.5; 60.0; 106.3; 106.4; 121.1; 162.5; 165.4; 173.5.


422
1
Ex. no. 85/
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.12-0.21 (2 H, m); 0.53-0.59 (2 H, m); 1.05-1.15





N-Demethyl-
327.3 (76%)
(1 H, m); 1.34-1.46 (2 H, m); 1.64-1.79 (4 H, m); 1.79-1.87 (2 H,




ation/
[MH − H2NMe]+ =
m); 1.96-2.10 2 H, m); 2.01 (3 H, s); 2.20 (2 H, t, J = 6.5 Hz); 3.28




30%
296.3 (100%),
(1.1 H, s); 3.38 (0.9 H, s); 3.44 (1.1 H, t, J = 7.1 Hz); 3.52 (0.9 H, t,





Rt = 2.9 min.
J = 7.3 Hz); 7.20-7.29 (1 H, m); 7.32-7.43 (4 H, m).







13C-NMR (CDCl3): 18.75; 18.76; 28.58; 28.62; 30.7; 30.9; 32.3; 32.4;







34.0; 35.5; 40.3; 41.2; 41.7; 42.3; 44.0; 45.3; 56.7; 57.2; 57.3; 58.2;






126.1; 126.2; 126.4; 128.2; 128.3; 171.1.


423
1
Ex. no. 74/
m/z: [M + H]+ =

1H-NMR (CDCl3): 0.96 (3 H, d, J = 2.1 Hz); 0.97 (3 H, d, J = 2.1 Hz);





N-Demethyl-
335.3 (46%)
1.34-1.52 (3 H, m); 1.63-1.73 (3 H, m); 1.74-1.80 (1 H, m); 1.80-




ation/
[MH − H2NMe]+ =
1.90 (2 H, m); 1.95-2.10 (2 H, m); 2.12 (3 H, d, J = 2.2 Hz); 2.13-




33%
304.2 (100%),
2.15 (2 H, m); 2.15-2.23 (1 H, m); 3.30 (1.1 H, s); 3.36 (0.9 H, s);





Rt = 2.9 min.
3.49 (2 H, td, J = 13.9, 7.2 Hz); 6.88-6.91 (1 H, m); 6.94-6.98 (1 H,






m); 7.20-7.24 (1 H, m).







13C-NMR (CDCl3): 22.7; 22.8; 25.59; 25.62; 28.6; 28.7; 30.8; 30.9;







34.2; 40.2; 42.3; 43.3; 43.7; 44.0; 45.3; 563.; 56.7; 56.8; 57.8; 132.7;






123.8; 126.3; 126.4; 171.5.





* 1 = polar, 2 = non-polar, 3 = a diastereomer







Investigations of the Activity of the Compounds According to the Invention


Measurement of the ORL1 Binding


The compounds were investigated in a receptor binding assay with 3H-nociceptin/orphanin FQ with membranes from recombinant CHO-ORL1 cells. This test system was conducted in accordance with the method described by Ardati et al. (Mol. Pharmacol., 51, 1997, p. 816-824). The concentration of 3H-nociceptin/orphanin FQ in these experiments was 0.5 nM. The binding assays were carried out with in each case 20 μg of membrane protein per 200 μl batch in 50 mM hepes, pH 7.4, 10 mM MgCl2 and 1 mM EDTA. The binding to the ORL1 receptor was determined using in each case 1 mg of WGA-SPA beads (Amersham-Pharmacia, Freiburg) by incubation of the batch at RT for one hour and subsequent measurement in a Trilux scintillation counter (Wallac, Finland). The affinity is stated in Table 1 as the nanomolar K1 value in or % inhibition at c=1 μM.


Measurement of the μ Binding


The receptor affinity for the human μ opiate receptor was determined in a homogeneous set-up in microtitre plates. For this, dilution series of the compound to be tested in each case were incubated with a receptor membrane preparation (15-40 μg of protein per 250 μl of incubation batch) of CHO-K1 cells which express the human μ opiate receptor (RB-HOM receptor membrane preparation from NEN, Zaventem, Belgium) in the presence of 1 nmol/l of the radioactive ligand [3H]-naloxone (NET719, NEN, Zaventem, Belgium) and of 1 mg of WGA-SPA-Beads (wheat germ agglutinin SPA beads from Amersham/Pharmacia, Freiburg, Germany) in a total volume of 250 μl for 90 minutes at room temperature. 50 mmol/l of Tris-HCl supplemented with 0.05 wt. % of sodium azide and with 0.06 wt. % of bovine serum albumin was used as the incubation buffer. 25 μmol/1 of naloxone were additionally added for determination of the non-specific binding. After the end of the ninety-minute incubation time, the microtitre plates were centrifuged for 20 minutes at 1,000 g and the radioactivity was measured in a β-counter (Microbeta-Trilux, PerkinElmer Wallac, Freiburg, Germany). The percentage displacement of the radioactive ligand from its binding to the human μ opiate receptor was determined at a concentration of the test substances of 1 μmol/1 and stated as the percentage inhibition (% inhibition) of the specific binding. Starting from the percentage displacement by various concentrations of the substances of the general formula I to be tested, IC50 inhibitory concentrations which cause a 50 percent displacement of the radioactive ligand were calculated in some cases. By conversion by means of the Cheng-Prusoff relationship, Ki values for the test substances were obtained. In some cases determination of the Ki value was dispensed with and only the inhibition at a test concentration of 1 μM was determined.


Testing of Analgesia in the Tail Flick Test in Rats


The analgesic activity of the test compounds was investigated in the focal ray (tail flick) test in rats in accordance with the method of D'Amour and Smith (J. Pharm. Exp. Ther. 72, 74 79 (1941)). Female Sprague Dawley rats weighing between 130 and 190 g were used for this. The animals were placed individually in special test cages and the base of the tail was exposed to a focused heat ray of a lamp (Tail-flick type 50/08/1.bc, Labtec, Dr Hess). The intensity of the lamp was adjusted such that in the case of untreated animals the time between switching on of the lamp to sudden pulling away of the tail (pain latency) was 2.5-5 seconds. Before administration of a test compound, the animals were pretested twice in the course of 30 minutes and the mean of these measurements was calculated as the pretest mean The pain was measured 20, 40 and 60 min after intravenous administration. The analgesic action was determined as the increase in pain latency (% MPE) according to the following formula: [(T1−T0)/(T2−T0)]×100. In this, T0 is the latency period before and T1 the latency period after administration of the substance, T2 is the maximum exposure time (12 sec). To determine the dose dependency, the particular test compound was administered in 3-5 logarithmically increasing doses, which included the threshold and the maximum active dose in each case, and the ED50 values were determined with the aid of regression analysis. The ED50 calculation was performed at the action maximum, 20 minutes after intravenous administration of the substance.


Chung Model: Mononeuropathy Pain Following Spinal Nerve Ligation


Animals: Male Sprague Dawley rats (140-160 g), from a commercial breeder (Janvier, Genest St. Isle, France), were kept under a 12:12 h light-dark rhythm. The animals were kept with food and tap water ad libitum. A pause of one week was maintained between delivery of the animals and the operation. After the operation the animals were tested several times over a period of 4-5 weeks, a wash-out time of at least one week being adhered to.


Description of the Model: The left L5, L6 spinal nerves were exposed under pentobarbital narcosis (Narcoren®, 60 mg/kg i.p., Merial GmbH, Hallbergmoos, Germany) by removing a piece of the paravertebral muscle and a part of the left spinal process of the L5 lumbar vertebra. The spinal nerves L5 and L6 were carefully isolated and tied off with a firm ligature (NC-silk black, USP 5/0, metric 1, Braun Melsungen AG, Melsungen, Germany) (Kim and Chung 1992). After ligation the muscle and adjacent tissue were sewn up and the wound was closed by means of metal clamps.


After a recovery period of one week the animals were placed in cages with a wire floor for measurement of the mechanical allodynia. The withdrawal threshold was determined on the ipsi- and/or contralateral hind paw by means of an electronic von Frey filament (Somedic AB, Malmö, Sweden). The median of five stimulations gave one data point. The animals were tested 30 min before and at various times after administration of the test substance or vehicle solution. The data were determined as % maximum possible effect (% MPE) from the pretesting of the individual animals (=0% MPE) and the test values of an independent sham control group (=100% MPE). Alternatively, the withdrawal thresholds were shown in grams.


Statistical Evaluation: ED50 values and 95% confidence intervals were determined via semilogarithmic regression analysis at the point in time of the maximum effect. The data were analysed via a variance analysis with repeated measurements and a post hoc Bonferroni analysis. The group size was usually n=10.


References : Kim, S. H. and Chung, J. M., An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat, Pain, 50 (1992) 355-363.


Results

























Tail flick rat,









i.v.
SNL rat, i.v.




%
Ki


ED50rat
ED50rat




inhibition
(ORL1)
%
Ki (μ)
[μg/kg] or
[μg/kg] or




(ORL1)
mean
inhibition
mean
% MPE
% MPE


No.
Diastereomer
[1 μM]
[μM]
(μ) [1 μM]
[μm]
(@μg/kg)
(@μg/kg)






















1
1
9

26
1.06
nd
nd


2
2
11.5

4
4.79
nd
nd


3
1
15

31.5
1.83
nd
nd


4
2
9

28.5
0.92
nd
nd


5
1
15

33
1.45
nd
nd


6
2
23.5

49
1.1
nd
nd


7
1
16
2.16
37.5
1.59
nd
nd


8
2
25

45.5
1.05
nd
nd


9
2
92.5
0.17
7.4
0.0045
nd
nd


10
1
27.67
2.02
67
0.41
nd
nd


11
2
43.5
0.16
71.5
0.034
nd
nd


12
2
74.33
0.12
100.5
0.0079
nd
nd


13
3
13

34
1.885
nd
nd


14
1
57.5
0.068
76.5
0.026
83%@1000
nd


15
2
37.5
0.49
50.5
0.22
nd
nd


16
1
10

0

nd
nd


17
3
19

28
0.895
nd
nd


18
1
47
0.175
90
0.018
nd
nd


19
1
70
0.08
85
0.044
nd
nd


20
1
82.5
0.0096
98.5
0.00227
26
30


21
1
89.5
0.0029
98.5
0.0028
414
105


22
1
94
0.0008
98.5
0.00114
100%@1000
nd


23
1
58
0.068
84.5
0.05
nd
nd


24
2
49.5
0.74
70
0.13
nd
nd


25
2
43.5
0.21
65.5
0.17
nd
nd


26
2
63
0.38
77.5
0.12
nd
nd


27
1
21.67

61.5
1105
nd
nd


28
2
49
0.15
70.5
0.2
nd
nd


29
1
81.5
0.00585
93
0.0305
157
100


30
1
16.5

32
4.04
nd
nd


31
1
57.5
1135
79.5
0.13
nd
nd


32
1
77.5
0.0155
93.5
0.00765
6.54
44%@6.81


33
2
31
0.425
16
1.2
nd
nd


34
2
57.5
0.805
41
12420
nd
nd


35
1
91
0.039
98.5
0.00815
0%@100
nd


36
1
73.5
0.023
98.5
0.00805
nd
nd


37
1
34.5
0.26
86.5
0.077
nd
nd


38
1
26
0.15
86
0.045
nd
nd


39
1
84.5
0.027
100.5
0.0048
100%@100
nd


40
1
34.5
0.15
80.5
0.125
nd
nd


41
1
64.5
0.064
83.5
0.078
nd
nd


42
1
63

60

nd
nd


43
1
73
0.00845

0.00805
100%@100
nd


44
1
48
0.085
80.5
0.0115
nd
nd


45
1
61
0.102
85
0.077
nd
nd


46
1
94
0.00235
98
0.0048
3.53
28%@3


47
1
71.5
0.018
80.5
0.0465
5260
nd


48
1
94

99.5

3.36
nd


49
1
92.33
0.0145
98.5
0.00895
nd
nd


50
1
97.5
0.00024
99.5
0.00037
94%@10
nd


51
1
98
0.00145
99
0.0015
nd
nd


52
1
98
0.00052
101.5
0.0006
52.8
nd


53
1
97
0.0017
100
0.00102
63%@1000
nd


54
1
93.5
0.00044
100
0.0004
nd
nd


55
1
43.5
0.105
87
0.047
nd
nd


56
1
89
0.0034
99
0.00175
7.16
nd


57
1
64
0.0715
92
0.037
25%@100
nd


58
1
52.67
0.155
93.5
0.0535
nd
nd


59
1
97
0.00116
99.5
0.00062
nd
nd


60
1
77
0.036
93.5
0.0215
90%@1000
nd


61
1
78
0.02
96.5
0.00715
87%@100
nd


62
1
98
0.00072
99
0.00052
nd
nd


63
1
76
0.0825
90.5
0.0365
nd
nd


64
1
96
0.00205
100.5
0.0013
1.86
nd


65
1
89.5
0.0165
99.5
0.00305
nd
nd


66
1
81.5
0.0185
99.5
0.00545
nd
nd


67
1
92
0.00295
99.5
0.00107
14.6
nd


68
1
97.5
0.00073
100.5
0.00039
nd
nd


69
1
97.5
0.00076
99.5
0.00035
nd
nd


70
1
84.5
0.0305
94.5
0.022
nd
nd


71
1
62.5
0.057
65.5
0.215
nd
nd


72
1
81.5
0.00585
93
0.0305
nd
nd


73
1
43
0.161
58.5
0.275
nd
nd


74
1
80
0.00975
93
0.0065
40%@1000
nd


75
1
97
0.00111
99.5
0.00115
16.2
69%@21.5


76
1
96.5
0.00075
100.5
0.00104
15.2
65%@21.5


77
1
94.5
0.00247
99
0.00165
78.6
nd


78
1
86.5

97.5

nd
nd


79
1
98.5
0.0003
100
0.00036
nd
nd


80
1
60.5
0.24
90
0.0795
nd
nd


81
1
78.5
0.054
92.5
0.064
55%@1000
nd


82
1
90
0.015
97.5
0.00935
0%@100
nd


83
1
97.5
0.00056
99.5
0.0004
8.03
nd


84
1
81
0.0215
95.5
0.0134
nd
nd


85
1
94.5
0.0018
99.5
0.00113
16.3
nd


86
1
95.5
0.00045
101.5
0.00063
4.17
nd


87
1
96
0.00106
100
0.00075
0%@100
nd


88
3
72
0.0735
97.5
0.0125
nd
nd


89
3
89

100

nd
nd


90
1
86.5
0.03
97.5
0.026
nd
nd


91
1
86.5
0.0068
95.5
0.00805
nd
nd


92
3
41395

23
3585
nd
nd


93
3
12
24108
92
0.0265
nd
nd


94
3
35.5
0.8
102.5
0.0053
nd
nd


95
3
46
0.44
96.5
0.0265
nd
nd


96
3
57.5
0.275
103
0.0068
nd
nd


97
3
67.5

94.5

nd
nd


98
3
85
0.019
99.5
0.0096
nd
nd


99
3
67.5
0.028
97
0.0052
100%@100
nd


100
3
45
0.185
86.5
0.052
nd
nd


101
3
82.5
0.011
88.67
0.017
0%@1000
nd


102
3
94.5
0.00435
99.5
0.00465
nd
nd


103
3
79
0.0295
99.5
0.00405
5.43
2.44


104
3
88.5
0.0155
98.5
0.00245
162
107


105
3
90
0.00625
99.5
0.00069
nd
nd


106
1
78
0.62
65.5
1775
nd
nd


107
2
13.5

54.5
0.95
nd
nd


108
1
21.5
0.91
54
0.64
nd
nd


109
2
8

6

nd
nd


110
1
24.5
1.52
43.5
1.21
nd
nd


111
2
0

5

nd
nd


112
1
59.5

54

nd
nd


113
2
38.5
1.34
44
2.54
nd
nd


114
3
30

34
0.71
nd
nd


115
3
28
0.6
65
0.17
nd
nd


116
3
20
1.57
67.5
0.145
nd
nd


117
3
15

31.5
2.55
nd
nd


118
2
6.5

3.5
5.5
nd
nd


119
1
29

23
3.57
nd
nd


120
2
13

31
7.07
nd
nd


121
1
26
1.51
58
0.23
nd
nd


122
2
21

45
0.67
nd
nd


123
1
22
1.88
71.5
0.15
nd
nd


124
1
55
0.089
79.5
0.17
nd
nd


125
1
87
0.0039
98
0.00615
7.09
nd


126
1
97
0.00088
99
0.00185
nd
nd


127
2
30
0.36
25.5
3.97
nd
nd


128
1
98
0.00042
100.5
0.00034
nd
nd


129
2
47
0.022
51.5
0.36667
nd
nd


130
1
90.5
0.00075
99
0.00064
nd
nd


131
2
47
0.22
37
1.18
nd
nd


132
1
91.5
0.00079
99
0.0014
nd
nd


133
2
47.5
0.175
32
1.4
nd
nd


134
1
87

98

100%@100
nd


135
2
47.5
0.195
35.5
1.51
nd
nd


136
1
87.5
0.00135
100
0.00102
nd
nd


137
2
43
0.475
44
0.595
100%@100
nd


138
1
74
0.0215
97
0.00705
30.1
nd


139
2
28.5
0.68
23
3.88
nd
nd


140
2
34
0.235
44
1.25
nd
nd


141
1
90.5
0.0027
97.5
0.0019
4.84
nd


142
1
85
0.00575
94
0.0074
126
96


143
2
33
0.35
24
1.38
nd
nd


144
1
91
0.0041
99.5
0.00205
11.5
64%@21.5


145
2
53
0.0675
77
0.161
nd
nd


146
1
80.5
0.016
94.5
0.03
nd
nd


147
2
46
0.225
50.5
0.59
nd
nd


148
1
78
0.032
91
0.0425
70%@1000
nd


149
2
22.5
0.785
54.5
3.41
nd
nd


150
1
95
0.00205
99
0.0004
90%@10
nd


151
2
63
0.022
95
0.029
nd
nd


152
1
14
1.2
42
0.885
nd
nd


153
2
36.5
0.41
72
0.28
nd
nd


154
2
45
0.19
63.5
0.145
nd
nd


155
1
19
0.79
21.5
2.82
nd
nd


156
2
86
0.006
98
0.0036
nd
nd


157
1
24
0.805
11.5
4.77
nd
nd


158
2
94
0.00056
100
0.00054
nd
nd


159
1
31.5
0.0915
32.5
0.185
nd
nd


160
1
33
0.455
44
1.13
nd
nd


161
1
63
0.345
97
0.0535
nd
nd


162
2
82
0.029
95
0.038
422
nd


163
2
93.5
0.0022
97
0.003
nd
nd


164
1
39
0.28
73
0.365
nd
nd


165
2
96

100

nd
nd


166
1
76
0.101
83
0.17
nd
nd


167
2
97
0.00071
100.67
0.00108
nd
nd


168
1
37.5
0.235
70
2.06
nd
nd


169
2
95.5
0.00103
102
0.0012
nd
nd


170
1
56.5
0.0825
37
0.63
nd
nd


171
2
91
0.0047
99
0.003
26.8
nd


172
1
39.5
0.083
35.5
0.63
nd
nd


173
2
96.5
0.00032
97.5
0.00061
nd
nd


174
1
49.5
0.135
28
1.67
nd
nd


175
2
96
0.00395
99.5
0.0024
55
72%@46.4


176
1
63
0.1045
72
0.175
nd
nd


177
2
97.33
0.00165
99.5
0.0012
100%@100
nd


178
1
82.5
0.0395
96.5
0.0185
nd
nd


179
2
93
0.0067
99
0.0075
nd
nd


180
1
49.5
0.18
66.5
0.3
nd
nd


181
2
77
0.01015
91.5
0.044
nd
nd


182
2
96.5
0.0013
97
0.00075
6.92
nd


183
1
39.5
0.3
23.5
0.795
nd
nd


184
2
97
0.00066
95.5
0.0003
3.25
nd


185
1
49
0.1045
60.5
0.255
nd
nd


186
2
98.5
0.00205
99.5
0.0032
nd
nd


187
1
59
0.34
58.5
41579
nd
nd


188
1
91.5
0.0026
98
0.0026
nd
nd


189
1
77.5
0.0425
93.5
0.036
nd
nd


190
1
57
0.18
85.5
0.049
nd
nd


191
1
93
0.0015
98
0.00195
0%@100
nd


192
1
96
0.0007
97.5
0.00044
nd
nd


193
1
89
0.0097
97
0.0061
nd
nd


194
1
92.5
0.0023
98
0.00135
nd
nd


195
1
93.5
0.0005
99.5
0.00053
100%@100
nd


196
1
71.5

95

nd
nd


197
1
95.5
0.00046
99.5
0.00048
100%@100
nd


198
1
48.5
0.1025
87
0.084
nd
nd


199
1
72
0.073
93
0.03
nd
nd


200
1
89
0.0119
98.5
0.00325
nd
nd


201
1
94
0.0067
97.5
0.0039
0%@100
nd


202
1
88.5
0.0125
98
0.0054
nd
nd


203
1
97.33
0.00127
98
0.00072
nd
nd


204
1
95
0.00063
98
0.00145
nd
nd


205
1
48.5
0.185
82.5
0.0745
nd
nd


206
1
79
0.035
92
0.0255
nd
nd


207
1
94.5
0.00417
99.5
0.00475
nd
nd


208
1
96
0.00205
100
0.00067
nd
nd


209
1
60
0.1125
94
0.0315
nd
nd


210
1
80
0.023
94.5
0.0108
nd
nd


211
1
95.5
0.0053
99.5
0.00073
nd
nd


212
1
82.5
0.01967
99.33
0.00305
nd
nd


213
1
98
0.00034
101.5
0.00072
nd
nd


214
2
41.5
0.23
79.5
0.0645
nd
nd


215
2
42
0.305
59
0.285
nd
nd


216
1
85
0.00955
98.5
0.00615
52%@100
nd


217
1
97
0.00115
100
0.0004
0.7
nd


218
2
50.5
0.185
76.5
0.165
nd
nd


219
2
36
0.315
46
0.945
nd
nd


220
1
99
0.0012
97
0.00041
nd
nd


221
1
96.5
0.002
101
0.0048
nd
nd


222
2
46.5
0.265
62
0.605
nd
nd


223
1
55
0.082
90.5
0.052
nd
nd


224
2
73.5
0.036
97
0.02
nd
nd


225
1
49
0.23
63
0.545
nd
nd


226
1
94
0.0035
98
0.00255
nd
nd


227
1
81.5
0.0165
94
0.0175
nd
nd


228
1
46
0.23
79
0.082
nd
nd


229
1
66
0.025
87
0.0445
nd
nd


230
2
96.5
0.00315
98.5
0.0013
nd
nd


231
1
43
0.18
91.5
0.0585
nd
nd


232
1
97.5
0.00285
97.5
0.0031
nd
nd


233
1
96
0.00225
98.5
0.0013
nd
nd


234
2
81.5
0.0225
99.5
0.00435
nd
nd


235
1
98.5
0.00047
100.5
0.00044
1.44
nd


236
2
91.5
0.016
100
0.00155
nd
nd


237
1
97.5
0.00058
99.5
0.00055
100%@10
nd


238
1
98
0.00095
103
0.00082
nd
nd


239
1
98
0.00083
103.5
0.00069
nd
nd


240
1
45
0.195
91
0.08
nd
nd


241
2
89.5
0.015
99
0.00875
nd
nd


242
1
38.5
0.45
51
0.87
nd
nd


243
1
36
41518
78
0.12
nd
nd


244
2
26
0.255
74.5
0.0985
nd
nd


245
2
59.5
0.115
95
0.066
nd
nd


246
2
40
0.205
87.5
0.034
nd
nd


247
3
91.5
0.01015
98.5
0.00265
100%@100
nd


248
1
90.5
0.00875
100
0.0012
nd
nd


249
1
88
0.0117
99
0.002
nd
nd


250
2
94.5
0.0019
99.5
0.00079
nd
nd


251
2
82
0.0215
87
0.054
nd
nd


252
1
46.5
0.3
37.5
14.305
nd
nd


253
1
97.5
0.00165
98.5
0.0025
nd
nd


254
2
94.5
0.00875
94
0.0185
nd
nd


255
1
37.5
0.26
58.5
4385
nd
nd


256
2
70.5
0.064
97.33
0.00565
nd
nd


257
3
89
0.01365
98
0.0028
nd
nd


258
3
63.5
0.084
97.5
0.00465
nd
nd


259
3
67
0.062
95.5
0.062
nd
nd


260
2
90
0.00865
93.5
0.0535
nd
nd


261
1
42.5
0.395
40
1.4
nd
nd


262
2
98.5
0.00155
98
0.00067
6.6
nd


262
1
50.5
0.245
37
1.51
nd
nd


264
2
96.5
0.00275
98.5
0.0034
36.7
nd


265
3
71
0.029
95.5
0.006
nd
nd


266
3
91
0.00633
100
0.00145
nd
nd


267
3
64
0.039
97.7
0.0016
nd
nd


268
3
76.5
0.093
99
0.01225
nd
nd


269
2
89.5
0.0125
93
0.01005
nd
nd


270
1
33.5
0.31
34
1.16
nd
nd


271
1
54
0.245
53.5
1.41
nd
nd


272
1
91
0.00705
95.5
0.00745
nd
nd


273
3
81

89

nd
nd


274
2
0
0.00745
0
0.002
nd
nd


275
2
92
0.0079
96.5
0.00435
nd
nd


276
2
73.5
0.021
95
0.0165
nd
nd


277
2
91
0.0064
99
0.0008
nd
nd


278
2
88.5
0.0079
99
0.0014
nd
nd


279
2
93
0.01225
98.5
0.0106
nd
nd


280
2
93.5
0.0088
97
0.0076
nd
nd


281
2
75.5
0.0635
99.5
0.0087
nd
nd


282
2
19.5
1.38
67.5
0.295
nd
nd


283
1
91.5
0.031
99.5
0.011
nd
nd


284
1
92.5
0.0195
95.5
0.00765
nd
nd


285
1
95
0.0034
99
0.00255
nd
nd


286
2
88
0.02
99.5
0.0013
nd
nd


287
2
83
0.027
99
0.00105
nd
nd


288
2
87.5
0.00595
98.5
0.0046
nd
nd


289
1
45.5
0.17
69
0.27
nd
nd


290
2
82
0.019
97
0.00565
nd
nd


291
3
0.5
1225
66
0.175
nd
nd


292
3
69
0.163
98
0.0084
nd
nd


293
2
43.5
0.265
92
0.029
nd
nd


294
2
52.5
0.07733
95
0.0275
nd
nd


295
1
89
0.018
98.5
0.00635
nd
nd


296
1
87
0.0111
98
0.0053
nd
nd


297
3
26
0.91
90
0.055
nd
nd


298
3
85
0.0205
98
0.00305
nd
nd


299
1
94.5
0.00395
101
0.06661
nd
nd


300
1
92
0.0073
100
0.00155
nd
nd


301
3
66
0.071
90.5
0.0495
nd
nd


302
3
48
0.1225
83
0.06
nd
nd


303
1
93
0.0051
97.5
0.007
nd
nd


304
1
95
0.00445
99
0.0049
nd
nd


305
1
93
0.00245
99.5
0.00093
nd
nd


306
1
97
0.00114
96.5
0.00057
nd
nd


307
1
14.5
0.535
19
0.54
nd
nd


308
2
92
0.01005
99
0.00155
nd
nd


309
1
94
0.00113
100
0.0015
nd
nd


310
1
52
0.195
29.5
1.03
nd
nd


311
2
95.5
0.0021
98
0.00125
nd
nd


312
1
54.5
0.12
74.5
0.295
nd
nd


313
2
92.5
0.00345
99.5
0.00415
nd
nd


314
1
94
0.0011
100
0.00073
nd
nd


315
1
90
0.01055
100
0.0045
19.4
nd


316
1
10.5
1.23
27
2.15
nd
nd


317
2
92.5
0.0027
99
0.0015
nd
nd


318
2
88.5
0.0092
97.5
0.00715
nd
nd


319
2
91
0.005
96.5
0.005
nd
nd


320
1
93
0.0019
99.5
0.0018
nd
nd


321
1
52
0.086
83
0.1495
nd
nd


322
2
97
0.00165
101
0.00138
nd
nd


323
2
93
0.00275
98
0.00905
nd
nd


324
2
95
0.00135
100
0.0024
nd
nd


325
2
88
0.0084
95
0.013
nd
nd


326
2
96
0.00375
97.5
0.0043
nd
nd


327
1
93
0.00555
101.5
0.00155
nd
nd


328
1
96
0.00325
99
0.0024
nd
nd


329
1
92
0.0088
97.5
0.0059
nd
nd


330
1
24
0.69
60
0.97
nd
nd


331
2
91
0.0076
100
0.00165
nd
nd


332
2
96
0.0018
104
0.0027
nd
nd


333
1
96
0.0055
102.5
0.0024
nd
nd


334
2
95.5
0.0021
101
0.0052
nd
nd


335
2
95.5
0.0015
99
0.0043
nd
nd


336
2
93.5
0.0035
101
0.0014
nd
nd


337
2
91
0.0021
101.5
0.00041
nd
nd


338
1
96.5
0.002
97.5
0.0026
nd
nd


339
1
93
0.0046
101
0.001
nd
nd


340
2
95.5
0.00175
99
0.00285
nd
nd


341
2
90.5
0.00935
99
0.0013
nd
nd


342
1
94
0.0021
99.5
0.0032
nd
nd


343
1
66
0.0595
92
0.024
nd
nd


344
2
95.5
0.00143
99.5
0.00135
nd
nd


345
1
48.5
0.15
90.5
0.0655
nd
nd


346
1
93.5
0.00435
101
0.00165
nd
nd


347
2
95.5
0.013
99
0.0037
nd
nd


348
2
94
0.013
98.5
0.0047
nd
nd


349
2
96.5
0.0018
98
0.0036
nd
nd


350
1
92
0.01
95
0.0019
nd
nd


351
1
93.5
0.0098
98.5
0.0016
nd
nd


352
1
82
0.047
93.5
0.031
nd
nd


353
2
98.5
0.00046
100
0.00098
nd
nd


354
1
99
0.00052
100.5
0.00044
nd
nd


355
1
98.5
0.00047
100
0.00025
nd
nd


356
1
65
0.0855
91.5
0.0235
nd
nd


357
2
98
0.00061
100.5
0.00155
nd
nd


358
1
94
0.0039
98.5
0.0039
nd
nd


359
1
92
0.0076
98
0.0025
nd
nd


360
1
85
0.019
96
0.013
nd
nd


361
1
91
0.0032
99
0.00145
nd
nd


362
1
94.5
0.00086
98.5
0.00083
nd
nd


363
1
95.5
0.00086
101
0.00037
nd
nd


364
1
61.5
0.044
90.5
0.017
nd
nd


365
1
71.5
0.02
89.5
0.0205
nd
nd


366
1
95
0.00064
99.5
0.00135
nd
nd


367
1
66.5
0.0405
98
0.016
nd
nd


368
1
60.5
0.058
96.5
0.01215
nd
nd


369
1
88
0.0115
97.5
0.011
nd
nd


370
2
93.5
0.00053
97.5
0.00043
nd
nd


371
1
96
0.00073
99
0.00106
nd
nd


372
1
95
0.00145
99
0.00125
nd
nd


373
1
93.5
0.00037
100.5
0.00066
nd
nd


374
1
96
0.00038
100.5
0.00057
nd
nd


375
1
77
0.043
99
0.0135
nd
nd


376
2
93
0.00199
99
0.0005
nd
nd


377
2
90
0.0065
99.5
0.00405
nd
nd


378
2
90.5
0.00525
98
0.00615
nd
nd


379
1
58
0.1045
93.5
0.045
nd
nd


380
1
79
0.01685
97.5
0.00635
nd
nd


381
1
74
0.0275
96
0.0195
nd
nd


382
1
87
0.07
99
0.00915
nd
nd


383
1
78.5
0.0865
96
0.0135
nd
nd


384
1
95.5
0.00945
99
0.00165
nd
nd


385
1
74
0.055
99.5
0.00735
nd
nd


386
2
96.5
0.00091
100.5
0.00098
1.45
nd


387
2
97
0.00077
100
0.00067
nd
nd


388
1
76
0.03
97.33
0.00825
nd
nd


389
1
20.5
0.405
90
0.051
nd
nd


390
1
66.5
0.0545
96
0.0195
nd
nd


391
1
23.5
0.355
92
0.037
nd
nd


392
1
42
0.114
96.5
0.00635
nd
nd


393
1
57.5
0.048
98.5
0.00225
nd
nd


394
1
98
0.0015
100
0.00094
nd
nd


395
1
96.5
0.0017
101
0.00056
nd
nd


396
1
37
0.355
97.5
0.0115
nd
nd


397
1
48.5
0.1485
98
0.00525
nd
nd


398
1
55
0.098
99
0.0016
nd
nd


399
1
0

20
5.77
nd
nd


400
2
34
0.825
86
0.0515
nd
nd


401
1
0

23
2.76
nd
nd


402
2
34.5
0.51
89
0.038
nd
nd


403
1
6.5

23.5
4.125
nd
nd


404
2
52.5
0.1385
96.5
0.0063
nd
nd


405
1
99.5
0.00034
101.5
0.00044
nd
nd


406
1
5

31
4.65
nd
nd


407
1

0.135
94.5
0.0099
nd
nd


408
2

0.139
82.5
0.08
nd
nd


409
2

1.27
78.5
0.081
nd
nd


410
1
8

20.5
5.77
nd
nd


411
1

0.1695
93
0.0225
nd
nd


412
1

0.00051
102.5
0.00044
nd
nd


413
2

0.0605
98
0.00345
nd
nd


414
2
67.5
0.0665
83.5
0.0595
nd
nd


415
2
46.5
0.245
81
0.0685
nd
nd


416
2
53
0.165
87.5
0.069
nd
nd


417
2
93.5
0.0022
99.5
0.0004
nd
nd


418
1
72
0.049
99
0.00265
nd
nd


419
1
44.5
0.12
92
0.0385
nd
nd


420
1
92.5
0.00605
100.5
0.0013
nd
nd


421
2
95.5
0.00129
99.5
0.00031
nd
nd


422
1
73.5
0.01125
98.5
0.00265
nd
nd


423
1
72
0.018
98
0.00415
nd
nd


424


425


426


427


428


429


430


431


432


433





nd = not determined


* 1 = polar, 2 = non-polar, 3 = a diastereomer






If the experimental data summarised in the above table give the appearance that individual compounds according to the invention have a comparatively only low receptor affinity, it cannot be concluded from this that these compounds are pharmacologically completely inactive. Rather, these measurement results are connected with the chiefly arbitrarily chosen test concentration of 1 μM. It can be assumed that at a correspondingly higher concentration, e.g. at 10 μM, significantly higher values would also be measured for the receptor affinity.

Claims
  • 1. A compound of formula (1)
  • 2. A compound as claimed in claim 1, wherein Y1′, Y2′, Y3′ and Y4′ each represent —H.
  • 3. A compound as claimed in claim 1, wherein R0 in each case independently represents —C1-8-aliphatic, —C3-12-cycloaliphatic, -aryl, -heteroaryl, —C1-8-aliphatic-C3-12-cycloaliphatic, —C1-8-aliphatic-aryl, —C1-8-aliphatic-heteroaryl, —C3-8-cycloaliphatic-C1-8-aliphatic, —C3-8-cycloaliphatic-aryl or —C3-8-cycloaliphatic-heteroaryl; wherein these are unsubstituted or mono- or polysubstituted by substituents independently of each other chosen from the group consisting of —F, —Cl, —Br, —CN, —CH3, —C2H5, —NH2, —NO2, —SH, —CF3, OH, —OCH3, —OC2H5 and —N(CH3)2.
  • 4. A compound as claimed in claim 1, wherein R3 represents —C1-8-aliphatic, -aryl, -heteroaryl, —C1-3-aliphatic-aryl, —C1-3-aliphatic-heteroaryl or —C1-3-aliphatic-C5-6-cycloaliphatic; wherein these are unsubstituted or mono- or polysubstituted by substituents independently of each other chosen from the group consisting of —F, —Cl, —Br, —CN, —CH3, —C2H5, —NH2, —NO2, —SH, —CF3, OH, —OCH3, —OC2H5 and —N(CH3)2;andX1, X1′, X2, X2′, X3, X3′ in each case independently of each other represent —H, —F, —Cl, —Br, —I, —NO2, —CF3, —OR5, —SR5, —SO2R5, —S(═O)2OR5, —CN, —COOR5, —CONR5, —NR6R7, or —R0; or one of the radicals X1 and X1′ represents H and the other represents —C1-8-aliphatic, —C3-12-cycloaliphatic, -aryl, -heteroaryl, —C1-8-aliphatic-C3-12-cycloaliphatic, —C1-8-aliphatic-aryl, —C1-8-aliphatic-heteroaryl, —C3-8-cycloaliphatic-C1-8-aliphatic, —C3-8-cycloaliphatic-aryl or —C3-8-cycloaliphatic-heteroaryl; wherein these are unsubstituted or mono- or polysubstituted by substituents independently of each other chosen from the group consisting of —F, —Cl, —Br, —CN, —CH3, —C2H5, —NH2, —NO2, —SH, —CF3, OH, —OCH3, —OC2H5 and —N(CH3)2; or X1 and X1′, or X2 and X2′, or X3 and X3′ together represent ═O; or X1 and X1′ together represent C3-6-cycloalkyl, which can be unsubstituted or substituted by one or more substituents independently of each other selected from the group consisting of —F, —Cl, —Br, —I, —OR5, SR5, C1-3-alkyl or —CN.
  • 5. A compound as claimed in claim 1, wherein Y1, Y1′, Y2, Y2′, Y3, Y3′, Y4 and Y4′ each represent —H.
  • 6. A compound as claimed in claim 1, which has formula (3.1)
  • 7. A compound as claimed in claim 1, wherein Y1, Y1′, Y2, Y2′, Y3, Y3′, Y4 and Y4′ each represent —H;X1, X1′, X2, X2′, X3 and X3′ represent H; or X2 and X2′, or X3 and X3′ together represent ═O; or Xi and X1′ together represent a C3-6-cycloalkyl;R0 in each case independently represents —C1-8-aliphatic, —C3-12-cycloaliphatic, -aryl, -heteroaryl, —C1-8-aliphatic-C3-12-cycloaliphatic, —C1-8-aliphatic-aryl, —C1-8-aliphatic-heteroaryl, —C3-8-cycloaliphatic-C1-8-aliphatic, —C3-8-cycloaliphatic-aryl or —C3-8-cycloaliphatic-heteroaryl; wherein these are unsubstituted or mono- or polysubstituted by substituents independently of each other chosen from the group consisting of —F, —Cl, —Br, —CN, —CH3, —C2H5, —NH2, —NO2, —SH, —CF3, OH, —OCH3, —OC2H5 and —N(CH3)2;R1 represents CH3;R2 represents —H or —CH3; orR1 and R2 together form a ring and represent —(CH2)3-4—; andR3 represents —C1-8-aliphatic, -aryl, -heteroaryl, —C1-3-aliphatic-aryl, —C1-3-aliphatic-heteroaryl or —C1-3-aliphatic-C5-6-cycloaliphatic; wherein these are unsubstituted or mono- or polysubstituted by substituents independently of each other chosen from the group consisting of —F, —Cl, —Br, —CN, —CH3, —C2H5, —NH2, —NO2, —SH, —CF3, OH, —OCH3, —OC2H5 and —N(CH3)2;R4 represents H or —Z—R11, whereinZ can be absent or —C(═O)—, andR11 represents —C1-6-alkyl, —C3-6-cycloalkyl or —C1-3-alkyl-C3-6-cycloalkyl, wherein in the C3-6-cycloalkyl group a ring carbon atom can be replaced by an oxygen atom and —C1-6-alkyl, —C3-6-cycloalkyl or —C1-3-alkyl-C3-6-cycloalkyl can be unsubstituted, mono- or polysubstituted with substituents independently of each other selected from the group consisting of —F, —Cl, —Br, —I, —CN, —OH, —SH, —O—C1-3-alkyl and —S—C1-3-alkyl, wherein —C1-3-alkyl can be substituted by one or more substituents from the group consisting of the substituents —F, —Cl, —Br, —I, —CN, —OH and —SH.
  • 8. A compound as claimed in claim 1, wherein R1 and R2 each represent —CH3.
  • 9. A compound as claimed in claim 1, wherein R3 is selected from the group consisting of phenyl, benzyl and 2-thienyl, in each case unsubstituted or mono- or polysubstituted by substituents independently of each other selected from the group consisting of —F, —Cl, —Br, —CN, —CH3, —C2H5, —NH2, —NO2, —SH, —CF3, OH, —OCH3, —OC2H5 and —N(CH3)2.
  • 10. A compound as claimed in claim 1, wherein R4 is selected from the group consisting of H, CH3, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, iso-butyl, t-butyl, n-pentyl, s-pentyl, iso-pentyl,
  • 11. A compound as claimed in claim 1, selected from the group consisting of:
  • 12. A medicament containing at least one compound as claimed in claim 1 in the form of an individual stereoisomer or mixture thereof, the free compound and/or its physiologically acceptable salt and/or solvate, and optionally suitable additives and/or auxiliary substances.
  • 13. A compound as claimed in claim 1 in the form of an individual stereoisomer or mixture thereof, the free compound and/or its physiologically acceptable salt and/or solvate for use in the treatment of pain.
  • 14. A method of treating anxiety states, of stress and syndromes associated with stress, depressions, epilepsy, Alzheimer's disease, senile dementia, general cognitive dysfunctions, learning and memory disorders (as a nootropic), withdrawal symptoms, alcohol and/or drug and/or medicament abuse and/or dependency, sexual dysfunctions, cardiovascular diseases, hypotension, hypertension, tinnitus, pruritus, migraine, impaired hearing, lack of intestinal motility, impaired food intake, anorexia, obesity, locomotor disorders, diarrhoea, cachexia, urinary incontinence or as a muscle relaxant, anticonvulsive or anaesthetic or for co-administration in treatment with an opioid analgesic or with an anaesthetic, for diuresis or antinatriuresis, anxiolysis, for modulation of motor activity, for modulation of neurotransmitter secretion and treatment of neurodegenerative diseases associated therewith, for treatment of withdrawal symptoms and/or for reduction of the addiction potential of opioids comprising administering a therapeutically active dose of the compound of claim 1.
  • 15. The medicament of claim 12, further comprising at least one additional active compound selected from the group consisting of an opioid and an anaesthetic.
Priority Claims (1)
Number Date Country Kind
14002438 Jul 2014 EP regional
US Referenced Citations (27)
Number Name Date Kind
5091567 Geibel et al. Feb 1992 A
5977102 Himmelsbach et al. Nov 1999 A
6573386 Goenczi et al. Jun 2003 B1
7157456 Straub et al. Jan 2007 B2
8093272 Sundermann et al. Jan 2012 B2
8232289 Benito Collado et al. Jul 2012 B2
8288406 Frormann et al. Oct 2012 B2
8357705 Zemolka et al. Jan 2013 B2
8530494 Kyle et al. Sep 2013 B2
8778956 Battista et al. Jul 2014 B2
8877779 Nakano et al. Nov 2014 B2
10030031 Lewis et al. Jul 2018 B2
20020058687 Marfat May 2002 A1
20050187281 Hinze et al. Aug 2005 A1
20050192333 Hinze et al. Sep 2005 A1
20060004034 Hinze et al. Jan 2006 A1
20070117824 Berk et al. May 2007 A1
20070213351 Sundermann et al. Sep 2007 A1
20080221141 Friderichs et al. Sep 2008 A1
20090111842 Merla et al. Apr 2009 A1
20090156593 Zemolka et al. Jun 2009 A1
20090247505 Zemolka et al. Oct 2009 A1
20090247561 Zemolka et al. Oct 2009 A1
20090286833 Oberboersch et al. Nov 2009 A1
20100009986 Zemolka et al. Jan 2010 A1
20100048553 Schunk et al. Feb 2010 A1
20100048554 Schunk et al. Feb 2010 A1
Foreign Referenced Citations (26)
Number Date Country
WO 9732882 Sep 1997 WO
WO 02085838 Oct 2002 WO
WO 2004043967 May 2004 WO
WO 2005063769 Jul 2005 WO
WO 2005066183 Jul 2005 WO
WO 2006018184 Feb 2006 WO
WO 2006031610 Mar 2006 WO
WO 2006034015 Mar 2006 WO
WO 2006108565 Oct 2006 WO
WO 2007019987 Feb 2007 WO
WO 2007030061 Mar 2007 WO
WO 2007070826 Jun 2007 WO
WO 2007079930 Jul 2007 WO
WO 2007124903 Nov 2007 WO
WO 2007127763 Nov 2007 WO
WO 2008009415 Jan 2008 WO
WO 2008009416 Jan 2008 WO
WO 2008034731 Mar 2008 WO
WO 2008036755 Mar 2008 WO
WO 2 0081 01 66 Aug 2008 WO
WO 2008101659 Aug 2008 WO
WO 2008129007 Oct 2008 WO
WO 2009111056 Sep 2009 WO
WO 2009118169 Oct 2009 WO
WO 2009118173 Oct 2009 WO
WO 2013057320 Apr 2013 WO
Non-Patent Literature Citations (37)
Entry
Cecil Textbook of Medicine, 20th edition (1996), vol. 2, pp. 2050-2057.
Cecil Textbook of Medicine, 20th edition (1996), vol. 2, pp. 1992-1996.
FDA mulls drug to slow late-stage Alzheimer's [online], [retrieved on Sep. 23, 2003]. Retrieved from the Internet, URL; http://www.cnn.com/2003/Health/conditions/09/24/alzheimers.drug.ap/indexhtml>.
Eberhard Reimann et al., Pethidine Analogs with Restricted Conformation, III1): Stereoselective Synthesis and Pharmacological Examination of trans-3-Methyl-10b-carb-ethoxy-1,2,3,4,4a,5,6, 10b-octahydrobenzo(f)isoquinoline, Arch. Pharm. (Weinheim), vol. 321, May 31, 1988, with partial English translation, pp. 935-941.
Istvám E. Markó et al., Cer(IV)-katalysierte Hydrolyse von Acetalen and Ketalen unter schwach basischen Bedingungen, Angew. Chem., vol. 111, 1999, pp. 3411-3413.
Ali Ates et al., Mild and chemoselective catalytic deprotection of ketals and acetals using cerium (IV) ammonium nitrate, Tetrahedron, 2003, vol. pp. 8989-8999.
Bruce H. Lipshutz et al., Pd(II) Catalyzed Acetal/Ketal Hydrolysis/Exchange Reactions, Tetrahedron Letters, 1985, vol. 26, No. 6, pp. 705-708.
Enrico Macantoni et al., Cerium(III) Chloride, a Novel Reagent for Nonaqueous Selective Conversion of Dioxolanes to Carbonyl Compounds, J. Org. Chem., 1997, vol. 62, pp. 4183-4184.
Swapan Majumdar et al., Thiourea: A Novel Cleaving Agent for 1,3-Dioxolanes, J. Org. Chem. 1999, vol. 64, pp. 5682-5685.
Daniela Alberati et al., 4-Substituted-8-(1-phenyl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one as a novel class of highly selective GlyT1 inhibitors with superior pharmacological and pharmacokinetic parameters, Bioorganic & Medicinal Chemistry Letters 16, 2000, pp. 4321-4325.
Jun Wang et al., Discovery of Spiro-Piperidine Inhibitors and Their Modulation of the Dynamics of the M2 Proton Channel from Influenza A Virus, J. Am. Chem. Soc., vol. 131, No. 23, 2009, pp. 8066-8076.
Kalpana Bhandari et al., A convenient method for the reduction of amides to their corresponding amines, Chemistry & Industry, Sep. 3, 1990, pp. 547-548.
Robert O. Hutchins et al., Tetraalkylammonium Trihydridocyanoborates. Versatile, Selective Reagents for Reductive Aminations in Nonpolar Media, J. Org. Chem. 1981, vol. 46, pp. 3571-3574.
Despina Setaki et al., Synthesis, Conformational characteristics and anti-influenza virus a activity of some 2-adamantylsubstituted azacycles, Bioorganic Chemistry, vol. 34, 2006, pp. 248-273.
George Stamatiou et al., Novel 3-(2-Adamantyl)pyrrolidines with Potent Activity Against Influenza A Virus-Identification of Aminoadamantane Derivatives Bearing Two Pharmacophoric Amine Groups, Bioorganic & Medicinal Chemistry Letters, vol. 11, 2001, pp. 2137-2142.
Gary H. Posner et al., Nitroolefins in One-Flask, Tandem, A+B+C Coupling Reactions Producing Heterocycles, Tetrahedron, vol. 46, No. 21, 1990, pp. 7509-7530.
Rebecca J. Flintoft et al., Alkylation of Ketone and Ester Lithium Enolates with Nitroethylene, Tetrahedron Letters, vol. 40, 1999, pp. 4485-4488.
Eva A. Krafft et al., A Straightforward and Efficiently Scaleable Synthesis of Novel Racemic 4-Substituted-2,8-diazaspiro[4.5]decan-1-one Derivatives, Synthesis, 2005, No. 19, pp. 3245-3252.
Daan van Leusen et al., Synthetic Uses of Tosylmethyl Isocyanide (TosMIC), Organic Reactions, vol. 57, 2001, pp. 417-489 and 659-679.
Gavin A. Whitlock, Novel 2-imidazoles as potent and selective α1A adrenoceptor partial agonists, Bioorganic & Medicinal Chemistry Letters, vol. 18, 2008, pp. 2930-2934.
Detlef Geffken et al., Synthesis and Properties of 2-Hydroxy Carbohydroximic Esters, Arch. Pharm. (Weinheim) vol. 321, 1988, with partial English translation, pp. 45-49.
Olof Lagerlund et al., Aminocarbonylations of alkenyl phosphates, chlorides, bromides, and triflates with Mo(CO)6 as a solid CO source, Tetrahedron, vol. 65, 2009, pp. 7646, 7652.
A. I. Meyers et al., the Synthesis of Chiral α,β-Unsaturated and Aryl Oxazolines From Ketones and Arols Via Their Triflates and Pd-Catalyzed CO and Amino Alcohol Coupling., Tetrahedron Letters, vol. 33, No. 9, 1992, pp. 1181-1184.
Margaretha Van der Mey et al., Novel Selective PDE4 Inhibitors. 3. In Vivo Antiinflammatory Activity of a New Series of N-Substituted cis-Tetra- and cis-Hexahydrophthalazinones, J. Med. Chem., vol. 45, 2002, pp. 2520-2525.
Thomas J. Murray et al., Synthesis of Heterocyclic Compounds Containing Three Contiguous Hydrogen Bonding Sites in All Possible Arrangements, Tetrahedron, vol. 51, No. 2, 1995, pp. 635-648.
W. S. Wadsworth, Jr. et al., Ethyl Cyclohexylideneacetate, Organic Syntheses, Coll. Vo. 5, p. 547, 1973; vol. 45, p. 44, 1965 (four (4) pages).
Justin S. Bryans et al., Identification of Novel Ligands for the Gabapentin Binding Site on the α2δ Subunit of a Calcium Channel and Their Evaluation as Anticonvulsant Agents, J. Med. Chem., vol. 41, 1998, pp. 1838-1845.
Ali Ardati et al., Interaction of[3H]Orphanin FQ and 125I-Tyr14-Orphanin FQ with the Orphanin FQ Receptor: Kinetics and Modulation by Cations and Guanine Nucleotides, Molecular Pharmacology, vol. 51, 1997, pp. 816-824.
Fred E. D'Amour et al., A Method for Determining Loss of Pain Sensation, The Biologic Research Laboratory, university of Denver, Jan. 27, 1941, pp. 74-79.
Sun Ho Kim et al., An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat, Pain, vol. 50, 1992, pp. 355-363.
Paul R. Halfpenny et al., Highly Selective K-Opioid Analgesics. 3. Synthesis and Structure-Activity Relationships of Novel N-[2-(1-Pyrrolidinyl)-4- or -5-substituted-cyclohexyl]arylacetamide Derivatives, Journal of Medicinal Chemistry, vol. 33, No. 1, 1990, XP2952674A, pp. 286-291.
Girolamo Calo et al., “Pharmacology of Nociceptin and Its Receptor : A Novel Theraputic Target”, British Journal of Pharmacology, 2000, pp. 1261-1283, vol. 129, Macmillan Publishers Ltd.
Miyuki Nishi et al., “Unrestrained Nociceptive Response and Disregulation of Hearing Ability in Mice Lacking the Nonciceptin/OrphaninFQ Recptor”, The EMBO Journal, 1997, pp. 1858-1864, vol. 16, No. 8, Oxford University Press.
Toshiya Manabe et al., “Facilitation of Long-term Potentiation and Memory in Mice Lacking Nociceptin Receptors”, Nature, Aug. 6. 1998, vol. 394, Macmillan Publishers Ltd.
International Search Report (PCT/ISA/210) issued in PCT Application No. PCT/EP2015/001445 dated Sep. 28, 2015 (Three (3) pages).
Written Opinion (PCT/ISA/237) issued in PCT Application No. PCT/EP2015/001445 dated Sep. 28, 2015 (Five (5) pages).
V. Craig Jordan, “Tamoxifen: A Most Unlikely Pioneering Medicine”, Nature Reviews: Drug Discovery, 2003, vol. 2, No. 3, pp. 205-213.
Related Publications (1)
Number Date Country
20160016903 A1 Jan 2016 US