This invention relates to compounds for treating multidrug resistance and methods for their preparation and use. More particularly, this invention relates to substituted heterocyclic compounds that regulate the cellular transport proteins P-glycoprotein and MRP1, which are the proteins believed to be largely responsible for causing multidrug resistance in cancer patients.
“Drug resistance” means a circumstance when a disease (e.g., cancer) does not respond to a therapeutic agent. Drug resistance can be intrinsic, which means that the disease has never been responsive to the therapeutic agent, or acquired, which means that the disease ceases responding to the agent or agents to which the disease had previously been responsive. “Multidrug resistance” is a type of drug resistance wherein a disease is resistant to a variety of drugs that can be functionally unrelated, structurally unrelated, or both. Multidrug resistance is a problem associated with cancer and other conditions, such as bacterial, viral, protozoal, and fungal diseases.
One cause of multidrug resistance in cancer patients is that many cancer cells express high levels of the transmembrane transport proteins, such as Pleiotropic-glycoprotein (also known as Pgp, P-glycoprotein, gp-170, or MDR1) and MRP1 (see Borst, P., “Multidrug resistance: A solvable problem?” Annals of Oncology, 10, suppl. 4, pp. S162-S164 (1999)). In adenosine-triphosphate driven processes, these transport proteins export hydrophobic compounds (such as vinblastine, daunorubicin, doxorubicin, etoposide, vincristine, and TAXOL®, which are cytotoxic drugs useful for treating cancer) from the cell in an effort to protect the cell from harm. The transport proteins remove the compounds from the cell prior to their having a lethal effect on the cell (see Legrand, et. al, “Simultaneous Activity of MRP1 and Pgp Is Correlated With In Vitro Resistance to Daunorubicin and With In Vivo Resistance in Adult Acute Myeloid Leukemia”, Blood, Vol. 94, No. 3, pp. 1046-1056 (1999); and Zhu, B. T.; “A Novel Hypothesis for the Mechanism of Action of P-glycoprotein as a Multidrug Transporter,” Molecular Carcinogenesis 25, pp. 1-14 (1999)). Although it is not currently known which of these two classes of proteins is more important for multidrug resistance, and indeed it may be that the class (or classes) of protein which is important depends on the type of cancer and the particular drug or drugs used to treat the cancer, Pgp is known to be highly expressed in approximately 50% of human cancers which require drug therapy. Consequently, Pgp is believed to be a major cause of multidrug resistance.
Other types of multidrug resistance, such as antibacterial, antiviral, and antifungal multidrug resistance may also be caused by the action of transport proteins that are similar to Pgp, and others (see “Annual Reports on Medicinal Chemistry—33; Section III Cancer and Infectious Diseases” ed. Plattner, J., Academic Press, Ch. 12, pp. 121-130 (1998)).
Furthermore, Pgp is also expressed at high levels in the gastrointestinal tract, liver, kidneys, and brain, and therefore Pgp represents a major pharmacological barrier to the bioavailability of many drugs (see Amudkar, et. al in “Biochemical, Cellular, and Pharmacological Aspects of the Multidrug Transporter,” Annu. Rev. Pharmacol. Toxicol., 39, pp. 361-398 (1999)). For example, the oral bioavailability of many nutrients and drugs is negatively affected by the action of Pgp present in the gastrointestinal tract. “Oral bioavailability” means the ability of a drug or nutrient that is administered orally to be transported across the gastrointestinal tract and enter into the bloodstream. In addition, penetration of many drugs through the blood-brain barrier is adversely affected by Pgp.
This invention relates to novel compounds useful in treating or preventing multidrug resistance (“MDR”). More specifically, these compounds are useful in treating or preventing P-glycoprotein-mediated MDR and MRP1-mediated MDR. This invention further relates to compositions comprising these compounds. This invention further relates to methods for the preparation and use of the compounds and compositions. The compounds and compositions of this invention are well suited for treatment of multidrug resistant cells, for prevention of the development of multidrug resistance, and for use in multidrug resistant chemotherapies.
Publications and patents are referred to throughout this disclosure. All U.S. Patents cited herein are hereby incorporated by reference.
All percentages, ratios, and proportions used herein are by weight unless otherwise specified.
The following is a list of definitions, as used herein.
“Aromatic group” means a group having a monocyclic or polycyclic ring structure. Monocyclic aromatic groups contain 4 to 10 carbon atoms, preferably 4 to 7 carbon atoms, and more preferably 4 to 6 carbon atoms in the ring. Preferred polycyclic ring structures have two or three rings. Polycyclic structures having two rings typically have 8 to 12 carbon atoms, preferably 8 to 10 carbon atoms in the rings. Polycyclic aromatic groups include groups wherein at least one, but not all, of the rings are aromatic.
“Carbocyclic group” means a saturated or unsaturated hydrocarbon ring. Carbocyclic groups are not aromatic. Carbocyclic groups are monocyclic or polycyclic. Polycyclic carbocyclic groups can be fused, spiro, or bridged ring systems. Monocyclic carbocyclic groups contain 4 to 10 carbon atoms, preferably 4 to 7 carbon atoms, and more preferably 5 to 6 carbon atoms in the ring. Bicyclic carbocyclic groups contain 8 to 12 carbon atoms, preferably 9 to 10 carbon atoms in the rings.
“Carrier” means one or more substances that are suitable for administration to a subject (i.e., mammal) and that can be combined with the active compound according to this invention. Carrier includes solid and liquid diluents, hydrotropes, surface-active agents, and encapsulating substances.
“Chemosensitizing agent” means a noncytotoxic compound that sensitizes drug resistant cells to the action of cytotoxic drugs. As used in this application, the term “chemosensitizing agent”, excludes the active compounds of this invention.
“Halogen atom” means F, Cl, Br, or I.
“Heteroaromatic group” means an aromatic group containing carbon and 1 to 4 heteroatoms in the ring. Monocyclic heteroaromatic groups contain 4 to 10 member atoms, preferably 4 to 7 member atoms, and more preferably 4 to 6 member atoms in the ring. Preferred polycyclic ring structures have two or three rings. Polycyclic structures having two rings typically have 8 to 12 member atoms, preferably 8 to 10 member atoms in the rings. Polycyclic heteroaromatic groups include groups wherein at least one, but not all, of the rings are heteroaromatic.
“Heteroatom” means an atom other than carbon e.g., in the ring of a heterocyclic group or the chain of a heterogeneous group. Preferably, heteroatoms are selected from the group consisting of sulfur, phosphorous, nitrogen and oxygen atoms. Groups containing more than one heteroatom may contain different heteroatoms.
“Heterocyclic group” means a saturated or unsaturated ring structure containing carbon atoms and 1 or more heteroatoms in the ring. Heterocyclic groups are not aromatic. Heterocyclic groups are monocyclic or polycyclic. Polycyclic heteroaromatic groups can be fused, spiro, or bridged ring systems. Monocyclic heterocyclic groups contain 4 to 10 member atoms (i.e., including both carbon atoms and at least 1 heteroatom), preferably 4 to 7, and more preferably 5 to 6 in the ring. Bicyclic heterocyclic groups contain 8 to 18 member atoms, preferably 9 or 10 in the rings.
“Heterogeneous group” means a saturated or unsaturated chain of non-hydrogen member atoms comprising carbon atoms and at least one heteroatom. Heterogeneous groups typically have 1 to 25 member atoms. Preferably, the chain contains 1 to 12 member atoms, more preferably 1 to 10, and most preferably 1 to 6. The chain may be linear or branched. Preferred branched heterogeneous groups have one or two branches, preferably one branch. Preferred heterogeneous groups are saturated. Unsaturated heterogeneous groups have one or more double bonds, one or more triple bonds, or both. Preferred unsaturated heterogeneous groups have one or two double bonds or one triple bond. More preferably, the unsaturated heterogeneous group has one double bond.
“Hydrocarbon group” means a chain of 1 to 25 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 10 carbon atoms, and most preferably 1 to 8 carbon atoms. Hydrocarbon groups may have a linear or branched chain structure. Preferred hydrocarbon groups have one or two branches, preferably 1 branch. Preferred hydrocarbon groups are saturated. Unsaturated hydrocarbon groups have one or more double bonds, one or more triple bonds, or combinations thereof. Preferred unsaturated hydrocarbon groups have one or two double bonds or one triple bond; more preferred unsaturated hydrocarbon groups have one double bond.
“IC50” means concentration of drug required to produce a 50% inhibition of growth of cancer cells or 50% inhibition of activity.
“MDR” means multidrug resistance.
“Parenteral” as used herein includes subcutaneous, intravenous, intramuscular, intraarticular, intrasynovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques.
“Pgp” means P-glycoprotein.
“Pharmaceutically acceptable” means suitable for use in a human or other mammal.
“Protecting group” is a group that replaces the active hydrogen of a —OH, —COOH, or —NH2 moiety thus preventing undesired side reaction at the moiety. Use of protecting groups in organic synthesis is well known in the art. Examples of protecting groups are found in Protecting Groups in Organic Synthesis by Greene, T. W. and Wuts, P. G. M., 2nd ed., Wiley & Sons, Inc., 1991. Preferred protecting groups for hydroxyl moieties include silyl ethers, alkoxymethyl ethers, tetrahydropyranyl, tetrahydrofuranyl, esters, and substituted or unsubstituted benzyl ethers. Other preferred protecting groups include carbamates.
“Subject” means a living vertebrate animal such as a mammal (preferably human).
“Substituted aromatic group” means an aromatic group wherein 1 or more of the hydrogen atoms bonded to carbon atoms in the ring have been replaced with other substituents. Preferred substituents include hydrocarbon groups such as methyl groups and heterogeneous groups including alkoxy groups such as methoxy groups. The substituents may be substituted at the ortho, meta, or para position on the ring, or any combination thereof.
“Substituted carbocyclic group” means a carbocyclic group wherein 1 or more hydrogen atoms bonded to carbon atoms in the ring have been replaced with other substituents. Preferred substituents include hydrocarbon groups such as alkyl groups (e.g, methyl groups) and heterogeneous groups such as alkoxy groups (e.g., methoxy groups).
“Substituted heteroaromatic group” means a heteroaromatic group wherein 1 or more hydrogen atoms bonded to carbon atoms in the ring have been replaced with other substituents. Preferred substituents include monovalent hydrocarbon groups including alkyl groups such as methyl groups and monovalent heterogeneous groups including alkoxy groups such as methoxy groups.
“Substituted heterocyclic group” means a heterocyclic group wherein 1 or more hydrogen atoms bonded to carbon atoms in the ring have been replaced with other substituents. Preferred substituents include monovalent hydrocarbon groups including alkyl groups such as methyl groups and monovalent heterogeneous groups including alkoxy groups such as methoxy groups. Substituted heterocyclic groups are not aromatic.
“Substituted heterogeneous group” means a heterogeneous group, wherein 1 or more of the hydrogen atoms bonded to carbon atoms in the chain have been replaced with other substituents. Preferred substituents include monovalent hydrocarbon groups including alkyl groups such as methyl groups and monovalent heterogeneous groups including alkoxy groups such as methoxy groups.
“Substituted hydrocarbon group” means a hydrocarbon group wherein 1 or more of the hydrogen atoms bonded to carbon atoms in the chain have been replaced with other substituents. Preferred substituents include monovalent aromatic groups, monovalent substituted aromatic groups, monovalent hydrocarbon groups including alkyl groups such as methyl groups, monovalent substituted hydrocarbon groups such as benzyl, and monovalent heterogeneous groups including alkoxy groups such as methoxy groups.
“Substrate potential” means the likelihood that a compound for use in treating multidrug resistance will be transported out of a cell by cellular transport proteins before effectively preventing or reversing multidrug resistance.
“Transport protein” means a protein that acts to remove cytotoxic substances from cells through the cell membrane. Transport protein includes P-glycoprotein, MRP1, and others.
“Treating multidrug resistance” means preventing multidrug resistance from developing in nonresistant cells, increasing or restoring sensitivity of multidrug resistant cells to therapeutic or prophylactic agents, or both.
“Treating” means 1) preventing a disease (i.e., causing the clinical symptoms of the disease not to develop), 2) inhibiting the disease (i.e., arresting the development of clinical symptoms of the disease), 3) relieving the disease (i.e., causing regression of the clinical symptoms), and combinations thereof.
“Wax” means a lower-melting organic mixture or compound of high molecular weight, solid at room temperature and generally similar in formulation to fats and oils except that they contain no glycerides.
The active compounds of this invention are heterocyclic compounds. The active compounds have the general structure:
Groups A1 and A2 are each independently selected from the group consisting of a hydrogen atom and a group of the formula
with the proviso that A1 and A2 are not both hydrogen atoms and denotes a point of attachment.
Each R1 is independently selected from the group consisting of a hydrogen atom, a hydroxyl group, a hydrocarbon group, a substituted hydrocarbon group, a heterogeneous group, a substituted heterogeneous group, a carbocyclic group, a substituted carbocyclic group, a heterocyclic group, a substituted heterocyclic group, an aromatic group, a substituted aromatic group, a heteroaromatic group, and a substituted heteroaromatic group. R1 is preferably a hydrogen atom or a hydroxyl group. In group A1, R1 is preferably a hydrogen atom.
The subscript x is 0 to about 10, preferably 0 to about 1.
R2 is selected from the group consisting of a hydrocarbon group, a substituted hydrocarbon group, a heterogeneous group, a substituted heterogeneous group, a carbocyclic group, a substituted carbocyclic group, a heterocyclic group, a substituted heterocyclic group, an aromatic group, a substituted aromatic group, a heteroaromatic group, and a substituted heteroaromatic group. R2 is preferably selected from the group consisting of a hydrocarbon group, a substituted hydrocarbon group, a heterogeneous group, a substituted heterogeneous group, an aromatic group, a substituted aromatic group, a heteroaromatic group, and a substituted heteroaromatic group. More preferably, R2 is a substituted hydrocarbon group or a substituted heterogeneous group, wherein said group is substituted with a group selected from the group consisting of an aromatic group, a substituted aromatic group, a heteroaromatic group, and a substituted heteroaromatic group.
In a preferred embodiment of the invention, R2 is selected from the group consisting of:
wherein a is at least about 2, b is at least about 2, c is about 1 to about 3, and d is about 1 to about 3. Preferably, a and b are each about 3 to about 10. More preferably, a and b are each about 3.
R12 and R13 are each independently selected from the group consisting of hydrocarbon groups and substituted hydrocarbon groups. Preferably, R12 and R13 are substituted hydrocarbon groups such as alkoxy groups. Preferred alkoxy groups include methoxy, ethoxy, propoxy, and butoxy.
Each R14 is independently selected from the group consisting of CH and a heteroatom. Preferably, the heteroatom is nitrogen. More preferably, each R14 is CH.
Groups D1 and D2 are each independently selected from the group consisting of —C(O)— and —NR3—,
Preferably, y is 0 and z is 1.
In one embodiment of the invention, R2 and R3 are bonded together and the ring structure has 5 to 6 members. Preferably, the ring structure formed by R2 and R3 is a substituted heterocyclic group, wherein the substituted heterocyclic group is substituted with a group selected from the group consisting of an aromatic group; a substituted aromatic group; a heteroaromatic group; a substituted heteroaromatic group; a substituted hydrocarbon group, wherein the substituted hydrocarbon group is substituted with a group selected from the group consisting of an aromatic group, a substituted aromatic group, a heteroaromatic group, and a substituted heteroaromatic group; and a substituted heterogeneous group, wherein the substituted heterogeneous group is substituted with a group selected from the group consisting of an aromatic group, a substituted aromatic group, a heteroaromatic group, and a substituted heteroaromatic group.
In a preferred embodiment of the invention, D1 is —C(O)— and D2 is —NR3—. In this embodiment, preferably R3 is selected from the group consisting of a hydrogen atom and a hydrocarbon group.
In an alternative embodiment of the invention, D1 is —C(O)—, y is 1, and z is 0.
In an alternative embodiment of the invention, D1 is —NR3— and D2 is —C(O)—. In this embodiment, preferably R3 is selected from the group consisting of a hydrogen atom and a hydrocarbon group.
A3 has the formula
wherein t is 0 to about 6, preferably 0 to about 2.
Group D4 is selected from the group consisting of —C(O)— and —CH(R1)—. D4 is preferably —CH(R1)—.
Group D5 is selected from the group consisting of —NR6(R7), —OrR6, and —C(O)R6,
D5 is preferably —OrR6, and R6 is preferably selected from the group consisting of an aromatic group, a substituted aromatic group, a heteroaromatic group, and a substituted heteroaromatic group. R6 is more preferably selected from the group consisting of a heteroaromatic group and a substituted heteroaromatic group. R6 is most preferably a heteroaromatic group. Preferred heteroaromatic groups for R6 have the formula:
wherein each X is independently selected from the group consisting of CH and a heteroatom, with the proviso that at least one X is a heteroatom. The heteroatom is preferably nitrogen. Preferably, one X is a heteroatom. Examples of heteroaromatic groups for X include quinolyl and isoquinolyl groups. Preferred quinolyl groups for X include 4-quinolyl, 5-quinolyl, 6-quinolyl, 7-quinolyl, and 8-quinolyl. More preferably, X is 5-quinolyl.
In a preferred embodiment of the invention, D4 is —C(O)—, t is 0, and D5 is —C(O)R6.
In an alternative preferred embodiment of the invention, D4 is —C(O)— and D5 is —OrR6.
In an alternative preferred embodiment of the invention, D4 is —CH(R1)— and D5 is —OrR6.
In an alternative preferred embodiment of the invention, D4 is —CH(R1)— and D5 is —NR6(R).
In an alternative preferred embodiment of the invention, D4 is —C(O)— and D5 is —NR6(R7).
Group A4 is a heterocyclic group having 4 to 9 member atoms. Preferably, A4 has 4 to 6 member atoms, most preferably 5 or 6 member atoms.
Alternatively, the compound may be an optical isomer, a diastereomer, an enantiomer, a pharmaceutically-acceptable salt, a biohydrolyzable amide, a biohydrolyzable ester, and a biohydrolyzable imide of the structure, or combinations thereof.
Examples of compounds having the structure above are shown in Table 1.
In Table 1 “Me” represents a methyl group.
The active compound of this invention inhibits at least one transport protein. The active compound preferably inhibits Pgp or MRP1. More preferably, the active compound inhibits both Pgp and MRP1. In a preferred embodiment of this invention, the active compound inhibits Pgp and has low substrate potential for Pgp. In an alternative preferred embodiment, the active compound inhibits MRP1 and has low substrate potential for MRP1. In the most preferred embodiment of this invention, the active compound inhibits both Pgp and MRP1 and the active compound has low substrate potential for both Pgp and MRP1.
The degree to which a compound inhibits a transport protein can be measured by quantitating the effectiveness of the compound toward restoring drug sensitivity to multidrug resistant cells. Methods for quantitating the effectiveness of the active compounds toward restoring drug sensitivity are readily available to one skilled in the art without undue experimentation (see U.S. Pat. Nos. 5,935,954 and 5,272,159, which are hereby incorporated by reference for the purpose of disclosing these methods). Any assay known to measure the restoration of the anti-proliferative activity of a drug may be employed to test the compounds of this invention. These assays use cell lines resistant to particular drugs, and characterized by the presence of one or both of Pgp and MRP1. These cell lines include L1210, HL60, P388, CHO, and MCF7. Alternatively, resistant cell lines can be developed by methods readily available to one of ordinary skill in the art without undue experimentation (see Chaudhary, et al., “Induction of Multidrug Resistance in Human Cells by Transient Exposure to Different Chemotherapeutic Agents,” Journal of the National Cancer Institute, Vol. 85, No. 8, pp. 632-639 (1993)). The cell line is then exposed to compounds of this invention in the presence or absence of the drug to which it is resistant, such as TAXOL®. The viability of the cells treated with both the active compound and the drug can then be compared to the viability of the cells treated only with the drug.
The active compound preferably also has low substrate potential for Pgp or MRP1. More preferably, the active compound has low substrate potential for both Pgp and MRP1. Substrate potential for a transport protein can be determined by using an assay for measuring ATPase activity of the Pgp or MRP1 pumps (see, for example, Reference Example 4, below).
Methods for quantitating accumulation of the active compounds are readily available to one skilled in the art without undue experimentation (see U.S. Pat. No. 5,272,159 which is hereby incorporated by reference for the purpose of disclosing assays for quantitating accumulation). These assays use cell lines resistant to particular chemotherapeutic agents, and characterized by the presence of one or both of Pgp and MRP1. The cell line is exposed to a labeled form of the active compound (e.g., radioactivity or fluorescence labeling) and the accumulation of the active compound is monitored over time. The amount of active compound accumulated in the cell can be compared with a compound which is readily transported by these proteins, e.g. labeled TAXOL®.
This invention further relates to a composition. The composition can be used for treating various conditions or disease states. The composition is preferably a pharmaceutical composition administered for treatment or prevention of multidrug resistance. Standard pharmaceutical formulation techniques are used, such as those disclosed in Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa. (1990) and U.S. Pat. No. 5,091,187, which is hereby incorporated by reference.
The composition comprises component (A) the active compound described above and component (B) a carrier. The composition may further comprise component (C) an optional ingredient, such as a therapeutic agent.
Component (B) is a carrier. A carrier is one or more compatible substances that are suitable for administration to a mammal. “Compatible” means that the components of the composition are capable of being commingled with component (A), and with each other, in a manner such that there is no interaction which would substantially reduce the efficacy of the composition under ordinary use situations. Carriers must be of sufficiently high purity and sufficiently low toxicity to render them suitable for administration to the mammal being treated. The carrier can be inert, or it can possess pharmaceutical benefits, cosmetic benefits, or both, depending on the intended use as described herein.
The choice of carrier for component (B) depends on the route by which component (A) will be administered and the form of the composition. The composition may be in a variety of forms, suitable, for example, for systemic administration (e.g., oral, rectal, nasal, sublingual, buccal, or parenteral) or topical administration (e.g., local application on the skin, ocular, liposome delivery systems, or iontophoresis).
Carriers for systemic administration typically comprise one or more ingredients selected from the group consisting of a) diluents, b) lubricants, c) binders, d) disintegrants, e) colorants, f) flavors, g) sweeteners, h) antioxidants, j) preservatives, k) glidants, m) solvents, n) suspending agents, o) surfactants, combinations thereof, and others.
Ingredient a) is a diluent. Suitable diluents include sugars such as glucose, lactose, dextrose, and sucrose; polyols such as propylene glycol; calcium carbonate; sodium carbonate; glycerin; mannitol; sorbitol; and maltodextrin. The amount of ingredient a) in the composition is typically about 1 to about 99%.
Ingredient b) is a lubricant. Suitable lubricants are exemplified by solid lubricants including silica, talc, stearic acid and its magnesium salts and calcium salts, calcium sulfate; and liquid lubricants such as polyethylene glycol and vegetable oils such as peanut oil, cottonseed oil, sesame oil, olive oil, corn oil, and oil of theobroma. The amount of ingredient b) in the composition is typically about 1 to about 99%.
Ingredient c) is a binder. Suitable binders include polyvinylpyrrolidone; magnesium aluminum silicate; starches such as corn starch and potato starch; gelatin; tragacanth; and cellulose and its derivatives, such as sodium carboxymethylcellulose, ethylcellulose, methylcellulose, microcrystalline cellulose, and hydroxypropylmethylcellulose; carbomer; providone; acacia; guar gum; and xanthan gum. The amount of ingredient c) in the composition is typically about 1 to about 99%.
Ingredient d) is a disintegrant. Suitable disintegrants include agar, alginic acid and the sodium salt thereof, effervescent mixtures, croscarmelose, crospovidone, sodium carboxymethyl starch, sodium starch glycolate, clays, and ion exchange resins. The amount of ingredient d) in the composition is typically about 1 to about 99%.
Ingredient e) is a colorant such as an FD&C dye. The amount of ingredient e) in the composition is typically about 1 to about 99%.
Ingredient f) is a flavor such as menthol, peppermint, and fruit flavors. The amount of ingredient f) in the composition is typically about 1 to about 99%.
Ingredient g) is a sweetener such as saccharin and aspartame. The amount of ingredient g) in the composition is typically about 1 to about 99%.
Ingredient h) is an antioxidant such as butylated hydroxyanisole, butylated hydroxytoluene, and vitamin E. The amount of ingredient h) in the composition is typically about 1 to about 99%.
Ingredient j) is a preservative such as phenol, alkyl esters of parahydroxybenzoic acid, benzoic acid and the salts thereof, boric acid and the salts thereof, sorbic acid and the salts thereof, chorbutanol, benzyl alcohol, thimerosal, phenylmercuric acetate and nitrate, nitromersol, benzalkonium chloride, cetylpyridinium chloride, methyl paraben, ethyl paraben, and propyl paraben. Particularly preferred are the salts of benzoic acid, cetylpyridinium chloride, methyl paraben and propyl paraben, and sodium benzoate. The amount of ingredient j) in the composition is typically about 1 to about 99%.
Ingredient k) is a glidant such as silicon dioxide. The amount of ingredient k) in the composition is typically about 1 to about 99%.
Ingredient m) is a solvent, such as water, isotonic saline, ethyl oleate, alcohols such as ethanol, glycerin, cremaphor, glycols (e.g., polypropylene glycol and polyethylene glycol), and buffer solutions (e.g., phosphate, potassium acetate, boric carbonic, phosphoric, succinic, malic, tartaric, citric, acetic, benzoic, lactic, glyceric, gluconic, glutaric, and glutamic). The amount of ingredient m) in the composition is typically about 1 to about 99%.
Ingredient n) is a suspending agent. Suitable suspending agents include AVICEL® RC-591 from FMC Corporation of Philadelphia, Pa. and sodium alginate. The amount of ingredient n) in the composition is typically about 1 to about 99%.
Ingredient o) is a surfactant such as lecithin, polysorbate 80, sodium lauryl sulfate, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene monoalkyl ethers, sucrose monoesters, lanolin esters, and lanolin ethers. Suitable surfactants are known in the art and commercially available, e.g., the TWEENS® from Atlas Powder Company of Wilmington, Del. Suitable surfactants are disclosed in the C.T.F.A. Cosmetic Ingredient Handbook, pp. 587-592 (1992); Remington's Pharmaceutical Sciences, 15th Ed., pp. 335-337 (1975); and McCutcheon's Volume 1 Emulsifiers & Detergents, North American Edition, pp. 236-239 (1994). The amount of ingredient o) in the composition is typically about 1 to about 99%.
The carrier ingredients discussed above are exemplary and not limiting. One skilled in the art would recognize that different carrier ingredients may be added to or substituted for the carrier ingredients above. One skilled in the art would be able to select appropriate carrier ingredients for systemic compositions without undue experimentation.
Compositions for parenteral administration typically comprise (A) about 0.1 to about 10% of an active compound and (B) about 90 to about 99.9% of a carrier comprising a) a diluent and m) a solvent. Preferably, component a) is propylene glycol and m) is selected from the group consisting of ethanol, ethyl oleate, water, isotonic saline, and combinations thereof.
Compositions for oral administration can have various dosage forms. For example, solid forms include tablets, capsules, granules, and bulk powders. These oral dosage forms comprise a safe and effective amount, usually at least about 1%, and preferably from about 5% to about 50%, of component (A). The oral dosage compositions further comprise (B) about 50 to about 99% of a carrier, preferably about 50 to about 95%.
Tablets can be compressed, tablet triturates, enteric-coated, sugar-coated, film-coated, or multiple-compressed. Tablets typically comprise (A) the active compound, and (B) a carrier comprising ingredients selected from the group consisting of a) diluents, b) lubricants, c) binders, d) disintegrants, e) colorants, f) flavors, g) sweeteners, k) glidants, and combinations thereof. Preferred diluents include calcium carbonate, sodium carbonate, mannitol, lactose, and sucrose. Preferred binders include starch, and gelatin. Preferred disintegrants include alginic acid, and croscarmelose. Preferred lubricants include magnesium stearate, stearic acid, and talc. Preferred colorants are the FD&C dyes, which can be added for appearance. Chewable tablets preferably contain g) sweeteners such as aspartame and saccharin or f) flavors such as menthol, peppermint, and fruit flavors, or both.
Capsules (including time release and sustained release compositions) typically comprise (A) the active compound and (B) the carrier comprising one or more a) diluents disclosed above in a capsule comprising gelatin. Granules typically comprise (A) the active compound, and preferably further comprise k) glidants such as silicon dioxide to improve flow characteristics.
The selection of ingredients in the carrier for oral compositions depends on secondary considerations like taste, cost, and shelf stability, which are not critical for the purposes of this invention. One skilled in the art can optimize appropriate ingredients without undue experimentation.
The solid compositions may also be coated by conventional methods, typically with pH or time-dependent coatings, such that component (A) is released in the gastrointestinal tract at various times to extend the desired action. The coatings typically comprise one or more components selected from the group consisting of cellulose acetate phthalate, polyvinylacetate phthalate, hydroxypropyl methyl cellulose phthalate, ethyl cellulose, acrylic resins such as EUDRAGIT® coatings (available from Rohm & Haas G.M.B.H. of Darmstadt, Germany), waxes, shellac, polyvinylpyrrolidone, and other commercially available film-coating preparations such as Dri-Klear, manufactured by Crompton & Knowles Corp., Mahwah, N.J. or OPADRY® manufactured by Colorcon, Inc., of West Point, Pa.
Compositions for oral administration can also have liquid forms. For example, suitable liquid forms include aqueous solutions, emulsions, suspensions, solutions reconstituted from non-effervescent granules, suspensions reconstituted from non-effervescent granules, effervescent preparations reconstituted from effervescent granules, elixirs, tinctures, syrups, and the like. Liquid orally administered compositions typically comprise (A) the active compound and (B) a carrier comprising ingredients selected from the group consisting of a) diluents, e) colorants, and f) flavors, g) sweeteners, j) preservatives, m) solvents, n) suspending agents, and o) surfactants. Peroral liquid compositions preferably comprise one or more ingredients selected from the group consisting of e) colorants, f) flavors, and g) sweeteners.
Other compositions useful for attaining systemic delivery of the active compounds include sublingual, buccal and nasal dosage forms. Such compositions typically comprise one or more of soluble filler substances such as a) diluents including sucrose, sorbitol and mannitol; and c) binders such as acacia, microcrystalline cellulose, carboxymethylcellulose, and hydroxypropylmethylcellulose. Such compositions may further comprise b) lubricants, e) colorants, f) flavors, g) sweeteners, h) antioxidants, and k) glidants.
The composition may further comprise component (C) one or more optional ingredients. Component (C) can be a therapeutic agent used to treat the underlying disease from which the subject suffers. For example, component (C) can be (i) a cancer therapeutic agent, such as a chemotherapeutic agent or a chemosensitizing agent, or a combination thereof; (ii) an antibacterial agent, (iii) an antiviral agent, (iv) an antifungal agent, and combinations thereof. Component (C) can be coadministered with component (A) to increase the susceptibility of the multidrug resistant cells within the subject to the therapeutic agent.
Suitable (i) cancer therapeutic agents are known in the art. Cancer therapeutic agents include chemotherapeutic agents, chemosensitizing agents, and combinations thereof. Suitable chemotherapeutic agents are disclosed in U.S. Pat. No. 5,416,091, which is hereby incorporated by reference for the purpose of disclosing chemotherapeutic agents. Suitable chemotherapeutic agents include actinomycin D, adriyamycin, amsacrine, colchicine, daunorubicin, docetaxel (which is commercially available as TAXOTERE® from Aventis Pharmaceuticals Products, Inc.), doxorubicin, etoposide, mitoxantrone, mytomycin C, paclitaxel (which is commercially available as TAXOL® from Bristol-Myers Squibb Company of New York, N.Y.), tenipaside, vinblastine, vincristine, and combinations thereof.
Suitable chemosensitizing agents include calcium channel blockers, calmodulin antagonists, cyclic peptides, cyclosporins and their analogs, phenothiazines, quinidine, reserpine, steroids, thioxantheres, transflupentixol, trifluoperazine, and combinations thereof. Suitable chemosensitizing agents are disclosed by Amudkar, et. al in “Biochemical, Cellular, and Pharmacological Aspects of the Multidrug Transporter,” Annu. Rev. Pharmacol. Toxicol., 39, pp. 361-398 (1999).
Suitable (ii) antibacterial agents, (iii) antiviral agents, and (iv) antifungal agents are known in the art (see “Annual Reports on Medicinal Chemistry—33; Section III Cancer and Infectious Diseases” ed. Plattner, J., Academic Press, Ch. 12, pp. 121-130 (1998)). Suitable antibacterial agents include quinolones, fluoroquinolones, ®-lactam antibiotics, aminoglycosides, macrolides, glycopeptides, tetracyclines, and combinations thereof.
Suitable (iii) antiviral agents include protease inhibitors, DNA synthase inhibitors, reverse transcription inhibitors, and combinations thereof.
Suitable (iv) antifungal agents include azoles, such as ketoconazole, fluconazole, itraconazole, and combinations thereof.
One skilled in the art will recognize that these therapeutic agents are exemplary and not limiting, and that some may be used in the treatment of various multidrug resistant conditions and diseases. One skilled in the art would be able to select therapeutic agents without undue experimentation.
The amount of component (C) used in combination with component (A), whether included in the same composition or separately coadministered, will be less than or equal to that used in a monotherapy. Preferably, the amount of component (C) is less than 80% of the dosage used in a monotherapy. Monotherapeutic dosages of such agents are known in the art.
Component (C) may be part of a single pharmaceutical composition or may be separately administered at a time before, during, or after administration of component (A), or combinations thereof.
In a preferred embodiment, the composition of this invention comprises component (A), component (B), and (C) a chemotherapeutic agent. In an alternative preferred embodiment, the composition comprises component (A), component (B), and (C) a chemosensitizing agent. In another preferred alternative embodiment, the composition comprises component (A), component (B), and (C) both a chemotherapeutic agent and a chemosensitizing agent.
The exact amounts of each component in the systemic compositions depend on various factors. These factors include the specific compound selected as component (A), and the mode by which the composition will be administered. The amount of component (A) in the systemic composition is typically about 1 to about 99%.
The systemic composition preferably further comprises 0 to 99% component (C), and a sufficient amount of component (B) such that the amounts of components (A), (B), and (C), combined equal 100%. The amount of (B) the carrier employed in conjunction with component (A) is sufficient to provide a practical quantity of composition for administration per unit dose of the compound. Techniques and compositions for making dosage forms useful in the methods of this invention are described in the following references: Modern Pharmaceutics, Chapters 9 and 10, Banker & Rhodes, eds. (1979); Lieberman et al., Pharmaceutical Dosage Forms: Tablets (1981); and Ansel, Introduction to Pharmaceutical Dosage Forms, 2nd Ed., (1976).
Topical compositions comprise: component (A), described above, and component (B) a carrier. The carrier of the topical composition preferably aids penetration of component (A) into the skin. Topical compositions preferably further comprise (C) the optional ingredient described above.
Component (B) the carrier may comprise a single ingredient or a combination of two or more ingredients. In the topical compositions, component (B) is a topical carrier. Preferred topical carriers comprise one or more ingredients selected from the group consisting of water, alcohols, aloe vera gel, allantoin, glycerin, vitamin A and E oils, mineral oil, propylene glycol, polypropylene glycol-2 myristyl propionate, dimethyl isosorbide, combinations thereof, and the like. More preferred carriers include propylene glycol, dimethyl isosorbide, and water.
The topical carrier may comprise one or more ingredients selected from the group consisting of q) emollients, r) propellants, s) solvents, t) humectants, u) thickeners, v) powders, and w) fragrances in addition to, or instead of, the preferred topical carrier ingredients listed above. One skilled in the art would be able to optimize carrier ingredients for the topical compositions without undue experimentation.
Ingredient q) is an emollient. The amount of ingredient q) in the topical composition is typically about 5 to about 95%. Suitable emollients include stearyl alcohol, glyceryl monoricinoleate, glyceryl monostearate, propane-1,2-diol, butane-1,3-diol, mink oil, cetyl alcohol, isopropyl isostearate, stearic acid, isobutyl palmitate, isocetyl stearate, oleyl alcohol, isopropyl laurate, hexyl laurate, decyl oleate, octadecan-2-ol, isocetyl alcohol, cetyl palmitate, di-n-butyl sebacate, isopropyl myristate, isopropyl palmitate, isopropyl stearate, butyl stearate, polyethylene glycol, triethylene glycol, lanolin, sesame oil, coconut oil, arachis oil, castor oil, acetylated lanolin alcohols, petrolatum, mineral oil, butyl myristate, isostearic acid, palmitic acid, isopropyl linoleate, lauryl lactate, myristyl lactate, decyl oleate, myristyl myristate, polydimethylsiloxane, and combinations thereof. Preferred emollients include stearyl alcohol and polydimethylsiloxane.
Ingredient r) is a propellant. The amount of ingredient r) in the topical composition is typically about 5 to about 95%. Suitable propellants include propane, butane, isobutane, dimethyl ether, carbon dioxide, nitrous oxide, nitrogen, and combinations thereof.
Ingredient s) is a solvent. The amount of ingredient s) in the topical composition is typically about 5 to about 95%. Suitable solvents include water, ethyl alcohol, methylene chloride, isopropanol, castor oil, ethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether, dimethylsulfoxide, dimethyl formamide, tetrahydrofuran, and combinations thereof. Preferred solvents include ethyl alcohol.
Ingredient t) is a humectant. The amount of ingredient t) in the topical composition is typically about 5 to about 95%. Suitable humectants include glycerin, sorbitol, sodium 2-pyrrolidone-5-carboxylate, soluble collagen, dibutyl phthalate, gelatin, and combinations thereof. Preferred humectants include glycerin.
Ingredient u) is a thickener. The amount of ingredient u) in the topical composition is typically 0 to about 95%.
Ingredient v) is a powder. The amount of ingredient v) in the topical composition is typically 0 to about 95%. Suitable powders include chalk, talc, fullers earth, kaolin, starch, gums, colloidal silicon dioxide, sodium polyacrylate, tetraalkyl ammonium smectites, trialkyl aryl ammonium smectites, chemically modified magnesium aluminum silicate, organically modified montmorillonite clay, hydrated aluminum silicate, fumed silica, carboxyvinyl polymer, sodium carboxymethyl cellulose, ethylene glycol monostearate, and combinations thereof.
Ingredient w) is a fragrance. The amount of ingredient w) in the topical composition is typically about 0.001 to about 0.5%, preferably about 0.001 to about 0.1%.
Ingredient x) is a wax. Waxes useful in this invention are selected from the group consisting of animal waxes, vegetable waxes, mineral waxes, various fractions of natural waxes, synthetic waxes, petroleum waxes, ethylenic polymers, hydrocarbon types such as Fischer-Tropsch waxes, silicone waxes, and mixtures thereof wherein the waxes have a melting point between 40 and 100° C. The amount of ingredient x) in the topical composition is typically about 1 to about 99%.
In an alternative embodiment of the invention, the active compounds may also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine or phosphatidylcholines. A preferred composition for topical delivery of the present compounds uses liposomes as described in Dowton et al., “Influence of Liposomal Composition on Topical Delivery of Encapsulated Cyclosporin A: I. An in vitro Study Using Hairless Mouse Skin”, S.T.P. Pharma Sciences, Vol. 3, pp. 404-407 (1993); Wallach and Philippot, “New Type of Lipid Vesicle: Novasome®”, Liposome Technology, Vol. 1, pp. 141-156 (1993); U.S. Pat. No. 4,911,928, and U.S. Pat. No. 5,834,014.
The exact amounts of each component in the topical composition depend on various factors. Including the specific compound selected for component (A) and the mode by which the composition will be administered. However, the amount of component (A) typically added to the topical composition is about 0.1 to about 99%, preferably about 1 to about 10%.
The topical composition preferably further comprises 0 to about 99% component (C), more preferably 0 to abut 10%, and a sufficient amount of component (B) such that the amounts of components (A), (B), and (C), combined equal 100%. The amount of (B) the carrier employed in conjunction with component (A) is sufficient to provide a practical quantity of composition for administration per unit dose of the compound. Techniques and compositions for making dosage forms useful in the methods of this invention are described in the following references: Modern Pharmaceutics, Chapters 9 and 10, Banker & Rhodes, eds. (1979); Lieberman et al., Pharmaceutical Dosage Forms: Tablets (1981); and Ansel, Introduction to Pharmaceutical Dosage Forms, 2nd Ed., (1976).
Topical compositions that can be applied locally to the skin may be in any form including solutions, oils, creams, ointments, gels, lotions, shampoos, leave-on and rinse-out hair conditioners, milks, cleansers, moisturizers, sprays, skin patches, and the like.
Component (A) may be included in kits comprising component (A), a systemic or topical composition described above, or both; and information, instructions, or both that use of the kit will provide treatment for multidrug resistance (particularly in humans). The information and instructions may be in the form of words, pictures, or both, and the like. In addition or in the alternative, the kit may comprise component (A), a composition, or both; and information, instructions, or both, regarding methods of administration of component (A) or the composition, preferably with the benefit of treating multidrug resistance in mammals.
In an alternative embodiment of the invention, components (A) and (C) may be included in kits comprising components (A) and (C), systemic or topical compositions described above, or both; and information, instructions, or both that use of the kit will provide treatment for multidrug resistance (particularly humans). The information and instructions may be in the form of words, pictures, or both, and the like. In addition or in the alternative, the kit may comprise components (A) and (C), compositions, or both; and information, instructions, or both, regarding methods of administration of components (A) and (C) or the compositions, preferably with the benefit of treating multidrug resistance in mammals.
This invention relates to a method of inhibiting a transport protein. The method comprises administering to a mammal in need of treatment, (A) an active compound described above.
This invention further relates to a method for treating multidrug resistance. The method comprises administering to a mammal (preferably a human) suffering from multidrug resistance, (A) an active compound described above. For example, a mammal diagnosed with multidrug resistant cancer can be treated by the methods of this invention. Preferably, a systemic or topical composition comprising (A) the active compound and (B) the carrier is administered to the mammal. More preferably, the composition is a systemic composition comprising (A) the active compound, (B) the carrier, and (C) an optional ingredient such as a therapeutic agent. Component (A) may be administered before, during, or after administration of component (C). A preferred administration schedule is a continuous infusion over the 24 hour period during which component (C) is also administered.
The dosage of component (A) administered depends on various factors, including the method of administration, the physical attributes of the subject (e.g., age, weight, and gender), and the condition from which the subject suffers. Effective dosage levels for treating or preventing MDR range from about 0.01 to about 100 mg/kg body weight per day, preferably about 0.5 to about 50 mg/kg body weight per day of (A) a compound of this invention. These dosage ranges are merely exemplary, and daily administration can be adjusted depending on various factors. The specific dosage of the active compound to be administered, as well as the duration of treatment, and whether the treatment is topical or systemic are interdependent. The dosage and treatment regimen will also depend upon such factors as the specific active compound used, the treatment indication, the efficacy of the active compound, the personal attributes of the subject (such as, for example, weight, age, sex, and medical condition of the subject), compliance with the treatment regimen, and the presence and severity of any side effects of the treatment.
In addition to the benefits in treating multidrug resistance in subjects suffering from cancer, the active compounds in the compositions and methods of this invention can also be used to treat other conditions. These other conditions include other types of multidrug resistance (i.e., in addition to cancer multidrug resistance) such as bacterial, viral, and fungal multidrug resistance. For example, many of the FDA approved HIV protease inhibitors used to treat AIDS patients suffering from the HIV virus are substrates for Pgp. Therefore, in an alternative embodiment of this invention, an active compound of this invention is coadministered with a therapeutic agent such as an HIV protease inhibitor.
The active compounds and compositions of this invention can also be administered with other therapeutic agents such as oral drugs. The active compounds and compositions can be used to enhance oral drug absorption and increase bioavailability of various drugs.
The active compounds and compositions can also be used to aid drug delivery through the blood-brain barrier for, e.g., enhancing the effectiveness of drugs to treat Alzheimer's disease, treating memory disorders, enhancing memory performance, or treating any other central nervous system disorder where drug delivery is compromised via this transport pump mechanism.
The active compounds and compositions can also be administered to treat subjects suffering from neurological disorders such as spinal injuries, diabetic neuropathy, and macular degeneration.
The active compounds and compositions can also be administered to treat subjects suffering from vision disorders and to improve vision.
The active compounds and compositions can also be administered to treat hair loss. “Treating hair loss” includes arresting hair loss, reversing hair loss, and promoting hair growth.
The active compounds and compositions can also be administered to treat inflammatory diseases. Inflammatory diseases include irritable bowel disease, arthritis, and asthma.
These examples are intended to illustrate the invention to those skilled in the art and should not be interpreted as limiting the scope of the invention set forth in the claims. The active compounds of this invention can be made using conventional organic syntheses, which are readily available to one skilled in the art without undue experimentation. Such syntheses can be found in standard texts such as J. March, Advanced Organic Chemistry, John Wiley & Sons, 1992. One of ordinary skill in the art will appreciate that certain reactions are best carried out when other functionalities are masked or protected in the compound, thus increasing the yield of the reaction or avoiding any undesirable side reactions. The skilled artisan may use protecting groups to accomplish the increased yields or to avoid the undesired reactions. These reactions can be found in the literature, see for example, Greene, T. W. and Wuts, P. G. M., Protecting Groups in Organic Synthesis, 2nd ed., John Wiley & Sons, 1991.
The starting materials for preparing the compounds of the invention are known, made by known methods, or commercially available. The starting materials for preparing the compounds of the invention may include the following.
The following reagents are available from Aldrich Chemical Company, Milwaukee, Wis.: 1-bromo-3-phenylpropane, 5-hydroxyquinoline, (R)-(−)-glycidyl tosylate, 3,4-pyridinedicarboxylic acid, 4-phenylbutylamine, 3-pyridinepropionic acid, tert-butyl[S-(R*, R*)]-(−)-(1-oxiranyl)-2-phenylethyl)carbamate, epichlorohydrin, 3,4,5-trimethoxybenzoyl chloride, N,N-diisopropylethylamine, 4-dimethylaminopyridine, 1-hydroxybenzotriazole, 4-trans-aminomethylcyclohexanecarboxylic acid, 3,4,5-trimethoxybenzylamine, and 2,2,4-trimethyl-2-oxazoline.
The following reagents are available from Lancaster Synthesis Inc., Windham, N.H.: 4-phenylbutyronitrile, 1-tert-butoxycarbonyl-piperidine-3-carboxylic acid, 1-benzyl-4-aminopiperidine, 3,4-dimethoxybenzenesulfonyl chloride, and 1-benzyl-4-homopiperazine.
The following reagents are available from Fluka Chemie AG, Milwaukee, Wis.: 1-tert-butoxycarbonyl-piperidine-4-carboxylic, and (benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate (“PyBOP”), N-(tert-butoxycarbonyl)-iminodiacetic acid, and 1-(diphenylmethyl)piperazine.
The following reagents are available from Acros Organics, Pittsburgh, Pa.: quinoline-6-carboxylic acid and quinoline-5-carboxylic acid.
The following reagent is available from Bachem Bioscience, King of Prussia, Pa.: tert-butoxycarbonyl-β-(3-pyridyl)-alanine.
The following reagents are available from Sigma Chemical Company, Milwaukee, Wis.: N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride and N-tert-butoxycarbonyl)-(N-methyl)-2-aminoacetic acid.
Various abbreviations are used herein. Abbreviations that can be used and their definitions are shown below in Table 2.
NIH-MDR1-G185 cells (obtained from M. Gottesman, NIH) were harvested and resuspended at 6×104 cells/ml in RPMI 1640 containing L-glutamine, 10% Cosmic calf serum, and penicillin-streptomycin. Cell suspension aliquots of 100 microliters were added to individual wells of a 96 well microtiter plate and incubated overnight at 37° C. to allow cells to adhere. Cell viability in the presence of an anticancer drug was determined in the presence and absence of an MDR modifying agent using an MTT assay (P. A. Nelson, et. al, J. Immunol, 150:2139-2147 (1993)).
Briefly, cells were preincubated with an MDR modulating agent (final concentration 5 micromolar) for 15 min at 37° C., then treated with varying concentrations of an anticancer agent for 72 hr at 37° C. MTT dye (20 microliters of 5 mg/ml PBS solution) was added to each well and incubated for 4 hr at 37° C. Media was carefully removed and dye was solubilized with 100 microliters of acidified isopropyl alcohol. Absorption was measured on a spectrophotometric plate reader at 570 nm and corrected for background by subtraction at 630 nm. Reversal index was calculated for each MDR modulator and normalized to the reversal index of a benchmark modulator, VX-710 as below:
Reversal index=IC50 in the absence of modulator/IC50 in the presence of modulator
Normalized reversal index=Reversal index of modulator/Reversal index of VX-710
VX-710 is (S)-N-[2-Oxo-2-(3,4,5-trimethoxyphenyl)acetyl]piperidine-2-carboxylic acid 1,7-bis(3-pyridyl)-4-heptyl ester.
Pgp-dependent calcein AM extrusion was measured in NIH-MDR1-G185 cells or HL60-MDR1 cells. MRP1-dependent calcein AM extrusion was measured in HL60/ADR cells. Dye uptake was measured by incubating 0.5-1×106 cells/ml in cell culture medium containing 0.25 mM calcein AM at 37° C. at an excitation wavelength=493 nm and an emission wavelength=515 nm. Inhibition of calcein AM transport by varying concentrations of MDR modulators was determined by measuring the rate of increase in fluorescence of free calcein for 5 min periods. The IC50 values were obtained by determining the concentration of modulator resulting in 50% of the maximum transport inhibition. Maximum transport inhibition was the % inhibition produced in the presence of 50-60 microliters verapmil.
NIH-MDR1-G185 cells (obtained from M. Gottesman, NIH) were harvested and resuspended in RPMI-1640 containing L-glutamine, 10% Cosmic Calf Serum and penicillin-streptomycin. Cell suspension aliquots of 175 microliters (1×105 cells) were added to individual wells of a 96 well microtiter plate and preincubated for 15 min at 37° C. with 20 microliters MDR modulator diluted in cell culture media to give a final concentration of 10 micromolar. Control wells received no modulating agent. BODIPY-FL Taxol (Molecular Probes, Eugene, Oreg.) was added to each well in 10 microliter aliquots to give a final concentration of 500 nM and cells were incubated for 40 min at 37° C. Cells were centrifuged at 100×g for 5 min at 4° C. and the cell pellet washed with 200 microliters cold PBS to remove fluorescent medium from wells. Cells were centrifuged once more, media removed, and cells resuspended in 200 microliters cold PBS. Fluorescence accumulation was measured in a fluorescence plate reader fitted with an excitation filter of 485 nm and an emission filter of 538 nm. BODIPY-FL taxol accumulation in the cells was calculated as follows:
Accumulation Index=(fluorescence in NIH-MDR1-G185 cells in the presence of modulator)/(fluorescence in NIH-MDR1-G185 cells in absence of modulator)
Recombinant baculovirus carrying the human MDR1 gene was generated and Sf9 cells infected with virus. The virus-infected cells were harvested and their membranes isolated. MDR1-ATPase activity of the isolated Sf9 cell membranes was estimated by measuring inorganic phosphate liberation as previously described (B. Sarkadi, J. Biol. Chem., 1992, 267:4854-4858). The differences between the ATPase activities measured in the absence and presence of 100 micromolar vanadate were determined as activity specific to MDR1. MDR modulator concentrations causing half-maximum activation (Ka) or half-maximum inhibition of the MDR1-ATPase stimulated by 30-40 micromolar verapamil (Ki) were determined.
Magnesium (40.2 g, 1.65 mol) and anhydrous ether (3.2 L) are combined in a reaction vessel with stirring. A solution of 1-bromo-3-phenyl propane in 1.6 L of anhydrous ether is added to an addition funnel. The bromide solution is added dropwise to the stirring reaction vessel over a 1 hour period. Upon completion of addition, the mixture stirs for 1-2 hours. A solution of 4-phenylbutyronitrile (160 g, 1.1 mol) in anhydrous ether (2.4 L) is placed in the addition funnel. The solution is added to the reaction vessel over a 1 hour time period. Upon complete addition the solution is heated to reflux for 10 hours, and then stirs at room temperature for six hours. The reaction mixture is diluted with methanol (3.2 L) using an addition funnel. Sodium borohydride (83.4 g, 2.2 mol) is added in portions. Upon complete addition the reaction is stirred at room temperature for six hours. The reaction mixture is quenched by a slow addition of water (3.2 L). The mixture is diluted with ether (3.2 L) and water (1.6 L). The ether layer is separated and the aqueous layer is extracted twice with ether (3.2 L×2). The combined ether extracts are washed once with sodium chloride solution, dried, filtered, and concentrated in vacuo to give the crude product. This product is diluted in ether (1.2 L) and acidified by slow addition of 1M HCl (1.2 L). The mixture stirs for one hour and is concentrated in vacuo. The resulting precipitate is diluted with acetonitrile and is stirred for 16 hours. The desired 1,7-diphenyl-4-aminoheptane hydrochloride is collected by filtration.
Sodium hydride (60 weight %; 1.79 g; 44.8 mmol) is washed with hexanes (3×10 mL) under an argon blanket. DMF (17 mL) is then added at ambient temperature and the stirred slurry is cooled to 5° C. A solution of 5-hydroxyquinoline (5.00 g; 34.4 mmol) in DMF (65 mL) is added dropwise over 30 minutes. The resulting mixture is allowed to warm to ambient temperature over 1 hour affording a clear, reddish-brown solution. A solution of (R)-(−)-glycidyl tosylate (10.22 g; 44.8 mmol) in DMF (50 mL) is added dropwise over 20 minutes. The resulting mixture is stirred at ambient temperature for 4 hours, quenched by the addition of saturated aqueous ammonium chloride (25 mL), poured onto water (750 mL), and extracted with ether (3×375 mL). The combined ether layers are washed with saturated aqueous sodium bicarbonate (2×375 mL), then dried over MgSO4, filtered, and concentrated in vacuo. The residue is purified via silica gel chromatography with gradient elution (33%→50% ethyl acetate in hexanes) affording the desired product (4.95 g) as a tan solid. ESMS: MH+ 202.2 (base).
1-tert-Butoxycarbonyl-piperidine-4-carboxylic acid (1 g; 4.36 mmol) is dissolved in methylene chloride (25 mL) at ambient temperature. 1,7-Diphenyl-4-aminoheptane hydrochloride (1) (1.33 g; 4.38 mmol), triethylamine (1.22 mL; 8.75 mmol), and N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (0.92 g; 4.8 mmol) are added sequentially. The mixture is stirred for 18 hours at ambient temperature then concentrated in vacuo at 40° C. The residue is diluted with ethyl acetate (150 mL) and washed successively with water (150 mL), 0.1 N HCl (100 mL), saturated aqueous sodium bicarbonate (50 mL), and saturated brine (50 mL). The organic layer is dried over MgSO4, filtered, and concentrated in vacuo. The residue is purified via silica gel chromatography with gradient elution (5%→40% ethyl acetate in hexanes) affording the desired product (0.77 g) as a solid.
4-[4-Phenyl-1-(3-phenyl-propyl)-butylcarbamoyl]-piperidine-1-carboxylic acid tert-butyl ester (3) (0.77 g; 1.61 mmol) is dissolved in methylene chloride (20 mL) at ambient temperature. Trifluoroacetic acid (20 mL) is added in a slow stream, and the solution is stirred for 90 minutes at ambient temperature. The solution is concentrated in vacuo at 40° C. The residue is slurried in a mixture of methylene chloride (10 mL) and water (100 mL), then potassium carbonate is added until the slurry is alkaline. The slurry is diluted with water (200 mL) then extracted with methylene chloride (3×100 mL). The organic extracts are dried over MgSO4, filtered, and concentrated in vacuo affording the desired product (0.58 g) as an oil.
Piperidine-4-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (4) (150.7 mg; 0.4 mmol) is dissolved in isopropanol (10 mL) at ambient temperature. (R)-5-Oxiranylmethoxy-quinoline (2) (79.8 mg; 0.4 mmol) is added, then the mixture is heated to 70° C. and maintained for 18 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (10%→100% acetone in hexanes) affording the desired product (118.2 mg) as a white solid. ESMS: MH+ 580.4 (base).
Piperidine-4-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (4) (150.7 mg; 0.4 mmol) is dissolved in isopropanol (10 mL) at ambient temperature. (+/−)-2-(3,4,5-Trimethoxy-phenoxymethyl)-oxirane(95.2 mg; 0.4 mmol) is added, then the mixture is heated to 70° C. and maintained for 18 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (10%→100% acetone in hexanes) affording the desired product (145.9 mg) as an oil. ESMS: MH+ 619.4 (base).
3,4-Pyridinedicarboxylic acid (1 g; 6.0 mmol) is slurried in DMF (50 mL) at ambient temperature. To this reaction mixture is added sequentially 1-hydroxybenzotriazole hydrate (2.43 g; 18.0 mmol), 4-phenylbutylamine (2.08 mL; 13.2 mmol), triethylamine (1.67 mL; 12.0 mmol), and N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (2.87 g; 15.0 mmol). The reaction mixture is stirred for 18 hours at ambient temperature. The batch is poured onto ethyl acetate (300 mL), then extracted sequentially with water (100 mL), 1N HCl (100 mL), saturated aqueous sodium bicarbonate (50 mL), and brine (50 mL). The organic phase is dried over MgSO4, filtered, and concentrated in vacuo affording the desired product (2.65 g) as a semi-solid. ESMS: MH+ 430.0.
Pyridine-3,4-dicarboxylic acid bis-[(4-phenyl-butyl)-amide] (7) (0.46 g; 1.07 mmol) is combined with ethanol (20 mL) and 20% Pd(OH)2 on carbon (0.4 g) in a hydrogenation bottle. The mixture is hydrogenated at 50 psi for 18 hours, then additional 20% Pd(OH)2 on carbon (0.25 g) is added to the mixture and the hydrogenation is resumed for an additional 18 hours. The mixture is filtered through a celite pad and washed with ethanol. The combined filtrate plus wash is concentrated in vacuo. The residue is purified via silica gel chromatography with gradient elution (5%→100% methanol in methylene chloride) affording the desired products as separable diastereomers.
The first eluted diastereomer is (8) 70.9 mg; ESMS: MH+ 436.4 (base). The second eluted diastereomer is (9) 78.1 mg; ESMS: MH+ 436.4 (base).
trans-Piperidine-3,4-dicarboxylic acid bis[(4-phenyl-butyl)-amide] (8) (78.1 mg; 0.179 mmol) is dissolved in isopropanol (10 mL) at ambient temperature. (R)-5-Oxiranylmethoxy-quinoline (2) (36.1 mg; 0.179 mmol) is added then the mixture is heated to 70° C. and maintained for 18 hours. After cooling to ambient temperature the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (0%→50% methanol in methylene chloride) affording the desired product (69.6 mg) as a solid. ESMS: MH+ 637.4 (base).
cis-Piperidine-3,4-dicarboxylic acid bis[(4-phenyl-butyl)-amide] (9) (70.9 mg; 0.163 mmol) is dissolved in isopropanol (10 mL) at ambient temperature. (R)-5-Oxiranylmethoxy-quinoline (2) (32.8 mg; 0.163 mmol) is added then the mixture is heated to 70° C. and maintained for 18 hours. After cooling to ambient temperature the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (0%→50% methanol in methylene chloride) affording the desired product (86.0 mg) as an oil. ESMS: MH+ 637.4 (base).
1-tert-Butoxycarbonyl-piperidine-3-carboxylic acid (1 g; 4.36 mmol) is dissolved in methylene chloride (50 mL) at ambient temperature. 1,7-Diphenyl-4-aminoheptane hydrochloride (1) [1.33 g; 4.36 mmol], triethylamine (0.61 mL; 4.36 mmol), and N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (0.84 g; 4.4 mmol) are added sequentially. The mixture is stirred for 18 hours at ambient temperature then concentrated in vacuo at 30° C. The residue is diluted with ethyl acetate (100 mL) and washed successively with water (200 mL), saturated aqueous sodium bicarbonate (50 mL), and saturated brine (50 mL). The organic layer is dried over MgSO4, filtered, and concentrated in vacuo. The residue is purified via silica gel chromatography with gradient elution (5%→40% ethyl acetate in hexanes) affording the desired product (1.30 g) as a viscous oil. ESMS: MH+ 479.4
3-[4-Phenyl-1-(3-phenyl-propyl)-butylcarbamoyl]-piperidine-1-carboxylic acid tert-butyl ester (12) (0.202 g; 0.42 mmol) is dissolved in methylene chloride (5 mL) at ambient temperature. Trifluoroacetic acid (5 mL) is added in a slow stream, and the solution is stirred for 90 minutes at ambient temperature. The solution is concentrated in vacuo at 40° C. The residue is slurried in a mixture of methylene chloride (10 mL) and water (100 mL), then potassium carbonate is added until the slurry is alkaline. The slurry is diluted with water (50 mL) then extracted with methylene chloride (3×50 mL). The organic extracts are dried over MgSO4, filtered, and concentrated in vacuo affording the desired product (0.147 g) as an oil.
Piperidine-3-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (13) (146.6 mg; 0.39 mmol) is dissolved in isopropanol (10 mL) at ambient temperature. (R)-5-Oxiranylmethoxy-quinoline (2) (80.0 mg; 0.39 mmol) is added, then the mixture is heated to 70° C. and maintained for 18 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (10%→100% acetone in hexanes) affording the desired product as a solid. ESMS: MH+ 580.4 (base).
Piperidine-3-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (13) (150 mg; 0.4 mmol) is dissolved in isopropanol (10 mL) at ambient temperature. (R)-2-(3,4,5-Trimethoxy-phenoxymethyl)-oxirane (95.2 mg; 0.4 mmol) is added, then the mixture is heated to 70° C. and maintained for 18 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (1%→20% methanol in methylene chloride) affording the desired product (220.3 mg) as an oil. ESMS: MH+ 619.4 (base).
Piperidine-3-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (13) (150 mg; 0.4 mmol) is dissolved in methylene chloride (10 mL) at ambient temperature. 3-Pyridinepropionic acid (60.0 mg; 0.4 mmol), triethylamine (0.111 mL; 0.4 mmol), and N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (0.0836 g; 0.4 mmol) are added sequentially. The mixture is stirred for 18 hours at ambient temperature then diluted with methylene chloride (90 mL) and washed successively with water (40 mL), saturated aqueous sodium bicarbonate (40 mL), and saturated brine (25 mL). The organic layer is dried over MgSO4, filtered, and concentrated in vacuo. The residue is purified via silica gel chromatography with gradient elution (1%→20% methanol in methylene chloride) affording the desired product (138.4 mg) as an oil. ESMS: MH+ 512.4 (base).
Quinoline-6-carboxylic acid (1 g; 5.78 mmol) is dissolved in DMF (10 mL) at ambient temperature. Epichlorohydrin (0.4517 mL; 5.59 mmol) is added followed by mortar ground potassium carbonate (0.80 g; 5.79 mmol). The mixture is stirred at ambient temperature for 48 hours. Potassium iodide (96 mg; 0.58 mmol) is added and stirring is continued at ambient temperature for 24 hours. The mixture is heated to 60° C. and maintained for 72 hours. After cooling, the mixture is poured onto water (700 mL) and extracted with ethyl acetate (3×100 mL). The combined organic extracts are washed successively with water (100 mL), and brine (50 mL), then dried over MgSO4, filtered, and concentrated in vacuo at 30C. The residue is purified via silica gel chromatography with gradient elution (20%→67% ethyl acetate in hexanes) affording the desired product (270 mg) as a white solid. ESMS: MH+ 230.0 (base).
Piperidine-3-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (13) (150 mg; 0.4 mmol) is dissolved in isopropanol (10 mL) at ambient temperature. Quinoline-6-carboxylic acid oxiranylmethyl ester (17) (90.8 mg; 0.4 mmol) is added, then the mixture is heated to 70° C. and maintained for 18 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (1%→20% methanol in methylene chloride) affording the desired product (203.4 mg) as an oil. ESMS: MH+ 608.4 (base).
Piperidine-3-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (13) (150 mg; 0.4 mmol) is dissolved in isopropanol (10 mL) at ambient temperature. tert-Butyl[S-(R*, R*)]-(−)-(1-oxiranyl)-2-phenylethyl)carbamate (104.4 mg; 0.4 mmol) is added, then the mixture is heated to 70° C. and maintained for 18 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (1%→20% methanol in methylene chloride) affording the desired product (166.7 mg) as an oil. ESMS: MH+ 642.6 (base).
(1-Benzyl-2-hydroxy-3-{3-[4-phenyl-1-(3-phenyl-propyl)-butylcarbamoyl]-piperidine-1-yl}-propyl)-carbamic acid tert-butyl ester (19) (194.4 mg; 0.3 mmol) is dissolved in methylene chloride (5 mL) at ambient temperature. Trifluoroacetic acid (5 mL) is added in a slow stream, and the solution is stirred for 90 minutes at ambient temperature. The solution is concentrated in vacuo at 40° C. The residue is slurried in a mixture of methylene chloride (10 mL) and water (100 mL), then potassium carbonate is added until the slurry is alkaline. The slurry is diluted with water (50 mL) then extracted with methylene chloride (3×50 mL). The organic extracts are dried over MgSO4, filtered, and concentrated in vacuo affording the desired product (150 mg) as an oil.
1-(3-Amino-2-hydroxy-4-phenyl-butyl)-piperidine-3-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (20) (150 mg; 0.28 mmol) is dissolved in methylene chloride (10 mL) at ambient temperature. 6-Quinolinecarboxylic acid (48 mg; 0.28 mmol), triethylamine (0.0772 mL; 0.55 mmol), and N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (58.4 mg; 0.31 mmol) are added sequentially. The mixture is stirred for 18 hours at ambient temperature then concentrated in vacuo at 30° C. The residue is diluted with ethyl acetate (100 mL) and washed successively with water (50 mL), saturated aqueous sodium bicarbonate (50 mL), and saturated brine (50 mL). The organic layer is dried over MgSO4, filtered, and concentrated in vacuo. The residue is purified via silica gel chromatography with gradient elution (2%→20% methanol in methylene chloride) affording the desired product diastereomers (70 mg) as an oil. ESMS: MH+ 697.6 (base).
2,2,4-Trimethyl-2-oxazoline (5.64 mL; 44.2 mmol) is dissolved in THF (40 mL) in a dry, argon purged flask at ambient temperature. The solution is cooled to −78° C., then n-butyllithium in hexanes (31.3 mL of 1.6 M solution; 50 mmol) is added dropwise via syringe, followed by a solution of 1-bromo-3-phenylpropane (7.42 mL; 48.8 mmol) in THF (20 mL) dropwise via syringe. The cooling bath is removed and the solution is allowed to slowly warm to ambient temperature. After approximately 30 minutes, the reaction is cooled to −78° C., then n-butyllithium in hexanes (31.3 mL of 1.6 M solution; 50 mmol) is added dropwise via syringe, followed by a solution of 1-bromo-3-phenylpropane (7.42 mL; 48.8 mmol) in THF (20 mL) dropwise via syringe. The reaction mixture is stirred overnight with very slow warming to ambient temperature. The solution is poured onto water (200 mL) and 1N HCl is added to make the mixture acidic. The mixture is extracted with ether (150 mL), then made alkaline with 50% aqueous sodium hydroxide solution. The alkaline mixture is extracted with ether (3×100 mL). The combined ether extracts are dried over MgSO4, filtered, and concentrated in vacuo. The residue is purified via silica gel chromatography with gradient elution (0%→33% ethyl acetate in hexanes) affording the dialkylated oxazoline intermediate (13.55 g) as a colorless liquid. ESMS: MH+ 349.6 (base). The dialkylated oxazoline intermediate (1 g; 2.86 mmol) is dissolved in dioxane (10 mL) at ambient temperature. 3N HCl (20 mL) is added and the solution is heated to gentle reflux for 18 hours. After cooling, the reaction mixture is poured onto water (20 mL) and extracted with ether (3×30 mL). The combined ether extracts are washed successively with water (20 mL), and brine (20 mL), then dried over MgSO4, filtered, and concentrated in vacuo at 40° C. affording the desired product (0.76 g) as a solid. ESMS: MH+ 297.2.
1-Benzyl-4-aminopiperidine (0.5 g; 2.63 mmol) is dissolved in DMF (25 mL) at ambient temperature. 5-Phenyl-2-(3-phenyl-propyl)-pentanoic acid (22) (0.78 g; 2.62 mmol), triethylamine (0.46 mL; 3.28 mmol), 1-hydroxybenzotriazole (0.444 g; 3.28 mmol), and N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (0.554 g; 2.89 mmol) are added sequentially. The mixture is stirred for 18 hours at ambient temperature then poured onto ethyl acetate (250 mL) and extracted successively with water (50 mL), saturated aqueous sodium bicarbonate (50 mL), and brine (50 mL), then dried over MgSO4, filtered, and concentrated in vacuo. The residue is purified via silica gel chromatography with gradient elution (10%→67% ethyl acetate in hexanes) affording the desired product (1.07 g) as a white solid. ESMS: MH+ 469.4 (base).
5-Phenyl-2-(3-phenyl-propyl)-pentanoic acid (1-benzyl-piperidin-4-yl)-amide (23) (0.5 g; 1.07 mmol) is combined with ethanol (25 mL) and 20% Pd(OH)2 on carbon (0.2 g) in a hydrogenation bottle. The mixture is hydrogenated at 50 psi for 18 hours then filtered through a celite pad and washed with ethanol. The combined filtrate plus wash is concentrated in vacuo affording the desired product (0.38 g) as an oil. ESMS: MH+ 379.4 (base).
5-Phenyl-2-(3-phenyl-propyl)-pentanoic acid piperidin-4-ylamide (24) (100 mg; 0.264 mmol) is dissolved in isopropanol (10 mL) at ambient temperature. (R)-5-Oxiranylmethoxyquinoline (2) (53.2 mg; 0.264 mmol) is added, then the mixture is heated to 70° C. and maintained for 18 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (0%→25% methanol in methylene chloride) affording the desired product (117 mg) as a solid. ESMS: MH+ 580.4 (base).
Piperidine-3-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (13) (0.46 g; 1.23 mmol) is dissolved in N,N-dimethylformamide (25 mL) at ambient temperature. 3′,4′,5′-Trimethoxyphenylglyoxylic acid (0.29 g; 1.23 mmol), N,N-diisopropylethylamine (0.31 g; 2.43 mmol) and PyBOP (0.63 g; 17.0 mmol) are added sequentially. The reaction is stirred for 18 hr. at room temperature, then poured onto ice-cold 0.1N HCl (150 mL) and extracted with ethyl acetate (150 mL). The layers are separated and the organic layer washed successively with brine (100 mL), saturated NaHCO3 solution (150 mL) and brine (100 mL). The organic solution is dried over MgSO4, filtered and concentrated under reduced pressure. Purification of the product by chromatography on silica gel (4:6 hexane:ethyl acetate) affords the desired amide (26). MS (NH3CI): 601 (MH+)
Piperidine-4-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (4) (1.00 g; 2.64 mmol) is dissolved in methylene chloride (30 mL) at ambient temperature. 3-Butenoic acid (0.27 g; 3.17 mmol), N,N-diisopropylethylamine (0.75 g; 5.81 mmol) and PyBOP (1.65 g; 3.17 mmol) are added sequentially. The reaction is stirred for 27 hr. at room temperature, then concentrated under reduced pressure. The residue is purified via silica gel chromatography with gradient elution (70%→90% ethyl acetate in hexanes) affording the desired product (27) as a solid. CIMS (NH3CI): 447 (MH+)
1-(3-Butenoyl)-piperidine-4-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (27) (1.00 g; 2.24 mmol) and m-chloroperbenzoic acid (Aldrich Chemical Company; 71% by assay; 0.65 g; 2.91 mmol) are combined in 10 mL of methylene chloride and refluxed for 24 hours. The solution is stirred at ambient temperature for 72 hours, diluted with methylene chloride (50 mL) and shaken with 10% aqueous Na2SO3 (50 mL). The methylene chloride layer is separated and washed successively with saturated aqueous NaHCO3 solution and brine. The organic layer is dried over MgSO4, filtered and concentrated in vacuo. The residue is purified by chromatography on silica gel using a gradient elution (80%→90% ethyl acetate in hexanes, then 50%→60% acetone in hexanes) affording 28 as a solid. CIMS (NH3CI): 463 (MH+)
1-(Oxiranylacetyl)-piperidine-4-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (28) (100 mg; 0.216 mmol) and 1,2,3,4-tetrahydroisoquinoline (28.8 mg; 0.216 mmol) are combined in absolute ethanol (10 mL) and refluxed for 18 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is chromatographed on silica gel with a gradient elution (80%→90% ethyl acetate in hexanes, then 50%→60% acetone in hexanes) affording the desired product (29) as a solid. CIMS (NH3CI): 596 (MH+)
Piperidine-4-carboxylic acid ethyl ester (30) (0.75 g; 4.77 mmol) and (R)-5-oxiranylmethoxy-quinoline (2) 0.96 g; 4.77 mmol) are combined in 95 mL of absolute ethanol. The mixture is heated to reflux for 8 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is chromatographed on silica gel with a gradient elution (90% ethyl acetate in hexanes, then 50%→60% acetone in hexanes) affording the desired product (29) as an oil. CIMS (NH3CI): 359 (MH+)
(R)-1-[2-Hydroxy-3-(quinolin-5-yloxy)-propyl]-piperidine-4-carboxylic acid ethyl ester (31) (1.15 g; 3.21 mmol) is dissolved in 21 mL of a 40:40:20 mixture of tetrahydrofuran:water:methanol. Lithium hydroxide (81 mg; 3.37 mmol) is added and the mixture stirred at ambient temperature. After 4.5 hours, the mixture is concentrated in vacuo at 40° C. Further drying on the vacuum pump affords the desired product (32) as a white solid.
Lithium (R)-1-[2-hydroxy-3-(quinolin-5-yloxy)-propyl]-piperidine-4-carboxylate (32) (100 mg; 0.297 mmol) is dissolved in methylene chloride (3 mL) at ambient temperature. 1-(Diphenylmethyl)piperazine (33) (80 mg; 0.312 mmol), N,N-diisopropylethylamine (0.85 mg; 0.654 mmol) and PyBOP (186 mg; 0.357 mmol) are added sequentially. The reaction is stirred for 18 hr. at room temperature, then concentrated under reduced pressure. The residue is purified via silica gel chromatography with gradient elution (90% ethyl acetate in hexanes, then 50%→100% acetone in hexanes) affording the desired product (34) as a solid. CIMS (NH3CI): 565 (MH+)
Lithium (R)-1-[2-hydroxy-3-(quinolin-5-yloxy)-propyl]-piperidine-4-carboxylate (32) (100 mg; 0.297 mmol) is dissolved in methylene chloride (3 mL) at ambient temperature. 1-(o-Tolyl)piperazine hydrochloride (35) (66 mg; 0.312 mmol), N,N-diisopropylethylamine (123 mg; 0.952 mmol) and PyBOP (186 mg; 0.357 mmol) are added sequentially. The reaction is stirred for 18 hr. at room temperature, then concentrated under reduced pressure. The residue is purified via silica gel chromatography with gradient elution (90% ethyl acetate in hexanes, then 50%→100% acetone in hexanes) affording the desired product (36) as an oil. CIMS (NH3CI): 489 (MH+)
Lithium (R)-1-[2-hydroxy-3-(quinolin-5-yloxy)-propyl]-piperidine-4-carboxylate (32) (100 mg; 0.297 mmol) is dissolved in methylene chloride (3 mL) at ambient temperature. 4-Phenylbutylamine (37) (47 mg; 0.312 mmol), N,N-diisopropylethylamine (85 mg; 0.654 mmol) and PyBOP (186 mg; 0.357 mmol) are added sequentially. The reaction is stirred for 18 hr. at room temperature, then concentrated under reduced pressure. The residue is purified via silica gel chromatography with gradient elution (90% ethyl acetate in hexanes, then 50%→100% acetone in hexanes) affording the desired product (38) as a solid. CIMS (NH3CI): 462 (MH+)
Lithium (R)-1-[2-hydroxy-3-(quinolin-5-yloxy)-propyl]-piperidine-4-carboxylate (32) (100 mg; 0.297 mmol) is dissolved in methylene chloride (3 mL) at ambient temperature. Benzylamine (39) (33 mg; 0.312 mmol), N,N-diisopropylethylamine (85 mg; 0.654 mmol) and PyBOP (186 mg; 0.357 mmol) are added sequentially. The reaction is stirred for 18 hr. at room temperature, then concentrated under reduced pressure. The residue is purified via silica gel chromatography with gradient elution (90% ethyl acetate in hexanes, then 50%→100% acetone in hexanes) affording the desired product (40) as an oil. CIMS (NH3CI): 420 (MH+)
Lithium (R)-1-[2-hydroxy-3-(quinolin-5-yloxy)-propyl]-piperidine-4-carboxylate (32) (100 mg; 0.297 mmol) is dissolved in methylene chloride (3 mL) at ambient temperature. Dibenzylamine (41) (62 mg; 0.312 mmol), N,N-diisopropylethylamine (85 mg; 0.654 mmol) and PyBOP (186 mg; 0.357 mmol) are added sequentially. The reaction is stirred for 18 hr. at room temperature, then concentrated under reduced pressure. The residue is purified via silica gel chromatography with gradient elution (90% ethyl acetate in hexanes, then 50%→100% acetone in hexanes) affording the desired product (42) as a solid. CIMS (NH3Cl): 510 (MH+)
Piperidine-3-carboxylic acid ethyl ester (43) (1.0 g; 6.36 mmol) and (R)-5-oxiranylmethoxy-quinoline (2) (1.28 g; 6.36 mmol) are combined in 10 mL of absolute ethanol. The mixture is heated at reflux for 16 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is chromatographed on silica gel (1:1 acetone:hexanes) affording the desired product (44) as an oil. ESMS: MH+ 359
(R)-1-[2-Hydroxy-3-(quinolin-5-yloxy)-propyl]-piperidine-3-carboxylic acid ethyl ester (44) (0.739 g; 2.06 mmol) is dissolved in 20 mL of a 2:2:1 mixture of tetrahydrofuran:water:methanol. Lithium hydroxide (52 mg; 2.17 mmol) is added and the mixture stirred at ambient temperature. After 16 hours, the mixture is concentrated in vacuo at 40° C. Further drying on the vacuum pump affords the desired product (45) as a white solid.
Lithium (R)-1-[2-hydroxy-3-(quinolin-5-yloxy)-propyl]-piperidine-3-carboxylate (45) (100 mg; 0.297 mmol) is dissolved in methylene chloride (2 mL) at ambient temperature. 1-(Diphenylmethyl)piperazine (33) (80 mg; 0.312 mmol), N,N-diisopropylethylamine (0.85 mg; 0.654 mmol) and PyBOP (186 mg; 0.357 mmol) are added sequentially. The reaction is stirred for 18 hr. at room temperature, then concentrated under reduced pressure. The residue is purified via silica gel chromatography (1:1 acetone:hexanes) affording the desired product (46) as a solid. ESMS: MH+ 565
Lithium (R)-1-[2-hydroxy-3-(quinolin-5-yloxy)-propyl]-piperidine-3-carboxylate (45) (100 mg; 0.297 mmol) is dissolved in methylene chloride (2 mL) at ambient temperature. 1-(o-Tolyl)piperazine hydrochloride (35) (66 mg; 0.312 mmol), N,N-diisopropylethylamine (123 mg; 0.952 mmol) and PyBOP (186 mg; 0.357 mmol) are added sequentially. The reaction is stirred for 18 hr. at room temperature, then concentrated under reduced pressure. The residue is purified via silica gel chromatography (1:1 acetone:hexanes) affording the desired product (47) as an oil.
ESMS: MH+ 489
Lithium (R)-1-[2-hydroxy-3-(quinolin-5-yloxy)-propyl]-piperidine-3-carboxylate (45) (100 mg; 0.297 mmol) is dissolved in methylene chloride (2 mL) at ambient temperature. 4-Phenylbutylamine (37) (47 mg; 0.312 mmol), N,N-diisopropylethylamine (85 mg; 0.654 mmol) and PyBOP (186 mg; 0.357 mmol) are added sequentially. The reaction is stirred for 18 hr. at room temperature, then concentrated under reduced pressure. The residue is purified via silica gel chromatography (1:1 acetone:hexanes) affording the desired product (48) as an oil. ESMS: MH+ 462
Lithium (R)-1-[2-hydroxy-3-(quinolin-5-yloxy)-propyl]-piperidine-3-carboxylate (45) (100 mg; 0.297 mmol) is dissolved in methylene chloride (2 mL) at ambient temperature. 3,3-Diphenylpropylamine (49) (66 mg; 0.312 mmol), N,N-diisopropylethylamine (85 mg; 0.654 mmol) and PyBOP (186 mg; 0.357 mmol) are added sequentially. The reaction is stirred for 18 hr. at room temperature, then concentrated under reduced pressure. The residue is purified via silica gel chromatography (1:1 acetone:hexanes) affording the desired product (50) as a solid. ESMS: MH+ 524
4-Aminomethylpiperidine (2.28 g; 20 mmol) is dissolved in dry toluene (25 mL) at ambient temperature. Benzaldehyde (2.03 mL; 20 mmol) is added in one portion and the solution is heated to azeotropic reflux for 135 minutes (with concommitant removal of water from the reaction medium). The reaction mixture is cooled to ambient temperature then di-tert-butyl dicarbonate (4.8 g; 22 mmol) is added portionwise and the resulting solution is stirred at ambient temperature for 64 hours. The solution is concentrated to dryness in vacuo at 40° C., then 1N KHSO4 (22 mL) is added to the residue and the resulting mixture is stirred rapidly at ambient temperature for 4 hours. The mixture is extracted with ether (3×20 mL), then the aqueous layer is basicified with 1N NaOH (30 mL). Solid NaCl is added to the alkaline aqueous layer, then it is extracted with dichloromethane (3×30 mL). The organic extracts are dried (MgSO4), filtered, and concentrated in vacuo affording the title compound (3.34 g) as a light colored liquid. ESMS: MH+ 215.4
1-Butoxycarbonyl-4-aminomethylpiperidine (51) (0.30 g; 1.4 mmol) is dissolved in DMF (10 mL) at ambient temperature. 5-Phenyl-2-(3-phenyl-propyl)-pentanoic acid (22) (0.415 g: 1.4 mmol) is added followed sequentially by 1-hydroxybenzotriazole (0.2364 g; 1.75 mmol), triethylamine (0.2439 mL; 1.75 mmol), and N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (0.2952 g; 1.54 mmol). The mixture is stirred at ambient temperature for 18 hours then poured onto ethyl acetate (300 mL) and extracted sequentially with water (100 mL), 1N HCl (50 mL), saturated NaHCO3 (50 mL), and brine (50 mL). The organic layer is dried (MgSO4), filtered, and concentrated in vacuo. The residue is purified via silica gel chromatography with gradient elution (10%→50% ethyl acetate in hexanes) affording the desired compound (0.67 g) as a colorless oil. ESMS: MH+ 493.4
5-Phenyl-2-(3-phenyl-propyl)-pentanoic acid (1-tert-butoxycarbonyl-aminomethylpiperidin-yl)-amide (52) (0.67 g; 1.36 mmol) is dissolved in methylene chloride (25 mL) at ambient temperature. Trifluoroacetic acid (25 mL) is added in a slow stream, and the solution is stirred for 90 minutes at ambient temperature. The solution is concentrated in vacuo at 40° C. The residue is slurried in a mixture of methylene chloride (10 mL) and water (100 mL), then potassium carbonate is added until the slurry is alkaline. The slurry is diluted with water (200 mL) then extracted with methylene chloride (3×100 mL). The organic extracts are dried over MgSO4, filtered, and concentrated in vacuo affording the desired product (0.46 g) as a white solid.
5-Phenyl-2-(3-phenyl-propyl)-pentanoic acid aminomethyl-piperidin-4-ylamide (53) (147.5 mg; 0.376 mmol) is dissolved in isopropanol (10 mL) at ambient temperature. (R)-5-Oxiranylmethoxy-quinoline (2) (76.2 mg; 0.376 mmol) is added, then the mixture is heated to 70° C. and maintained for 18 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (0%→20% methanol in methlene chloride) affording the desired product (176.2 mg) as a light colored solid. ESMS: MH+ 594.4 (base).
4-Pyridylacetic acid hydrochloride (2.5 g; 14.4 mmol) is dissolved in deionized water (30 mL) in a hydrogenation flask. PtO2 (0.2 g) is added and the mixture is hydrogenated at 50 psi for 18 hours at ambient temperature. The solids are separated by decantation, and the aqueous solution is basicified with Na2CO3 (3 g). Dioxane (10 mL) is added and the mixture is stirred rapidly at ambient temperature. A solution of di-tert-butyl dicarbonate (9.44 g; 43.3 mmol) in dioxane (20 mL) is added dropwise. The resulting mixture is stirred for 18 hours then concentrated in vacuo at 40° C. The resulting aqueous solution is poured onto a solution of water (300 mL) and saturated aqueous NaHCO3 (10 mL), then the mixture is extracted with ethyl acetate (3×50 mL). The aqueous layer is acidified with citric acid then extracted with ethyl acetate (3×100 mL), dried (MgSO4), filtered, and concentrated in vacuo affording the desired product (3.60 g) as a solid. ESMS: MH+ 244.4
4-[4-Phenyl-1-(3-phenyl-propyl)-butylcarbamoyl]-methylpiperidine-1-carboxylic acid tert-butyl ester (55) (1 g; 4.11 mmol) is dissolved in DMF (30 mL) at ambient temperature. 1,7-Diphenyl-4-aminoheptane hydrochloride (1) (1.25 g; 4.11 mmol), 1-Hydroxybenzotriazole (0.694 g; 5.14 mmol), triethylamine (0.716; 5.14 mmol), and N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (0.87 g; 4.54 mmol) are added sequentially. The mixture is stirred for 18 hours at ambient temperature then poured onto ethyl acetate (300 mL) and extracted sequentially with water (100 mL), 1N HCl (50 mL), saturated NaHCO3 (50 mL), and brine (50 mL). The organic layer is dried (MgSO4), filtered, and concentrated in vacuo. The residue is purified via silica gel chromatography with gradient elution (10%→50% ethyl acetate in hexanes) affording the desired compound (1.62 g) as a colorless oil. ESMS: MH+ 493.6
4-[4-Phenyl-1-(3-phenyl-propyl)-butylcarbamoyl]-methylpiperidine-1-carboxylic acid tert-butyl ester (56) (1.62 g; 3.29 mmol) is dissolved in methylene chloride (50 mL) at ambient temperature. Trifluoroacetic acid (50 mL) is added in a slow stream, and the solution is stirred for 90 minutes at ambient temperature. The solution is concentrated in vacuo at 40° C. The residue is slurried in a mixture of methylene chloride (30 mL) and water (200 mL), then potassium carbonate is added until the slurry is alkaline. The slurry is diluted with water (200 mL) then extracted with methylene chloride (3×100 mL). The organic extracts are dried over MgSO4, filtered, and concentrated in vacuo affording the desired product (1.23 g) as a white solid.
Methylpiperidine-4-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (57) (150 mg; 0.382 mmol) is dissolved in isopropanol (10 mL) at ambient temperature. (R)-5-Oxiranylmethoxy-quinoline (2) (77.5 mg; 0.382 mmol) is added, then the mixture is heated to 70° C. and maintained for 18 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (0%→25% methanol in methylene chloride) affording the desired product (187.4 mg) as a solid foam. ESMS: MH+ 594.4 (base).
1-tert-Butoxycarbonyl-piperidine-4-carboxylic acid (0.5 g; 2.18 mmol) is dissolved in DMF (10 mL) at ambient temperature. 1-Hydroxybenzotriazole (0.37, 2.74 mmol), triethylamine (0.46 mL, 3.3 mmol), 1,7-di-(3-pyridyl)-heptan-4-ol (0.59 g; 2.4 mmol) as prepared according to WO 98/20893 A1 assigned to Vertex Pharmaceuticals, and N-(3-dimethylamino-propyl)-N′-ethylcarbodiimide hydrochloride (0.46 g; 2.4 mmol) are added sequentially. The mixture is stirred at ambient temperature for 18 hours. The mixture is then poured onto ethyl acetate (150 mL) and washed successively with water (50 mL), saturated aqueous sodium bicarbonate (10 mL), and brine (30 mL). The organic layer is dried over MgSO4, filtered, and concentrated in vacuo. The residue is purified via silica gel chromatography with gradient elution (0%→25% methanol in methylene chloride) affording the desired product (0.3754 g) as a yellow solid. ESMS: MH+ 482.4.
4-[4-(3-Pyridyl)-1-(3-pyridyl-propyl)-butylcarbamoyl]-piperidine-1-carboxylic acid tert-butyl ester (59) (0.3754 g; 0.78 mmol) is dissolved in methylene chloride (6 mL) at ambient temperature. Trifluoroacetic acid (6 mL) is added in a slow stream, and the solution is stirred for 90 minutes at ambient temperature. The solution is concentrated in vacuo at 40° C. The residue is slurried in a mixture of methylene chloride (10 mL) and water (50 mL), then potassium carbonate is added until the slurry is alkaline. The slurry is diluted with water (50 mL) then extracted with methylene chloride (3×10 mL). The organic extracts are dried over MgSO4, filtered, and concentrated in vacuo affording the desired product (0.1704 g) as a yellow oil. ESMS: MH+ 382.4 (base).
Piperidine-4-carboxylic acid [4-(3-pyridyl)-1-(3-pyridyl-propyl)-butyl]-amide (60) (170.4 mg; 0.45 mmol) is dissolved in isopropanol (10 mL) at ambient temperature. (R)-5-Oxiranylmethoxy-quinoline (2) (90.0 mg; 0.45 mmol) is added, then the mixture is heated to 70° C. and maintained for 18 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (0%→50% methanol in methylene chloride) affording the desired product (120.2 mg) as an amber oil. ESMS: MH+ 583.4.
Piperidine-4-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (4) (1.00 g; 2.64 mmol) is dissolved in methylene chloride (25 mL) at ambient temperature. (N-tert-butoxycarbonyl)-(N-methyl)-2-aminoacetic acid (0.60 g; 3.17 mmol), N,N-diisopropylethylamine (0.75 g; 5.81 mmol) and PYBOP (1.65 g; 3.17 mmol) are added sequentially. The reaction is stirred for 18 hours at room temperature, then concentrated under reduced pressure. The residue is purified via silica gel chromatography (60%→90% ethyl acetate in hexanes) affording the desired product (62) as a solid. ESMS: MH+ 550
1-[(N-tert-butoxycarbonyl)-(N-methyl)-2-aminoacetyl]-piperidine-4-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (62) (1.60 g; 2.91 mmol) is dissolved in methylene chloride (30 mL) at ambient temperature. Trifluoroacetic acid (15 mL) is added in a slow stream, and the solution is stirred for 4 hours at ambient temperature. The solution is concentrated in vacuo at 40° C. The residue is dissolved in methylene chloride (200 mL) and poured onto saturated sodium bicarbonate solution. The pH is adjusted to 9 with saturated potassium carbonate solution. The mixture is shaken the layers separated. The water layer is extracted with methylene chloride (3×50 mL). The combined organic extracts are washed with water, dried over MgSO4, filtered, and concentrated in vacuo affording the desired product (0.98 g) as a white solid.
1-[(N-methyl)-2-aminoacetyl]-piperidine-4-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (63) (223.5 mg; 0.497 mmol]) is dissolved in ethanol (10 mL) at ambient temperature. (R)-5-Oxiranylmethoxy-quinoline (2) (100.0 mg; 0.497 mmol) is added, then the mixture is refluxed for 17.5 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (50%→100% acetone in hexanes, then 5%→20% ethanol in acetone) affording the desired product (110 mg) as a white solid. ESMS: MH+ 651.6.
(N-tert-butoxycarbonyl)-(N-methyl)-2-aminoacetic acid (1.00 g; 5.29 mmol) is dissolved in methylene chloride (40 mL) at ambient temperature. 1,7-Diphenyl-4-aminoheptane hydrochloride (1) (1.93 g; 6.34 mmol), N,N-diisopropylethylamine (2.19 g; 16.9 mmol) and PyBOP (3.30 g; 3.30 mmol) are added sequentially. The reaction is stirred for 1 hour at room temperature, then concentrated under reduced pressure. The residue is purified via silica gel chromatography (20%→40% ethyl acetate in hexanes) affording the desired product (65) as a solid. CIMS: MH+ 439
N-tert-Butoxycarbonyl-N-methyl-2-aminoacetic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (65) (2.19 g; 4.99 mmol) is dissolved in methylene chloride (30 mL) at ambient temperature. Trifluoroacetic acid (20 mL) is added in a slow stream, and the solution is stirred for 2.5 hours at ambient temperature. The solution is concentrated in vacuo at 40° C. The residue is dissolved in methylene chloride (200 mL) and poured onto saturated sodium bicarbonate solution. The pH is adjusted to 9 with saturated potassium carbonate solution. The mixture is shaken the layers separated. The water layer is extracted with methylene chloride (3×50 mL). The combined organic extracts are washed with water, dried over MgSO4, filtered, and concentrated in vacuo affording the desired product (1.65 g) as a white solid. CIMS: MH+ 339
1-tert-Butoxycarbonyl-piperidine-4-carboxylic acid (0.61 g; 2.66 mmol) is dissolved in methylene chloride (20 mL) at ambient temperature. N-methyl-2-aminoacetic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (66) (0.75 g; 2.22 mmol), N,N-diisopropylethylamine (0.63 g; 4.87 mmol) and PyBOP (1.38 g; 2.66 mmol) are added sequentially. The reaction is stirred for 14 hours at room temperature, then concentrated under reduced pressure. The residue is purified via silica gel chromatography (60%→80% ethyl acetate in hexanes) affording the desired product (67) as a clear oil. CIMS: MH+ 550
N-(N-tert-Butoxycarbonyl-piperidine-4-carbonyl)-(N-methyl)-2-aminoacetic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (67) (1.46 g; 2.66 mmol) is dissolved in methylene chloride (30 mL) at ambient temperature. Trifluoroacetic acid (15 mL) is added in a slow stream, and the solution is stirred for 2 hours at ambient temperature. The solution is concentrated in vacuo at 40° C. The residue is dissolved in methylene chloride (200 mL) and poured onto saturated sodium bicarbonate solution. The pH is adjusted to 9 with saturated potassium carbonate solution. The mixture is shaken the layers separated. The water layer is extracted with methylene chloride (3×50 mL). The combined organic extracts are washed with water, dried over MgSO4, filtered, and concentrated in vacuo affording the desired product (1.65 g) as a clear oil. ESMS: MH+ 450.2
N-(Piperidine-4-carbonyl)-(N-methyl)-2-aminoacetic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (68) (223.5 mg; 0.497 mmol) is dissolved in ethanol (12 mL) at ambient temperature. (R)-5-Oxiranylmethoxy-quinoline (2) (100.0 mg; 0.497 mmol) is added, then the mixture is refluxed for 15.5 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (50%→100% acetone in hexanes, then 5%→20% ethanol in acetone) affording the desired product (110 mg) as a white solid. ESMS: MH+ 651.6
Piperidine-4-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (4) (1.00 g; 2.64 mmol) is dissolved in methylene chloride (25 mL) at ambient temperature. 1-tert-Butoxycarbonyl-piperidine-4-carboxylic acid (0.73 g; 3.17 mmol), N,N-diisopropylethylamine (0.75 g; 5.81 mmol) and PyBOP (1.65 g; 3.17 mmol) are added sequentially. The reaction is stirred for 16 hours at room temperature, then concentrated under reduced pressure. The residue is purified via silica gel chromatography (70%→90% ethyl acetate in hexanes) affording the desired product (70) as a solid. ESMS: MH+ 590.6
1-(1-tert-butoxycarbonylpiperidine-4-carbonyl)-piperidine-4-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (70) (1.84 g; 3.12 mmol) is dissolved in methylene chloride (30 mL) at ambient temperature. Trifluoroacetic acid (15 mL) is added in a slow stream, and the solution is stirred for 1.25 hours at ambient temperature. The solution is concentrated in vacuo at 40° C. The residue is dissolved in methylene chloride (200 mL) and poured onto saturated sodium bicarbonate solution. The pH is adjusted to 9 with saturated potassium carbonate solution. The mixture is shaken the layers separated. The water layer is extracted with methylene chloride (3×50 mL). The combined organic extracts are washed with water, dried over MgSO4, filtered, and concentrated in vacuo affording the desired product (1.65 g) as a white solid. ESMS: MH+ 490.4
1-(Piperidine-4-carbonyl)-piperidine-4-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (71) (243.4 mg; 0.497 mmol) is dissolved in ethanol (12 mL) at ambient temperature. (R)-5-Oxiranylmethoxy-quinoline (2) (100.0 mg; 0.497 mmol) is added, then the mixture is refluxed for 16 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (50%→100% acetone in hexanes, then 5%→20% ethanol in acetone) affording the desired product (200 mg) as a white solid. ESMS: MH+ 691.6
1-tert-Butoxycarbonyl-piperidine-2-carboxylic acid (3 g; 13.1 mmol) is dissolved in methylene chloride (100 mL) at ambient temperature. 1,7-Diphenyl-4-aminoheptane hydrochloride (1) (4.77 g; 15.7 mmol), diisopropylethylamine (7.3 mL; 41.9 mmol), and PyBOP (8.17 g; 15.7 mmol) are added sequentially. The mixture is stirred for 17 hours at ambient temperature then concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (10%→30% ethyl acetate in hexanes) affording the desired product as an oil. ESMS: MH+ 479.4
2-[4-Phenyl-1-(3-phenyl-propyl)-butylcarbamoyl]-piperidine-1-carboxylic acid tert-butyl ester (73) (6.77 g; 14.1 mmol) is dissolved in methylene chloride (60 mL) at ambient temperature. Trifluoroacetic acid (40 mL) is added in a slow stream, and the solution is stirred for 1.25 hours at ambient temperature. The solution is concentrated in vacuo at 40° C. The residue is dissolved in methylene chloride (300 mL) and poured onto saturated sodium bicarbonate solution. The pH is adjusted to 9 with saturated potassium carbonate solution. The mixture is shaken the layers separated. The water layer is extracted with methylene chloride (3×100 mL). The combined organic extracts are washed with water, dried over MgSO4, filtered, and concentrated in vacuo affording the desired product (5.34 g) as a white solid. ESMS: MH+ 379.2
Piperidine-2-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (74) (1.00 g; 2.64 mmol) is dissolved in methylene chloride (25 mL) at ambient temperature. 1-tert-Butoxycarbonyl-piperidine-4-carboxylic acid (0.73 g; 3.17 mmol), N,N-diisopropylethylamine (0.75 g; 5.81 mmol) and PyBOP (1.65 g; 3.17 mmol) are added sequentially. The reaction is stirred for 16 hours at room temperature, then concentrated under reduced pressure. The residue is purified via silica gel chromatography (30%→50% ethyl acetate in hexanes) affording the desired product (75) as a solid. ESMS: MH+ 590.6
1-(1-tert-butoxycarbonylpiperidine-4-carbonyl)-piperidine-2-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (75) (1.41 g; 2.39 mmol) is dissolved in methylene chloride (30 mL) at ambient temperature. Trifluoroacetic acid (15 mL) is added in a slow stream, and the solution is stirred for 2.25 hours at ambient temperature. The solution is concentrated in vacuo at 40° C. The residue is dissolved in methylene chloride (200 mL) and poured onto saturated sodium bicarbonate solution. The pH is adjusted to 9 with saturated potassium carbonate solution. The mixture is shaken the layers separated. The water layer is extracted with methylene chloride (3×50 mL). The combined organic extracts are washed with water, dried over MgSO4, filtered, and concentrated in vacuo affording the desired product (1.02 g) as an oil. ESMS: MH+ 490.4
1-(Piperidine-4-carbonyl)-piperidine-2-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (76) (243.4 mg; 0.497 mmol) is dissolved in ethanol (12 mL) at ambient temperature. (R)-5-Oxiranylmethoxy-quinoline (2) (100.0 mg; 0.497 mmol) is added, then the mixture is refluxed for 17 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (50%→100% acetone in hexanes, then 5%→20% ethanol in acetone) affording the desired product (250 mg) as a white solid. ESMS: MH+ 691.6
Piperidine-3-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (13) (1.00 g; 2.64 mmol) is dissolved in methylene chloride (25 mL) at ambient temperature. 1-tert-Butoxycarbonyl-piperidine-4-carboxylic acid (0.73 g; 3.17 mmol), N,N-diisopropylethylamine (0.75 g; 5.81 mmol) and PyBOP (1.65 g; 3.17 mmol) are added sequentially. The reaction is stirred for 18 hr. at room temperature, then concentrated under reduced pressure. The residue is purified via silica gel chromatography (50%→70% ethyl acetate in bexanes) affording the desired product (78) as a solid. ESMS: MH+ 590.6
1-(1-tert-butoxycarbonylpiperidine-3-carbonyl)-piperidine-3-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (78) (1.41 g; 2.39 mmol) is dissolved in methylene chloride (40 mL) at ambient temperature. Trifluoroacetic acid (20 mL) is added in a slow stream, and the solution is stirred for 5 hours at ambient temperature. The solution is concentrated in vacuo at 40° C. The residue is dissolved in methylene chloride (200 mL) and poured onto saturated sodium bicarbonate solution. The pH is adjusted to 9 with saturated potassium carbonate solution. The mixture is shaken the layers separated. The water layer is extracted with methylene chloride (3×50 mL). The combined organic extracts are washed with water, dried over MgSO4, filtered, and concentrated in vacuo affording the desired product (0.97 g) as a white solid.
1-(Piperidine-3-carbonyl)-piperidine-3-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (79) (243.4 mg; 0.497 mmol) is dissolved in ethanol (12 mL) at ambient temperature. (R)-5-Oxiranylmethoxy-quinoline (2) (100.0 mg; 0.497 mmol) is added, then the mixture is refluxed for 17 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (50%→100% acetone in hexanes, then 5%→20% ethanol in acetone) affording the desired product (230 mg) as a white solid. ESMS: MH+ 691.6
Piperidine-2-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (74) (1.00 g; 2.64 mmol) is dissolved in methylene chloride (25 mL) at ambient temperature. 1-tert-Butoxycarbonyl-piperidine-3-carboxylic acid (0.73 g; 3.17 mmol), N,N-diisopropylethylamine (0.75 g; 5.81 mmol) and PyBOP (1.65 g; 3.17 mmol) are added sequentially. The reaction is stirred for 19 hours at room temperature, then concentrated under reduced pressure. The residue is purified via silica gel chromatography (30%→50% ethyl acetate in hexanes) affording the desired product (81) as a solid. ESMS: MH+ 590.6
1-(1-tert-butoxycarbonylpiperidine-3-carbonyl)-piperidine-2-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (81) (1.35 g; 2.29 mmol) is dissolved in methylene chloride (40 mL) at ambient temperature. Trifluoroacetic acid (20 mL) is added in a slow stream, and the solution is stirred for 4 hours at ambient temperature. The solution is concentrated in vacuo at 40° C. The residue is dissolved in methylene chloride (200 mL) and poured onto saturated sodium bicarbonate solution. The pH is adjusted to 9 with saturated potassium carbonate solution. The mixture is shaken the layers separated. The water layer is extracted with methylene chloride (3×50 mL). The combined organic extracts are washed with water, dried over MgSO4, filtered, and concentrated in vacuo affording the desired product (1.09 g) as an oil.
1-(Piperidine-3-carbonyl)-piperidine-2-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (82) (243.4 mg; 0.497 mmol) is dissolved in ethanol (12 mL) at ambient temperature. (R)-5-Oxiranylmethoxy-quinoline (2) (100.0 mg; 0.497 mmol) is added, then the mixture is refluxed for 21 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (50%→100% acetone in hexanes, then 5%→20% ethanol in acetone) affording the desired product (210 mg) as a white solid. ESMS: MH+ 691.2
N-tert-Butoxycarbonyl-3-(3-pyridyl)-alanine (1.00 g; 3.76 mmol) is dissolved in methylene chloride (25 mL) at ambient temperature. 1,7-Diphenyl-4-aminoheptane hydrochloride (1) (1.37 g; 4.51 mmol), N,N-diisopropylethylamine (1.55 g; 12.0 mmol) and PyBOP (2.34 g; 4.51 mmol) are added sequentially. The reaction is stirred for 2.5 hours at room temperature, then concentrated under reduced pressure. The residue is purified via silica gel chromatography (60%→80% ethyl acetate in hexanes) affording the desired product (84) as a solid. ESMS: MH+ 516.2
N-tert-Butoxycarbonyl-3-(3-pyridyl)-alanine [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (84) (2.08 g; 4.03 mmol) is dissolved in methylene chloride (40 mL) at ambient temperature. Trifluoroacetic acid (20 mL) is added in a slow stream, and the solution is stirred for 4 hours at ambient temperature. The solution is concentrated in vacuo at 40° C. The residue is dissolved in methylene chloride (200 mL) and poured onto saturated sodium bicarbonate solution. The pH is adjusted to 9 with saturated potassium carbonate solution. The mixture is shaken the layers separated. The water layer is extracted with methylene chloride (3×50 mL). The combined organic extracts are washed with water, dried over MgSO4, filtered, and concentrated in vacuo affording the desired product (1.59 g) as an oil. ESMS: MH+ 416.2
1-tert-Butoxycarbonyl-piperidine-4-carboxylic acid (0.66 g; 2.89 mmol) is dissolved in methylene chloride (25 mL) at ambient temperature. 3-(3-Pyridyl)-alanine [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (85) (1.00 g; 2.41 mmol), N,N-diisopropylethylamine (0.68 g; 5.29 mmol) and PyBOP (1.50 g; 2.89 mmol) are added sequentially. The reaction is stirred for 5 hours at room temperature, then concentrated under reduced pressure. The residue is purified via silica gel chromatography (80%→100% ethyl acetate in hexanes) affording the desired product (86) as a white solid. ESMS: MH+ 627.6
N-(N-tert-Butoxycarbonyl-piperidine-4-carbonyl)-3-(3-pyridyl)-alanine [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (86) (1.30 g; 2.07 mmol) is dissolved in methylene chloride (40 mL) at ambient temperature. Trifluoroacetic acid (20 mL) is added in a slow stream, and the solution is stirred for 2 hours at ambient temperature. The solution is concentrated in vacuo at 40° C. The residue is dissolved in methylene chloride (200 mL) and poured onto saturated sodium bicarbonate solution. The pH is adjusted to 9 with saturated potassium carbonate solution. The mixture is shaken the layers separated. The water layer is extracted with methylene chloride (3×50 mL). The combined organic extracts are washed with water, dried over MgSO4, filtered, and concentrated in vacuo affording the desired product (0.98 g) as a white solid. ESMS: MH+ 527.2
N-(Piperidine-4-carbonyl)-3-(3-pyridyl)-alanine [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (87) (261.8 mg; 0.497 mmol) is dissolved in ethanol (12 mL) at ambient temperature. (R)-5-Oxiranylmethoxy-quinoline (2) (100.0 mg; 0.497 mmol) is added, then the mixture is refluxed for 25 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (50%→100% acetone in hexanes, then 5%→20% ethanol in acetone) affording the desired product (190 mg) as a white solid. ESMS: MH+ 728.6
Sodium hydride (60 weight %; 0.36 g; 9.0 mmol) is washed with hexanes (3×5 mL) under an argon blanket. DMF (3 mL) is then added at ambient temperature and the stirred slurry is cooled to 5° C. A solution of 6-hydroxyquinoline (1.00 g; 6.9 mmol) in DMF (13 mL) is added dropwise over 10 minutes. The resulting mixture is allowed to warm to ambient temperature over 30 minutes affording a clear, reddish-brown solution. A solution of (R)-(−)-glycidyl tosylate (2.04 g; 9.0 mmol) in DMF (10 mL) is added dropwise over 10 minutes. The resulting mixture is stirred at ambient temperature for 13 hours, quenched by the addition of saturated aqueous ammonium chloride (5 mL), poured onto water (150 mL), and extracted with ether (3×75 mL). The combined ether layers are washed with saturated aqueous sodium bicarbonate (2×75 mL), then dried over MgSO4, filtered, and concentrated in vacuo. The residue is purified via silica gel chromatography with gradient elution (40%→70% ethyl acetate in hexanes) affording the desired product (0.94 g) as an oil. CIMS: MH+ 202.
Piperidine-4-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (4) (100.0 mg; 0.264 mmol) is dissolved in ethanol (10 mL) at ambient temperature. (R)-6-Oxiranylmethoxy-quinoline (89) (53.0 mg; 0.264 mmol) is added, then the mixture is refluxed for 17 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (70%→90% ethyl acetate in hexanes, then 50%→70% acetone in hexanes) affording the desired product (50 mg) as a white solid.
ESMS: MH+ 580.4.
Sodium hydride (60 weight %; 1.79 g; 44.8 mmol) is washed with hexanes (3×10 mL) under an argon blanket. DMF (17 mL) is then added at ambient temperature and the stirred slurry is cooled to 5° C. A solution of 5-hydroxyquinoline (5.00 g; 34.4 mmol) in DMF (65 mL) is added dropwise over 10 minutes. The resulting mixture is allowed to warm to ambient temperature over 1 hour affording a clear, reddish-brown solution. A solution of (R)-(−)-glycidyl tosylate (10.22 g; 44.8 mmol) in DMF (50 mL) is added dropwise over 10 minutes. The resulting mixture is stirred at ambient temperature for 20.5 hours, quenched by the addition of saturated aqueous ammonium chloride (25 mL), poured onto water (750 mL), and extracted with ether (3×375 mL). The combined ether layers are washed with saturated aqueous sodium bicarbonate (2×375 mL), then dried over MgSO4, filtered, and concentrated in vacuo. The residue is purified via silica gel chromatography with gradient elution (50%→60% acetone in hexanes) affording the desired product (1.11 g) as a tan solid. ESMS: MH 202.2.
Piperidine-4-carboxylic acid [4-phenyl-1-(3-phenyl-propyl)-butyl]-amide (4) (70.3 mg; 0.186 mmol) is dissolved in ethanol (10 mL) at ambient temperature. (R)-4-Oxiranylmethoxy-quinoline (91) (37.4 mg; 0.186 mmol) is added, then the mixture is refluxed for 22 hours. After cooling to ambient temperature, the solution is concentrated in vacuo at 40° C. The residue is purified via silica gel chromatography with gradient elution (50%→100% acetone in hexanes, then 5%→20% ethanol in acetone) affording the desired product (50 mg) as a yellow solid. ESMS: MH+ 580.4.
Accumulation Index of various compounds prepared above was tested according to the method in Reference Example 3. The results are in Table 3. Substrate Potential of various compounds prepared above was tested according to the method in Reference Example 4. The results are in Table 3.
A composition for oral administration is prepared by reducing an active compound according to this invention to a No. 60 powder. Starch and magnesium stearate are passed through a No. 60 bolting cloth onto the powder. The combined ingredients are mixed for 10 minutes and filled into a hard shell capsule of a suitable size at a fill weight of 100 mg per capsule. The capsule contains the following composition:
A mixture of vinblastine and an active compound according to this invention is reduced to a No. 60 powder. Lactose and magnesium stearate are passed through a No. 60 bolting cloth onto the powder. The combined ingredients are mixed for 10 minutes, and then filled into a No. 1 dry gelatin capsule. Each capsule contains the following composition:
An active compound according to this invention (1 mg) is dissolved in 1 mL of a solution of 10% cremaphor, 10% ethanol, and 80% water. The solution is sterilized by filtration.
A sufficient amount of an active compound according to this invention and TAXOL® are dissolved in a 0.9% sodium chloride solution such that the resulting mixture contains 0.9 mg/mL of the active compound of this invention and 1.2 mg/mL TAXOL®.
A sufficient amount of the solution to deliver 135 mg/sq m TAXOL® is administered intravenously over 24 hours to a patient suffering from ovarian cancer.
This is a continuation application of U.S. application Ser. No. 09/996,657, filed Nov. 29, 2001, which is a divisional of U.S. application Ser. No. 09/740,643, filed Dec. 19, 2000, which claims priority to U.S. Provisional Application No. 60/241,127, filed Oct. 17, 2000, which all are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4029801 | Cavalla et al. | Jun 1977 | A |
4181722 | Beranger et al. | Jan 1980 | A |
4237139 | Champseix et al. | Dec 1980 | A |
4299835 | Champseix et al. | Nov 1981 | A |
4402961 | Dubroeucq et al. | Sep 1983 | A |
4433150 | Champseix et al. | Feb 1984 | A |
4442106 | Trijzelaar et al. | Apr 1984 | A |
4442107 | Trijzelaar et al. | Apr 1984 | A |
4443453 | Trijzelaar et al. | Apr 1984 | A |
4472403 | Trijzelaar et al. | Sep 1984 | A |
4505916 | Champseix et al. | Mar 1985 | A |
4584303 | Huang et al. | Apr 1986 | A |
4613607 | Gueremy et al. | Sep 1986 | A |
4791120 | Lin et al. | Dec 1988 | A |
4911923 | Wallach | Mar 1990 | A |
4916142 | Bagley et al. | Apr 1990 | A |
4923871 | Inaba et al. | May 1990 | A |
4935432 | Matsuo et al. | Jun 1990 | A |
4962115 | Van Daele | Oct 1990 | A |
4963553 | Tseng et al. | Oct 1990 | A |
4980351 | Barth et al. | Dec 1990 | A |
4985438 | Archibald et al. | Jan 1991 | A |
4985558 | Suzuki et al. | Jan 1991 | A |
4996321 | Baldwin et al. | Feb 1991 | A |
5013742 | Kudzma et al. | May 1991 | A |
5091187 | Haynes | Feb 1992 | A |
5098915 | Dedsai et al. | Mar 1992 | A |
5112817 | Fukazawa et al. | May 1992 | A |
5114919 | Baldwin et al. | May 1992 | A |
5124339 | King | Jun 1992 | A |
5130303 | Akiyama et al. | Jul 1992 | A |
5160727 | Klohs et al. | Nov 1992 | A |
5173486 | Monkovic et al. | Dec 1992 | A |
5177077 | Hohlweg et al. | Jan 1993 | A |
5182293 | Sunkara et al. | Jan 1993 | A |
5189036 | Chou et al. | Feb 1993 | A |
5190946 | Ramu et al. | Mar 1993 | A |
5190957 | Sunkara et al. | Mar 1993 | A |
5204348 | Fukazawa et al. | Apr 1993 | A |
5216172 | Toyota et al. | Jun 1993 | A |
5225405 | Paramelle et al. | Jul 1993 | A |
5238936 | Regnier et al. | Aug 1993 | A |
5272159 | Baldwin et al. | Dec 1993 | A |
5292726 | Ashton et al. | Mar 1994 | A |
5292757 | Ohsumi et al. | Mar 1994 | A |
5302727 | Eliason et al. | Apr 1994 | A |
5336685 | Prochaska et al. | Aug 1994 | A |
5362729 | Cozzi et al. | Nov 1994 | A |
5371081 | Houghton et al. | Dec 1994 | A |
5389644 | Peglion et al. | Feb 1995 | A |
5409690 | Howell et al. | Apr 1995 | A |
5416091 | King | May 1995 | A |
5436243 | Sachs et al. | Jul 1995 | A |
5506239 | Sato et al. | Apr 1996 | A |
5508403 | Akiyama et al. | Apr 1996 | A |
5514664 | Ulrich | May 1996 | A |
5516775 | Zimmermann et al. | May 1996 | A |
5521184 | Zimmermann | May 1996 | A |
5523304 | Sunkara | Jun 1996 | A |
5525606 | Moschel et al. | Jun 1996 | A |
5536722 | Coe et al. | Jul 1996 | A |
5541232 | Howell et al. | Jul 1996 | A |
5543423 | Zelle et al. | Aug 1996 | A |
5543428 | Sawyer et al. | Aug 1996 | A |
5550149 | Powell et al. | Aug 1996 | A |
5569471 | Oguro | Oct 1996 | A |
5571687 | Casey et al. | Nov 1996 | A |
5583137 | Coe et al. | Dec 1996 | A |
5605896 | Leonardi et al. | Feb 1997 | A |
5610165 | MacCoss et al. | Mar 1997 | A |
5620971 | Armistead et al. | Apr 1997 | A |
5622953 | Janssen et al. | Apr 1997 | A |
5643869 | Dreyfuss et al. | Jul 1997 | A |
5654304 | Pfister et al. | Aug 1997 | A |
5663179 | Dumaitre et al. | Sep 1997 | A |
5665719 | Bock et al. | Sep 1997 | A |
5670508 | Wang et al. | Sep 1997 | A |
5670521 | Freedman et al. | Sep 1997 | A |
5693767 | Klemke et al. | Dec 1997 | A |
5698553 | Purcher et al. | Dec 1997 | A |
5700826 | Mjalli et al. | Dec 1997 | A |
5723459 | Armistead et al. | Mar 1998 | A |
5726184 | Zelle et al. | Mar 1998 | A |
5733911 | Eilon et al. | Mar 1998 | A |
5736539 | Graham et al. | Apr 1998 | A |
5744485 | Zelle et al. | Apr 1998 | A |
5756422 | Holdgrun et al. | May 1998 | A |
5756475 | Inomata et al. | May 1998 | A |
5756527 | Mjalli et al. | May 1998 | A |
5763443 | Medlen et al. | Jun 1998 | A |
5776939 | Kroin et al. | Jul 1998 | A |
5789402 | Audia et al. | Aug 1998 | A |
5811434 | Zelle et al. | Sep 1998 | A |
5814644 | Kulagowski et al. | Sep 1998 | A |
5827846 | Regenass et al. | Oct 1998 | A |
5830915 | Pikul et al. | Nov 1998 | A |
5834014 | Weiner et al. | Nov 1998 | A |
5840319 | Alakhov et al. | Nov 1998 | A |
5840721 | Mjalli et al. | Nov 1998 | A |
5851789 | Simon et al. | Dec 1998 | A |
5852018 | Bryans et al. | Dec 1998 | A |
5885786 | Cabot | Mar 1999 | A |
5928637 | Gottesman et al. | Jul 1999 | A |
5935954 | Armistead et al. | Aug 1999 | A |
5968956 | Okada et al. | Oct 1999 | A |
6174900 | Okada et al. | Jan 2001 | B1 |
6200990 | Namil et al. | Mar 2001 | B1 |
6211186 | McIver et al. | Apr 2001 | B1 |
6221872 | Gangee | Apr 2001 | B1 |
6258526 | Stein et al. | Jul 2001 | B1 |
6329872 | Chatterjee | Dec 2001 | B1 |
6376514 | Degenhardt et al. | Apr 2002 | B1 |
6403610 | Malleron et al. | Jun 2002 | B1 |
6413984 | Philippo et al. | Jul 2002 | B1 |
6448243 | Kitazawa et al. | Sep 2002 | B1 |
6476041 | Thompson et al. | Nov 2002 | B1 |
6498170 | Sum et al. | Dec 2002 | B2 |
6559146 | Annoura et al. | May 2003 | B1 |
6602884 | Bacque et al. | Aug 2003 | B2 |
6693099 | Degenhardt et al. | Feb 2004 | B2 |
6803362 | Carruthers et al. | Oct 2004 | B2 |
6806455 | Zarate et al. | Oct 2004 | B2 |
6809093 | Degenhardt et al. | Oct 2004 | B2 |
6815458 | Andersson et al. | Nov 2004 | B2 |
6815465 | Makk et al. | Nov 2004 | B1 |
20020082262 | Degenhardt et al. | Jun 2002 | A1 |
20020091120 | Degenhardt et al. | Jul 2002 | A1 |
20020115659 | Degenhardt et al. | Aug 2002 | A1 |
20020119979 | Degenhardt et al. | Aug 2002 | A1 |
20020128269 | Degenhardt et al. | Sep 2002 | A1 |
20040132722 | Degenhardt et al. | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
563610 | Jun 1958 | BE |
2198645 | Feb 1997 | CA |
2337941 | Feb 2000 | CA |
3524955 | Jan 1986 | DE |
195 48 797 | Jul 1997 | DE |
0363212 | Nov 1990 | EP |
0529 395 | Mar 1993 | EP |
0781 552 | Jul 1997 | EP |
0812 830 | Dec 1997 | EP |
0428 104 | May 1999 | EP |
0428 107 | May 1999 | EP |
2267104 | Nov 1975 | FR |
2567885 | Jan 1986 | FR |
2163150 | Feb 1986 | GB |
2317 030 | Nov 1998 | GB |
03-101662 | Apr 1991 | JP |
04-283561 | Oct 1992 | JP |
43-56466 | Dec 1992 | JP |
05-148204 | Jun 1993 | JP |
5-509303 | Dec 1993 | JP |
06-506450 | Jul 1994 | JP |
06-211664 | Aug 1994 | JP |
06-510017 | Nov 1994 | JP |
08-501573 | Feb 1996 | JP |
09 12577 | Jan 1997 | JP |
WO 9109846 | Jul 1991 | WO |
WO 9201232 | Jul 1992 | WO |
WO 9218478 | Oct 1992 | WO |
9305014 | Mar 1993 | WO |
WO 9304042 | Mar 1993 | WO |
WO 9404513 | Mar 1994 | WO |
WO 9406771 | Mar 1994 | WO |
WO 9407856 | Apr 1994 | WO |
WO 9407858 | Apr 1994 | WO |
WO 9411382 | May 1994 | WO |
WO 9414809 | Jul 1994 | WO |
WO 9417040 | Aug 1994 | WO |
WO 9422846 | Oct 1994 | WO |
WO 9505824 | Mar 1995 | WO |
WO 9526337 | Oct 1995 | WO |
WO 9532975 | Dec 1995 | WO |
WO 9532976 | Dec 1995 | WO |
WO 9611677 | Apr 1996 | WO |
WO 9615101 | May 1996 | WO |
WO 9220190 | Jul 1996 | WO |
WO 9620179 | Jul 1996 | WO |
WO 9620180 | Jul 1996 | WO |
WO 9636630 | Nov 1996 | WO |
WO 9717069 | May 1997 | WO |
WO 9726240 | Jul 1997 | WO |
WO 9728166 | Aug 1997 | WO |
WO 9734897 | Sep 1997 | WO |
WO 9736869 | Oct 1997 | WO |
WO 9745120 | Dec 1997 | WO |
WO 9748689 | Dec 1997 | WO |
WO 9748708 | Dec 1997 | WO |
WO 9808822 | Mar 1998 | WO |
WO 9822112 | May 1998 | WO |
WO 9852923 | May 1998 | WO |
WO 9830553 | Jul 1998 | WO |
9900387 | Jan 1999 | WO |
WO 9910340 | Mar 1999 | WO |
WO 9913871 | Mar 1999 | WO |
WO 9924401 | May 1999 | WO |
WO 9926921 | Jun 1999 | WO |
WO 9943323 | Sep 1999 | WO |
WO 9964001 | Dec 1999 | WO |
WO 9965867 | Dec 1999 | WO |
WO 0001714 | Jan 2000 | WO |
0018735 | Apr 2000 | WO |
WO 0018733 | Apr 2000 | WO |
WO 0032588 | Jun 2000 | WO |
WO 0037458 | Jun 2000 | WO |
WO 0050418 | Aug 2000 | WO |
WO 0158891 | Aug 2001 | WO |
WO 0174769 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20060223853 A1 | Oct 2006 | US |
Number | Date | Country | |
---|---|---|---|
60241127 | Oct 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09740643 | Dec 2000 | US |
Child | 09996657 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09996657 | Nov 2001 | US |
Child | 11425874 | US |