The present invention relates to compounds having dual pharmacological activity towards both the α2δ subunit of the voltage-gated calcium channel, and noradrenaline transporter (NET) and more particularly to substituted pyrrolidinyl and piperidinyl pyrazolopyridazine derivatives having this pharmacological activity, to processes of preparation of such compounds, to pharmaceutical compositions comprising them, and to their use in therapy, in particular for the treatment of pain.
The adequate management of pain constitutes an important challenge, since currently available treatments provide in many cases only modest improvements, leaving many patients unrelieved (Turk, D. C., Wilson, H. D., Cahana, A.; 2011; Lancet; 377; 2226-2235). Pain affects a big portion of the population with an estimated prevalence of 20% and its incidence, particularly in the case of chronic pain, is increasing due to the population ageing. Additionally, pain is clearly related to comorbidities, such as depression, anxiety and insomnia, which leads to important productivity losses and socio-economical burden (Goldberg, D. S., McGee, S. J.; 2011; BMC Public Health; 11; 770). Existing pain therapies include non-steroidal anti-inflammatory drugs (NSAIDs), opioid agonists, calcium channel blockers and antidepressants, but they are much less than optimal regarding their safety ratio. All of them show limited efficacy and a range of secondary effects that preclude their use, especially in chronic settings.
Voltage-gated calcium channels (VGCC) are required for many key functions in the body. Different subtypes of voltage-gated calcium channels have been described (Zamponi et al., Pharmacol. Rev. 2015 67:821-70). The VGCC are assembled through interactions of different subunits, namely α1 (Cavα1), β (Cavβ) α2δ (Cavα2δ) and γ (Cavγ). The α1 subunits are the key porous forming units of the channel complex, being responsible for the Ca2+ conduction and generation of Ca2+ influx. The α2δ, β, and γ subunits are auxiliary, although very important for the regulation of the channel, since they increase the expression of the a subunits in the plasma membrane as well as modulate their function, resulting in functional diversity in different cell types. Based on their physiological and pharmacological properties, VGCC can be subdivided into low voltage-activated T-type (Cav3.1, Cav3.2, and Cav3.3), and high voltage-activated L-(Cav1.1 through Cav1.4), N—(Cav2.2), P/Q-(Cav2.1), and R—(Cav2.3) types, depending on the channel forming Cavα subunits. All of these five subclasses are found in the central and peripheral nervous systems. Regulation of intracellular calcium through activation of these VGCC plays obligatory roles in: 1) neurotransmitter release, 2) membrane depolarization and hyperpolarization, 3) enzyme activation and inactivation, and 4) gene regulation (Perret and Luo, Neurotherapeutics. 2009 6:679-92; Zamponi et al., 2015 supra; Neumaier et al., Prog. Neurobiol. 2015 129:1-36.). A large body of data has clearly indicated that VGCC are implicated in mediating various disease states including pain processing. Drugs interacting with the different calcium channel subtypes and subunits have been developed. Current therapeutic agents include drugs targeting L-type Cav1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Cav3) channels are the target of ethosuximide, widely used in absence epilepsy. Ziconotide, a peptide blocker of N-type (Cav2.2) calcium channels, has been approved as a treatment of intractable pain. (Perret and Luo, 2009, supra; Vink and Alewood, Br J Pharmacol. 2012 167:970-89.).
The Cav1 and Cav2 subfamilies contain an auxiliary α2δ subunit, which is the therapeutic target of the gabapentinoid drugs of value in certain epilepsies and chronic neuropathic pain. To date, there are four known α2δ subunits, each encoded by a unique gene and all possessing splice variants. Each α2δ protein is encoded by a single messenger RNA and is posttranslationally cleaved and then linked by disulfide bonds. Four genes encoding α2δ subunits have now been cloned. α2δ−1 was initially cloned from skeletal muscle and shows a fairly ubiquitous distribution. The α2δ−2 and α2δ−3 subunits were subsequently cloned from brain. The most recently identified subunit, α2δ−4, is largely nonneuronal. The human α2δ−4 protein sequence shares 30, 32 and 61% identity with the human α2δ−1, α2δ−2 and α2δ−3 subunits, respectively. The gene structure of all α2δ subunits is similar. All α2δ subunits show several splice variants (Davies et al., Trends Pharmacol Sci. 2007 28:220-8.; Dolphin A C, Nat Rev Neurosci. 2012 13:542-55., Biochim Biophys Acta. 2013 1828:1541-9.).
The Cavα2δ−1 subunit may play an important role in neuropathic pain development (Perret and Luo, 2009, supra; Vink and Alewood, 2012, supra). Biochemical data have indicated a significant Cavα2δ−1, but not Cavα2δ−2, subunit upregulation in the spinal dorsal horn, and DRG (dorsal root ganglia) after nerve injury that correlates with neuropathic pain development. In addition, blocking axonal transport of injury-induced DRG Cavα2δ−1 subunit to the central presynaptic terminals diminishes tactile allodynia in nerve injured animals, suggesting that elevated DRG Cavα2δ-1 subunit contributes to neuropathic allodynia.
The Cavα2δ−1 subunit (and the Cavα2δ−2, but not Cavα2δ−3 and Cavα2δ−4, subunits) is the binding site for gabapentin which has anti-allodynic/hyperalgesic properties in patients and animal models. Because injury-induced Cavα2δ−1 expression correlates with neuropathic pain development and maintenance, and various calcium channels are known to contribute to spinal synaptic neurotransmission and DRG neuron excitability, injury-induced Cavα2δ−1 subunit upregulation may contribute to the initiation and maintenance of neuropathic pain by altering the properties and/or distribution of VGCC in the subpopulation of DRG neurons and their central terminals, therefore modulating excitability and/or synaptic neuroplasticity in the dorsal horn. Intrathecal antisense oligonucleotides against the Cavα2δ−1 subunit can block nerve injury-induced Cavα2δ−1 upregulation and prevent the onset of allodynia and reserve established allodynia.
As mentioned above, the α2δ subunits of VGCC form the binding site for gabapentin and pregabalin, which are structural derivatives of the inhibitory neurotransmitter GABA although they do not bind to GABAA, GABAB, or benzodiazepine receptors, or alter GABA regulation in animal brain preparations. The binding of gabapentin and pregabalin to the Cavα2δ subunit results in a reduction in the calcium-dependent release of multiple neurotransmitters, leading to efficacy and tolerability for neuropathic pain management. Gabapentinoids may also reduce excitability by inhibiting synaptogenesis (Perret and Luo, 2009, supra; Vink and Alewood, 2012, supra, Zamponi et al., 2015, supra).
It is also known that Noradrenaline (NA), also called norepinephrine, functions in the human brain and body as a hormone and neurotransmitter. Noradrenaline exerts many effects and mediates a number of functions in living organisms. The effects of noradrenaline are mediated by two distinct super-families of receptors, named alpha- and beta-adrenoceptors. They are further divided into subgroups exhibiting specific roles in modulating behavior and cognition of animals. The release of the neurotransmitter noradrenaline throughout the mammalian brain is important for modulating attention, arousal, and cognition during many behaviors (Mason, S. T.; Prog. Neurobiol.; 1981; 16; 263-303).
The noradrenaline transporter (NET, SLC6A2) is a monoamine transporter mostly expressed in the peripheral and central nervous systems. NET recycles primarily NA, but also serotonin and dopamine, from synaptic spaces into presynaptic neurons. NET is a target of drugs treating a variety of mood and behavioral disorders, such as depression, anxiety, and attention-deficit/hyperactivity disorder (ADHD). Many of these drugs inhibit the uptake of NA into the presynaptic cells through NET. These drugs therefore increase the availability of NA for binding to postsynaptic receptors that regulate adrenergic neurotransmission. NET inhibitors can be specific. For example, the ADHD drug atomoxetine is a NA reuptake inhibitor (NRI) that is highly selective for NET. Reboxetine was the first NRI of a new antidepressant class (Kasper et al.; Expert Opin. Pharmacother.; 2000; 1; 771-782). Some NET inhibitors also bind multiple targets, increasing their efficacy as well as their potential patient population.
For instance, the antidepressants venlafaxine and duloxetine are dual reuptake inhibitor of serotonin and NA that targets both NET and the serotonin transporter (SERT, SLC6A4). Duloxetine has been licensed for major depressive disorder, generalised anxiety disorder, diabetic peripheral neuropathic pain, fibromyalgia and chronic musculoskeletal pain.
Endogenous, descending noradrenergic fibers impose analgesic control over spinal afferent circuitry mediating the transmission of pain signals (Ossipov et al.; J. Clin. Invest.; 2010; 120; 3779-3787). Alterations in multiple aspects of noradrenergic pain processing have been reported, especially in neuropathic pain states (Ossipov et al., 2010; Wang et al.; J. Pain; 2013; 14; 845-853). Numerous studies have demonstrated that activation of spinal α2-adrenergic receptors exerts a strong antinociceptive effect. Spinal clonidine blocked thermal and capsaicin-induced pain in healthy human volunteers (Ossipov et a., 2010). Noradrenergic reuptake inhibitors have been used for the treatment of chronic pain for decades: most notably the tricyclic antidepressants, amitriptyline, and nortriptyline. Once released from the presynaptic neuron, NA typically has a short-lived effect, as much of it is rapidly transported back into the nerve terminal. In blocking the reuptake of NA back into the presynaptic neurons, more neurotransmitter remains for a longer period of time and is therefore available for interaction with pre- and postsynaptic α2-adrenergic receptors (AR). Tricyclic antidepressants and other NA reuptake inhibitors enhance the antinociceptive effect of opioids by increasing the availability of spinal NA. The α2A-AR subtype is necessary for spinal adrenergic analgesia and synergy with opioids for most agonist combinations in both animal and humans (Chabot-Doré et al.; Neuropharmacology; 2015; 99; 285-300). A selective upregulation of spinal NET in a rat model of neuropathic pain with concurrent downregulation of serotonin transporters has been shown (Fairbanks et al.; Pharmacol. Ther.; 2009; 123; 224-238). Inhibitors of NA reuptake such as nisoxetine, nortriptyline and maprotiline and dual inhibitors of the noradrenaline and serotonin reuptake such as imipramine and milnacipran produce potent anti-nociceptive effects in the formalin model of tonic pain. Neuropathic pain resulting from the chronic constriction injury of the sciatic nerve was prevented by the dual uptake inhibitor, venlafaxine. In the spinal nerve ligation model, amitriptyline, a non-selective serotonin and noradrenaline reuptake blocker, the preferential noradrenaline reuptake inhibitor, desipramine and the selective serotonin and noradrenaline reuptake inhibitors, milnacipran and duloxetine, produce a decrease in pain sensitivity whereas the selective serotonin reuptake inhibitor, fluoxetine, is ineffective (Mochizucki, D.; Psychopharmacol.; 2004; Supplm. 1; S15-S19; Hartrick, C. T.; Expert Opin. Investig. Drugs; 2012; 21; 1827-1834). A number of nonselective investigational agents focused on noradrenergic mechanisms with the potential for additive or even synergistic interaction between multiple mechanisms of action are being developed.
Polypharmacology is a phenomenon in which a drug binds multiple rather than a single target with significant affinity. The effect of polypharmacology on therapy can be positive (effective therapy) and/or negative (side effects). Positive and/or negative effects can be caused by binding to the same or different subsets of targets; binding to some targets may have no effect. Multi-component drugs or multi-targeting drugs can overcome toxicity and other side effects associated with high doses of single drugs by countering biological compensation, allowing reduced dosage of each compound or accessing context-specific multitarget mechanisms. Because multitarget mechanisms require their targets to be available for coordinated action, one would expect synergies to occur in a narrower range of cellular phenotypes given differential expression of the drug targets than would the activities of single agents. In fact, it has been experimentally demonstrated that synergistic drug combinations are generally more specific to particular cellular contexts than are single agent activities, such selectivity is achieved through differential expression of the drugs' targets in cell types associated with therapeutic, but not toxic, effects (Lehar et al., Nat. Biotechnol. 2009; 27: 659-666.).
In the case of chronic pain, which is a multifactorial disease, multi-targeting drugs may produce concerted pharmacological intervention of multiple targets and signaling pathways that drive pain. Because they actually make use of biological complexity, multi-targeting (or multi-component drugs) approaches are among the most promising avenues toward treating multifactorial diseases such as pain (Gilron et al., Lancet Neurol. 2013 November; 12(11):1084-95.). In fact, positive synergistic interaction for several compounds, including analgesics, has been described (Schroder et al., J Pharmacol. Exp. Ther. 2011; 337:312-20. Erratum in: J Pharmacol. Exp. Ther. 2012; 342: 232; Zhang et al., Cell Death Dis. 2014; 5: e1138; Gilron et al., 2013, supra).
Given the significant differences in pharmacokinetics, metabolisms and bioavailability, reformulation of drug combinations (multi-component drugs) is challenging. Further, two drugs that are generally safe when dosed individually cannot be assumed to be safe in combination. In addition to the possibility of adverse drug-drug interactions, if the theory of network pharmacology indicates that an effect on phenotype may derive from hitting multiple targets, then that combined phenotypic perturbation may be efficacious or deleterious. The major challenge to both drug combination strategies is the regulatory requirement for each individual drug to be shown to be safe as an individual agent and in combination (Hopkins, Nat. Chem. Biol. 2008; 4:682-90).
An alternative strategy for multitarget therapy is to design a single compound with selective polypharmacology (multi-targeting drug). It has been shown that many approved drugs act on multiple targets. Dosing with a single compound may have advantages over a drug combination in terms of equitable pharmacokinetics and biodistribution. Indeed, troughs in drug exposure due to incompatible pharmacokinetics between components of a combination therapy may create a low-dose window of opportunity where a reduced selection pressure can lead to drug resistance. In terms of drug registration, approval of a single compound acting on multiple targets faces significantly lower regulatory barriers than approval of a combination of new drugs (Hopkins, 2008, supra).
Thus, the present application, relates to the advantages of dual inhibition of noradrenaline transporter (NET) and the α2δ−1 subunit of voltage-gated calcium channels, in the same molecule to treat chronic pain.
There are two potentially important interactions between NET and α2δ−1 inhibition: 1) synergism in analgesia, thus reducing the risk of specific side effects; and 2) inhibition of pain-related affective comorbidities such as anxiety and/or depressive like behaviors (Nicolson et al.; Harv. Rev. Psychiatry; 2009; 17; 407-420).
Pain is multimodal in nature, since in nearly all pain states several mediators, signaling pathways and molecular mechanisms are implicated. Consequently, monomodal therapies fail to provide complete pain relief. Currently, combining existing therapies is a common clinical practice and many efforts are directed to assess the best combination of available drugs in clinical studies (Mao, J., Gold, M. S., Backonja, M.; 2011; J. Pain; 12; 157-166).
Accordingly, there is a need to find compounds that have an alternative or improved pharmacological activity in the treatment of pain, being both effective and showing the desired selectivity, and having good “drugability” properties, i.e. good pharmaceutical properties related to administration, distribution, metabolism and excretion.
The authors of the present invention, have found a series of compounds that show dual pharmacological activity towards both the α2δ subunit, in particular the α2δ−1 subunit, of the voltage-gated calcium channel, and the noradrenaline transporter (NET), resulting in an innovative, effective and alternative solution for the treatment of pain.
In view of the existing results of the currently available therapies and clinical practices, the present invention offers a solution by combining in a single compound binding to two different targets relevant for the treatment of pain. This was mainly achieved by providing the compounds according to the invention that bind both to the noradrenaline transporter (NET) and to the α2δ subunit, in particular the α2δ−1 subunit, of the voltage-gated calcium channel.
In this invention a family of structurally distinct substituted pyrrolidinyl and piperidinyl pyrazolopyridazine derivatives, encompassed by formula (I), which have a dual pharmacological activity towards both the α2δ subunit, in particular the α2δ−1 subunit, of the voltage-gated calcium channel, and the noradrenaline transporter (NET) was identified, thus solving the above problem of identifying alternative or improved pain treatments by offering such dual compounds.
The present invention discloses novel compounds with affinity to α2δ subunit of voltage-gated calcium channels, more specifically to the α2δ−1, and also have inhibitory effect towards noradrenaline transporter (NET), thus resulting in a dual activity for treating pain and pain related disorders.
It has to be noted, though, that functionalities “antagonism” and “agonism” are also sub-divided in their effect into subfunctionalities like partial agonism or inverse agonism. Accordingly, the functionalities of the compounds should be considered within a relatively broad bandwidth.
An antagonist blocks or dampens agonist-mediated responses. Known subfunctionalities are neutral antagonists or inverse agonists.
An agonist increases the activity of the receptor above its basal level. Known subfunctionalities are full agonists, or partial agonists.
The main object of the invention is directed to compounds having a dual activity binding to the α2δ subunit, in particular the α2δ−1 subunit, of the voltage-gated calcium channel and the noradrenaline transporter (NET) and the α2δ−1 subunit of voltage-gated calcium channels, for use in the treatment of pain.
As this invention is aimed at providing a compound or a chemically related series of compounds which act as dual ligands of the α2δ subunit, in particular the α2δ−1 subunit, of the voltage-gated calcium channel and the noradrenaline transporter (NET), it is a very preferred embodiment if the compound has a binding expressed as K responding to the following scales:
K(NET) is preferably <1000 nM, more preferably <500 nM, even more preferably <100 nM.
K(α2δ−1) is preferably <10000 nM, more preferably <5000 nM, even more preferably <500 nM or even more preferably <100 nM.
More particularly the main aspect of the invention refers to a compound of general Formula (I),
A further object of the invention refers to the processes for preparation of compounds of general formula (I).
A still further object of the invention refers to the use of some intermediate compounds for the preparation of a compound of general formula (I).
It is also an object of the invention a pharmaceutical composition comprising a compound of formula (I).
Finally, it is an object of the invention the use of compound as a medicament and more particularly for the treatment of pain, pain related conditions, and α2δ−1 subunit of the voltage-gated calcium channel and the Noradrenaline transporter (NET) related conditions.
The invention is directed to a family of structurally distinct substituted pyrrolidinyl and piperidinyl pyrazolopyridazine derivatives which have a dual pharmacological activity towards both the α2δ subunit, in particular the α2δ−1 subunit, of the voltage-gated calcium channel and the noradrenaline transporter (NET).
The invention is directed to compounds having a dual activity binding to the α2δ subunit, in particular the α2δ−1 subunit, of the voltage-gated calcium channel and the Noradrenaline transporter (NET) for use in the treatment of pain.
As this invention is aimed at providing a compound or a chemically related series of compounds which act as dual ligands of the α2δ subunit, in particular the α2δ−1 subunit, of the voltage-gated calcium channel and the Noradrenaline transporter (NET) it is a preferred embodiment if the compound has a binding expressed as K; responding to the following scales:
K(NET) is preferably <1000 nM, more preferably <500 nM, even more preferably <100 nM.
K(α2δ−1) is preferably <10000 nM, more preferably <5000 nM, even more preferably <500 nM or even more preferably <100 nM.
In its broader aspect, the present invention is directed to compounds of general Formula (I):
wherein
m is 0, 1, 2 or 3;
R1 is selected from substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl, substituted or unsubstituted C2-6 alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heterocyclyl;
R2 is —X—[CR6R6′]n—R7;
R2′ is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
alternatively, R2 and R2′ may form, together with the nitrogen to which they are attached, a substituted or unsubstituted heterocyclyl;
R3 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
R4 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
R5 and R5′ are independently selected from hydrogen, halogen, —R15, —OR15, —NO2, —NR15R15′, —NR15C(O)R15′, —NR15S(O)2R15′, —S(O)2NR15R15′, —NR15C(O)NR15′R15″, —SR15, —S(O)R15, —S(O)2R15, —CN, haloalkyl, haloalkoxy, —C(O)OR15, —C(O)NR15R15′, —OCH2CH2OR15, —NR15S(O)2NR15′R15″ and —C(CH3)2OR15;
These compounds according to the invention are optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another embodiment, these compounds according to the invention are optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof.
In a further embodiment the compound according to the invention of general Formula (I) is a compound of general Formula (I′)
wherein R1, R2, R2′, R3, R4, R5, R5′, and m are as defined in the detailed description,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof.
In a further embodiment the compound according to the invention of general Formula (I) is a compound of general Formula (I2′)
wherein R2, R2′, R3, R4, R5, R5′ and m are as defined in the detailed description,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof.
In a further embodiment the compound according to the invention of general Formula (I) is a compound of general Formula (I3′)
wherein R1, R2, R2′, R3, R4 and m are as defined in the detailed description,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof.
In a further embodiment the compound according to the invention of general Formula (I) is a compound of general Formula (I4′)
wherein R2, R2′, R3, R4 and m are as defined in the detailed description,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof.
In a further embodiment the compound according to the invention of general Formula (I) is a compound of general Formula (I5′)
wherein R2, R2′ and m are as defined in the detailed description,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof.
For clarity purposes, all groups and definitions described in the description and referring to compounds of general Formula (I), also apply to compounds of general Formula (I′), (I2′), (I3′), (I4′) and (I5′), as well as to all the intermediates of synthesis, when those groups are present in the mentioned general Markush formulae, since compounds of general Formula (I′), (I2′), (I3′), (I4′) and (I5′) are included in the general Formula (I).
For clarity purposes, the general Markush Formula (I)
is equivalent to
wherein only the —CH2— groups are included into the brackets and m means the number of times that said —CH2— groups is repeated. The same would apply, when applicable, to general Markush Formulae (I′), (I2′), (I3′), (I4′) and (I5′), and to all intermediates of synthesis.
In addition, and for clarity purposes, it should further be understood that naturally if m is 0, then the rest of the cycle is still present in general Markush Formulae (I), (I′), (I2′), (I3′), (I4′) and (I5′).
For clarity purposes, the expression, e.g. “the heterocyclyl in R2-R2′” means the heterocyclyl resulting when R2 and R2′ form, together with the nitrogen to which they are attached, a cycle. This heterocyclyl can then be substituted or not. This definition is also generally applicable and can be also applied as a definition of any other cycle (preferably cycloalkyls, heterocycls or aryls) formed from two different functional groups like e.g. “the cycle in Ri—Ri′” means the cycle resulting when Ri and Ri′ form a cycle together with the atom(s) to which they are attached. This cycle can then be substituted or not.
In the context of this invention, alkyl is understood as meaning saturated, linear or branched hydrocarbons, which may be unsubstituted or substituted once or several times. It encompasses e.g. —CH3 and —CH2—CH3. In these radicals, C1-2-alkyl represents C1- or C2-alkyl, C1-3-alkyl represents C1-, C2- or C3-alkyl, C1-4-alkyl represents C1-, C2-, C3- or C4-alkyl, C1-5-alkyl represents C1-, C2-, C3-, C4-, or C5-alkyl, C1-6-alkyl represents C1-, C2-, C3-, C4-, C5- or C6-alkyl, C1-7-alkyl represents C1-, C2-, C3-, C4-, C5-, C6- or C7-alkyl, C1-8-alkyl represents C1-, C2-, C3-, C4-, C5-, C6-, C7- or C8-alkyl, C1-10-alkyl represents C1-, C2-, C3-, C4-, C5-, C6-, C7-, C8-, C9- or C10-alkyl and C1-18-alkyl represents C1-, C2-, C3-, C4-, C5-, C6-, C7-, C8-, C9-, C10-, C11-, C12-, C13-, C14-, C15-, C16-, C17- or C18-alkyl. The alkyl radicals are preferably methyl, ethyl, propyl, methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, hexyl, 1-methylpentyl, if substituted also CHF2, CF3 or CH2OH etc. Preferably alkyl is understood in the context of this invention as C1-8alkyl like methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, or octyl; preferably is C1-6alkyl like methyl, ethyl, propyl, butyl, pentyl, or hexyl; more preferably is C1-4alkyl like methyl, ethyl, propyl or butyl.
Alkenyl is understood as meaning unsaturated, linear or branched hydrocarbons, which may be unsubstituted or substituted once or several times. It encompasses groups like e.g. —CH═CH—CH3. The alkenyl radicals are preferably vinyl (ethenyl), allyl (2-propenyl). Preferably in the context of this invention alkenyl is C2-10-alkenyl or C2-8-alkenyl like ethylene, propylene, butylene, pentylene, hexylene, heptylene or octylene; or is C2-6-alkenyl like ethylene, propylene, butylene, pentylene, or hexylene; or is C2-4-alkenyl, like ethylene, propylene, or butylenes.
Alkynyl is understood as meaning unsaturated, linear or branched hydrocarbons, which may be unsubstituted or substituted once or several times. It encompasses groups like e.g. —C≡C—CH3 (1-propinyl). Preferably alkynyl in the context of this invention is C2-10-alkynyl or C2-8-alkynyl like ethyne, propyne, butyene, pentyne, hexyne, heptyne, or octyne; or is C2-6-alkynyl like ethyne, propyne, butyene, pentyne, or hexyne; or is C2-4-alkynyl like ethyne, propyne, butyene, pentyne, or hexyne.
In connection with alkyl (also in alkylaryl, alkylheterocyclyl or alkylcycloalkyl), alkenyl, alkynyl and O-alkyl—unless defined otherwise—the term substituted in the context of this invention is understood as meaning replacement of at least one hydrogen radical on a carbon atom by halogen (F, Cl, Br, I), —NRcRc′, —SRc, —S(O)Rc, —S(O)2Rc, —ORc, —C(O)ORc, —CN, —C(O)NRcRc′, haloalkyl, haloalkoxy or —OC1-6 alkyl, being Rc represented by R11, R12, R13, R14, R16, R17, R18, (being Rc′ represented by R11′, R12′, R13′, R14′, R16′, R17′, R18′; being Rc″ represented by R11″, R12″, R13″, R14″, R16″, R17″, R18″) wherein R1 to R22″ are as defined in the description, and wherein when different radicals R1 to R22″ are present simultaneously in Formula I they may be identical or different.
Most preferably in connection with alkyl (also in alkylaryl, alkylheterocyclyl or alkylcycloalkyl), alkenyl, alkynyl or O-alkyl, substituted is understood in the context of this invention that any alkyl (also in alkylaryl, alkylheterocyclyl or alkylcycloalkyl), alkenyl, alkynyl or O-alkyl which, if substituted, is substituted with one or more of halogen (F, Cl, Br, I), —ORc, —CN, —SRc, —S(O)Rc, —S(O)2Rc, haloalkyl, haloalkoxy, —NRcRc′, or —OC1-6alkyl, being Rc represented by R11, R12, R13, R14, R16, R17, R18, (being Rc′ represented by R11′, R12′, R13′, R14′, R16′, R17′, R18′; being Rc″ represented by R11″, R12″, R13″, R14″, R16″, R17″, R18″) wherein R1 to R22″ are as defined in the description, and wherein when different radicals R1 to R22″ are present simultaneously in Formula I they may be identical or different.
More than one replacement on the same molecule and also on the same carbon atom is possible with the same or different substituents. This includes for example 3 hydrogens being replaced on the same C atom, as in the case of CF3, or at different places of the same molecule, as in the case of e.g. —CH(OH)—CH═CH—CHCl2.
In the context of this invention haloalkyl is understood as meaning an alkyl being substituted once or several times by a halogen (selected from F, Cl, Br, I). It encompasses e.g. —CH2Cl, —CH2F, —CHCl2, —CHF2, —CCl3, —CF3 and —CH2—CHCl2. Preferably haloalkyl is understood in the context of this invention as halogen-substituted C1-4-alkyl representing halogen substituted C1-, C2-, C3- or C4-alkyl. The halogen-substituted alkyl radicals are thus preferably methyl, ethyl, propyl, and butyl. Preferred examples include —CH2Cl, —CH2F, —CHCl2, —CHF2, and —CF3.
In the context of this invention haloalkoxy is understood as meaning an —O-alkyl being substituted once or several times by a halogen (selected from F, Cl, Br, I). It encompasses e.g. —OCH2Cl, —OCH2F, —OCHCl2, —OCHF2, —OCCl3, —OCF3 and —OCH2—CHCl2. Preferably haloalkoxy is understood in the context of this invention as halogen-substituted —OC1-4-alkyl representing halogen substituted C1-, C2-, C3- or C4-alkoxy. The halogen-substituted alkyl radicals are thus preferably O-methyl, O-ethyl, O-propyl, and O-butyl. Preferred examples include —OCH2Cl, —OCH2F, —OCHCl2, —OCHF2, and —OCF3.
In the context of this invention cycloalkyl is understood as meaning saturated and unsaturated (but not aromatic) cyclic hydrocarbons (without a heteroatom in the ring), which can be unsubstituted or once or several times substituted. Furthermore, C3-4-cycloalkyl represents C3- or C4-cycloalkyl, C3-5-cycloalkyl represents C3-, C4- or C5-cycloalkyl, C3-6-cycloalkyl represents C3-, C4-, C5- or C6-cycloalkyl, C3-7-cycloalkyl represents C3-, C4-, C5-, C6- or C7-cycloalkyl, C3-8-cycloalkyl represents C3-, C4-, C5-, C6-, C7- or C8-cycloalkyl, C4-5-cycloalkyl represents C4- or C5-cycloalkyl, C4-6-cycloalkyl represents C4-, C5- or C6-cycloalkyl, C4-7-cycloalkyl represents C4-, C5-, C6- or C7-cycloalkyl, C5-6-cycloalkyl represents C5- or C6-cycloalkyl and C5-7-cycloalkyl represents C5-, C6- or C7-cycloalkyl. Examples are cyclopropyl, 2-methylcyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl, cyclopentylmethyl, cyclohexyl, cycloheptyl, cyclooctyl, and also adamantly. Preferably in the context of this invention cycloalkyl is C3-8cycloalkyl like cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, or cyclooctyl; or is C3-7cycloalkyl like cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, or cycloheptyl; or is C3-6cycloalkyl like cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, especially cyclopentyl or cyclohexyl.
Aryl is understood as meaning 5 to 18 membered mono or polycyclic ring systems with at least one aromatic ring but without heteroatoms even in only one of the rings. Examples are phenyl, naphthyl, fluoranthenyl, fluorenyl, tetralinyl, indanyl, 9H-fluorenyl or anthracenyl radicals, which can be unsubstituted or once or several times substituted. Most preferably aryl is understood in the context of this invention as phenyl, naphthyl or anthracenyl, preferably is phenyl.
A heterocyclyl radical or group (also called heterocyclyl hereinafter) is understood as meaning 5 to 18 membered mono or poly heterocyclic ring systems, with at least one saturated or unsaturated ring which contains one or more heteroatoms selected from the group consisting of nitrogen, oxygen and/or sulfur in the ring. A heterocyclic group can also be substituted once or several times.
Examples include non-aromatic heterocyclyls such as tetrahydropyran, oxazepane, morpholine, piperidine, pyrrolidine as well as heteroaryls such as furan, benzofuran, thiophene, benzothiophene, pyrrole, pyridine, pyrimidine, pyrazine, quinoline, isoquinoline, phthalazine, thiazole, benzothiazole, indole, benzotriazole, carbazole and quinazoline.
Subgroups inside the heterocyclyls as understood herein include heteroaryls and non-aromatic heterocyclyls.
Preferably in the context of this invention heterocyclyl is defined as a 5 to 18 membered mono or polycyclic heterocyclic ring system of one or more saturated or unsaturated rings of which at least one ring contains one or more heteroatoms selected from the group consisting of nitrogen, oxygen and/or sulfur in the ring. Preferably it is a 5 to 18 membered mono or polycyclic heterocyclic ring system of one or two saturated or unsaturated rings of which at least one ring contains one or more heteroatoms selected from the group consisting of nitrogen, oxygen and/or sulfur in the ring.
Preferred examples of heterocyclyls include oxetane, oxazepane, pyrrolidine, imidazole, oxadiazole, tetrazole, pyridine, pyrimidine, piperidine, piperazine, benzofuran, benzimidazole, indazole, benzodiazole, thiazole, benzothiazole, tetrahydropyran, morpholine, indoline, furan, triazole, isoxazole, pyrazole, thiophene, benzothiophene, pyrrole, pyrazine, pyrrolo[2,3b]pyridine, quinoline, isoquinoline, phthalazine, benzo-1,2,5-thiadiazole, indole, benzotriazole, benzoxazole, oxopyrrolidine, pyrimidine, benzodioxolane, benzodioxane, carbazole and quinazoline, especially is pyridine, pyrazine, indazole, benzodioxane, thiazole, benzothiazole, morpholine, tetrahydropyran, pyrazole, imidazole, piperidine, thiophene, indole, benzimidazole, pyrrolo[2,3b]pyridine, benzoxazole, oxopyrrolidine, pyrimidine, oxazepane, oxetane and pyrrolidine.
In the context of this invention oxopyrrolidine is understood as meaning pyrrolidin-2-one.
An N-containing heterocyclyl is a heterocyclic ring system of one or more saturated or unsaturated rings of which at least one ring contains a nitrogen and optionally one or more further heteroatoms selected from the group consisting of nitrogen, oxygen and/or sulfur in the ring; preferably is a heterocyclic ring system of one or two saturated or unsaturated rings of which at least one ring contains a nitrogen and optionally one or more further heteroatoms selected from the group consisting of nitrogen, oxygen and/or sulfur in the ring, more preferably is selected from oxazepam, pyrrolidine, imidazole, oxadiazole, tetrazole, azetidine, pyridine, pyrimidine, piperidine, piperazine, benzimidazole, indazole, benzothiazole, benzodiazole, morpholine, indoline, triazole, isoxazole, pyrazole, pyrrole, pyrazine, pyrrolo[2,3b]pyridine, quinoline, quinolone, isoquinoline, tetrahydrothienopyridine, phthalazine, benzo-1,2,5-thiadiazole, indole, benzotriazole, benzoxazole oxopyrrolidine, carbazole or thiazole.
In the context of this invention, a cyclic amide is defined as a subgroup of a heterocyclyl (as defined above) formed through the cyclization of a carbon sequence, containing at least the sequence
forming part of the cycle. Said cyclic amide may optionally be fused to a ring system. Preferably the cyclic amide is an “indoline-2-one”. A cyclic amide may be substituted or unsubstituted as defined for heterocyclyl above.
In the context of this invention, a cyclic urea is defined as a subgroup of a heterocyclyl (as defined above) formed through the cyclization of a carbon sequence containing at least the sequence
forming part of the cycle. Said cyclic urea may optionally be fused to a ring system. Preferably the cyclic urea is “1H-benzo[d]imidazol-2(3H)-one”. A cyclic urea may be substituted or unsubstituted as defined for heterocyclyl above.
In connection with aromatic heterocyclyls (heteroaryls), non-aromatic heterocyclyls, aryls and cycloalkyls, when a ring system falls within two or more of the above cycle definitions simultaneously, then the ring system is defined first as an aromatic heterocyclyl (heteroaryl) if at least one aromatic ring contains a heteroatom. If no aromatic ring contains a heteroatom, then the ring system is defined as a non-aromatic heterocyclyl if at least one non-aromatic ring contains a heteroatom. If no non-aromatic ring contains a heteroatom, then the ring system is defined as an aryl if it contains at least one aryl cycle. If no aryl is present, then the ring system is defined as a cycloalkyl if at least one non-aromatic cyclic hydrocarbon is present.
In the context of this invention alkylaryl is understood as meaning an aryl group (see above) being connected to another atom through a C1-6-alkyl (see above) which may be branched or linear and is unsubstituted or substituted once or several times. Preferably alkylaryl is understood as meaning an aryl group (see above) being connected to another atom through 1 to 4 (—CH2—) groups. Most preferably alkylaryl is benzyl (i.e. —CH2-phenyl).
In the context of this invention alkylheterocyclyl is understood as meaning an heterocyclyl group (see above) being connected to another atom through a C1-6-alkyl (see above) which may be branched or linear and is unsubstituted or substituted once or several times. Preferably alkylheterocyclyl is understood as meaning a heterocyclyl group (see above) being connected to another atom through 1 to 4 (—CH2—) groups. Most preferably alkylheterocyclyl is —CH2-pyridine.
In the context of this invention alkylcycloalkyl is understood as meaning an cycloalkyl group (see above) being connected to another atom through a C1-6-alkyl (see above) which may be branched or linear and is unsubstituted or substituted once or several times. Preferably alkylcycloalkyl is understood as meaning a cycloalkyl group (see above) being connected to another atom through 1 to 4 (—CH2—) groups. Most preferably alkylcycloalkyl is —CH2-cyclopropyl.
Preferably, the aryl is a monocyclic aryl. More preferably the aryl is a 5, 6 or 7 membered monocyclic aryl. Even more preferably the aryl is a 5 or 6 membered monocyclic aryl.
Preferably, the heteroaryl is a monocyclic heteroaryl. More preferably the heteroaryl is a 5, 6 or 7 membered monocyclic heteroaryl. Even more preferably the heteroaryl is a 5 or 6 membered monocyclic heteroaryl.
Preferably, the non-aromatic heterocyclyl is a monocyclic non-aromatic heterocyclyl.
More preferably the non-aromatic heterocyclyl is a 4, 5, 6 or 7 membered monocyclic non-aromatic heterocyclyl. Even more preferably the non-aromatic heterocyclyl is a 5 or 6 membered monocyclic non-aromatic heterocyclyl.
Preferably, the cycloalkyl is a monocyclic cycloalkyl. More preferably the cycloalkyl is a 3, 4, 5, 6, 7 or 8 membered monocyclic cycloalkyl. Even more preferably the cycloalkyl is a 3, 4, 5 or 6 membered monocyclic cycloalkyl.
In connection with aryl (including alkyl-aryl), cycloalkyl (including alkyl-cycloalkyl), or heterocyclyl (including alkyl-heterocyclyl), substituted is understood—unless defined otherwise—as meaning substitution of the ring-system of the aryl or alkyl-aryl, cycloalkyl or alkyl-cycloalkyl; heterocyclyl or alkyl-heterocyclyl with one or more of halogen (F, Cl, Br, I), —Rc, —ORc, —CN, —NO2, —NRcRc′, —C(O)ORc, NRcC(O)Rc′, —C(O)NRcRc′, —NRcS(O)2Rc′, ═O, —OCH2CH2ORc, —NRcC(O)NRc′Rc″, —S(O)2NRcRc′, —NRcS(O)2NRc′Rc″, haloalkyl, haloalkoxy, —SRc, —S(O)Rc, —S(O)2Rc or —C(CH3)ORc; NRcRc′, with Rc, Rc′ and Rc″ independently being either H or a saturated or unsaturated, linear or branched, substituted or unsubstituted C1-6-alkyl; a saturated or unsaturated, linear or branched, substituted or unsubstituted —O—C1-6-alkyl (alkoxy); a saturated or unsaturated, linear or branched, substituted or unsubstituted —S—C1-6-alkyl; a saturated or unsaturated, linear or branched, substituted or unsubstituted —C(O)—C1-6-alkyl-group; a saturated or unsaturated, linear or branched, substituted or unsubstituted —C(O)—O—C1-6-alkyl-group; a substituted or unsubstituted aryl or alkyl-aryl; a substituted or unsubstituted cycloalkyl or alkyl-cycloalkyl; a substituted or unsubstituted heterocyclyl or alkyl-heterocyclyl, being Rc one of R11, R17, R19 or R22, (being Rc′ one of R11′, R17′, R19′ or R22′; being Rc″ one of R11″, R17″, R19″ or R22″;), wherein R1 to R22″ are as defined in the description, and wherein when different radicals R1 to R22″ are present simultaneously in Formula I they may be identical or different.
Most preferably in connection with aryl (including alkyl-aryl), cycloalkyl (including alkyl-cycloalkyl), or heterocyclyl (including alkyl-heterocyclyl), substituted is understood in the context of this invention that any aryl, cycloalkyl and heterocyclyl which is substituted is substituted (also in an alkylaryl, alkylcycloalkyl or alkylheterocyclyl) with one or more of halogen (F, Cl, Br, I), —Rc, —ORc, —CN, —NO2, —NRcRc′″, NRcC(O)Rc′, —NRcS(O)2Rc′, ═O, haloalkyl, haloalkoxy, or —C(CH3)ORc; being Rc one of R11, R17, R19 or R22, (being Rc′ one of R11′, R17′, R19′ or R22′; being Rc″ one of R11″, R17″, R19″ or R22″;), wherein R1 to R22″ are as defined in the description, and wherein when different radicals R1 to R22″ are present simultaneously in Formula I they may be identical or different.
Moreover, in connection with cycloalkyl (including alkyl-cycloalkyl), or heterocyclyl (including alkylheterocyclyl) namely non-aromatic heterocyclyl (including non-aromatic alkyl-heterocyclyl), substituted is also understood—unless defined otherwise—as meaning substitution of the ring-system of the cycloalkyl or alkyl-cycloalkyl; non-aromatic heterocyclyl or non aromatic alkyl-heterocyclyl with
(leading to a spiro structure) and/or ═O.
Moreover, in connection with cycloalkyl (including alkyl-cycloalkyl), or heterocyclyl (including alkylheterocyclyl) namely non-aromatic heterocyclyl (including non-aromatic alkyl-heterocyclyl), substituted is also understood—unless defined otherwise—as meaning substitution of the ring-system of the cycloalkyl or alkyl-cycloalkyl; non-aromatic heterocyclyl or non aromatic alkyl-heterocyclyl is spirosubstituted or substituted with ═O.
Moreover, in connection with cycloalkyl (including alkyl-cycloalkyl), or heterocyclyl (including alkylheterocyclyl) namely non-aromatic heterocyclyl (including non-aromatic alkyl-heterocyclyl), substituted is also understood—unless defined otherwise—as meaning substitution of the ring-system of the cycloalkyl or alkyl-cycloalkyl; non-aromatic heterocyclyl or non aromatic alkyl-heterocyclyl with ═O.
A ring system is a system consisting of at least one ring of connected atoms but including also systems in which two or more rings of connected atoms are joined with “joined” meaning that the respective rings are sharing one (like a spiro structure), two or more atoms being a member or members of both joined rings.
The term “leaving group” means a molecular fragment that departs with a pair of electrons in heterolytic bond cleavage. Leaving groups can be anions or neutral molecules. Common anionic leaving groups are halides such as Cl-, Br-, and I-, and sulfonate esters, such as tosylate (TsO—) or mesylate.
The term “salt” is to be understood as meaning any form of the active compound used according to the invention in which it assumes an ionic form or is charged and is coupled with a counter-ion (a cation or anion) or is in solution. By this are also to be understood complexes of the active compound with other molecules and ions, in particular complexes via ionic interactions.
The term “physiologically acceptable salt” means in the context of this invention any salt that is physiologically tolerated (most of the time meaning not being toxic-especially not caused by the counter-ion) if used appropriately for a treatment especially if used on or applied to humans and/or mammals.
These physiologically acceptable salts can be formed with cations or bases and in the context of this invention is understood as meaning salts of at least one of the compounds used according to the invention—usually a (deprotonated) acid—as an anion with at least one, preferably inorganic, cation which is physiologically tolerated—especially if used on humans and/or mammals. The salts of the alkali metals and alkaline earth metals are particularly preferred, and also those with NH4, but in particular (mono)- or (di)sodium, (mono)- or (di)potassium, magnesium or calcium salts.
Physiologically acceptable salts can also be formed with anions or acids and in the context of this invention is understood as meaning salts of at least one of the compounds used according to the invention as the cation with at least one anion which are physiologically tolerated—especially if used on humans and/or mammals. By this is understood in particular, in the context of this invention, the salt formed with a physiologically tolerated acid, that is to say salts of the particular active compound with inorganic or organic acids which are physiologically tolerated—especially if used on humans and/or mammals. Examples of physiologically tolerated salts of particular acids are salts of: hydrochloric acid, hydrobromic acid, sulfuric acid, methanesulfonic acid, formic acid, acetic acid, oxalic acid, succinic acid, malic acid, tartaric acid, mandelic acid, fumaric acid, lactic acid or citric acid.
The compounds of the invention may be present in crystalline form or in the form of free compounds like a free base or acid.
Any compound that is a solvate of a compound according to the invention like a compound according to general formula I defined above is understood to be also covered by the scope of the invention. Methods of solvation are generally known within the art. Suitable solvates are pharmaceutically acceptable solvates. The term “solvate” according to this invention is to be understood as meaning any form of the active compound according to the invention in which this compound has attached to it via non-covalent binding another molecule (most likely a polar solvent). Especially preferred examples include hydrates and alcoholates, like methanolates or ethanolates.
Any compound that is a prodrug of a compound according to the invention like a compound according to general formula I defined above is understood to be also covered by the scope of the invention. The term “prodrug” is used in its broadest sense and encompasses those derivatives that are converted in vivo to the compounds of the invention. Such derivatives would readily occur to those skilled in the art, and include, depending on the functional groups present in the molecule and without limitation, the following derivatives of the present compounds: esters, amino acid esters, phosphate esters, metal salts sulfonate esters, carbamates, and amides. Examples of wellknown methods of producing a prodrug of a given acting compound are known to those skilled in the art and can be found e.g. in Krogsgaard-Larsen et al. “Textbook of Drug design and Discovery” Taylor & Francis (April 2002).
Any compound that is an N-oxide of a compound according to the invention like a compound according to general formula I defined above is understood to be also covered by the scope of the invention.
Unless otherwise stated, the compounds of the invention are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of a hydrogen by a deuterium or tritium, or the replacement of a carbon by 13C- or 14C-enriched carbon or of a nitrogen by 15N-enriched nitrogen are within the scope of this invention.
The compounds of formula (I) as well as their salts or solvates of the compounds are preferably in pharmaceutically acceptable or substantially pure form. By pharmaceutically acceptable form is meant, inter alia, having a pharmaceutically acceptable level of purity excluding normal pharmaceutical additives such as diluents and carriers, and including no material considered toxic at normal dosage levels.
Purity levels for the drug substance are preferably above 50%, more preferably above 70%, most preferably above 90%. In a preferred embodiment it is above 95% of the compound of formula (I), or of its salts. This applies also to its solvates or prodrugs.
In a more particular embodiment the compound according to the invention of general Formula (I)
wherein
m is 0, 1, 2 or 3;
R1 is selected from substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl, substituted or unsubstituted C2-6 alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heterocyclyl;
R2 is —X—[CR6R6′]n—R7;
R2′ is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
alternatively, R2 and R2′ may form, together with the nitrogen to which they are attached, a substituted or unsubstituted heterocyclyl;
R3 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
R4 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
R5 and R5′ are independently selected from hydrogen, halogen, —R15, —OR15, —NO2, —NR15R15′, —NR15C(O)R15′, —NR15S(O)2R15′, —S(O)2NR15R15′, —NR15C(O)NR15′R15″, —SR15, —S(O)R15, —S(O)2R15, —CN, haloalkyl, haloalkoxy, —C(O)OR15, —C(O)NR15R15′, —OCH2CH2OR15, —NR15S(O)2NR15′R15″ and —C(CH3)2OR15;
and R15, R15′, and R15″ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl and unsubstituted C2-6 alkynyl.
the alkyl, alkenyl or alkynyl, other than those defined in R1, R2′, R3, R4, R6 or R7, if substituted, is substituted with one or more substituent/s selected from —OR18, halogen, —CN, haloalkyl, haloalkoxy and —NR18R18′;
the aryl, heterocyclyl or cycloalkyl, other than those defined in R1, R2-R2′ or R7, if substituted, is substituted with one or more substituent/s selected from halogen, —R19, —OR19, —NO2, —NR19R19′, —NR19C(O)R19′, —NR19S(O)2R19′, —S(O)2NR19R19′, —NR19C(O)NR19′R19″, —SR19, —S(O)R19, S(O)2R19, —CN, haloalkyl, haloalkoxy, —C(O)OR19, —C(O)NR19R19′, —OCH2CH2OR19, —NR19S(O)2NR19′, R19″, and —C(CH3)2OR19;
These preferred compounds according to the invention are optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a further embodiment the compound according to the invention of general Formula (I) is a compound wherein
m is 0, 1, 2 or 3;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a further embodiment the compound according to the invention of general Formula (I) is a compound wherein
R1 is selected from substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl, substituted or unsubstituted C2-6 alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heterocyclyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a further embodiment the compound according to the invention of general Formula (I) is a compound wherein
R1 is selected from substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a further embodiment the compound according to the invention of general Formula (I) is a compound wherein
R1 is substituted or unsubstituted C1-6 alkyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a further embodiment the compound according to the invention of general Formula (I) is a compound wherein
R2 is —X—[CR6R6′]n—R7;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a further embodiment the compound according to the invention of general Formula (I) is a compound wherein
X is a bond or —C(O)—;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a further embodiment the compound according to the invention of general Formula (I) is a compound wherein
n is 1, 2, 3, 4 or 5;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a further embodiment the compound according to the invention of general Formula (I) is a compound wherein
R2′ is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a further embodiment the compound according to the invention of general Formula (I) is a compound wherein
R2′ is selected from hydrogen and substituted or unsubstituted C1-6 alkyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a further embodiment the compound according to the invention of general Formula (I) is a compound wherein
R2 and R2′ may form, together with the nitrogen to which they are attached, a substituted or unsubstituted heterocyclyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the according to the invention of general Formula (I) is a compound wherein
R3 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the according to the invention of general Formula (I) is a compound wherein
R3 is selected from substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the according to the invention of general Formula (I) is a compound wherein
R3 is substituted or unsubstituted C1-6 alkyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R4 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R4 is selected from substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R4 is substituted or unsubstituted C1-6 alkyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R5 and R5′ are independently selected from hydrogen, halogen, —R15, —OR15, —NO2, —NR15R15′, —NR15C(O)R15′, —NR15S(O)2R15′, —S(O)2NR15R15′, —NR15C(O)NR15′R15″, —SR15, —S(O)R15, —S(O)2R15, —CN, haloalkyl, haloalkoxy, —C(O)OR15, —C(O)NR15R15′, —OCH2CH2OR15, —NR15S(O)2NR15′R15″ and —C(CH3)2OR15;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R5 and R5′ are independently selected from hydrogen and halogen;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R6, and R6′ are independently selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R6, and R6′ are independently selected from hydrogen and substituted or unsubstituted C1-6 alkyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R6, and R6′ are both hydrogen;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R7 is is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl, substituted or unsubstituted C2-6 alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heterocyclyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R7 is is selected from hydrogen, substituted or unsubstituted aryl and substituted or unsubstituted heterocyclyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R11, R11′, and R11″ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl and unsubstituted C2-6 alkynyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R11, R11′, and R11″ are independently selected from hydrogen and unsubstituted C1-6 alkyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R12 and R12′ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl and unsubstituted C2-6 alkynyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R12 and R12′ are both hydrogen;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R13 and R13′ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl, and unsubstituted C2-6 alkynyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R13 and R13′ are independently selected from hydrogen and unsubstituted C1-6 alkyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R14 and R14′ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl, and unsubstituted C2-6 alkynyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R14 and R14′ are independently selected from hydrogen and unsubstituted C1-6 alkyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R15, R15′ and R15″ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl and unsubstituted C2-6 alkynyl.
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R15, R15′ and R15″ are independently selected from hydrogen and unsubstituted C1-6 alkyl.
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R16 and R16′ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl, and unsubstituted C2-6 alkynyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R16 and R16′ are independently selected from hydrogen and unsubstituted C1-6 alkyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R17, R17′ and R17″ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl, and unsubstituted C2-6 alkynyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R17, R17′ and R17″ are independently selected from hydrogen and unsubstituted C1-6 alkyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R18 and R18′ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl, and unsubstituted C2-6 alkynyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R18 and R18′ are independently selected from hydrogen and unsubstituted C1-6 alkyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R19, R19′ and R19″ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl, unsubstituted C2-6 alkynyl, unsubstituted aryl, unsubstituted cycloalkyl and unsubstituted heterocyclyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R19, R19′, and R19″ are independently selected from hydrogen and unsubstituted C1-6 alkyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
R19, R19′, and R19″ are all hydrogen;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I) is a compound wherein
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the compound according to the invention of general Formula (I), is a compound wherein
m is 0, 1, 2 or 3;
R2 is —X—[CR6R6′]n—R7;
X is a bond or —C(O)—;
n is 1, 2, 3, 4 or 5;
R1 is selected from substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl, substituted or unsubstituted C2-6 alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heterocyclyl;
wherein
R2′ is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
wherein
R2 and R2′ form, together with the nitrogen to which they are attached, a substituted or unsubstituted heterocyclyl;
wherein
R3 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
and/or
R4 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
wherein
R5 and R5′ are independently selected from hydrogen, halogen, —R15, —OR15, —NO2, —NR15R15′, —NR15C(O)R15′, —NR15S(O)2R15′, —S(O)2NR15R15′, —NR15C(O)NR15′R15″, —SR15, —S(O)R15, —S(O)2R15, —CN, haloalkyl, haloalkoxy, —C(O)OR15, —C(O)NR15R15′, —OCH2CH2OR15, —NR15S(O)2NR15′R15″ and —C(CH3)2OR15;
wherein
and/or
R6, and R6′ are independently selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
wherein
and/or
wherein
and/or
R11, R11′, and R11″ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl and unsubstituted C2-6 alkynyl;
wherein
and/or
R12 and R12′ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl and unsubstituted C2-6 alkynyl;
wherein
and/or
R13 and R13′ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl, and unsubstituted C2-6 alkynyl;
wherein
and/or
R14 and R14′ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl, and unsubstituted C2-6 alkynyl;
wherein
and/or
R15, R15′ and R15″ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl and unsubstituted C2-6 alkynyl;
wherein
and/or
R16 and R16′ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl, and unsubstituted C2-6 alkynyl;
wherein
and/or
R17, R17′ and R17″ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl, and unsubstituted C2-6 alkynyl;
wherein
and/or
R18 and R18′ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl, and unsubstituted C2-6 alkynyl;
wherein
and/or
R19, R19′, and R19″ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl, unsubstituted C2-6 alkynyl, unsubstituted aryl, unsubstituted cycloalkyl and unsubstituted heterocyclyl;
wherein
and/or
R22, R22′ and R22″ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl, unsubstituted C2-6 alkynyl, substituted or unsubstituted aryl, substituted or unsubstituted cycloalkyl and substituted or unsubstituted heterocyclyl;
wherein
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein in R1 as defined in any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein in R2 as defined in any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein in R2-R2′ as defined in any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein in R3 as defined in any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein in R4 as defined in any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein in R5 and R5′ as defined in any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein in R6 and R6′ as defined in any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein in R7 as defined in any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein in R11, R11′, and R11″ as defined in any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein in R12, R12′ and R12″ as defined in any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein in R13 and R13′ as defined in any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein in R14, R14′ and R14″ as defined in any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein in R15, R15′ and R15″ as defined in any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein in R16 and R16′ as defined in any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein in R17, R17′ and R17″ as defined in any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein in R18 and R18′ as defined in any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein in R19, R19′, and R19″ as defined in any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein in R22, R22′ and R22″ as defined in any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein
m is 0, 1, 2 or 3; preferably m is 0 or 1;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein
n is 1, 2, 3, 4 or 5; preferably n is 1 or 2;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I) the compound is a compound, wherein
X is a bond or —C(O)—;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I), the compound is a compound of Formula (I′)
wherein
m is 0, 1, 2 or 3;
R1 is selected from substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl, substituted or unsubstituted C2-6 alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heterocyclyl;
R2 is —X—[CR6R6′]n—R7;
R2′ is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
alternatively, R2 and R2′ may form, together with the nitrogen to which they are attached, a substituted or unsubstituted heterocyclyl;
R3 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
R4 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
R5 and R5′ are independently selected from hydrogen, halogen, —R15, —OR15, —NO2, —NR15R15′, —NR15C(O)R15′, —NR15S(O)2R15′, —S(O)2NR15R15′, —NR15C(O)NR15′R15″, —SR15, —S(O)R15, —S(O)2R15, —CN, haloalkyl, haloalkoxy, —C(O)OR15, —C(O)NR15R15′, —OCH2CH2OR15, —NR15S(O)2NR15′R15″ and —C(CH3)2OR15;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I), the compound is a compound of Formula (I′)
wherein
m is 0, 1, 2 or 3;
R1 is selected from substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl, substituted or unsubstituted C2-6 alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heterocyclyl;
R2 is —X—[CR6R6′]n—R7;
R2′ is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
wherein R12 and R12′ are independently selected from hydrogen, unsubstituted C1-6 alkyl, unsubstituted C2-6 alkenyl and unsubstituted C2-6 alkynyl;
alternatively, R2 and R2′ may form, together with the nitrogen to which they are attached, a substituted or unsubstituted heterocyclyl;
R3 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
R4 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
R5 and R5′ are independently selected from hydrogen, halogen, —R15, —OR15, —NO2, —NR15R15′, —NR15C(O)R15′, —NR15S(O)2R15′, —S(O)2NR15R15′, —NR15C(O)NR15′R15″, —SR15, —S(O)R15, —S(O)2R15, —CN, haloalkyl, haloalkoxy, —C(O)OR15, —C(O)NR15R15′, —OCH2CH2OR15, —NR15S(O)2NR15′R15″ and —C(CH3)2OR15;
the alkyl, alkenyl or alkynyl, other than those defined in R1, R2′, R3, R4, R6 or R7, if substituted, is substituted with one or more substituent/s selected from —OR18, halogen, —CN, haloalkyl, haloalkoxy and —NR18R18′;
the aryl, heterocyclyl or cycloalkyl, other than those defined in R1, R2-R2′ or R7, if substituted, is substituted with one or more substituent/s selected from halogen, —R19, —OR19, —NO2, —NR19R19′, —NR19C(O)R19′, —NR19S(O)2R19′, —S(O)2NR19R19′, —NR19C(O)NR19′R19″, —SR19, —S(O)R19, S(O)2R19, —CN, haloalkyl, haloalkoxy, —C(O)OR19, —C(O)NR19R19, —OCH2CH2OR19, —NR19S(O)2NR19′, R19″, and —C(CH3)2OR19;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I), the compound is a compound of Formula (I2′)
wherein
m is 0, 1, 2 or 3;
R2 is —X—[CR6R6′]n—R7;
R2′ is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
alternatively, R2 and R2′ may form, together with the nitrogen to which they are attached, a substituted or unsubstituted heterocyclyl;
R3 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
R4 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
R5 and R5′ are independently selected from hydrogen, halogen, —R15, —OR15, —NO2, —NR15R15′, —NR15C(O)R15′, —NR15S(O)2R15′, —S(O)2NR15R15′, —NR15C(O)NR15′R15″, —SR15, —S(O)R15, —S(O)2R15, —CN, haloalkyl, haloalkoxy, —C(O)OR15, —C(O)NR15R15′, —OCH2CH2OR15, —NR15S(O)2NR15′R15″ and —C(CH3)2OR15;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I), the compound is a compound of Formula (I2′)
wherein
m is 0, 1, 2 or 3;
R2 is —X—[CR6R6′]n—R7;
R2′ is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
alternatively, R2 and R2′ may form, together with the nitrogen to which they are attached, a substituted or unsubstituted heterocyclyl;
R3 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
R4 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
R5 and R5′ are independently selected from hydrogen, halogen, —R15, —OR15, —NO2, —NR15R15′, —NR15C(O)R15′, —NR15S(O)2R15′, —S(O)2NR15R15′, —NR15C(O)NR15′R15″, —SR15, —S(O)R15, —S(O)2R15, —CN, haloalkyl, haloalkoxy, —C(O)OR15, —C(O)NR15R15′, —OCH2CH2OR15, —NR15S(O)2NR15′R15″ and —C(CH3)2OR15;
the alkyl, alkenyl or alkynyl, other than those defined in R1, R2′, R3, R4, R6 or R7, if substituted, is substituted with one or more substituent/s selected from —OR18, halogen, —CN, haloalkyl, haloalkoxy and —NR18R18′;
the aryl, heterocyclyl or cycloalkyl, other than those defined in R1, R2-R2′ or R7, if substituted, is substituted with one or more substituent/s selected from halogen, —R19, —OR19, —NO2, —NR19R19′, —NR19C(O)R19′, —NR19S(O)2R19′, —S(O)2NR19R19′, —NR19C(O)NR19′, R19″, —SR19, —S(O)R19, S(O)2R19, —CN, haloalkyl, haloalkoxy, —C(O)OR19, —C(O)NR19R19, —OCH2CH2OR19, —NR19S(O)2NR19′, R19″, and —C(CH3)2OR19;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I), the compound is a compound of Formula (I3′)
wherein
m is 0, 1, 2 or 3;
R1 is selected from substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl, substituted or unsubstituted C2-6 alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heterocyclyl;
R2 is —X—[CR6R6′]n—R7;
R2′ is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
alternatively, R2 and R2′ may form, together with the nitrogen to which they are attached, a substituted or unsubstituted heterocyclyl;
R3 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
R4 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I), the compound is a compound of Formula (I3′)
wherein
m is 0, 1, 2 or 3;
R1 is selected from substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl, substituted or unsubstituted C2-6 alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heterocyclyl;
R2 is —X—[CR6R6′]n—R7;
R2′ is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
alternatively, R2 and R2′ may form, together with the nitrogen to which they are attached, a substituted or unsubstituted heterocyclyl;
R3 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
R4 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
the alkyl, alkenyl or alkynyl, other than those defined in R1, R2′, R3, R4, R6 or R7, if substituted, is substituted with one or more substituent/s selected from —OR18, halogen, —CN, haloalkyl, haloalkoxy and —NR18R18′;
the aryl, heterocyclyl or cycloalkyl, other than those defined in R1, R2-R2′ or R7, if substituted, is substituted with one or more substituent/s selected from halogen, —R19, —OR19, —NO2, —NR19R19′, —NR19C(O)R19′, —NR19S(O)2R19′, —S(O)2NR19R19′, NR19C(O)NR19′, R19″, —SR19, —S(O)R19, S(O)2R19, —CN, haloalkyl, haloalkoxy, —C(O)OR19, —C(O)NR19R19′, —OCH2CH2OR19, —NR19S(O)2NR19′, R19″, and —C(CH3)2OR19;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I), the compound is a compound of Formula (I4′)
wherein
m is 0, 1, 2 or 3;
R2 is —X—[CR6R6′]n—R7;
R2′ is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
alternatively, R2 and R2′ may form, together with the nitrogen to which they are attached, a substituted or unsubstituted heterocyclyl;
R3 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
R4 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I), the compound is a compound of Formula (I4′)
wherein
m is 0, 1, 2 or 3;
R2 is —X—[CR6R6′]n—R7;
R2 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
alternatively, R2 and R2′ may form, together with the nitrogen to which they are attached, a substituted or unsubstituted heterocyclyl;
R3 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
R4 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
R5 and R5′ are independently selected from hydrogen, halogen, —R15, —OR15, —NO2, —NR15R15′, —NR15C(O)R15′, —NR15S(O)2R15′, —S(O)2NR15R15′, —NR15C(O)NR15′R15″, —SR15, —S(O)R15, —S(O)2R15, —CN, haloalkyl, haloalkoxy, —C(O)OR15, —C(O)NR15R15′, —OCH2CH2OR15, —NR15S(O)2NR15′R15″ and —C(CH3)2OR15;
the alkyl, alkenyl or alkynyl, other than those defined in R1, R2′, R3, R4, R6 or R7, if substituted, is substituted with one or more substituent/s selected from —OR18, halogen, —CN, haloalkyl, haloalkoxy and —NR18R18′;
the aryl, heterocyclyl or cycloalkyl, other than those defined in R1, R2-R2′ or R7, if substituted, is substituted with one or more substituent/s selected from halogen, —R19, —OR19, —NO2, —NR19R19′, —NR19C(O)R19′, —NR19S(O)2R19′, —S(O)2NR19R19′, —NR19C(O)NR19′, R19″, —SR19, —S(O)R19, S(O)2R19, —CN, haloalkyl, haloalkoxy, —C(O)OR19, —C(O)NR19R19′, —OCH2CH2OR19, —NR19S(O)2NR19′, R19″, and —C(CH3)2OR19;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I), the compound is a compound of Formula (I5′)
wherein
m is 0, 1, 2 or 3;
R2 is —X—[CR6R6′]n—R7;
R2′ is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
alternatively, R2 and R2′ may form, together with the nitrogen to which they are attached, a substituted or unsubstituted heterocyclyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another preferred embodiment of the invention according to general Formula (I), the compound is a compound of Formula (I5′)
wherein
m is 0, 1, 2 or 3;
R2 is —X—[CR6R6′]n—R7;
R2 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
alternatively, R2 and R2′ may form, together with the nitrogen to which they are attached, a substituted or unsubstituted heterocyclyl;
the alkyl, alkenyl or alkynyl, other than those defined in R2, R6 or R7, if substituted, is substituted with one or more substituent/s selected from —OR18, halogen, —CN, haloalkyl, haloalkoxy and —NR18R18′;
the aryl, heterocyclyl or cycloalkyl, other than those defined in R2-R2′ or R7, if substituted, is substituted with one or more substituent/s selected from halogen, —R19, —OR19, —NO2, —NR19R19′, —NR19C(O)R19′, —NR19S(O)2R19′, —S(O)2NR19R19′, —NR19C(O)NR19′R19″, —SR19, —S(O)R19, S(O)2R19, —CN, haloalkyl, haloalkoxy, —C(O)OR19, —C(O)NR19R19′, —OCH2CH2OR19, —NR19S(O)2NR19′, R19″, and —C(CH3)2OR19;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a preferred embodiment
m is 0 or 1.
In a preferred embodiment
n is 1 or 2.
In a preferred embodiment
X is a bond or —C(O)—; preferably a bond.
In a preferred embodiment,
R1 is a substituted or unsubstituted ethyl, preferably unsubstituted ethyl.
In a preferred embodiment
R2 is substituted or unsubstituted group selected from methyl, benzyl, phenethyl, —CH2-pyridine and —C(O)—CH2-pyridine.
In a preferred embodiment
R2′ is hydrogen or substituted or unsubstituted methyl, preferably hydrogen or unsubstituted methyl.
In a preferred embodiment
R2 and R2′ form, together with the nitrogen to which they are attached, a substituted or unsubstituted pyperidine, preferably substituted pyperidine;
In a preferred embodiment
R3 is substituted or unsubstituted methyl; preferably unsubstituted methyl.
In a preferred embodiment
R4 is substituted or unsubstituted methyl; preferably unsubstituted methyl.
In a preferred embodiment
R5 is hydrogen or fluorine.
In a preferred embodiment
R5′ is hydrogen or fluorine.
In a preferred embodiment
R5 is hydrogen or fluorine, while R5′ is hydrogen or fluorine.
In a preferred embodiment
R5 is fluorine, while R5′ is hydrogen.
In a preferred embodiment
R5 is fluorine, while R5′ is hydrogen.
In a preferred embodiment
R5 is fluorine in ortho position to the 2H-pyrazolo[3,4-d]pyridazine core.
In a preferred embodiment
R5′ is fluorine in ortho position to the 2H-pyrazolo[3,4-d]pyridazine core.
In a preferred embodiment
R5 is fluorine in ortho position to the 2H-pyrazolo[3,4-d]pyridazine core, while R5′ is hydrogen.
In a preferred embodiment
R6 and R6′ are both hydrogen.
In a preferred embodiment
R7 is hydrogen or a substituted or unsubstituted group selected from phenyl and pyridine.
In a preferred embodiment
R17 is hydrogen or substituted or unsubstituted methyl, preferably hydrogen or unsubstituted methyl
In a preferred embodiment
R22 is substituted or unsubstituted phenyl, preferably unsubstituted phenyl.
In a preferred embodiment
R22′ is substituted or unsubstituted ethyl, preferably unsubstituted ethyl.
In a preferred embodiment
R22 is substituted or unsubstituted phenyl, preferably unsubstituted phenyl, while R22′ is substituted or unsubstituted ethyl, preferably unsubstituted ethyl.
In a preferred further embodiment, the compounds of the general Formula (I) are selected from
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a preferred embodiment of the compound according to the invention of general Formula (I),
R1 is selected from substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl, substituted or unsubstituted C2-6 alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heterocyclyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another embodiment of the invention the compound of general Formula (I),
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another embodiment of the invention the compound of general Formula (I),
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another embodiment of the invention the compound of general Formula (I),
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another embodiment of the invention the compound of general Formula (I),
R2′ is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another embodiment of the invention the compound of general Formula (I),
R2 and R2′ may form, together with the nitrogen to which they are attached, a substituted or unsubstituted heterocyclyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another embodiment of the invention the compound of general Formula (I),
R3 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another embodiment of the invention the compound of general Formula (I),
R4 is selected from hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C2-6 alkenyl and substituted or unsubstituted C2-6 alkynyl;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another embodiment of the invention the compound of general Formula (I),
the alkyl, alkenyl or alkynyl, other than those defined in R1, R2′, R3, R4, R6 or R7, if substituted, is substituted with one or more substituent/s selected from —OR18, halogen, —CN, haloalkyl, haloalkoxy and —NR18R18′;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In another embodiment of the invention the compound of general Formula (I),
the aryl, heterocyclyl or cycloalkyl, other than those defined in R1, R2-R2′ or R7, if substituted, is substituted with one or more substituent/s selected from halogen, —R19, —OR19, —NO2, —NR19R19′, —NR19C(O)R19′, —NR19S(O)2R19′, —S(O)2NR19R19′, —NR19C(O)NR19′R19″, —SR19, —S(O)R19, S(O)2R19, —CN, haloalkyl, haloalkoxy, —C(O)OR19, —C(O)NR19R19′, —OCH2CH2OR19, —NR19S(O)2NR19′, R19″, and —C(CH3)2OR19;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a preferred embodiment of the compound according to the invention of general Formula (I) and in relation to R1 of any of the embodiments of the present invention,
the alkyl, alkenyl or alkynyl in R1, if substituted, is substituted with one or more substituent/s selected from —OR11, halogen, —CN, haloalkyl, haloalkoxy and —NR11R11′;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a preferred embodiment of the compound according to the invention of general Formula (I) and in relation to R1 of any of the embodiments of the present invention,
the cycloalkyl, aryl or heterocyclyl in R1 if substituted, is substituted with one or more substituent/s selected from halogen, —R11, —OR11, —NO2, —NR11R11′, —NR11C(O)R11′, —NR11S(O)2R11′, —S(O)2NR11R11′, —NR11C(O)NR11′R11″, —SR11, —S(O)R11, —S(O)2R11, —CN, haloalkyl, haloalkoxy, —C(O)OR11, —C(O)NR11R11′, —OCH2CH2OR11, —NR11S(O)2NR11′R11″ and —C(CH3)2OR11;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a preferred embodiment of the compound according to the invention of general Formula (I) and in relation to R2 of any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a preferred embodiment of the compound according to the invention of general Formula (I) and in relation to R2 of any of the embodiments of the present invention,
the aryl, heterocyclyl or cycloalkyl in R7, if substituted, is substituted with one or more substituent/s selected from halogen, —R17, —OR17, —NO2, —NR17R17′, —NR17C(O)R17′, —NR17S(O)2R17′, —S(O)2NR17R17′, —NR17C(O)NR17′R17″, —SR17, —S(O)R17, —S(O)2R17, —CN, haloalkyl, haloalkoxy, —C(O)OR17, —C(O)NR17R17′, —OCH2CH2OR17, —NR17S(O)2NR17′R17″ and —C(CH3)2OR17;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a preferred embodiment of the compound according to the invention of general Formula (I) and in relation to R2 of any of the embodiments of the present invention,
the aryl, heterocyclyl or cycloalkyl in R7, if substituted, is substituted with one or more substituent/s selected from halogen and —OR17;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a preferred embodiment of the compound according to the invention of general Formula (I) and in relation to alkyls other than those defined in R1 or R2 of any of the embodiments of the present invention,
the alkyl, alkenyl or alkynyl defined in R7, if substituted, is substituted with one or more substituent/s selected from —OR17, halogen, —CN, haloalkyl, haloalkoxy and —NR17R17′;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a preferred embodiment of the compound according to the invention of general Formula (I) and in relation to the cycloalkyl, aryl or heterocyclyl other than those defined in R1 or R2 of any of the embodiments of the present invention,
the alkyl, alkenyl or alkynyl in R2, if substituted, is substituted with one or more substituent/s selected from —OR12, halogen, —CN, haloalkyl, haloalkoxy, —NR12R12′;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a preferred embodiment of the compound according to the invention of general Formula (I) and in relation to the cycloalkyl, aryl or heterocyclyl other than those defined in R1 or R2 of any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a preferred embodiment of the compound according to the invention of general Formula (I) and in relation to the cycloalkyl, aryl or heterocyclyl other than those defined in R1 or R2 of any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a preferred embodiment of the compound according to the invention of general Formula (I) and in relation to the cycloalkyl, aryl or heterocyclyl other than those defined in R1 or R2 of any of the embodiments of the present invention, the alkyl, alkenyl or alkynyl defined in R3, if substituted, is substituted with one or more substituent/s selected from —OR13, halogen, —CN, haloalkyl, haloalkoxy and —NR13R13′;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a preferred embodiment of the compound according to the invention of general Formula (I) and in relation to the cycloalkyl, aryl or heterocyclyl other than those defined in R1 or R2 of any of the embodiments of the present invention,
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a preferred embodiment of the compound according to the invention of general Formula (I) and in relation to the cycloalkyl, aryl or heterocyclyl other than those defined in R1 or R2 of any of the embodiments of the present invention, the alkyl, alkenyl or alkynyl, other than those defined in R1, R2′, R3, R4, R6 or R7, if substituted, is substituted with one or more substituent/s selected from —OR18, halogen, —CN, haloalkyl, haloalkoxy and —NR18R18′;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a preferred embodiment of the compound according to the invention of general Formula (I) and in relation to the cycloalkyl, aryl or heterocyclyl other than those defined in R1 or R2 of any of the embodiments of the present invention,
the aryl, heterocyclyl or cycloalkyl, other than those defined in R1, R2-R2′ or R7, if substituted, is substituted with one or more substituent/s selected from halogen, —R19, —OR19, —NO2, —NR19R19′, —NR19C(O)R19′, —NR19S(O)2R19′, —S(O)2NR19R19′, NR19C(O)NR19′, R19″, —SR19, —S(O)R19, S(O)2R19, —CN, haloalkyl, haloalkoxy, —C(O)OR19, —C(O)NR19R19′, —OCH2CH2OR19, —NR19S(O)2NR19′, R19″, and —C(CH3)2OR19;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In a preferred embodiment
the aryl, heterocyclyl or cycloalkyl in R7, if substituted, is substituted with one or more substituent/s selected from fluorine, —OH and —O-methyl.
In a preferred embodiment
the heterocyclyl formed with R2 and R2′, if substituted, is substituted with one or more substituent/s —N(phenyl)-C(O)-ethyl.
In an embodiment of the compound according to the invention of general Formula (I), the halogen is fluorine, chlorine, iodine or bromine;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
As this invention is aimed at providing a compound or a chemically related series of compounds which act as dual ligands of the α2δ subunit, particularly the α2δ−1 subunit, of the voltage-gated calcium channel and the Noradrenaline transporter (NET) it is a very preferred embodiment in which the compounds are selected which act as dual ligands of the α2δ subunit, particularly the α2δ−1 ubunit, of the voltage-gated calcium channel and the Noradrenaline transporter (NET) and especially compounds which have a binding expressed as Ki responding to the following scales:
Ki(NET) is preferably <1000 nM, more preferably <500 nM, even more preferably <100 nM.
Ki(a281) is preferably <10000 nM, more preferably <5000 nM, even more preferably <500 nM.
The following phrase “compound of the invention” is used is to be understood as any compound according to the invention as described above according to general Formulae (I), (I′), (I2′), (I3′), (I4′) and (I5′).
The compounds of the invention represented by the above described Formula (I) may include enantiomers depending on the presence of chiral centres or isomers depending on the presence of multiple bonds (e.g. Z, E). The single isomers, enantiomers or diastereoisomers and mixtures thereof fall within the scope of the present invention.
In general the processes are described below in the experimental part. The starting materials are commercially available or can be prepared by conventional methods.
A preferred aspect of the invention is also a process for the production of a compound according to Formula (I), following scheme 1.
A preferred aspect of the invention is a process for the production of a compound according to Formula (I), wherein R1, R2, R2′, R3, R4, R5, R5′ and m are as defined below in the detailed description, following scheme 1.
For the sake of clarity the expression “a compound according to Formula (I), wherein e.g. R1, etc. are as defined in the description” would (just like the expression “a compound of Formula (I) as defined in any one of claims e.g. 1 to 10” found in the claims) refer to “a compound according to Formula (I)”, wherein the definitions of the respective substituents R1 etc. (also from the cited claims) are applied. In addition, this would also mean, though (especially in regards to the claims) that also one or more disclaimers defined in the description (or used in any of the cited claims like e.g. claim 1) would be applicable to define the respective compound. Thus, a disclaimer found in e.g. claim 1 would be also used to define the compound “of Formula (I) as defined in any one of the corresponding related claims e.g. 1 to 10”.
A process is described in Scheme 1 for the preparation of compounds of general formula I, wherein R1, R2, R2′, R3, R4, R5, R5′ and m have the meanings defined in the description, Z represents an halogen, preferably chloro, or triflate, and P represents a suitable protecting group such as tert-butoxycarbonyl or benzyl.
A preferred embodiment of the invention is a process for the production of a compound according to Formula (I),
wherein a compound of formula III
is reacted with an amine of formula IV
wherein R1, R2, R2′, R3, R4, R5, R5′, and m have the meanings defined in the description.
A preferred embodiment of the invention is a process for the production of a compound according to Formula (I), wherein R2 is —[CR6R6′]n—R7,
by a reductive amination of a compound of formula (VII),
with a suitable carbonyl derivative, like H—C(O)—[CR6R6′]n-1—R7, in the presence of a reductive agent such as sodium acetoxyborohydride, in a suitable solvent, such as methanol, at a suitable temperature, such as between room temperature or the solvent reflux, wherein R1, R2, R2′, R3, R4, R5, R5′ and m have the meanings defined in the description.
A preferred embodiment of the invention is a process for the production of a compound according to Formula (I), wherein R2 is —C(O)—[CR6R6′]n—R7,
by an acylation process of a compound of formula (VII),
with a suitable carboxylic acid derivative, like HO—C(O)—[CR6R6′]n—R7, in the presence of coupling agents, such as N-ethyl-N′-(3-dimethylaminopropyl)carbodiimide and hydroxybenzotriazole, in a suitable solvent such as dimethylformamide at a suitable temperature, such as room temperature, wherein R1, R2, R2′, R3, R4, R5, R5′, and m have the meanings defined in the description.
A preferred embodiment of the invention is a process for the production of a compound according to Formula (I),
by conversion of the hydroxyl group to a leaving group such as mesylate or tosylate, of a compound of formula IX
by reaction with methanesulfonyl chloride in the presence of a base, such as triethylamine, in a suitable solvent, such as dichloromethane and finally nucleophilic substitution with an amine of formula X,
NHR2R2′ X
in the presence of a base, such as triethylamine, in a suitable solvent, such as dimethylacetamide, at a suitable temperature, such as between room temperature and 100° C., wherein R1, R2, R2′, R3, R4, R5, R5′ and m have the meanings defined in the description.
A preferred embodiment of the invention is a process for the production of a compound according to Formula (I),
wherein a compound of formula III
is reacted with an amine of formula IV
or
when R2 is-[CR6R6′]n—R7
by a reductive amination of a compound of formula (VII),
with a suitable carbonyl derivative, like H—C(O)—[CR6R6′]n-1—R7, in the presence of a reductive agent such as sodium acetoxyborohydride, in a suitable solvent, such as methanol, at a suitable temperature, such as between room temperature or the solvent reflux,
or
when R2 is —C(O)—[CR6R6′]n—R7,
by an acylation process of a compound of formula (VII),
with a suitable carboxylic acid derivative, like HO—C(O)—[CR6R6′]n—R7, in the presence of coupling agents, such as N-ethyl-N′-(3-dimethylaminopropyl)carbodiimide and hydroxybenzotriazole, in a suitable solvent such as dimethylformamide at a suitable temperature, such as room temperature,
or
by conversion of the hydroxyl group to a leaving group such as mesylate or tosylate, of a compound of formula IX
with methanesulfonyl chloride in the presence of a base, such as triethylamine, in a suitable solvent, such as dichloromethane and finally nucleophilic substitution with an amine of formula X,
NHR2R2′ X
in the presence of a base, such as triethylamine, in a suitable solvent, such as dimethylacetamide, at a suitable temperature, such as between room temperature and 100° C., wherein R1, R2, R2′, R3, R4, R5, R5′, and m have the meanings defined in the description.
A preferred embodiment of the invention is a process for the production of a compound of Formula (III) starting from a compound of Formula (II),
wherein R1, R2, R2′, R3, R4, R5, R5′ and m have the meanings defined in the description. and Z represents an halogen, preferably chloro, or triflate.
A preferred embodiment of the invention is a process for the production of a compound of Formula (IX) starting from a compound of Formula (III),
wherein R1, R2, R2′, R3, R4, R5, R5′ and m have the meanings defined in the description, and Z represents an halogen, preferably chloro, or triflate.
A preferred embodiment of the invention is a process for the production of a compound of Formula (VI) starting from a compound of Formula (III),
wherein R1, R2′, R3, R4, R5, R5′ and m have the meanings defined in the description, and P represents a suitable protecting group such as tert-butoxycarbonyl or benzyl, and Z represents an halogen, preferably chloro, or triflate.
A preferred embodiment of the invention is a process for the production of a compound of Formula (VII) starting from a compound of Formula (VI),
wherein R1, R2′, R3, R4, R5, R5′ and m have the meanings defined in the description, and P represents a suitable protecting group such as tert-butoxycarbonyl or benzyl.
In another particular embodiment a compound of Formula (II),
wherein R1, R3, R4, R5 and R5′ have the meanings defined in the description, is used for the preparation of a compound of Formula (I).
In another particular embodiment a compound of Formula (III),
wherein R1, R3, R4, R5 and R5′ have the meanings defined in the description, and Z represents an halogen, preferably chloro, or triflate is used for the preparation of a compound of Formula (I).
In another particular embodiment a compound of Formula (IV),
wherein R2, R2′ and m have the meanings defined in the description, is used for the preparation of a compound of Formula (I).
In another particular embodiment a compound of Formula (V),
wherein R2′ and m have the meanings defined in the description, and P represents a suitable protecting group such as tert-butoxycarbonyl or benzyl, is used for the preparation of a compound of Formula (I).
In another particular embodiment a compound of Formula (VI),
wherein R1, R2′, R3, R4, R5, R5′ and m have the meanings defined in the description, and P represents a suitable protecting group such as tert-butoxycarbonyl or benzyl, is used for the preparation of a compound of Formula (I).
In another particular embodiment a compound of Formula (VII),
wherein R1, R2′, R3, R4, R5, R5′ and m have the meanings defined in the description, is used for the preparation of a compound of Formula (I).
In another particular embodiment a compound of Formula (VIII),
wherein m has the meanings defined in the description, is used for the preparation of a compound of Formula (I).
In another particular embodiment a compound of Formula (IX),
wherein R1, R3, R4, R5, R5′ and m have the meanings defined in the description, is used for the preparation of a compound of Formula (I).
In another particular embodiment a compound of Formula (X),
NHR2R2′ X
wherein R2 and R2′ have the meanings defined in the description, is used for the preparation of a compound of Formula (I).
In another particular embodiment there is a use of the compounds of Formula II, III, IV, V, VI, VII, VIII, IX or X
wherein R1, R2, R2′, R3, R4, R5, R5′, and m have the meanings defined in the description, Z represents an halogen, preferably chloro, or triflate, and P represents a suitable protecting group such as tert-butoxycarbonyl or benzyl, is used for the preparation of a compound of Formula (I).
The obtained reaction products may, if desired, be purified by conventional methods, such as crystallisation and chromatography. Where the above described processes for the preparation of compounds of the invention give rise to mixtures of stereoisomers, these isomers may be separated by conventional techniques such as preparative chromatography. If there are chiral centres the compounds may be prepared in racemic form, or individual enantiomers may be prepared either by enantiospecific synthesis or by resolution.
One preferred pharmaceutically acceptable form of a compound of the invention is the crystalline form, including such form in pharmaceutical composition. In the case of salts and also solvates of the compounds of the invention the additional ionic and solvent moieties must also be non-toxic. The compounds of the invention may present different polymorphic forms, it is intended that the invention encompasses all such forms.
Another aspect of the invention refers to a pharmaceutical composition which comprises a compound according to the invention as described above according to general formula I or a pharmaceutically acceptable salt or stereoisomer thereof, and a pharmaceutically acceptable carrier, adjuvant or vehicle. The present invention thus provides pharmaceutical compositions comprising a compound of this invention, or a pharmaceutically acceptable salt or stereoisomers thereof together with a pharmaceutically acceptable carrier, adjuvant, or vehicle, for administration to a patient.
Examples of pharmaceutical compositions include any solid (tablets, pills, capsules, granules etc.) or liquid (solutions, suspensions or emulsions) composition for oral, topical or parenteral administration.
In a preferred embodiment the pharmaceutical compositions are in oral form, either solid or liquid. Suitable dose forms for oral administration may be tablets, capsules, or solutions and may contain conventional excipients known in the art such as binding agents, for example syrup, acacia, gelatine, sorbitol, tragacanth, or polyvinylpyrrolidone; fillers, for example lactose, sugar, maize starch, calcium phosphate, sorbitol or glycine; tabletting lubricants, for example magnesium stearate; disintegrants, for example starch, polyvinylpyrrolidone, sodium starch glycollate or microcrystalline cellulose; or pharmaceutically acceptable wetting agents such as sodium lauryl sulfate.
The solid oral compositions may be prepared by conventional methods of blending, filling or tabletting. Repeated blending operations may be used to distribute the active agent throughout those compositions employing large quantities of fillers. Such operations are conventional in the art. The tablets may for example be prepared by wet or dry granulation and optionally coated according to methods well known in normal pharmaceutical practice, in particular with an enteric coating.
The pharmaceutical compositions may also be adapted for parenteral administration, such as sterile solutions, suspensions or lyophilized products in the appropriate unit dosage form. Adequate excipients can be used, such as bulking agents, buffering agents or surfactants.
The mentioned formulations will be prepared using standard methods such as those described or referred to in the Spanish and US Pharmacopoeias and similar reference texts.
Administration of the compounds or compositions of the present invention may be by any suitable method, such as intravenous infusion, oral preparations, and intraperitoneal and intravenous administration. Oral administration is preferred because of the convenience for the patient and the chronic character of the diseases to be treated.
Generally an effective administered amount of a compound of the invention will depend on the relative efficacy of the compound chosen, the severity of the disorder being treated and the weight of the sufferer. However, active compounds will typically be administered once or more times a day for example 1, 2, 3 or 4 times daily, with typical total daily doses in the range of from 0.1 to 1000 mg/kg/day.
The compounds and compositions of this invention may be used with other drugs to provide a combination therapy. The other drugs may form part of the same composition, or be provided as a separate composition for administration at the same time or at different time.
Another aspect of the invention refers to the use of a compound of the invention or a pharmaceutically acceptable salt or isomer thereof in the manufacture of a medicament.
Another aspect of the invention refers to a compound of the invention according as described above according to general formula I, or a pharmaceutically acceptable salt or isomer thereof, for use as a medicament for the treatment of pain. Preferably the pain is medium to severe pain, visceral pain, chronic pain, cancer pain, migraine, inflammatory pain, acute pain or neuropathic pain, allodynia or hyperalgesia. This may include mechanical allodynia or thermal hyperalgesia.
Another aspect of the invention refers to the use of a compound of the invention in the manufacture of a medicament for the treatment or prophylaxis of pain.
In a preferred embodiment the pain is selected from medium to severe pain, visceral pain, chronic pain, cancer pain, migraine, inflammatory pain, acute pain or neuropathic pain, allodynia or hyperalgesia, also preferably including mechanical allodynia or thermal hyperalgesia.
Another aspect of this invention relates to a method of treating or preventing pain which method comprises administering to a patient in need of such a treatment a therapeutically effective amount of a compound as above defined or a pharmaceutical composition thereof. Among the pain syndromes that can be treated are medium to severe pain, visceral pain, chronic pain, cancer pain, migraine, inflammatory pain, acute pain or neuropathic pain, allodynia or hyperalgesia, whereas this could also include mechanical allodynia or thermal hyperalgesia.
The present invention is illustrated below with the aid of examples. These illustrations are given solely by way of example and do not limit the general spirit of the present invention.
A two-step process is described for the preparation of compounds of general formula (I) starting from a compound of formula II, as shown in Scheme 1:
wherein R1, R2, R2′, R3, R4, R5, R5′ and m have the meanings as defined above for a compound of formula (I), P represents a suitable protecting group and Z represents an halogen (preferably chloro) or triflate.
The two-step process can be carried out as described below:
Step1:
A compound of formula III, where Z represents chloro, can be prepared from a compound of formula II by treating a compound of formula II with a suitable chlorinating reagent such as phosphorus oxychloride, optionally in the presence of a suitable solvent, preferably heating. When Z represents a triflate group, the reaction can be performed by treating a compound of formula II with trifluoromethane sulphonic anhydride in the presence of pyridine
Step2:
A compound of formula I can be prepared by reacting a compound of formula III with an amine of formula IV. The reaction may be carried out in a suitable solvent, such as isopropanol, ethanol or acetonitrile; optionally in the presence of an organic base such as triethylamine or diisopropylethylamine or an inorganic base such as K2CO3 or Cs2CO3; at a suitable temperature comprised between room temperature and the reflux temperature, preferably heating, or alternatively, the reactions can be carried out in a microwave reactor. Alternatively, the amine of formula IV can be introduced using a Pd catalysed procedure in the presence of a suitable catalyst, a suitable ligand (preferably a phosphine ligand) a suitable base and a suitable solvent, such as dioxane. Additionally, these reactions may be carried out under microwave heating.
Alternatively a compound of formula I can be obtained by reaction of a compound of formula III with a protected amino derivative of formula V using similar methods to those described in Step 2. A compound of formula VI, wherein P represents a suitable protecting group, can be deprotected using suitable conditions depending on the nature of the protecting group. When P represents a tert-butoxycarbonyl group the deprotection reaction is preferably carried out in acidic media, such as trifluoroacetic acid, in a suitable solvent, such as dichloromethane, at a suitable temperature, such as room temperature. When P represents benzyl, the deprotection reaction is preferably carried out by hydrogenation under hydrogen atmosphere and metal catalysis, preferably by the use of palladium over charcoal as catalyst in a suitable solvent, such as methanol or ethanol, optionally in the presence of an acid, such as acetic acid or hydrochloric acid. Finally a compound of formula VII can be converted to a compound of formula I by a suitable process depending on the nature of R2. When R2 is an alkyl group, a reductive amination process may be carried out, which involves reaction with a suitable carbonyl derivative in the presence of a reductive agent such as sodium acetoxyborohydride, in a suitable solvent, such as methanol, at a suitable temperature, such as between room temperature or the solvent reflux. Preferably this process is carried out under microwave heating. When R2 is an acyl group, an acylation process can be used to obtain a compound of formula I. In this case compounds of formula VII are reacted with a suitable carboxylic acid derivative, in the presence of coupling agents, such as N-ethyl-N′-(3-dimethylaminopropyl)carbodiimide and hydroxybenzotriazole, in a suitable solvent such as dimethylformamide at a suitable temperature, such as room temperature.
Alternatively compounds of formula I can be obtained from compounds of formula III by reaction with compounds of formula VIII under the same conditions described in Step 2, to give compounds of formula IX, followed by conversion of a the hydroxyl group to a leaving group such as mesylate or tosylate, by reaction with methanesulfonyl chloride in the presence of a base, such as triethylamine, in a suitable solvent, such as dichloromethane and finally nucleophilic substitution with an amine of formula X, in the presence of a base, such as triethylamine, in a suitable solvent, such as dimethylacetamide, at a suitable temperature, such as between room temperature and 100° C.
The compounds of general formula IV, V, VIII and X are commercially available or can be prepared by conventional methods described in the literature. Compounds of general formula II can be obtained as described in intermediate example 1.
Moreover, certain compounds of the present invention can also be obtained starting from other compounds of formula (I) by appropriate conversion reactions of functional groups, in one or several steps, using well-known reactions in organic chemistry under standard experimental conditions. As a way of example, some of these conversions include the reductive amination of an amino group with an aldehyde or ketone, or alternatively the reaction of an amino group with an alkylating agent, to prepare a further substituted amino group; the hydrolysis of a cyano group to yield the corresponding carboxamido group; the hydrolysis of a cyano group to yield the corresponding carboxylic acid; the conversion of a carboxylic acid into a carboxamide; the alkylation of a primary amide to yield a further substituted amide; the debenzylation of a N-benzyl amino group to render an NH amino group; the derivatization of a bromo or iodo-aryl, including its conversion to a cyano, hydroxy, alcoxy or N-acyl group, to prepare a substituted aryl compound; or the conversion of a cyano group into a nitrogenated 5-member-ring heterocycle.
In some of the processes described above it may be necessary to protect the reactive or labile groups present with suitable protecting groups, such as for example Boc (tert-butoxycarbonyl) for the protection of amino groups. The procedures for the introduction and removal of these protecting groups are well known in the art and can be found thoroughly described in the literature.
In addition, a compound of formula I that shows chirality can also be obtained by resolution of a racemic compound of formula I either by chiral preparative HPLC or by crystallization of a diastereomeric salt or co-crystal. Alternatively, the resolution step can be carried out at a previous stage, using any suitable intermediate.
The following abbreviations are used in the examples:
Anh: Anhydrous
Aq: Aqueous
Conc: Concentrated
DCM: Dichloromethane
EDC: N-Ethyl-N′-(3-dimethylaminopropyl)carbodiimide
EtOAc: Ethyl acetate
Et2O: Diethyl ether
EtOH: Ethanol
Ex: Example
h: Hour/s
HOBt: Hydroxybenzotriazole
HPLC: High-performance liquid chromatography
HRMS: High-resolution mass spectrometry
INT: Intermediate
IPA: Propan-2-ol
MeOH: Methanol
MS: Mass spectrometry
Min: Minutes
Quant: Quantitative
Rt: Retention time
rt: Room temperature
Sat: Saturated
TEA: Et3N, Triethylamine
TFA: Trifluoroacetic acid
Wt: Weight
The following method was used to generate the HPLC or HPLC-MS data:
Method A: Column Acquity UPLC BEH C18 2.1×50 mm, 1.7 μm; flow rate 0.61 mL/min; A: NH4HCO3 10 mM; B: ACN; Gradient: 0.3 min in 98% A, 98% to 5% A in 2.52 min, isocratic 5% A 1.02 min.
a) (Z)-Ethyl 2-chloro-2-(2-(4-ethoxy-2-fluorophenyl)hydrazono)acetate: To a solution of 4-ethoxy-2-fluoroaniline (36.9 g, 237.8 mmol) in a mixture of conc HCl:EtOH (1:1, 118 mL) cooled at 0° C., a solution of NaNO2 (17.88 g, 259 mmol) in water (89 mL) was added dropwise. After stirring 20 min at 0° C., ethyl 2-chloro-3-oxobutanoate (32.89 mL, 273 mmol) was added, followed by a mixture of EtOH:H2O (9:1, 664 mL) and sodium acetate (31.99 g, 390 mmol) and the mixture was stirred at rt for 2 h. Water (1.5 L) was added and the suspension was filtered and dried under vacuum to afford the title compound (69 g, quant yield).
1H-NMR (CDCl3, 300 MHz), δ (ppm): 8.35 (s, 1H), 7.51 (t, J=9.8 Hz, 1H), 6.71 (m, 2H), 4.40 (q, J=7.1 Hz, 2H), 4.01 (q, J=7.1 Hz, 2H), 1.42 (t, J=7.1 Hz, 3H), 1.41 (t, J=7.1 Hz, 3H).
b) Ethyl 4-acetyl-1-(4-ethoxy-2-fluorophenyl)-5-methyl-1H-pyrazole-3-carboxylate: Acetylacetone (17.4 mL, 169 mmol) was added to a solution of sodium ethoxide (21 wt % in ethanol, 63.2 mL, 169 mmol) and the mixture was stirred at rt for 16 h. The compound prepared in step a (48.9 g, 169 mmol) and additional EtOH were added and the mixture was stirred at rt for 4 h and then was let it stand 18 h without stirring. Water (690 mL) was added and the suspension was filtered and dried to afford the title compound (49.5 g, 87% yield).
1H-NMR (CDCl3, 300 MHz), δ (ppm): 7.33 (t, J=8.7 Hz, 1H), 6.78 (m, 2H), 4.46 (q, J=7.1 Hz, 2H), 4.08 (q, J=7.1 Hz, 2H), 2.60 (s, 3H), 2.33 (d, J=1.5 Hz, 3H), 1.46 (t, J=7.1 Hz, 3H), 1.43 (t, J=7.1 Hz, 3H).
c) 2-(4-Ethoxy-2-fluorophenyl)-3,4-dimethyl-2H-pyrazolo[3,4-d]pyridazin-7(6H)-one: To a solution of the compound prepared in step b (49.5 g, 148 mmol) in EtOH (285 mL), hydrazine (43.2 mL, 444 mmol) was added and the mixture was refluxed for 5 h. The suspension was cooled to rt, the solid was filtered, washed with cold EtOH and the solid was dried under vacuum to afford the title compound (36.2 g, 81% yield).
1H-NMR (CDCl3, 400 MHz), δ (ppm): 9.44 (s, 1H), 7.45 (t, J=8.7 Hz, 1H), 6.85 (ddd, J1=1.1 Hz, J2=2.6 Hz, J3=8.6 Hz, 1H), 6.80 (dd, J1=2.6 Hz, J2=11.7 Hz, 1H), 4.12 (q, J=7.1 Hz, 2H), 2.58 (s, 3H), 2.57 (d, J=1.5 Hz, 3H), 1.49 (t, J=7.1 Hz, 3H).
d) Title compound: The compound prepared in step c (36.2 g, 119 mmol) was dissolved in POCl3 (544 mL) and heated at 100° C. for 3 h. The reaction mixture was concentrated under vacuum, the residue was cooled to 0° C. and basified to pH 8 by carefully addition of ice and 28% NaOH aq solution. The resulting solid was stirred for 2 h, filtered, washed with water and the solid was dried under vacuum to afford the title compound (37.5 g, 98% yield).
1H-NMR (CDCl3, 300 MHz), δ (ppm): 7.47 (t, J=8.7 Hz, 1H), 6.89 (ddd, J1=1.1 Hz, J2=2.6 Hz, J3=8.6 Hz, 1H), 6.84 (dd, J1=2.6 Hz, J2=11.7 Hz, 1H), 4.13 (q, J=7.1 Hz, 2H), 2.96 (s, 3H), 2.71 (d, J=1.5 Hz, 3H), 1.49 (t, J=7.1 Hz, 3H).
To a solution of INT 1 (400 mg, 1.25 mmol) in IPA (10 ml), TEA (348 μl, 2.5 mmol) and (S)-tert-butyl pyrrolidin-3-ylcarbamate (278 mg, 1.5 mmol) were added under argon atmosphere and the reaction mixture was heated at 90° C. overnight. The reaction mixture was concentrated under vacuum, dissolved in EtOAc and washed with sat. aqueous NaHCO3. The organic layer was dried over Na2SO4 filtered and evaporated under vacuum. The crude product was purified by flash chromatography, silica gel, gradient DCM to DCM:MeOH (9:1) to give the title compound (480 mg, 82% yield).
HPLC-MS (Method A): Rt, 1.97 min; ES+MS m/z 471.2 (M+1).
This method was used for the preparation of intermediates 3-5 using suitable starting materials:
To a solution of INT 2 (480 mg, 1.02 mmol) in anhydrous DCM (25 mL), TFA (2.5 mL) was added dropwise at 0° C. and the reaction mixture was stirred overnight at r.t. The mixture was neutralized by the addition of 20% aqueous NaOH, diluted with DCM and washed with sat. aqueous NaHCO3. The organic layer was dried over anhydrous Na2SO4, filtered and evaporated to dryness to give the title compound (375 mg, 99% yield).
HPLC-MS (Method A): Rt, 1.46 min; ES+MS m/z 371.2 (M+1).
This method was used for the preparation of intermediates 7 and 8 using suitable starting materials:
A MW tube was charged with INT 6 (250 mg, 0.67 mmol), NaBH3CN (127 mg, 2.02 mmol) and benzaldehyde (137 μl, 1.35 mmol) and dissolved in MeOH (4 ml) under argon atmosphere. The vial was sealed and subjected to microwave irradiation for 20 min at 120 0° C. and 150 W. The crude product was evaporated under vacuum, dissolved in EtOAc and washed with sat. aqueous NaHCO3. The organic layer was dried over Na2SO4 filtered and evaporated to dryness. The crude product was purified by flash chromatography, silica gel, gradient DCM to DCM:MeOH (9:1) to give the title compound (214 mg, 69% yield).
HPLC-MS (Method A): Rt, 1.98 min; ESI+ MS m/z: 461.2 (M+1).
This method was used for the preparation of Ex 2-14 using suitable starting materials:
A MW tube was charged with the compound obtained in Ex 1 (70 mg, 0.147 mmol), NaBH3CN (27 mg, 0.44 mmol) and formaldehyde (137 μl, 0.734 mmol) and dissolved in MeOH (2 mL) under argon atmosphere. The vial was sealed and subjected to microwave irradiation for 20 min at 120° C. and 150 W. The crude product was evaporated under vacuum in EtOAc and washed with sat. aqueous NaHCO3. The organic layer was dried over Na2SO4 filtered and evaporated to dryness. The crude product was purified by flash chromatography, silica gel, gradient DCM to DCM:MeOH (9:1) to give the title compound (20 mg, 28% yield).
HPLC-MS (Method A): Rt, 1.90 min; ESI+ MS m/z: 491.3 (M+1).
This method was used for the preparation of Ex 16 and 17 using suitable starting materials:
To a solution of 2-(pyridin-2-yl)acetic acid (22 mg, 0.16 mmol) in anhydrous DMF (2 mL) under argon atmosphere, TEA (75 μL, 0.54 mmol) was added dropwise at 0° C. followed by the addition of EDC.HCl (51 mg, 0.27 mmol) and HOBt (36 mg, 0.27 mmol) portion wise. The reaction mixture was stirred for 10 min at 0° C. Then INT 6 (50 mg, 0.135 mmol) was added and the reaction mixture was allowed to reach r.t. and stirred overnight. The reaction crude was diluted with EtOAc:Et2O (1:1, 15 mL) and washed with sat. aqueous NaHCO3. The organic layer was dried over Na2SO4, filtered and concentrated to dryness. The crude product was purified by flash chromatography, silica gel, gradient DCM to DCM:MeOH (9:1) to give the title compound (40 mg, 66% yield).
HPLC-MS (Method A): Rt, 1.62 min; ESI+ MS m/z: 490.4 (M+1).
This method was used for the preparation of Ex 19 using suitable starting materials:
To a solution of INT 5 (100 mg, 0.27 mmol) in anhydrous DCM (5 mL) under argon atmosphere, TEA (75 μL, 0.54 mmol) and methanesulfonyl chloride (42 μl, 0.54 mmol) were added dropwise at −10° C. and the reaction mixture was stirred at −10° C. for 2 h. The mixture was quenched with sat. aqueous NaHCO3 and it was extracted with DCM. The combined organic layers were dried over anhydrous Na2SO4, filtered and evaporated to dryness. The product obtained was solved in anhydrous DMA under argon atmosphere, TEA (558 μL, 4.0 mmol) and N-phenyl-N-(piperidin-4-yl)propionamide (775 mg, 3.47 mmol) were added and the reaction was heated at 90° C. overnight. The crude product was evaporated under vacuum, dissolved in EtOAc and washed with sat. aqueous NaHCO3. The organic layer was dried over Na2SO4, filtered and concentrated to dryness. The crude product was purified by flash chromatography, silica gel, gradient DCM to DCM:MeOH (9:1) to give the title compound to give the title compound (17.5 mg, 13% yield).
HPLC-MS (METHOD-A): Rt, 2.05 min; ESI+ MS m/z 586.4 (M+1).
Table of Examples with binding to the Noradrenaline transporter (NET) and the α2δ−1 Subunit of the voltage-gated calcium channel:
Biological Activity
Pharmacological Study
Human α2δ−1 Subunit of Cav2.2 Calcium Channel Assay Human α2δ−1 enriched membranes (2.5 μg) were incubated with 15 nM of radiolabeled [3H]-Gabapentin in assay buffer containing Hepes-KOH 10 mM, pH 7.4. NSB (non specific binding) was measured by adding 10 μM pregabalin. The binding of the test compound was measured at five different concentrations. After 60 min incubation at 27° C., binding reaction was terminated by filtering through Multiscreen GF/C (Millipore) presoaked in 0.5% polyethyleneimine in Vacuum Manifold Station, followed by 3 washes with ice-cold filtration buffer containing 50 mM Tris-HCl, pH 7.4.
Filter plates were dried at 60° C. for 1 hour and 30 μL of scintillation cocktail were added to each well before radioactivity reading. Readings were performed in a Trilux 1450 Microbeta radioactive counter (Perkin Elmer).
Binding Assay to Human Norepinephrine Transporter (NET).
Human norepinephrine transporter (NET) enriched membranes (5 μg) were incubated with 5 nM of radiolabeled [3H]-Nisoxetin in assay buffer containing 50 mM Tris-HCl, 120 mM NaCl, 5 mM KCl, pH 7.4.
NSB (non specific binding) was measured by adding 10 μM of desipramine. The binding of the test compound was measured at five different concentrations. After 60 min incubation at 4° C., binding reaction was terminated by filtering through Multiscreen GF/C (Millipore) presoaked in 0.5% polyethyleneimine in Vacuum Manifold Station, followed by 3 washes with ice-cold filtration buffer containing 50 mM Tris-HCl, 0.9% NaCl, pH 7.4.
Filter plates were dried at 60° C. for 1 hour and 30 μL of scintillation cocktail were added to each well before radioactivity reading.
Readings were performed in a Trilux 1450 Microbeta radioactive counter (Perkin Elmer).
Results:
As this invention is aimed at providing a compound or a chemically related series of compounds which act as dual ligands of the α2δ subunit of voltage-gated calcium channels and the Noradrenaline transporter (NET) it is a very preferred embodiment in which the compounds are selected which act as dual ligands of the α2δ subunit of voltage-gated calcium channels and the Noradrenaline transporter (NET) and especially compounds which have a binding expressed as Ki responding to the following scales:
Ki(NET) is preferably <1000 nM, more preferably <500 nM, even more preferably <100 nM.
Ki(α2δ−1) is preferably <10000 nM, more preferably <5000 nM, or even more preferably <500 nM.
The following scale has been adopted for representing the binding to the Noradrenaline transporter (NET) expressed as Ki:
The following scale has been adopted for representing the binding to the α2δ−1 subunit of voltage-gated calcium channels expressed as Ki:
All compounds prepared in the present application exhibit binding to the α2δ−1 subunit of voltage-gated calcium channels and the Noradrenaline transporter (NET), in particular the following binding results are shown:
Number | Date | Country | Kind |
---|---|---|---|
17382309.7 | May 2017 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/064029 | 5/29/2018 | WO | 00 |