The present invention relates to a substrate cleaning device, a substrate processing apparatus, a substrate cleaning method and a substrate processing method for cleaning a substrate.
In a lithography process in manufacturing of a semiconductor device and the like, a coating film is formed by supply of a coating liquid such as a resist liquid onto a substrate. The coating film is exposed to exposure light and then developed, so that a predetermined pattern is formed on the coating film. Cleaning processing is performed on the substrate of which the coating film has not been exposed (see JP 2009-123800 A, for example).
In JP 2009-123800 A, a substrate processing apparatus having a cleaning drying processing unit is described. In the cleaning drying processing unit, the substrate is rotated while being horizontally held by a spin chuck. In this state, particles and the like adhering to a surface of the substrate are cleaned away by supply of a cleaning liquid to an upper surface of the substrate. Further, contaminants adhering to an entire back surface and an outer peripheral end of the substrate are removed by cleaning of the entire back surface and the outer peripheral end of the substrate by the cleaning liquid and a cleaning brush.
It is desired that an even finer pattern is formed on a substrate. When contaminants, for example, particles, or particles covered with SiO2 film or covered with SiN film etc., remain on the back surface of the substrate, or when suction marks, contact marks or the like remain on the back surface of the substrate, the back surface of the substrate is non-uniform, and it is difficult to perform exposure processing with high accuracy. Therefore, accuracy of pattern formation is degraded. Thus, it is necessary to remove contaminants, suction marks, contact marks and the like remaining on the back surface of the substrate. However, in the cleaning drying processing unit described in JP 2009-123800 A, it is difficult to remove contaminants firmly adhering to the back surface of the substrate, and suction marks, contact marks and the like firmly formed on the back surface of the substrate.
An object of the present invention is to provide a substrate cleaning device capable of making one surface of the substrate be clean and uniform, a substrate processing apparatus in which the one surface of the substrate can be clean and uniform, and a substrate cleaning method and a substrate processing method for making the one surface of the substrate be clean and uniform.
(1) A substrate cleaning device according to one aspect of the present invention that removes contaminants from one surface of a substrate includes a rotation holder that holds and rotates the substrate in a horizontal attitude, a polisher configured to be capable of coming into contact with the one surface of the substrate, a first mover that moves the polisher at least between a center and an outer periphery of the substrate while bringing the polisher into contact with the one surface of the substrate rotated by the rotation holder, and a controller that controls at least one of the first mover and the rotation holder such that capacity for removing contaminants by the polisher is changed according to a position in a radial direction of the substrate rotated by the rotation holder.
In the substrate cleaning device, with the polisher in contact with the one surface of the rotating substrate, the polisher is moved at least between the center and the outer periphery of the substrate. In this case, the one surface of the substrate is polished by the polisher, whereby contaminants firmly adhering to the one surface of the substrate are removed.
In the above-mentioned configuration, it is possible to remove contaminants while preventing the one surface of the substrate from being polished non-uniformly by changing the capacity for removing contaminants by the polisher between a contaminated portion and an uncontaminated portion of the one surface of the substrate. Thus, the one surface of the substrate can be clean and uniform.
(2) The controller may change the capacity for removing contaminants by the polisher by changing a pushing force of the polisher by the first mover against the one surface of the substrate. Thus, the capacity for removing contaminants by the polisher can be changed by simple control.
(3) The controller may change the capacity for removing contaminants by the polisher by changing a moving speed of the polisher by the first mover between the center and the outer periphery of the substrate. Thus, the capacity for removing contaminants by the polisher can be changed by simple control.
(4) The first mover may include a rotation driver that rotates the polisher about an axis extending in an up-and-down direction, and the controller may change the capacity for removing contaminants by the polisher by changing a rotation speed of the polisher by the rotation driver while bringing the polisher into contact with the one surface of the substrate. Thus, the capacity for removing contaminants by the polisher can be changed by simple control.
(5) The controller may change the capacity for removing contaminants by the polisher by changing a rotation speed of the substrate by the rotation holder. Thus, the capacity for removing contaminants by the polisher can be changed by the simple control.
(6) The substrate cleaning device may further include a brush that can come into contact with the one surface of the substrate rotated by the rotation holder, and a second mover that, after the polisher is moved while being in contact with the one surface of the substrate, brings the brush into contact with the one surface of the substrate held by the rotation holder.
In this case, the one surface of the substrate is polished by the polisher, and then the one surface of the substrate is cleaned by the brush. Thus, contaminants generated by the polishing of the one surface of the substrate are removed. Therefore, the one surface of the substrate can be more sufficiently cleaned.
(7) A substrate processing apparatus according to another aspect of the present invention arranged to be adjacent to an exposure device includes a coating device that applies a photosensitive film to an upper surface of a substrate, the above-mentioned substrate cleaning device, and a transport device that transports the substrate among the coating device, the substrate cleaning device and the exposure device, wherein the substrate cleaning device removes contaminants from a lower surface, used as one surface of the substrate, before exposure processing for the substrate by the exposure device.
In the substrate processing apparatus, the contaminants on the lower surface of the substrate on which the exposure processing has not been performed are removed by the above-mentioned substrate cleaning device. With the above-mentioned substrate cleaning device, the lower surface of the substrate can be clean and uniform. As a result, an occurrence of processing defects in the substrate caused by the contaminants on the lower surface of the substrate is inhibited.
(8) A substrate cleaning method according to yet another aspect of the present invention for removing contaminants from one surface of a substrate includes the steps of holding and rotating the substrate in a horizontal attitude, moving a polisher at least between a center and an outer periphery of the substrate while bringing the polisher into contact with the one surface of the substrate rotated by the step of rotating the substrate, and changing capacity for removing contaminants by the polisher according to a position in a radial direction of the substrate rotated by the step of rotating the substrate.
In the substrate cleaning method, with the polisher in contact with the one surface of the rotating substrate, the polisher is moved at least between the center and the outer periphery of the substrate. In this case, the one surface of the substrate is polished by the polisher, whereby contaminants firmly adhering to the one surface of the substrate are removed.
In the above-mentioned method, the capacity for removing contaminants by the polisher is changed between a contaminated portion and an uncontaminated portion of the one surface of the substrate, whereby it is possible to remove contaminants while preventing the one surface of the substrate from being polished non-uniformly. Thus, the one surface of the substrate can be clean and uniform.
(9) A substrate processing method according to yet another aspect of the present invention includes the steps of applying a photosensitive film to an upper surface of a substrate, exposing the substrate to which the photosensitive film is applied, and removing contaminants from a lower surface, used as the one surface of the substrate, by the above-mentioned substrate cleaning method before the step of exposing the substrate.
In the substrate processing method, contaminants on the lower surface of the substrate on which the exposure processing has not been performed are removed by the above-mentioned substrate cleaning method. In the above-mentioned cleaning method, the lower surface of the substrate can be made clean and uniform. As a result, an occurrence of processing defects in the substrate caused by contaminants on the lower surface of the substrate is inhibited.
A substrate cleaning device, a substrate processing apparatus, a substrate cleaning method and a substrate processing method according to one embodiment of the present invention will be described below with reference to drawings. In the following description, a substrate refers to a semiconductor substrate, a substrate for a liquid crystal display device, a substrate for a plasma display, a substrate for an optical disc, a substrate for a magnetic disc, a substrate for a magneto-optical disc, a substrate for a photomask or the like. Further, an upper surface of the substrate refers to as a surface of the substrate directed upward, and a lower surface of the substrate refers to a surface directed downward.
As shown in
The casing 710 has four sidewalls 711, 712, 713, 714 (
In the following description, a direction directed from the inside of the casing 710 towards the outside of the casing 710 through the sidewall 711 is referred to as forward of the substrate cleaning device 700, and a direction directed from the inside of the casing 710 towards the outside of the casing 710 through the sidewall 713 is referred to as rearward of the substrate cleaning device 700. Further, a direction directed from the inside of the casing 710 towards the outside of the casing 710 through the sidewall 712 is referred to as leftward of the substrate cleaning device 700, and a direction directed from the inside of the casing 710 towards the outside of the casing 710 through the sidewall 714 is referred to as rightward of the substrate cleaning device 700.
The spin chuck 200 is provided at a position above a center portion inside of the casing 710. The spin chuck 200 holds and rotates the substrate W in a horizontal attitude. In each of
The guard mechanism 300 and the three receiving transferring mechanisms 350 are provided below the spin chuck 200 to surround a space below the spin chuck 200. The guard mechanism 300 includes a guard 310 and a guard lifting lowering driver 320. Details of the spin chuck 200, the guard mechanism 300 and the three receiving transferring mechanisms 350 will be described below.
The substrate polishing mechanism 400 is provided at a position further leftward than the guard mechanism 300 and the plurality of receiving transferring mechanisms 350. The substrate polishing mechanism 400 includes an arm 410 and an arm support post 420. The arm support post 420 extends in an up-and-down direction in the vicinity of the sidewall 713 located behind the arm support post 420. The arm 410 extends in a horizontal direction from the arm support post 420 with its one end supported inside of the arm support post 420 to be liftable, lowerable and rotatable.
A polishing head ph for removing contaminants from a lower surface of the substrate W held by the spin chuck 200 by polishing is attached to the other end of the arm 410. In the present invention, contamination of the substrate W refers to a state where the substrate W is contaminated by contaminants, suction marks, contact marks or the like.
The polishing head ph is columnar and formed of a PVA (polyvinyl alcohol) sponge in which abrasive grains are dispersed, for example. A driving system (see
A nozzle 410N is attached to a portion, in the vicinity of the polishing head ph, of the arm 410. As shown in
With the polishing head ph not polishing the substrate W, the arm 410 is supported by the arm support post 420 to extend in a front-and-rear direction of the substrate cleaning device 700. At this time, the polishing head ph is located outward (leftward) of the substrate W held by the spin chuck 200. In this manner, a position at which the polishing head ph is arranged with the arm 410 extending in the front-and-rear direction is referred to as a head waiting position p1. The head waiting position p1 is indicated by a two-dots and dash line in
When the polishing head ph polishes the substrate W, the arm 410 is rotated about the arm support post 420. Thus, as indicated by a thick arrow a1 in
The substrate cleaning mechanism 500 is provided at a position further rightward than the guard mechanism 300 and the plurality of receiving transferring mechanisms 350. The substrate cleaning mechanism 500 includes an arm 510 and an arm support post 520. The arm support post 520 extends in the up-and-down direction in the vicinity of the sidewall 713 located behind the arm support post 520. The arm 510 extends in the horizontal direction from the arm support post 520 with its one end supported inside of the arm support post 520 to be liftable, lowerable and rotatable.
A cleaning brush cb for cleaning the lower surface of the substrate W held by the spin chuck 200 without polishing it is attached to the other end of the arm 510. The cleaning brush cb is columnar and formed of a PVA sponge, for example. A driving system (not shown) for rotating the cleaning brush cb about its central axis is provided inside of the arm 510. In the present example, an outer diameter of the cleaning brush cb is equal to an outer diameter of the polishing head ph. The outer diameter of the cleaning brush cb and the outer diameter of the polishing head ph may be set different from each other.
A nozzle 510N is attached to a portion, in the vicinity of the cleaning brush cb, of the arm 510. As shown in
With the cleaning brush cb not cleaning the substrate W, the arm 510 is supported by the arm support post 520 to extend in the front-and-rear direction of the substrate cleaning device 700. At this time, the cleaning brush cb is located outward (rightward) of the substrate W held by the spin chuck 200. In this manner, a position at which the cleaning brush cb is arranged with the arm 510 extending in the front-and-rear direction is referred to as a brush waiting position p2. The brush waiting position p2 is indicated by a two-dots and dash line in
When the cleaning brush cb cleans the substrate W, the arm 510 is rotated about the arm support post 520. Thus, as indicated by a thick arrow a2 in
The liquid receiving vat 720 is provided on the bottom surface portion 716 of the substrate cleaning device 700 to be located below the spin chuck 200, the guard mechanism 300, the plurality of receiving transferring mechanisms 350, the substrate polishing mechanism 400 and the substrate cleaning mechanism 500. The liquid receiving vat 720 receives the cleaning liquid that falls from each part in the casing 710. As shown in
The polishing cleaning controller 780 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory) and the like. A control program is stored in the ROM. The CPU controls an operation of each part of the substrate cleaning device 700 by executing the control program stored in the ROM using the RAM.
In the substrate cleaning device 700 according to the present embodiment, during the polishing of the lower surface of the substrate W by the polishing head ph of the substrate polishing mechanism 400, capacity for removing contaminants by the polishing head ph can be changed according to a position in a radial direction of the substrate W. Here, removing capacity refers to the capacity for removing contaminants from the substrate W, and specifically refers to the capacity for scraping contaminants adhering to the one surface (the lower surface in the present example) of the substrate, suction marks remaining on the one surface of the substrate, contact marks remaining on the one surface of the substrate or the like by polishing the one surface of the substrate.
Removal information indicating the capacity, for removing contaminants, to be set according to a position in the radial direction of the substrate W is further stored in the ROM or the RAM of the polishing cleaning controller 780. The removal information is produced when a user of the substrate cleaning device 700 operates an operation unit (not shown), for example. Details of the removal information will be described below.
The substrate polishing mechanism 400 and the substrate cleaning mechanism 500 of
A pulley 417 and a motor 418 are provided inside of the one arm end 411. The pulley 417 is connected to a rotation shaft of the motor 418. Further, a rotation support shaft 414 and a pulley 415 are provided inside of the other arm end 413. The polishing head ph is attached to an upper end of the rotation support shaft 414. The pulley 415 is attached to a lower end of the rotation support shaft 414. Further, a belt 416 that connects the two pulleys 415, 417 to each other is provided inside of the arm main body 412. When the motor 418 is operated based on the control of the polishing cleaning controller 780 of
The arm lifting lowering driver 430 includes a linear guide 431 extending in a vertical direction, an air cylinder 432 and an electric pneumatic regulator 433. The one arm end 411 is attached to the linear guide 431 to be liftable and lowerable. In this state, the one arm end 411 is connected to the air cylinder 432.
The air cylinder 432 is provided to be extendible and contractible in the vertical direction by the supply of air through the electric pneumatic regulator 433. The electric pneumatic regulator 433 is an electrical control type regulator controlled by the polishing cleaning controller 780 of
The arm rotation driver 440 includes a motor and a plurality of gears, for example, and is controlled by the polishing cleaning controller 780 of
First, the structure of the outer peripheral end of the substrate W held by the spin chuck 200 of
As shown in
The spin motor 211 is supported by a support member (not shown) at a position slightly above the center inside of the casing 710 of
The liquid supply pipe 215 is inserted into the rotation shaft 212 and the plate support member 214. One end of the liquid supply pipe 215 projects downward from the lower end of the plate support member 214. The other end of the liquid supply pipe 215 is connected to the fluid supply system 98 through the pipe. The cleaning liquid is discharged onto the upper surface of the substrate W held by the spin chuck 200 from the fluid supply system 98 through the liquid supply pipe 215.
The plurality of chuck pins 220 are provided at the peripheral portion of the spin plate 213 at equal angular intervals with respect to the rotation shaft 212. In the present example, the eight chuck pins 220 are provided at the peripheral portion of the spin plate 213 at angular intervals of 45 degrees with respect to the rotation shaft 212. Each chuck pin 220 includes a shaft portion 221, a pin supporter 222, a holder 223 and a magnet 224.
The shaft portion 221 is provided to penetrate the spin plate 213 in the perpendicular direction. The pin supporter 222 is provided to extend in the horizontal direction from a lower end of the shaft portion 221. The holder 223 is provided to project downward from a tip end of the pin supporter 222. Further, the magnet 224 is attached to an upper end of the shaft portion 221 on the upper surface side of the spin plate 213.
Each chuck pin 220 is rotatable about a vertical axis and the shaft portion 221, and can be switched between a closed state where the holder 223 is in contact with the outer peripheral end WE (
In a position above spin plate 213, as shown in
Each of the magnet plates 231A, 231B, 232A, 232B has an S pole on the outside and has an N pole on the inside. The magnet lifting lowering mechanisms 233A, 233B, 234A, 234B respectively lift and lower the magnet plates 231A, 231B, 232A, 232B. Thus, each of the magnet plates 231A, 231B, 232A, 232B can be independently moved between an upper position higher than the magnet 224 of the chuck pin 220 and a lower position at a height substantially equal to the height of the magnet 224 of the chuck pin 220.
Each chuck pin 220 is switched between the opened state and the closed state by the lifting and lowering of the magnet plates 231A, 232B, 232A, 232B. Specifically, each chuck pin 220 enters the opened state in the case where a magnet plate, closest to the chuck pin 220, of the plurality of magnet plates 231A, 231B, 232A, 232B is located at the upper position. On the other hand, each chuck pin 220 enters the closed state in the case where a magnet plate, closest to the chuck pin 220, of the plurality of magnet plates 231A, 231B, 232A, 232B is located at the lower position.
As shown in
During the polishing of the lower surface of the substrate W, the auxiliary pin 290 generates a reaction force in the substrate W against a pushing force applied to the lower surface of the substrate W by the polishing head ph of the substrate polishing mechanism 400. Further, during the cleaning of the lower surface of the substrate W, the auxiliary pin 290 generates a reaction force in the substrate W against the pushing force applied to the lower surface of the substrate W by the cleaning brush cb of the substrate cleaning mechanism 500.
As described above, the guard mechanism 300 includes the guard 310 and the guard lifting lowering driver 320. In
The plurality of receiving transferring mechanisms 350 are arranged around the rotation shaft 212 of the spin chuck 200 at equal angular intervals and at positions outward of the guard 310. Each receiving transferring mechanism 350 includes a lifting lowering rotation driver 351, a rotation shaft 352, an arm 353 and a holding pin 354.
The rotation shaft 352 is provided to extend upward from the lifting lowering rotation driver 351. The arm 353 is provided to extend in the horizontal direction from an upper end of the rotation shaft 352. The holding pin 354 is provided at a tip end of the arm 353 to be capable of holding the outer peripheral end WE of the substrate W. The rotation shaft 352 performs a lifting lowering operation and a rotating operation by the lifting lowering rotation driver 351. Thus, the holding pin 354 is moved in the horizontal direction and the up-and-down direction.
Each constituent element of the polishing controller 790 controls an operation of each part of the substrate polishing mechanism 400. More specifically, the rotation controller 791 adjusts a rotation speed of the polishing head ph (
The cleaning controller 795 controls an operation of the substrate cleaning mechanism 500. The substrate cleaning mechanism 500 basically has the same configuration as that of the substrate polishing mechanism 400 as described above. Therefore, the cleaning controller 795 basically has the same configuration as that of the polishing controller 790.
The spin chuck controller 781 controls an operation of each part of the spin chuck 200. The receiving transferring mechanism controller 782 controls operations of the plurality of receiving transferring mechanisms 350 provided in the substrate cleaning device 700. The guard lifting lowering controller 783 adjusts the height of the guard 310 (
In the substrate cleaning device 700 of
At this time, all of the magnet plates 231A, 231B, 232A, 232B (
Next, as shown in
Subsequently, as shown in
Next, as shown in
When the peripheral portion of the lower surface of the substrate W is polished by the polishing head ph, the polishing head ph may interfere with the plurality of chuck pins 220. Then, in the present example, when the polishing head ph reaches the peripheral portion of the lower surface of the substrate W, the magnet plate 232A of
The polishing of the lower surface of the substrate W by the polishing head ph is controlled based on the removal information stored in the removal information storage 785 (
After the polishing of the peripheral portion of the lower surface of the substrate W by the polishing head ph, the magnet plate 232A of
When the peripheral portion of the lower surface of the substrate W is cleaned by the cleaning brush cb, the cleaning brush cb may interfere with the plurality of chuck pins 220. Then, in the present example, when the cleaning brush cb reaches the peripheral portion of the lower surface of the substrate W, the magnet plate 232B of
After the cleaning of the peripheral portion of the lower surface of the substrate W by the cleaning brush cb, the magnet plate 232B of
As described above, when the peripheral portion of the lower surface of the substrate W is polished and cleaned, one of the chuck pins 220 is spaced apart from the outer peripheral end WE of the substrate W. At this time, the outer peripheral end WE of the substrate W in the vicinity of the one chuck pin 220 is not held by the one chuck pin 220. Even in this state, the two auxiliary pins 290 adjacent to the one chuck pin 220 abut against the bevel portion 1 of the substrate W, and generate a reaction force in the substrate W against a pushing force applied from the polishing head ph or the cleaning brush cb to the substrate W. Therefore, deflection of the substrate W is prevented.
The cleaning processing for the upper surface of the substrate W, the polishing processing for the lower surface of the substrate W and the cleaning processing for the lower surface of the substrate W are performed, and then the drying processing for the substrate W is performed. In this case, with the substrate W held by all of the chuck pins 220, the substrate W is rotated at a high speed. Thus, the cleaning liquid adhering to the substrate W is shaken off, and the substrate W is dried.
During the drying processing for the substrate W, gas such as an inert gas (a nitrogen gas, for example) or air may be supplied to the substrate W through the liquid supply pipe 215. In this case, the cleaning liquid on the substrate W is blown off outward by an air stream formed between the spin plate 213 and the substrate W. Thus, the substrate W can be efficiently dried.
When the drying processing for the substrate W ends, the substrate W is carried out from the casing 710 in the reverse steps of the above-mentioned steps for carrying in the substrate W.
During the polishing of the substrate W, an uncontaminated region of the lower surface of the substrate W is polished with no removal of contaminants, so that the region is likely to be excessively polished. On the other hand, a contaminated region of the lower surface of the substrate W is polished while contaminants are removed, so that the region is unlikely to be polished. Therefore, when the contaminated portion and the uncontaminated portion are polished with the capacity for removing contaminants by the polishing head ph maintained constant, differences in surface condition are generated in a plurality of portions of the lower surface of the polished substrate W. For example, a surface of the substrate W is excessively scraped in a region having a low degree of contamination, and a surface of the substrate W is hardly scraped in a region having a high degree of contamination. Thus, the lower surface of the polished substrate W is non-uniform.
The distribution of contaminants on the lower surface of the substrate W that is carried into the substrate cleaning device 700 can be presumed based on contents of processing performed on the substrate W, a method of transporting the substrate W and a method of storing the substrate W. Then, in the present embodiment, the removal information, indicating the capacity for removing contaminants to be set according to a position in the radial direction of the substrate W in order for the lower surface condition of the polished substrate W to be uniform, is stored in the removal information storage 785 of
The first region R1 is circular and located at the center of the substrate W. The second region R2 is annular and surrounds the first region R1. The third region R3 is annular and surrounds the second region R2. The fourth region R4 is annular and surrounds the third region R3. In
The second region R2 of the first to fourth regions R1 to R4 is located at a substantially middle position between the center WC and the outer peripheral end WE in the radial direction of the substrate W. It is presumed that suction marks are likely to be generated in the second region R2 when the lower surface of the substrate W is held by suction by the below-mentioned spin chucks 25, 35 (
On the other hand, the fourth region R4 of the first to fourth regions R1 to R4 is located at the peripheral portion of the lower surface of the substrate W. It is presumed that, when a processing liquid for a resist film, a processing liquid for a resist cover film, described below, or the like is supplied to the upper surface of the substrate W, for example, part of the processing liquid is likely to firmly adhere to the fourth region R4 as contaminants. Further, it is presumed that contact marks are likely to be generated in the fourth region R4 because the substrate W is stored in a below-mentioned carrier 113 (
As described above, the contamination of the lower surface of the substrate W includes the contamination caused by suction marks and contact marks, and the contamination caused by the adherence of the processing liquid. As for the contamination caused by the adherence of the processing liquid of these two types of contamination, the processing liquid may cumulatively adhere to the substrate W. Thus, it is considered that a degree of contamination is high as compared to the contamination caused by suction marks and contact marks. Thus, it is presumed that a medium degree of contamination caused by suction marks and contact marks is present in the second region R2, and it is presumed that a high degree of contamination caused by contact marks and the processing liquid is present in the fourth region R4.
On the other hand, it is unlikely that another member comes into contact with or contaminants adhere to the first and third regions R1, R3 of the first to fourth regions R1 to R4. Therefore, it is presumed that the first and third regions R1, R3 are hardly contaminated and clean.
It is possible to adjust the capacity for removing contaminants by the polishing head ph by controlling at least one of the pushing force exerted on the lower surface of the substrate W from the polishing head ph, the moving speed of the polishing head ph, the rotation speed of the polishing head ph and the rotation speed of the substrate W. In the case where the removal information corresponding to the distribution of contaminants of
In the following description, as shown in
The larger the pushing force exerted on the lower surface of the substrate W from the polishing head ph is, the higher the removing capacity is. The smaller the pushing force exerted on the lower surface of the substrate W from the polishing head ph is, the smaller the removing capacity is. Then, in the example of
Further, when the polishing head ph is located in the second region R2, that is, when the distance from the center WC of the substrate W to the position of the polishing head ph is between the distance d1 and the distance d2, the pushing force exerted on the lower surface of the substrate W from the polishing head ph is adjusted to be larger than the pushing force corresponding to each of the first and third regions R1, R3. In the present example, the pushing force corresponding to the second region R2 is set about twice of the pushing force corresponding to each of the first and third regions R1, R3. Thus, suction marks, contact marks and the like considered to be generated in the second region R2 are appropriately removed by the polishing head ph and with a medium degree of removing capacity. At this time, the second region R2 is polished to the same extent as the first and third regions R1, R3.
Further, when the polishing head ph is located in the fourth region R4, that is, when the distance from the center WC of the substrate W to the position of the polishing head ph is between the distance d3 and the distance d4, the pushing force exerted on the lower surface of the substrate W from the polishing head ph is adjusted to be larger than any of the pushing forces corresponding to the first, second and third regions R1, R2, R3. In the present example, the pushing force corresponding to the fourth region R4 is set about three times of the pushing force corresponding to each of the first and third regions R1, R3. Thus, suction marks and contact marks considered to be generated in the fourth region R4, and contaminants such as the processing liquid firmly adhering to the fourth region R4 are appropriately removed by the polishing head ph and with a high degree of removing capacity. At this time, the fourth region R4 is polished to the same extent as the first and third regions R1, R3.
In the present example, the pushing force corresponding to a position in the radial direction of the substrate W may be stored in advance in the removal information storage 785 of
Further, in the present example, a detector (a load cell and the like) for detecting the pushing force may be provided in the substrate polishing mechanism 400 in order for the pushing force exerted on the lower surface of the substrate W from the polishing head ph to be more accurately controlled. In this case, the lifting lowering controller 792 of
In a region, where the moving speed of the polishing head ph is low, of the lower surface of the substrate W, a contact time period of the polishing head ph is increased, so that the removing capacity is enhanced. On the other hand, in a region, where the moving speed of the polishing head ph is high, of the lower surface of the substrate W, the contact time period of the polishing head ph is reduced, so that the removing capacity is degraded. Then, in the example of
Further, when the polishing head ph is located in the second region R2, that is, when the distance from the center WC of the substrate W to the position of the polishing head ph is between the distance d1 and the distance d2, the moving speed of the polishing head ph is adjusted to be lower than the moving speed corresponding to each of the first and third regions R1, R3. In the present example, the moving speed corresponding to the second region R2 is set to about ½ of the moving speed corresponding to each of the first and third regions R1, R3. Thus, suction marks, contact marks and the like considered to be generated in the second region R2 are appropriately removed by the polishing head ph and with a medium degree of removing capacity. At this time, the second region R2 is polished to the same extent as the first and third regions R1, R3.
Further, when the polishing head ph is located in the fourth region R4, that is, when the distance from the center WC of the substrate W to the position of the polishing head ph is between the distance d3 and the distance d4, the moving speed of the polishing head ph is adjusted to be lower than any of the moving speeds corresponding to the first, second and third regions R1, R2, R3 and maintained at a value close to 0. In the present example, the moving speed corresponding to the fourth region R4 is set to about â…“ of the moving speed corresponding to each of the first and third regions R1, R3. Thus, suction marks and contact marks considered to be generated in the fourth region R4, and contaminants such as the processing liquid firmly adhering to the fourth region R4 are appropriately removed by the polishing head ph and with a high degree of removal capacity. At this time, the fourth region R4 is polished to the same extent as the first and third regions R1, R3.
In the present example, the moving speed of the polishing head ph corresponding to the position in the radial direction of the substrate W may be stored in advance in the removal information storage 785 of
The higher the rotation speed of the polishing head ph is, the higher the removing capacity is, and the lower the rotation speed of the polishing head ph is, the lower the removing capacity is. Then, in the example of
Further, when the polishing head ph is located in the second region R2, that is, when the distance from the center WC of the substrate W to the position of the polishing head ph is between the distance d1 and the distance d2, the rotation speed of the polishing head ph is adjusted to be higher than the rotation speed of the polishing head ph corresponding to each of the first and third regions R1, R3. In the present example, the rotation speed of the polishing head ph corresponding to the second region R2 is set to about twice of the rotation speed of the polishing head ph corresponding to each of the first and third regions R1, R3. Thus, suction marks, contact marks and the like considered to be generated in the second region R2 are appropriately removed by the polishing head ph and with a medium degree of removing capacity. At this time, the second region R2 is polished to the same extent as the first and third regions R1, R3.
Further, when the polishing head ph is located in the fourth region R4, that is, when the distance from the center WC of the substrate W to the position of the polishing head ph is between the distance d3 and the distance d4, the rotation speed of the polishing head ph is adjusted to be higher than any of the rotation speeds corresponding to the first, second and third regions R1, R2, R3. In the present example, the rotation speed of the polishing head ph corresponding to the fourth region R4 is set to about 3 times of the rotation speed of the polishing head ph corresponding to each of the first and third regions R1, R3. Thus, suction marks and contact marks considered to be generated in the fourth region R4 and contaminants such as the processing liquid firmly adhering to the fourth region R4 are appropriately removed by the polishing head ph and with a high degree of removing capacity. At this time, the fourth region R4 is polished to the same extent as the first and third regions R1, R3.
In the present example, the rotation speed of the polishing head ph corresponding to the position in the radial direction of the substrate W may be stored in advance in the removal information storage 785 of
The removing capacity is determined according to a relative speed difference between the polishing head ph and a portion, being in contact with the polishing head ph, of the substrate W in a circumferential direction of the substrate W. Specifically, the larger the speed difference between the polishing head ph and the portion, being in contact with the polishing head ph, of the substrate W is, the higher the removing capacity is. Further, the smaller the speed difference is, the lower the removing capacity is.
Basically, in the case where the substrate W is rotated at a constant rotation speed, the above-mentioned speed difference increases at a constant rate as the polishing head ph approaches the outer peripheral end WE of the substrate W from the center WC of the substrate W. Therefore, as indicated by a one-dot and dash line in
In the example of
Further, when the polishing head ph is located in the second region R2, that is, when the distance from the center WC of the substrate W to the position of the polishing head ph is between the distance d1 and the distance d2, the rotation speed of the substrate W is adjusted such that the above-mentioned speed difference is larger than the speed difference corresponding to each of the first and third regions R1, R3. Thus, suction marks, contact marks and the like considered to be generated in the second region R2 are appropriately removed by the polishing head ph and with a medium degree of removing capacity. At this time, the second region R2 is polished to the same extent as the first and third regions R1, R3.
Further, when the polishing head ph is located in the fourth region R4, that is, the distance from the center WC of the substrate W to the position of the polishing head ph is between the distance d3 and the distance d4, the rotation speed of the substrate W is adjusted such that the above-mentioned speed difference is larger than any of the speed differences corresponding to the first, second and third regions R1, R2, R3. Thus, suction marks and contact marks considered to be generated in the fourth region R4 and contaminants such as the processing liquid firmly adhering to the fourth region R4 are appropriately removed by the polishing head ph and with a high degree of removing capacity. At this time, the fourth region R4 is polished to the same extent as the first and third regions R1, R3.
In the present example, the rotation speed of the substrate W corresponding to the position in the radial direction of the substrate W may be stored in advance in the removal information storage 785 of
As described above, in the substrate cleaning device 700 according to the present embodiment, the lower surface of the substrate W is polished by the polishing head ph and with the removing capacity corresponding to the position in the radial direction of the substrate W based on the removal information corresponding to the presumed distribution of contaminants. Therefore, contaminants of the lower surface of the substrate W can be appropriately removed while the lower surface of the substrate W is prevented from being non-uniformly polished.
As described above, a degree of capacity for removing contaminants by the polishing head ph changes depending on the pushing force exerted on the lower surface of the substrate W from the polishing head ph, the moving speed of the polishing head ph, the rotation speed of the polishing head ph and the rotation speed of the substrate W. Therefore, the removing capacity may be adjusted by one element of the pushing force exerted on the lower surface of the substrate W from the polishing head ph, the moving speed of the polishing head ph, the rotation speed of the polishing head ph and the rotation speed of the substrate W, or may be adjusted by combination of a plurality of elements.
In the case where the removing capacity is adjusted by any of the pushing force, the moving speed and the rotation speed of the polishing head ph, the rotation speed of the substrate W is preferably adjusted such that the rotation speed of the substrate W decreases as the polishing head ph approaches the outer peripheral end WE from the center WC of the substrate W, as indicated by a one-dot and dash line in
As shown in
The indexer block 11 includes a plurality of carrier platforms 111 and a transport section 112. In each carrier platform 111, a carrier 113 for storing the plurality of substrates W in multiple stages is placed.
In the transport section 112, a main controller 114 and a transport device 115 are provided. The main controller 114 controls various constituent elements of the substrate processing apparatus 100. The transport device 115 holds and transports the substrate W.
The first processing block 12 includes a coating processing section 121, a transport section 122 and a thermal processing section 123. The coating processing section 121 and the thermal processing section 123 are provided to be opposite to each other with the transport section 122 interposed therebetween. A substrate platform PASS1 and below-mentioned substrate platforms PASS2 to PASS4 (see
The second processing block 13 includes a coating development processing section 131, a transport section 132 and a thermal processing section 133. The coating development processing section 131 and the thermal processing section 133 are provided to be opposite to each other with the transport section 132 interposed therebetween. A substrate platform PASS5 and below-mentioned substrate platforms PASS6 to PASS8 (see
The cleaning drying processing block 14A includes cleaning drying processing sections 161, 162 and a transport section 163. The cleaning drying processing sections 161, 162 are provided to be opposite to each other with the transport section 163 interposed therebetween. Transport devices 141, 142 are provided in the transport section 163.
A placement buffer unit P-BF1 and a below-mentioned placement buffer unit P-BF2 (see
Further, a substrate platform PASS9 and below-mentioned placement cooling units P-CP (see
A transport device 146 is provided in the carry-in carry-out block 14B. The transport device 146 carries in the substrate W to and carries out the substrate W from the exposure device 15. A substrate inlet 15a for carrying in the substrate W and a substrate outlet 15b for carrying out the substrate W are provided in the exposure device 15.
As shown in
Each coating processing unit 129 includes spin chucks 25 that hold the substrates W and cups 27 provided to cover the surroundings of the spin chucks 25. In the present embodiment, each coating processing unit 129 is provided with two pairs of the spin chuck 25 and the cup 27. The spin chuck 25 is driven to be rotated by a driving device (an electric motor, for example) that is not shown. Further, as shown in
In the coating processing unit 129, each of the spin chucks 25 is rotated by a driving device (not shown), and any processing liquid nozzle 28 of the plurality of processing liquid nozzles 28 is moved to a position above the substrate W by the nozzle transport mechanism 29, and the processing liquid is discharged from the processing liquid nozzle 28. Thus, the processing liquid is applied onto the substrate W. Further, a rinse liquid is discharged to the peripheral portion of the substrate W from an edge rinse nozzle (not shown). Thus, the processing liquid adhering to the peripheral portion of the substrate W is removed.
In the coating processing unit 129 in each of the coating processing chambers 22, 24, a processing liquid for an anti-reflection film is supplied to the substrate W from the processing liquid nozzle 28. In the coating processing unit 129 in each of the coating processing chambers 21, 23, a processing liquid for a resist film is supplied to the substrate W from the processing liquid nozzle 28. In the coating processing unit 129 in each of the coating processing chambers 32, 34, a processing liquid for a resist cover film is supplied to the substrate W from the processing liquid nozzle 28.
Similarly to the coating processing unit 129, the development processing unit 139 includes spin chucks 35 and cups 37. Further, as shown in
In the development processing unit 139, the spin chuck 35 is rotated by a driving device (not shown), and one development nozzle 38 supplies the development liquid to each substrate W while being moved in the X direction. Thereafter, the other development nozzle 38 supplies the development liquid to each substrate W while being moved. In this case, the development processing for the substrate W is performed by the supply of the development liquid to the substrate W. Further, in the present embodiment, development liquids different from each other are discharged from the two development nozzles 38. Thus, two types of development liquids can be supplied to each substrate W.
In the cleaning drying processing section 161, cleaning drying processing chambers 81, 82, 83, 84 are provided in a stack. In each of the cleaning drying processing chambers 81 to 84, the substrate cleaning device 700 of
The polishing cleaning controllers 780 of the plurality of substrate cleaning devices 700 provided in the cleaning drying processing section 161 may be provided in an upper portion of the cleaning drying processing section 161 as local controllers. Alternatively, the main controller 114 of
As shown in
Heating processing for the substrate W is performed in each thermal processing device PHP. In each adhesion reinforcement processing unit PAHP, adhesion reinforcement processing for improving adhesion between the substrate W and the anti-reflection film is performed. Specifically, in the adhesion reinforcement processing unit PAHP, an adhesion reinforcement agent such as HMDS (hexamethyldisilazane) is applied to the substrate W, and the heating processing is performed on the substrate W. In each cooling unit CP, the cooling processing for the substrate W is performed.
The thermal processing section 133 has an upper thermal processing section 303 provided above and a lower thermal processing section 304 provided below. A cooling unit CP, a plurality of thermal processing devices PHP and an edge exposure unit EEW are provided in each of the upper thermal processing section 303 and the lower thermal processing section 304.
In the edge exposure unit EEW, exposure processing (edge exposure processing) is performed on a region having a constant width at the peripheral portion of the resist film formed on the substrate W. In each of the upper thermal processing section 303 and the lower thermal processing section 304, each thermal processing device PHP provided to be adjacent to the cleaning drying processing block 14A is configured to be capable of receiving the substrate W carried in from the cleaning drying processing block 14A.
In the cleaning drying processing section 162, cleaning drying processing chambers 91, 92, 93, 94, 95 are provided in a stack. In each of the cleaning drying processing chambers 91 to 95, a cleaning drying processing unit SD2 is provided. Each cleaning drying processing unit SD2 has the same configuration as the substrate cleaning device 700 except that the substrate polishing mechanism 400 is not provided and the magnet plates 231A, 231B, 232A of
The substrate platforms PASS1, PASS2 are provided between the transport section 112 and the upper transport chamber 125, and the substrate platforms PASS3, PASS4 are provided between the transport section 112 and the lower transport chamber 126. The substrate platforms PASS5, PASSE are provided between the upper transport chamber 125 and the upper transport chamber 135, and the substrate platforms PASS7, PASS8 are provided between the lower transport chamber 126 and the lower transport chamber 136.
The placement buffer unit P-BF1 is provided between the upper transport chamber 135 and the transport section 163, and the placement buffer unit P-BF2 is provided between the lower transport chamber 136 and the transport section 163. The substrate platform PASS9 and the plurality of placement cooling units P-CP are provided in the transport section 163 to be adjacent to the carry-in carry-out block 14B.
The transport device 127 is configured to be capable of transporting the substrates W among the substrate platforms PASS1, PASS2, PASS5, PASS6, the coating processing chambers 21, 22 (
The transport device 137 is configured to be capable of transporting the substrates W among the substrate platforms PASS5, PASS6, the placement buffer unit P-BF1, the development processing chamber 31 (
The transport device 141 (
The transport device 142 (
The operation of the substrate processing apparatus 100 will be described with reference to
In the first processing block 12, the transport device 127 (
In this case, the adhesion reinforcement processing is performed on the substrate W in the adhesion reinforcement processing unit PAHP, and then the substrate W is cooled to a temperature suitable for formation of the anti-reflection film in the cooling unit CP. Next, the anti-reflection film is formed on the substrate W by the coating processing unit 129 (
Further, the transport device 127 transports the substrate W on which the development processing has been performed and which is placed on the substrate platform PASS6 (
The transport device 128 (
Further, the transport device 128 (
In the second processing block 13, the transport device 137 (
Further, the transport device 137 (
In this case, the substrate W is cooled to a temperature suitable for the development processing in the cooling unit CP. Then, the resist cover film is removed, and the development processing for the substrate W is performed, by the development processing unit 139 in the development processing chamber 31. Thereafter, the thermal processing for the substrate W is performed in the thermal processing device PHP, and the substrate W is placed on the substrate platform PASS6.
The transport device 138 (
Further, the transport device 138 (
In the cleaning drying processing block 14A, the transport device 141 (
The transport device 142 (
In the carry-in carry-out block 14B, the transport device 146 (
In the case where the exposure device 15 cannot receive the substrate W, the substrate W on which the exposure processing has not been performed is temporarily stored in each of the placement buffer units P-BF1, P-BF2. Further, in the case where the development processing unit 139 (
In the above-mentioned substrate processing apparatus 100, processing for the substrate W in the coating processing chambers 21, 22, 32, the development processing chamber 31 and the upper thermal processing sections 301, 303 that are provided above, and the processing for the substrate W in the coating processing chambers 23, 24, 34, the development processing chamber 33 and the lower thermal processing sections 302, 304 that are provided below can be concurrently performed. Thus, it is possible to improve throughput without increasing a footprint.
Here, the main surface of the substrate W refers to a surface on which the anti-reflection film, the resist film and the resist cover film are formed, and the back surface of the substrate W refers to a surface of the substrate W on the opposite side of the main surface. Inside of the substrate processing apparatus 100 according to the present embodiment, each type of the above-mentioned processing is performed on the substrate W with the main surface of the substrate W directed upward, that is, each type of processing is performed on the upper surface of the substrate W. Therefore, in the present embodiment, the main surface of the substrate W corresponds to the upper surface of the substrate of the present invention, and the back surface of the substrate W corresponds to the one surface and the lower surface of the substrate of the present invention.
(a) In the above-mentioned substrate cleaning device 700, the lower surface of the substrate W is polished by the polishing head ph and with the removing capacity corresponding to the position in the radial direction of the substrate W based on the distribution of contaminants of the lower surface of the substrate W.
In this case, the lower surface of the substrate W is polished by the polishing head ph, whereby contaminants firmly adhering to the lower surface of the substrate W are removed. Further, the capacity for removing contaminants by the polishing head ph is changed between a contaminated portion and an uncontaminated portion of the lower surface of the substrate W, whereby the contaminants can be removed while the lower surface of the substrate W is prevented from being non-uniformly polished. As a result, the lower surface of the substrate W can be clean and uniform.
(b) In the substrate cleaning device 700, the lower surface of the substrate W is polished by the polishing head ph of the substrate polishing mechanism 400, and then the lower surface of the substrate W is cleaned by the cleaning brush cb of the substrate cleaning mechanism 500. Thus, contaminants generated by the polishing of the lower surface of the substrate W are removed. Therefore, the lower surface of the substrate W can be more sufficiently cleaned.
(c) In the substrate processing apparatus 100, the lower surface of the substrate W on which the exposure processing has not been performed is polished and cleaned by the substrate cleaning device 700. Thus, the lower surface of the substrate W on which the exposure processing has not been performed can be clean and uniform. As a result, an occurrence of processing defects in the substrate W caused by contaminants on the lower surface of the substrate W is inhibited.
(a) While the substrate cleaning device 700 is configured to be capable of polishing the lower surface of the substrate W in the above-mentioned embodiment, the present invention is not limited to this. The substrate cleaning device 700 may be configured to be capable of polishing the upper surface of the substrate W. For example, the substrate cleaning device 700 may include a spin chuck that holds the lower surface of the substrate W by suction instead of the above-mentioned spin chuck 200, and a mover that moves the polishing head ph at least between the center and the outer peripheral end WE of the substrate W while bringing the polishing head ph into contact with the upper surface of the substrate W rotated by the spin chuck. In this case, the upper surface of the substrate W can be clean and uniform.
(b) In the above-mentioned embodiment, the polishing head ph of the substrate cleaning device 700 polishes the lower surface of the substrate W by being moved from the center WC to the outer peripheral end WE of the substrate W in the radial direction while being in contact with the lower surface of the substrate W. However, the present invention is not limited to this. The polishing head ph may polish the lower surface of the substrate W by being moved between the center WC and the outer peripheral end WE of the substrate W back and forth while being in contact with the lower surface of the substrate W. Alternatively, the polishing head ph may polish the lower surface of the substrate W by being moved from one end to the other end of the substrate W through the center WC of the substrate W while being in contact with the lower surface of the substrate W.
(c) While the polishing of the lower surface of the substrate W is controlled based on the removal information stored in the removal information storage 785 of
As described above, in the case where the capacity for removing contaminants is adjusted based on the distribution of contaminants, a contamination detection device for detecting the actual distribution of contaminants of the lower surface of the substrate W may be provided in the substrate cleaning device 700. Thus, the capacity for removing contaminants can be adjusted based on the distribution of contaminants detected by the contamination detection device during the polishing of the lower surface of the substrate W.
The contamination detection device may include an imaging device capable of picking up images of at least part of the lower surface of the substrate W and a processing device capable of determining a degree of contamination from the image data acquired by the imaging device.
(d) While the substrate polishing mechanism 400 that polishes the lower surface of the substrate W and the substrate cleaning mechanism 500 that cleans the lower surface of the substrate W are provided in the substrate cleaning device 700 in the above-mentioned embodiment, the present invention is not limited to this. The substrate cleaning mechanism 500 does not have to be provided in the substrate cleaning device 700. In this case, the configuration of the substrate cleaning device 700 is simplified.
Alternatively, another substrate polishing mechanism 400 may be provided in the substrate cleaning device 700 instead of the substrate cleaning mechanism 500, that is, two substrate polishing mechanisms 400 may be provided in the substrate cleaning device 700. In this case, a plurality of polishing heads ph can be selectively used in a plurality of positions in the radial direction of the substrate W. Therefore, flexibility of a method of polishing the lower surface of the substrate W is improved.
In the case where the plurality of polishing mechanisms 400 are provided in the substrate cleaning device 700, the polishing heads ph of the plurality of polishing mechanisms 400 may be fabricated of the mutually same material or may be fabricated of mutually different materials.
As described above, in the case where the substrate cleaning mechanism 500 is not provided in the substrate cleaning device 700, the substrate cleaning device 700 and the cleaning drying processing unit SD2 may be provided in the cleaning drying processing section 161 of
(e) While pure water is used as the cleaning liquid in the above-mentioned embodiment, a chemical liquid such as BHF (Buffered Hydrofluoric Acid), DHF (Dilute Hydrofluoric Acid), Hydrofluoric Acid, Hydrochloric Acid, Sulfuric Acid, Nitric Acid, Phosphoric Acid, Acetic Acid, Oxalic Acid, Ammonia or the like may be used as the cleaning liquid instead of pure water. More specifically, a mixed solution of ammonia water and hydrogen peroxide water may be used as the cleaning liquid, and an alkaline solution such as TMAH (Tetramethylammonium hydroxide) may be used as the cleaning liquid.
(f) While the plurality of auxiliary pins 290 are provided in the spin chuck 200 of the substrate cleaning device 700 in the above-mentioned embodiment, the plurality of auxiliary pins 290 do not have to be provided. In this case, the number of components of the spin chuck 200 is reduced, and the configuration of the spin chuck 200 is simplified. Further, each chuck pin 220 is locally brought into the opened state in a region corresponding to the magnet plate 232A of
(g) While the exposure device 15 that performs the exposure processing for the substrate W by a liquid immersion method is provided as an external device of the substrate processing apparatus 100 in the above-mentioned embodiment, the present invention is not limited to this. The exposure device that performs the exposure processing for the substrate W with no liquid may be provided as an external device of the substrate processing apparatus 100. In this case, in the coating processing unit 129 in each of the coating processing chambers 32, 34, the resist cover film does not have to be formed on the substrate W. Therefore, the coating processing chambers 32, 34 can be used as development processing chambers.
(h) While the substrate processing apparatus 100 according to the above-mentioned embodiment is a substrate processing apparatus (so-called coater and developer) that performs the coating forming processing of the resist film and the development processing on the substrate W, the substrate processing apparatus provided with the substrate cleaning device 700 is not limited to the above-mentioned example. The substrate cleaning device 700 may be provided in a substrate processing apparatus that performs single processing such as cleaning processing on the substrate W. For example, the substrate processing apparatus according to the present invention may be constituted by an indexer block that includes a transport device, a substrate platform and the like, and one or a plurality of substrate cleaning devices 700.
In the following paragraphs, non-limiting examples of correspondences between various elements recited in the claims below and those described above with respect to various preferred embodiments of the present invention are explained.
In the above-mentioned embodiment, the substrate W is an example of a substrate, the upper surface of the substrate W is an example of an upper surface of the substrate W, the lower surface of the substrate W is an example of one surface and a lower surface of the substrate W, the substrate cleaning device 700 is an example of a substrate cleaning device, the spin chuck 200 is an example of a rotation holder, the polishing head ph is an example of a polisher, the arm 410 and the arm support post 420 of the substrate polishing mechanism 400, and the inner configuration of the arm support post 420 are examples of a first mover, and the polishing cleaning controller 780 is an example of a controller.
Further, the rotation support shaft 414, the pulleys 415, 417, the belt 416 and the motor 418 that are provided inside of the arm 410 of the substrate polishing mechanism 400 are examples of a rotation driver, the cleaning brush cb of the substrate cleaning mechanism 500 is an example of a brush, the arm 510 and the arm support post 520 of the substrate cleaning mechanism 500, and the inner configuration of the arm support post 520 are examples of a second mover.
Further, the exposure device 15 is an example of an exposure device, the substrate processing apparatus 100 is an example of a substrate processing apparatus, the coating processing unit 129 that supplies the processing liquid for the resist film to the substrate W is an example of a coating device, and the transport devices 115, 127, 128, 137, 138, 141, 142, 146 are examples of a transport device.
As each of constituent elements recited in the claims, various other elements having configurations or functions described in the claims can be also used.
While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.
The present invention can be effectively utilized for a cleaning device that cleans a lower surface of a substrate.
Number | Date | Country | Kind |
---|---|---|---|
2016-178817 | Sep 2016 | JP | national |