Substrate-embedded transformer with improved isolation

Information

  • Patent Grant
  • 11600432
  • Patent Number
    11,600,432
  • Date Filed
    Wednesday, February 22, 2017
    7 years ago
  • Date Issued
    Tuesday, March 7, 2023
    a year ago
Abstract
An embedded-core device including a substrate, a core embedded in the substrate, a winding arranged around the core, and a dummy pin in direct contact with the core and not in direct contact with the winding. A method of a manufacturing an embedded-core device includes providing winding pins and a dummy pin, inserting a core between the winding pins using the dummy pin such that the dummy pin is in direct contact with the core and not in direct contact with the winding pins, and sealing the core with resin.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to substrate-embedded transformers. More specifically, the present invention relates to substrate-embedded transformers with improved isolation.


2. Description of the Related Art

It is known to embed a transformer in a substrate. FIG. 1 shows an embedded-core device 1a that includes a core 3 embedded in a substrate 2. The substrate 2 includes through holes 4. Pins 5a1-5a12, 5b1-5b12 are located in the holes 4. Pins 5a1-5a12 (with the inner pins collectively referred to as inner pins 5a) are located in the substrate 2 in the center of the core 3, and pins 5b1-5b12 (with the outer pins collectively referred to as outer pins 5b) are located in the substrate 2 outside of the core 3. Collectively, the inner pins 5a and the outer pins 5b are referred to as pins 5. Conductors 6 extend along the top of the embedded-core device 1a, and conductors 7 extend along the bottom of the embedded-core device 1a. Conductors 6, 7 connect the pins 5 to define a coil. Terminals 10a, 10b extend along the bottom surface of the embedded-core device 1a and are connected to the coil. Although not shown in FIG. 1, an additional coil (or winding) can be added to provide a transformer.


In an embedded transformer, the core must be insulated from the conductive pins. In FIG. 1, the conductive pins correspond to the pins 5. If the core touches the conductive pins, then the turns of the windings of the transformer could be shorted.


The core must be insulated from the conductive pins with significant spacing, depending on the dielectric strength of a molding compound. If the core is too close and touches the conductive pin, then the isolation could break down.


The core is typically made of a ferrite material. Ferrite material is a conductor for UL safety approval purposes. A significant safety barrier must be provided for isolated transformers.


To provide sufficient isolation, it is known to use a core cover or to coat the core with insulation material. The core cover is made from a plastic pre-formed cup and lid, and the ferrite core is inserted into the cup and the lid is attached. Alternatively, the core could be dipped in a polymer material that completely covers the core.


SUMMARY OF THE INVENTION

To overcome the problems described above, preferred embodiments of the present invention provide an embedded transformer in which the core does not touch the pins so that no turns are shorted and in which the core is adequately spaced away from the pins.


According to a preferred embodiment of the present invention, an embedded-core device includes a substrate, a core embedded in the substrate, a winding arranged around the core, and a dummy pin in direct contact with the core and not in direct contact with the winding.


The embedded-core device further preferably includes at least one additional dummy pin in direct contact with the core and not in direct contact with the winding.


The dummy pin preferably includes an inductor or an insulator.


The winding preferably includes winding pins embedded in the substrate. The dummy pin is preferably shorter than the winding pins. The cross-section of the dummy pin is preferably smaller than a cross-section of each of the winding pins. The dummy pin and the winding pins are preferably made of the same material. Preferably, the winding further includes first conductors located on a top surface of the substrate and connected to corresponding winding pins and second conductors located on a bottom surface of the substrate and connected to corresponding winding pins.


The embedded-core device preferably further includes an additional winding. The winding and the additional winding preferably define a transformer.


According to a preferred embodiment of the present invention, a method of a manufacturing an embedded-core device includes providing winding pins and a dummy pin, inserting a core between the winding pins using the dummy pin such that the dummy pin is in direct contact with the core and not in direct contact with the winding pins, and sealing the core with resin.


Preferably, the step of providing winding pins and a dummy pin includes, providing a release sheet with a supporting layer and inserting the winding pins and the dummy pin into the supporting layer. The supporting layer and the release sheet are preferably made of the same material. The method preferably further includes removing the release sheet after the step of sealing the core.


The method preferably further includes forming a winding around the core using the winding pins. The step of forming a winding preferably includes forming conductors that are located on either an upper surface or a lower surface of the embedded-core device and that connect corresponding winding pins. The step of forming a winding preferably includes polishing upper and lower surfaces of the embedded-core device to expose ends of the winding pins. The method preferably further includes forming an additional winding around the core using the winding pins. The winding and the additional winding preferably define a transformer.


The step of providing winding pins and a dummy pin preferably includes providing at least one additional dummy pin.


The above and other features, elements, characteristics, steps, and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the present invention with reference to the attached drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a known embedded-core device.



FIG. 2 shows an embedded-core device according to a preferred embodiment of the present invention.



FIGS. 3-6 show a method of manufacturing the embedded-core device of FIG. 2.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The embedded-core device 11a of FIG. 2 is similar to the embedded core device 1a of FIG. 1, except that the embedded-core device 11a includes dummy pins 17. In FIG. 1, the dummy pins 17 are arranged preferably along the outer radius of the core 3, but it is also possible for the dummy pins 17 to be arranged along the inner radius of the core 3 instead of, or in addition to, the dummy pins 17 arranged along the outer radius of the core 3. In FIG. 2, four dummy pins 17 are preferably provided, for example. However it is possible to use any number of dummy pins 17.


The dummy pin or pins 17 are used to hold the core 3 in place while the coil is molded. The embedded-core device 11a can include the features and can be made using the techniques discussed in WO 2015/133361, the entire contents of which are hereby incorporated by reference. Because the dummy pin or pins 17 hold the core 3 in place while the coil is molded, the core 3 does not touch the pins 5 so that no turns of the coil are shorted, and adequate spacing between the core 3 and the pins 5 is ensured. The dummy pin or pins 17 are not electrically connected to the pins 5 that define a portion of the coil. The dummy pin or pins 17 are typically not electrically connected to any other structure. The dummy pin or pins 17 are located closer to the inner and/or outer radius of the core 3 than the pins 5.


The dummy pin or pins 17 be can be made of a conductor or an insulator. The dummy pin or pins 17 can be shorter than the pins 5 that define the coil, if required. The dummy pin or pins 17 can have any shape and do not need to be round. As shown in FIG. 2, the cross-section of the dummy pins 17 can be smaller than the cross-section of the pins 5; however, the cross-section of the dummy pins 17 can be any size compared to the cross-section of the pins 5. It is preferable that the pins 5 and dummy pins 17 be made of the same material and made in a similar manner; however, this is not a requirement.


First, pins 5 are prepared by shearing a metal wire rod to a predetermined length to form a columnar prism or a cylinder. The metal wire rod preferably has a circular or polygonal cross-section. Dummy pins 17 are preferably prepared in a similar manner by shearing a wire rod to the predetermined length. The wire rod for the dummy pins 17 is preferably a metal wire rod, but an insulating wire rod could also be used. The metal wire rod for the pins 5 and the wire rod for the dummy pins 17 can be the same material or different materials, can have the same or different cross-sectional diameter, and can have the same or different cross-sectional shape.


A terminal assembly 100 is then prepared as shown in FIG. 3. The terminal assembly 100 includes a transfer member 20 from which pins 5 extend from surface 20a. The transfer member 20 can be a plate-shaped member made of a resin material such as glass epoxy resin. The transfer member 20 can include a retention layer that includes an adhesive on surface 20a. The retention layer can be made of any suitable resin material, including thermoplastic epoxy or acrylic resin.


Pins 5 and dummy pins 17 can be arranged to extend from surface 20a of the transfer member 20. FIG. 3 shows pins 5 arranged on the transfer member 20 before the dummy pins 17 are arranged on the transfer member 20. However, the dummy pins 17 can be arranged on the transfer member 20 in any suitable manner, including before, after, or at the same time as the pins 5. The inner pins 5a and outer pins 5b are arranged concentrically and away from the region where the core 3 will be located to ensure isolation from the core 3. The dummy pins 17 are preferably arranged in a circle and close to the region where the core 3 will be inserted to support the core 3 when the core 3 is inserted into this region. The dummy pins 17 are preferably arranged diagonally to support at least four points of the core 3. Additional dummy pins 17 can also be arranged concentrically along the inner circumference of the region where the core 3 will be inserted.


As shown in FIG. 4, a release sheet 21 is prepared on which a supporting layer 10 is formed. The supporting layer 10 is preferably made of thermosetting resin, for example.


As shown in FIG. 5, first ends of the pins 5 are inserted into the supporting layer 10, and then the supporting layer 10 is heated and hardened. Then, the transfer member 20 is removed, and the core 3 is inserted between the inner pins 5a and the outer pins 5b, guided by the dummy pins 17. As shown in FIG. 6, a resin insulation layer 29 is formed by sealing the core 3, the metal pins 5, and the dummy pins 17 by a resin material, which is preferably the same as used for the supporting layer 10 but which could be a different material.


The release sheet 21 is then removed. The top and bottom surfaces of the terminal assembly 100 are polished to expose the tops and bottoms of pins 5.


The traces 6, 7 can then be formed on the top and bottom surfaces of the terminal assembly 100 to connect metal pins 5a, 5b to form a winding. One winding forms a coil, while two windings can form a transformer. The traces 6, 7 can then be plated.


The dummy pins 17 are not connected to the traces 6, 7. The dummy pins 17 could be connected to structures other than the traces 6, 7, such as ground planes. If the dummy pins 17 are made of high heat conductive material such as Au, Ag, or Cu, the dummy pins 17 can provide heat dissipation. The diameter of the dummy pins 17 can be wider than the diameter of the pins 5 to increase heat conductivity.


The dummy pins 17 could be shorter than the pins 5 so that first ends of the dummy pins 17 are buried in the resin insulation layer 29, even after polishing. If the dummy pins 17 are made of a conductive material and if the end or ends of the dummy pins 17 are exposed, the first ends of the dummy pins 17 can be also plated to leave some plated portions on the surfaces of the embedded-core device 11a. Having first ends of the dummy pins 17 buried in the resin insulation layer 29 and/or plating the exposed ends of conductive dummy pins 17 can reduce or prevent humidity from entering the embedded-core device 11a at the boundary between the dummy pins 17 and the resin insulation layer 29.


It should be understood that the foregoing description is only illustrative of the present invention. Various alternatives and modifications can be devised by those skilled in the art without departing from the present invention. Accordingly, the present invention is intended to embrace all such alternatives, modifications, and variances that fall within the scope of the appended claims.

Claims
  • 1. An embedded-core device comprising: a substrate;a core embedded in the substrate;a winding arranged around the core; anda dummy pin in direct contact only with a side surface of the core and not in direct contact with the winding.
  • 2. The embedded-core device of claim 1, further comprising at least one additional dummy pin in direct contact with the core and not in direct contact with the winding.
  • 3. The embedded-core device of claim 1, wherein the dummy pin includes an inductor or an insulator.
  • 4. The embedded-core device of claim 1, wherein the winding includes winding pins embedded in the substrate.
  • 5. The embedded-core device of claim 4, wherein the dummy pin is shorter than the winding pins.
  • 6. The embedded-core device of claim 4, wherein a cross-section of the dummy pin is smaller than a cross-section of each of the winding pins.
  • 7. The embedded-core device of claim 4, wherein the dummy pin and the winding pins are made of a same material.
  • 8. The embedded-core device of claim 4, wherein the winding further includes: first conductors located on a top surface of the substrate and connected to corresponding winding pins; andsecond conductors located on a bottom surface of the substrate and connected to corresponding winding pins.
  • 9. The embedded-core device of claim 1, further comprising an additional winding.
  • 10. The embedded-core device of claim 9, wherein the winding and the additional winding define a transformer.
  • 11. The embedded-core device of claim 1, wherein the dummy pin directly contacts the side surface of the core along an entire height of the side surface of the core.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2017/018842 2/22/2017 WO
Publishing Document Publishing Date Country Kind
WO2017/147129 8/31/2017 WO A
US Referenced Citations (25)
Number Name Date Kind
5191699 Ganslmeier et al. Mar 1993 A
5781091 Krone et al. Jul 1998 A
7489226 Chignola et al. Feb 2009 B1
20020070831 Harding Jun 2002 A1
20030005569 Hiatt et al. Jan 2003 A1
20040135662 Harding Jul 2004 A1
20050052268 Pleskach et al. Mar 2005 A1
20060152322 Whittaker et al. Jul 2006 A1
20060176139 Pleskach et al. Aug 2006 A1
20070257761 Mano et al. Nov 2007 A1
20080007382 Snyder Jan 2008 A1
20080117607 Murayama et al. May 2008 A1
20080129436 Feist Jun 2008 A1
20090002111 Harrison et al. Jan 2009 A1
20090237899 Furnival Sep 2009 A1
20110108317 Harrison et al. May 2011 A1
20110193672 Yang Aug 2011 A1
20110242713 Dalmia et al. Oct 2011 A1
20110272094 Dalmia et al. Nov 2011 A1
20110291787 Dalmia et al. Dec 2011 A1
20120212919 Mano et al. Aug 2012 A1
20150061817 Lee et al. Mar 2015 A1
20160372259 Banba et al. Dec 2016 A1
20170084384 Otsubo Mar 2017 A1
20170316858 Otsubo Nov 2017 A1
Foreign Referenced Citations (13)
Number Date Country
102159037 Aug 2011 CN
102933040 Feb 2013 CN
106887299 Jun 2017 CN
10 2005 055 869 May 2007 DE
10-126054 May 1998 JP
2006-165212 Jun 2006 JP
2014-038884 Feb 2014 JP
201201640 Jan 2012 TW
9856016 Dec 1998 WO
2010065113 Jun 2010 WO
2010097387 Sep 2010 WO
2011014200 Feb 2011 WO
2015133361 Sep 2015 WO
Non-Patent Literature Citations (1)
Entry
Official Communication issued in International Patent Application No. PCT/US2017/018842,dated May 31, 2017.
Related Publications (1)
Number Date Country
20190043658 A1 Feb 2019 US
Provisional Applications (1)
Number Date Country
62299144 Feb 2016 US