Embodiments herein generally relate to sheet substrate movement systems and methods. Devices described herein involve a sheet inverter/sorter used to turn sheets over and to direct sheets between various sheet paths.
The systems and methods of embodiments herein provide a sheet inverter/director. The sheet inverter includes a sheet path, such as a curved sheet path. A sheet driver is positioned to receive a sheet along the sheet path. The sheet driver is adapted to draw in the sheet and reverse the direction of travel of the sheet. A first path (e.g., exit path) is positioned to receive the sheet from the sheet driver. Additional paths (e.g., an inverter path) are also positioned to receive the sheet from the sheet driver. The curve of the sheet path biases the sheet's trailing edge into the inverter path and the exit path successively, and the sheet is directed to the exit path or the inverter path depending upon how far the sheet is drawn into the sheet driver.
The exit path and the inverter path are positioned at different locations along the sheet path. The point where the exit path joins the sheet path comprises a first immovable feature that is positioned at the beginning of the exit path and is adapted to direct the sheet into the exit path. Similarly, the point where the inverter path joins the sheet path comprises a second immovable feature that is positioned at the beginning of the inverter path and is adapted to direct the sheet into the inverter path. The sheet path has a curve which directs the sheet's trailing edge into the exit path as the trailing edge of the sheet passes the exit path and into the inverter path as the trailing edge of the sheet passes the inverter path. The sheet inverter avoids using any movable or resilient gate features to direct the sheet's trailing edge into either the exit path or the inverter path. Instead, strain energy is released from the curved sheet as the sheet's trailing edge passes by the exit path and the inverter path, causing the trailing edge to flip into the respective path. Thus, the sheet can exit via either the exit path or the inverter path depending upon how far the sheet is drawn into the sheet driver. The sheet driver can comprise, for example, rollers adapted to frictionally move the sheet. Secondary sheet drivers can be positioned along the exit path and the inverter path to move the sheet along the exit path and the inverter path once the sheet has been directed into the exit path or the inverter path. The sheet driver is positioned at the end of the sheet path.
A method embodiment directs the sheet into the first path (e.g., exit path) or one of the additional paths (e.g., the inverter path) by directing the sheet along the sheet path, drawing the sheet into the sheet driver, and stopping the sheet in the sheet driver such that a trailing edge of the sheet is stopped adjacent to, and past either the first immovable feature that is positioned at the beginning of the exit path, or the second immovable feature that is positioned at the beginning of the inverter path. This process biases the trailing edge of the sheet into the exit path as the sheet passes the exit path and into the inverter path as the sheet passes the inverter path using only the curvature of the sheet path. The method then reverses the direction of travel of the sheet to cause the sheet to enter either the exit path or the inverter path depending upon which immovable feature the trailing edge of the sheet is stopped adjacent to (the sheet is directed to either the exit path or the inverter path depending only upon how far the sheet is drawn into the sheet driver and this process avoids using any form of movable gate).
The drawing, stopping, and reversing processes are performed using two nip rollers within the sheet driver that are adapted to frictionally move the sheet. Also, this method moves the sheet along the exit path and the inverter path using secondary sheet drivers positioned along the exit path and the inverter path once the sheet has been directed into one of the exit path and the inverter path.
These and other features are described in, or are apparent from, the following detailed description of various exemplary embodiments of systems and methods.
When it is desired to print a duplex or two-side-imaged sheet, the sheet is inverted and re-fed to the marking station 14 following receiving a first image on the first side thereof, so that the marking station 14 can place the second-side image. To perform such inverting and re-feeding, an inverter (indicated by box 20) and a duplex loop, indicated as 22, are used. The inverter 20 is shown in greater detail in
The sheet feed mechanisms 12, 24 can comprise any form of device that is adapted to move a sheet or substrate. For example, the sheet feed mechanisms 12, 24 can include nip rollers or a belt adapted to frictionally move the sheet and can include air pressure or suction devices to produce sheet movement. The sheet feed mechanisms 12, 24 can include pairs of opposing wheels (one or both of which can be powered) that pinch the sheets Greater details on the operation of such sheet movement mechanisms are described in U.S. Patent Application Publications 2002/0070497, 2002/0158404, 2003/0102624, and 2003/0201598, the disclosures of which are incorporated herein by reference.
The duplex loop 22 conveys the sheet back to the marking station 14. As the sheet is in effect turned over by the action of inverter 20 and the duplex loop 22, the side of the sheet which had not received the initial image is placed face-up to receive the second-side image at the marking station 14. Following printing of the second-side image, the now “duplexed” sheet having printing on both sides is conveyed back to the inverter 20 and to exit 18. In the case of printing a “simplex” sheet, meaning a sheet having an image on only one side thereof, the sheet is sent directly from the inverter 20 to an exit 18 (which may be directed to, for instance, a catch tray or other finishing device, such as a stapler) without passing through the duplex loop 22.
The curve of the sheet path 26 biases the sheet into the exit path 18 and the inverter path 22, and the sheet is directed to the exit path 18 or the inverter path 22 depending upon how far the sheet is drawn into the sheet driver 24. The actual curvature of the sheet path 26 will vary depending upon the intended use for the printer or copier and any curvature will be acceptable so long as sufficient bias is created to force the trailing edges of the sheets into the respective paths as they pass those paths. Therefore, if the inverter 20 is to be used with thick substrate sheets, less curvature will be used to prevent jamming. To the contrary, if the inverter 20 is to be used with thinner substrate sheets, more curvature will be used to ensure that the thinner sheets are properly biased into the respective paths.
The exit path 18 and the inverter path 22 are positioned at different locations along the curve of the sheet path 26. The curve in the sheet path 26 biases the sheet such that the curve directs the sheet into the exit path 18 as the trailing edge of the sheet passes the exit path 18 or into the inverter path 22 as the trailing edge of the sheet passes the inverter path 22. The sheet inverter 20 avoids using any movable or resilient gate feature. Secondary sheet drivers 12 can be positioned along the sheet path 26, exit path 18, and the inverter path 22 to move the sheet along these paths once the sheet has been directed into these paths. The sheet driver 24 is positioned at the end 27 of the sheet path 26.
While the foregoing has been described in conjunction with various exemplary embodiments, it is to be understood that many alternatives, modifications and variations would be apparent to those skilled in the art. Accordingly, Applicants intend to embrace all such alternatives, modifications and variations that follow in this spirit and scope.
For example, the sheet inverter 20 can be used to sort sheets for any purpose, such as sorting sheets according to different jobs, different colors, different print qualities, etc. In addition, as shown in
Thus, depending upon how far a sheet 39 is drawn into the reversing feed mechanism 24, a sheet can be directed to the first sheet path 30, the second sheet path 32, the third sheet path 34, or the sheet driver 24 can continue moving the sheet in the same direction without reversing the sheet such that the sheet is directed to the fourth sheet path 36. While two paths are shown in
The method then reverses the direction of travel of the sheet (item 408) to cause the sheet to enter either the first path 30, the second path 32, the third path, etc., depending upon which immovable feature 33, 35, 37, etc. the trailing edge of the sheet is stopped adjacent to. The sheet is directed to one of the paths 30, 32, 34, 35 etc., depending only upon how far the sheet is drawn into the sheet driver, without using any form of movable or resilient gate.
The drawing 402, stopping 404, and reversing 408 processes can be performed using two nip rollers (or similar mechanisms) within the sheet driver 24 that are adapted to frictionally move the sheet. Also, this method moves the sheet along the selected path using secondary sheet drivers positioned along the selected path once the sheet has been directed into one of the paths 410.
Thus, as shown above, the sheet inverter avoids using any movable or resilient gate features and, instead, the sheet is directed to the exit path or the inverter path depending solely upon how far the sheet is drawn into the sheet driver. This substantially lowers the cost and increases reliability of the device by eliminating many moving parts. It also results in faster inverter operation since no movable gate mechanism must be repositioned before sheet reversal can begin. This allows the sheet to be reversed as soon as it has stopped at the appropriate path. There is also less likelihood of paper or image damage, especially compared to a gate consisting of a series of discrete movable or resilient fingers. Finally, in the event that a paper jam must be cleared by the customer, there are fewer impediments for extraction of sheets.
The present application is related to co-pending U.S. patent application Ser. No. 10/______, filed on Aug. 23, 2004, entitled “Printing System With Inverter Disposed For Media Velocity Buffering and Registration” having Docket No. D/A3190.